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1. Introduction

Invariants
LetO(Vn)SL2 denote the algebra of invariants of binary forms (forms in two variables) of degree nwith
complex coefficients. This algebra was extensively studied in the nineteenth century, and for n ≤ 6
the structurewas clear and a finite basis (minimal set of generators)was known.While Cayley (1856)1
states that for n = 7 there is no such finite basis, Gordan (1868) proved thatO(Vn)SL2 has a finite basis
for all n. After the initial work by von Gall (1880, 1888)), the degrees of the basic invariants in the
cases n = 7 and n = 8 were found by Dixmier and Lazard (1986) and Shioda (1967), respectively.
Bedratyuk (2007) gave an explicit basis in the case n = 7. Here we consider the case n = 9, and settle
a 130-year-old question by showing that O(V9)SL2 is generated by 92 basic invariants. The degrees
are given in Proposition 3.1. The rather large computation needed is discussed in Section 3.1 below.
Earlier work on the case n = 9 was done by Sylvester and Franklin (1879) and by Cröni (2002).

Systems of parameters
A (homogeneous) system of parameters for a graded algebra A is an algebraically independent set
S of homogeneous elements of A such that A is module-finite over the subalgebra generated by
the set S. Hilbert (1893) showed the existence of a system of parameters for algebras of invariants,
cf. Proposition 5.1 below.
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1 See the references at the end of this paper.
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In the case O(V9)SL2 considered here, Dixmier (1985) proved the following.

Proposition 1.1. O(V9)SL2 has a homogeneous system of parameters of degrees 4, 8, 10, 12, 12, 14, 16.

Dixmier was unable to give an explicit such system. Here we find an explicit system of parameters
for O(V9)SL2 with these degrees (Theorem 4.1), and show the existence of systems of parameters for
certain further sequences of degrees (Proposition 7.2).

Contents
Section 2 gives the Poincaré series of the invariant ring. Its coefficients are the dimensions of the
graded parts, and tell us how many independent invariants we need in each degree. Section 3 gives
the (degrees of) the basic invariants, the main result of this paper. This result follows by a large
computation based on the knowledge of (the degrees of) a system of parameters. An explicit such
system is given in Section 4, and the proof that this indeed is a system of parameters follows in
Section 5. Other possible sets of degrees for a system of parameters are discussed in Section 6, and
all such sets for the nonic are determined in Section 7.

2. Invariants and Poincaré series

Let Vn = C[x, y]n be the SL2-module of binary forms (homogeneous polynomials in x and y) of
degree n, on which SL2 acts via

g · f (v) = f (g−1v),

for g ∈ SL2, f ∈ C[x, y] and v ∈ C2. The coordinate ring of Vn, denoted by O(Vn), is isomorphic to the
polynomial ring C[a0, . . . , an]. The group SL2 acts on the coordinate ring O(Vn) via the action

g · j(f ) = j(g−1 · f ),

for g ∈ SL2, j ∈ O(Vn) and f ∈ Vn. An invariant of Vn is an element j ∈ O(Vn) such that g · j = j for
all g ∈ SL2. The set of elements of O(Vn) invariant under the action of SL2 forms the ring of invariants
I := O(Vn)SL2 .
This ring of invariants I is graded by degree, so that I = ⊕mIm, where Im is the subspace of I

consisting of the invariants that are homogeneous of degreem. The Poincaré series (or Hilbert series)
of I is the series P(t) =

∑
m dimC(Im)tm. Already Cayley and Sylvester (Cayley, 1856; Sylvester, 1878)

knew how to compute this Poincaré series. For a modern account, see, e.g., Springer (Springer, 1977).
In our case (n = 9) the series is given by

P(t) =
a(t)

(1− t4)(1− t8)(1− t10)(1− t12)2(1− t14)(1− t16)

with

a(t) = 1+ t4 + 5t8 + 4t10 + 17t12 + 20t14 + 47t16 + 61t18 + 97t20

+ 120t22 + 165t24 + 189t26 + 223t28 + 241t30 + 254t32 + 254t34

+ 241t36 + 223t38 + 189t40 + 165t42 + 120t44 + 97t46 + 61t48

+ 47t50 + 20t52 + 17t54 + 4t56 + 5t58 + t62 + t66,

so that

P(t) = 1+ 2t4 + 8t8 + 5t10 + 28t12 + 27t14 + 84t16 + 99t18 + 217t20

+ 273t22 + 506t24 + 647t26 + 1066t28 + 1367t30 + 2082t32 + 2649t34

+ 3811t36 + 4796t38 + 6612t40 + 8228t42 + 10 960t44 + 13 483t46

+ 17 487t48 + 21 274t50 + 26 979t52 + 32 490t54 + 40 443t56 + 48 242t58

+ 59 107t60 + 69 885t62 + 84 470t64 + 99 074t66 + · · ·.
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3. The basic invariants

A minimal set of homogeneous generators for the algebra I is called a set of ‘basic invariants’
or basis. Such a set is not unique, but whenever there is a reference to a basic invariant we mean
a member of such a set, fixed in that context. Let Jm be the subspace of Im generated by products
of invariants of smaller degree, that is, in

⋃
j<m Ij. The number of basic invariants of degree m is

dm := dimC(Im/Jm).

Proposition 3.1. The algebra I of invariants for the binary nonic (form of degree 9) is generated by 92
invariants. The nonzero numbers dm of basic invariants of degree m are

m 4 8 10 12 14 16 18 20 22
dm 2 5 5 14 17 21 25 2 1

Finding a basis for the invariants is a simple but boring procedure: For each degree m, multiply
invariants of lower degrees to see what part of Im is known already. The Poincaré series tells us how
large Im is, and if the known invariants do not yet span it, one finds in someway somemore invariants,
until they do span.
This procedure terminates. Gordan (1868) shows that the algebra I is generated by finitely many

of its elements. Better, we know when to stop. By Proposition 1.1, I has a system of parameters of
degrees 4, 8, 10, 12, 12, 14, 16. Let H be the ideal in I generated by such a system of parameters. Now
the Poincaré series tells us that if a(t) =

∑
ait i then dimC(Ii/(Ii ∩ H)) = ai, and, in particular, that

Ii ⊆ H for i > 66. This means that dm = 0 for m > 66. We followed this procedure, and found the
stated values for dm. These values agree with those given in Cröni (2002) form ≤ 20. The existence of
a basic invariant of degree 22 was new.
This ‘finding more invariants in some way’ was done by generating random bracket monomials.2

Explicit bracketmonomials for a set of basic invariants are listed in Brouwer (2009). Checkingwhether
the invariants known span Im required computing a basis for vector spaces of dimension at most
dimC(I66) = 99 074. That is large but doable. The entire computation can be done in less than amonth.

3.1. Remarks on the computation

People usually describe invariants in terms of repeated transvectants. An advantage of working
with bracket monomials is that one can simplify the computations by substituting small constants
for a few variables. This does not work in the approach using transvectants since there one needs
derivatives with respect to the variables.
Given a candidate set for the basic invariants one wants to find dimC(Im)monomials in these basic

invariants that span Im. Since dimC(Im) is known, this amounts to the computation of a rank. The
elements involved are far too large towrite down. Instead, the computation is done lazily, and enough
coefficients are written down to find the desired lower bound on the rank.
Also the integer coefficients are far too large, but it suffices to consider the reduction mod p for

some smallish prime p, say with 100 < p < 255. Now the rank computation of matrices with sizes
like 100 000× 160 000 just fits within 16 GB of memory. The generators took a few TB of disk space.
Since this problem is still too large for the standard computer algebra systems, we implemented our
own software (in C, on a Linux system). Advantage was taken of the presence of multiple CPUs.
This was about the nonics, the case n = 9. The difficulty of this problem grows very quickly with

n (and moreover, this computation cannot be done in a realistic time when the matrices involved are
much larger than main memory). However, the case n = 2 (mod 4) is easier, and n = 0 (mod 4)
is much easier than the cases of nearby odd n. And indeed, we were able to do the case of decimics
(n = 10) as well. For the time being, the case n = 12 is still far too large.

2 For the classical concept of bracket monomial, cf. Olver (1999).
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4. A system of parameters for O(V9)
SL2

Dixmier (1985) proved that the invariant ring of V9 has a system of parameters of degrees 4, 8, 10,
12, 12, 14, and 16. We compute an explicit system of parameters of O(V9)SL2 having these degrees.
A covariant of order m and degree d of Vn is an SL2-equivariant homogeneous polynomial map

φ : Vn → Vm of degree d such that φ(g · f ) = g · φ(f ) for all g ∈ SL2 and f ∈ Vn. The invariants of
Vn are the covariants of order 0. The identity map is a covariant of order n and degree 1. Customarily,
one indicates such a covariant φ by giving its image of a generic element f ∈ Vn. (In particular, the
identity map is noted f .) Let Vm,d be the space of covariants of orderm and degree d.
The simplest examples of covariants are obtained using transvectants: given g ∈ Vm and h ∈ Vn the

expression

(g, h) 7→ (g, h)p :=
(m− p)!(n− p)!

m!n!

p∑
i=0

(−1)i
(
p
i

)
∂pg

∂xp−i∂yi
∂ph

∂xi∂yp−i

defines a linear and SL2-equivariant map Vm ⊗ Vn → Vm+n−2p, which is classically called the p-th
transvectant (Überschiebung) (cf. Olver, 1999).Wehave (g, h)0 = gh and (g, g)2i+1 = 0 for all integers
i ≥ 0. These maps are the components of the Clebsch–Gordan isomorphism (form ≥ n)

Vm ⊗ Vn ' Vm+n ⊕ Vm+n−2 ⊕ · · · ⊕ Vm−n.

These maps induce maps Vm,d ⊗ Vn,e → Vm+n−2p,d+e.
For f ∈ V9, consider the following covariants

l = (f , f )8 ∈ V2,2, r = (q, f )6 ∈ V3,3,
q = (f , f )6 ∈ V6,2, p = (f , l)2 ∈ V7,3,
u = (f , f )2 ∈ V14,2, kq = (q, q)4 ∈ V4,4,

and invariants (the suffix indicates the degree)

j4 = (l, l)2, B8 = (q, r2)6,
j12 = ((kq, kq)2, kq)4, B12 = ((p, p)4, l3)6,
j14 = (q, (r3, r)3)6, D10 = ((((u, u)10, f )6, (q, f )2)5, q)6,
j16 = ((p, p)2, l5)10.

Theorem 4.1. The seven invariants j4, B8, D10, B12, j12, j14, j16 form a homogeneous system of parameters
for the ring O(V9)SL2 of invariants of the binary nonic.

This is proved below (Section 5.1) by invoking Hilbert’s characterization of homogeneous systems
of parameters as sets that define the nullcone.

5. The nullcone

The nullcone of Vn, denoted N (Vn), is the set of binary forms of degree n on which all invariants
of positive degree vanish. It turns out (Hilbert, 1893) that this is precisely the set of binary forms of
degree n with a root of multiplicity > n

2 . The elements of N (Vn) are called nullforms. The nullcone
N (Vn ⊕ Vm) is the set of pairs (g, h) ∈ Vn ⊕ Vm such that g and h have a common root of multiplicity
> n

2 in g and of multiplicity >
m
2 in h. (In this note, this result can be taken as the definition of the

symbolN (Vn ⊕ Vm).)
We have the following result, due to Hilbert (1893), formulated for the particular case of binary

forms:

Proposition 5.1. For n ≥ 3, consider i1, . . . , in−2 ∈ O(Vn)SL2 homogeneous non-constant invariants of
Vn. The following two conditions are equivalent:

(i) N (Vn) = V(i1, . . . , in−2),
(ii) {i1, . . . , in−2} is a homogeneous system of parameters of O(Vn)SL2 .

(Here V(J) stands for the vanishing locus of J .)
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In other words, if i1, . . . , in−2 are homogeneous invariants such that N (Vn) = V(i1, . . . , in−2),
then the ring O(Vn)SL2 is a finitely generated module over C[i1, . . . , in−2]. But invariant rings of
binary forms are Cohen-Macaulay (Hochster and Roberts, 1974), which implies thatO(Vn)SL2 is a free
C[i1, . . . , in−2]-module. Hence the description of the algebra of invariants of Vn is partly reduced to
finding a system of parameters of O(Vn)SL2 .
We prove Theorem 4.1 by first finding a defining set for the nullcone that is still too large, and then

showing that some elements are superfluous.
We need information on the invariants of Vn for n = 2, 3, 6, 7:

Lemma 5.2. The following are systems of parameters of O(Vn)SL2 for n = 2, 3, 6, 7.

(i) If n = 2: (f , f )2 of degree 2.

(ii) If n = 3: ((f , f )2, (f , f )2)2 of degree 4.

(iii) If n = 6: (f , f )6, (k, k)4, ((k, k)2, k)4, and (m2, (k, k)2)4 of degrees 2, 4, 6, and 10, where k = (f , f )4
and m = (f , k)4.

(iv) If n = 7: (l, l)2, ((p, p)4, l)2, ((kq, kq)2, kq)4, ((p, p)2, l3)6, (m 2q , (kq, kq)2)4 of degrees 4, 8, 12, 12,
and 20, where l = (f , f )6, p = (f , l)2, q = (f , f )4, kq = (q, q)4, mq = (q, kq)4.

Proof. This is classical for n = 2, 3, 6, see, e.g., (Clebsch, 1872; Grace and Young, 1903; Schur, 1968).
Systems of parameters for n = 7 were given by Dixmier Dixmier (1982) and Bedratyuk Bedratyuk
(2007). The above system was constructed by the second author (unpublished). That it is a system of
parameters can be easily verified using the methods of this section. �

Lemma 5.3 (Weyman (1993)). Let f ∈ Vd. If d > 4k − 4 and all (f , f )2k, (f , f )2k+2, . . . vanish, then f
has a root of multiplicity d− k+ 1. If d = 4k− 4 and ((f , f )2k−2, f )d, (f , f )2k, (f , f )2k+2, . . . vanish, then
f has a root of multiplicity d− k+ 1. �

Lemma 5.4. Let f ∈ V9 and consider its covariants l = (f , f )8, q = (f , f )6, p = (f , l)2, and r = (f , q)6.

(i) If l 6= 0 and (l, p) ∈ N (V2 ⊕ V7), then f has a root of multiplicity 5.

(ii) If l = 0, q 6= 0 and (q, r) ∈ N (V6 ⊕ V3) then f has a root of multiplicity 6.

(iii) If l = q = 0, then f has a root of multiplicity 7.

Proof. Let f =
∑9
i=0

(9
i

)
aix9−iyi.

(i). From (l, p) ∈ N (V2 ⊕ V7) it follows that both l and p are nullforms and have a common root of
multiplicity 2 in l and 4 in p. Without loss of generality we suppose l = x2. Then:

p = (f , x2)2 =
1
72

9∑
i=2

(
9
i

)
i(i− 1)aix9−iyi−2,

and x4 must divide p, which implies a6 = a7 = a8 = a9 = 0. Now

l = (f , f )8 = 70a 25 y
2
+ 28a4a5xy+ (70a 24 − 112a3a5)x

2,

and as we suppose l = x2 we also obtain a5 = 0 and then it follows that x5 | f , so f will have a root of
multiplicity 5.
(ii). From (q, r) ∈ N (V6 ⊕ V3) it follows that both q and r are nullforms and have a common root of
multiplicity 4 in q and 2 in r . Without loss of generality we consider the following 3 cases: q = x6,
q = x5y, and q = x4y(x+ y).
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Case 1: q = x6. Then

r = (f , x6)6 = a9y3 + 3a8xy2 + 3a7x2y+ a6x3,

and x2 must divide r . We obtain a9 = a8 = 0 and substitute that in q and l:

q = (f , f )6 = (−20a 26 + 30a5a7)y
6
+ (−30a5a6 + 54a4a7)xy5

+ (−90a 25 + 114a4a6 − 12a3a7)x
2y4 + (−72a4a5 + 124a3a6 − 60a2a7)x3y3

+ (−90a 24 + 114a3a5 − 12a2a6 − 18a1a7)x
4y2

+ (−30a3a4 + 54a2a5 − 30a1a6 + 6a0a7)x5y
+ (−20a 23 + 30a2a4 − 12a1a5 + 2a0a6)x

6,

l = (f , f )8 = (70a 25 − 112a4a6 + 56a3a7)y
2
+ (28a4a5 − 56a3a6 + 40a2a7)xy

+ (70a 24 − 112a3a5 + 56a2a6 − 16a1a7)x
2.

Since we suppose q = x6 and l = 0, the coefficients of xiy6−i in q and of xjy2−j in l are 0 for 0 ≤ i ≤ 5
and 0 ≤ j ≤ 2.
If a7 = 0 then it follows that a6 = a5 = a4 = 0 and then x6 | f , so f will have a root of multiplicity

6. If a7 6= 0 then

a5 =
2a 26
3a7

, a4 =
10a 36
27a 27

, a3 =
5a 46
27a 37

,

a2 =
7a 56
81a 47

, a1 =
28a 66
729a 57

, a0 =
4a 76
243a 67

,

but then we have q = 0, contrary to the assumption.

Case 2: q = x5y. Then

r = (f , x5y)6 = −a8y3 − 3a7xy2 − 3a6x2y− a5x3

and x2 must divide r . We obtain a8 = a7 = 0 and substitute this in q and l:

q = (f , f )6 = (−20a 26 + 2a3a9)y
6
+ (−30a5a6 + 6a2a9)xy5

+ (−90a 25 + 114a4a6 + 6a1a9)x
2y4 + · · · + (−90a 24 + 114a3a5 − 12a2a6)x

4y2

+ (−30a3a4 + 54a2a5 − 30a1a6)x5y+ · · ·
l = (f , f )8 = (70a 25 − 112a4a6 + 2a1a9)y

2
+ · · ·.

Since we supposed q = x5y and l = 0, the coefficient c of y2 in l, and the coefficients di of xiy6−i in q
vanish for 0 ≤ i ≤ 4, while d5 6= 0. Now

5d5a9 = −75a4d0 + 45a5d1 − a6(9c + 22d2) = 0

so that a9 = 0, and then also a6 = a5 = a4 = 0, d5 = 0, contradicting d5 6= 0.

Case 3: q = x4y(x+ y). Then:

r = (f , x4y(x+ y))6 = (a7 − a8)y3 + 3(a6 − a7)xy2 + 3(a5 − a6)x2y+ (a4 − a5)x3
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and x2 must divide r . We obtain a8 = a7 = a6 which we replace in q and l:

q = (f , f )6 = −2(6a4a6 − 15a5a6 + 10a 26 − a3a9)y
6
−

− 6(5a3a6 − 9a4a6 + 5a5a6 − a2a9)xy5 −
− 6(15a 25 + 3a2a6 + 2a3a6 − 19a4a6 − a1a9)x

2y4 −

− 2(36a4a5 − 3a1a6 + 30a2a6 − 62a3a6 − a0a9)x3y3 −
− 6(15a 24 − 19a3a5 − a0a6 + 3a1a6 + 2a2a6)x

4y2 −

− 6(5a3a4 − 9a2a5 − a0a6 + 5a1a6)x5y−
− 2(10a 23 − 15a2a4 + 6a1a5 − a0a6)x

6,

l = (f , f )8 = 2(35a 25 − 8a2a6 + 28a3a6 − 56a4a6 + a1a9)y
2

+ 2(14a4a5 − 7a1a6 + 20a2a6 − 28a3a6 + a0a9)xy
+ 2(35a 24 − 56a3a5 + a0a6 − 8a1a6 + 28a2a6)x

2.

Aswe supposed q = x4y(x+y) and l = 0, the coefficients of y6, xy5, x2y4, x3y3, x6 in q and all coefficients
of l must vanish. We denote by I the ideal generated by these coefficients. Also, we denote by p1, p2
the coefficients of x4y2 and x5y in q:

p1 = 15a 24 − 19a3a5 − a0a6 + 3a1a6 + 2a2a6,
p2 = 5a3a4 − 9a2a5 − a0a6 + 5a1a6.

A Gröbner basis computation shows that p41, p
2
2 ∈ I so that p1 and p2 vanish, contradicting the

assumption q = x4y(x+ y).

(iii). This is a consequence of Lemma 5.3. �

Lemma 5.5. Let g ∈ V2 and h ∈ V7 be two non-zero binary forms. If both g and h are nullforms and if

((h, h)6, g)2 = ((h, h)4, g3)6 = ((h, h)2, g5)10 = (h2, g7)14 = 0,

then (g, h) ∈ N (V2 ⊕ V7).

Proof. Suppose that (g, h) /∈ N (V2 ⊕ V7). This means that g and h have no common root which has
multiplicity 2 in g and multiplicity 4 in h. Without loss of generality we suppose

g = x2,
h = y4(b1x3 + b2x2y+ b3xy2 + b4y3).

We have then

0 = ((h, h)6, g)2 = −
4
245
b 21 ,

0 = ((h, h)4, g3)6 =
2
735

(5b 22 − 12b1b3),

0 = ((h, h)2, g5)10 = −
2
147

(3b 23 − 7b2b4),

0 = (h2, g7)14 = b 24
and it follows that b1 = b2 = b3 = b4 = 0, which implies h = 0. This contradicts the assumption
that h 6= 0. �

Lemma 5.6. Let g ∈ V6, h ∈ V3 be two non-zero binary forms. If both g and h are nullforms and if

((g2, g)6, h2)6 = (((g, g)2, g)1, h4)12 = (g, h2)6 = (g, (h, h) 32 )6 = (g, (h
3, h)3)6 = 0

then (g, h) ∈ N (V6 ⊕ V3).
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Proof. Suppose that (g, h) /∈ N (V6 ⊕ V3). This means that g and h have no common root which has
multiplicity 4 in g and multiplicity 2 in h. Without loss of generality we consider two cases:

g = x4(b1x2 + b2xy+ b3y2),
h = y3

and

g = x4(b1x2 + b2xy+ b3y2),
h = xy2.

Case 1: h = y3. Then we have:

0 = ((g2, g)6, h2)6 =
1
495
b 33 ,

0 = (((g, g)2, g)1, h4)12 = −
1
540
b2(5b 22 − 18b1b3),

0 = (g, h2)6 = b1

and it follows that b1 = b2 = b3 = 0, which implies g = 0, contradicting the assumption g 6= 0.
Case 2: h = xy2. Then we have:

0 = (g, h2)6 =
1
15
b3,

0 = (g, (h, h) 32 )6 = −
8
729
b1,

0 = (g, (h3, h)3)6 =
1
84
b2

and it follows that b1 = b2 = b3 = 0, which implies g = 0, contradicting the assumption g 6= 0. �

5.1. Proof of Theorem 4.1

We consider the following covariants of V9:

lp = (p, p)6 ∈ V2,6, qp = (p, p)4 ∈ V6,6,
pp = (p, lp)2 ∈ V5,9, kqp = (qp, qp)4 ∈ V4,12,
kq,= (q, q)4 ∈ V4,4, mqp = (qp, kqp)4 ∈ V2,18,
mq,= (q, kq)4 ∈ V2,6,

and the following invariants of V9:

j4 = (l, l)2, A4 = (q, q)6,
j8 = (kq, kq)4, A8 = ((p, p)6, l)2,
j12 = ((kq, kq)2, kq)4, A12 = (lp, lp)2,
j14 = (q, (r3, r)3)6, A20 = (p2, l7)14,
j16 = ((p, p)2, l5)10, A36 = ((pp, pp)2, l 3p )6,
j18 = (((q, q)2, q)1, r4)12, B8 = (q, r2)6,
j20 = (m 2q , (kq, kq)2)4, B12 = ((p, p)4, l3)6,
j24 = ((pp, pp)4, lp)2, B20 = (q, (r, r) 32 )6,
j36 = ((kqp, kqp)2, kqp)4, C12 = ((r, r)2, (r, r)2)2,
j60 = (m 2qp, (kqp, kqp)2)4, D12 = ((q2, q)6, r2)6.

Apply Lemma 5.2 to l ∈ V2, r ∈ V3, q ∈ V6 and p ∈ V7. It follows that if j4 = 0 then l is a
nullform, if C12 = 0 then r is a nullform, if A4 = j8 = j12 = j20 = 0 then q is a nullform, and
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if A12 = j24 = j36 = A36 = j60 = 0, then p is a nullform. If we combine this information with
Lemmas 5.4–5.6 we obtain that

N (V9) = V(j4, A4, j8, A8, B8, j12, A12, B12, C12,D12, j14, j16, j18, j20, A20, B20, j24, j36, A36, j60).

This can be improved to the following result:

Proposition 5.7. The nullconeN (V9) is the zero set of the following invariants:

N (V9) = V(j4, A4, j8, A8, j12, B12, j14, j16, j20, A20).

Proof. If j4 = 0 then l is a nullform.

Case 1: l = 0.
If A4 = j8 = j12 = j20 = 0 then q is a nullform. Without loss of generality we suppose x4 | q. Modulo
the ideal generated by the coefficients of l and the coefficients of x3y3, x2y4, xy5, y6 in qwe have

B8 = C12 = D12 = j18 = B20 = 0.

(This was an easy computation in Mathematica.) From Lemma 5.4 it follows then that if l = 0 and

A4 = j8 = j12 = j14 = j20 = 0,

then f is a nullform.

Case 2: l = x2 (without loss of generality).
Here we have:

A20 = a 29 ,

j16 = −2(a 28 − a7a9),

B12 = 2(3a 27 − 4a6a8 + a5a9),

A8 = −2(10a 26 − 15a5a7 + 6a4a8 − a3a9).

Hence if A20 = j16 = B12 = A8 = 0, then a9 = a8 = a7 = a6 = 0, and if we combine this with l = x2
we get a5 = 0 too, hence f is a nullform. �

But we are still not in the position to apply Proposition 5.1. For that we have to refine our result
even more.
We introduce the covariant s = (f , f )4 ∈ V10,2 and the following invariants:

C8 = ((q, q)4, l2)4,
D8 = ((q, q)4, (q, s)6)4,
j10 = ((p, (f , q)6)3, (q, q)4)4,
A10 = ((p, (f , q)6)3, l2)4,
B10 = (((f , q)6, (f , s)6)3, (s, s)8)4,
C10 = ((((s, s)6, f )6, (l, f )2)3, q)6,
D10 = ((((u, u)10, f )6, (q, f )2)5, q)6.

The invariants j8, A8, B8, C8, and D8 are linearly independent and together with j 24 , A
2
4 , A4j4 generate

the vector space of invariants of degree 8 which is of dimension 8. (This can be seen, e.g., by a small
computation in Mathematica.) In a similar way it can be seen that the vector space of invariants of
degree 10 is generated by j10, A10, B10, C10, and D10.
Using invariants of degree≤ 16webuilt a list of 219monomials of degree 20, each of themdividing

one of the invariants j4, A4, j8, A8, B8, C8, D8, C10 or D10, to which we added

B20 = ((r, r) 32 , q)6,

C20 = (((r3, r)3, q)4, ((f , u)8, (f , s)8)3)4.
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Let I be the ring of invariants, and Ii its i-th graded part. We evaluated the monomials at dimC(I20) =
217 random points in V9, giving as result a matrix of (full) rank 217. Adding j20, A20, j210, A

2
10, and B

2
10 to

the list of monomials and repeating the evaluation step gave (of course) again matrices of rank 217.
From the nullspaces of these matrices we obtained the relations

j20, A20, j210, A
2
10, B

2
10 ∈ (j4, A4, j8, A8, B8, C8,D8, C10,D10)

(that is, B20 and C20 are not needed to span the elements mentioned).
Using invariants of degree ≤ 20 we built a list of 3561 monomials of degree 32, each of them

dividing one of the invariants j4, B8, D8, C10, D10, j12, B12, j14, or j16. We evaluated the monomials
at dimC(I32) = 2082 random points in V9, and this resulted in a matrix of rank 2082. The rank
computations were made modulo 32003, but as we obtained the maximal rank, these monomials
must generate I32. It follows that

j8, A8, C8, A4 ∈
√
(j4, B8,D8, C10,D10, j12, B12, j14, j16),

and then, combining it with Proposition 5.7, we get

N (V9) = V(j4, B8,D8, C10,D10, j12, B12, j14, j16).

In the same way one can show that

N (V9) = V(A4, B8,D8, C10,D10, j12, B12, j14, j16).

It remains to remove two elements from one of these two sets of generators. Since this
did not seem easy to do by hand, we reverted to the boring approach, as follows. Let H =
(j4, B8,D10, j12, B12, j14, j16). We computed dimC(Ii ∩ H) for i ≤ 60 and found dimC(I60 ∩ H) =
59 107 = dimC(I60), so that I60 ⊆ H . But then H contains powers of all invariants of degrees 4, 10,
20, so that in particular A4, C10 ∈

√
H . Now let H ′ = (j4, A4, B8,D10, j12, B12, j14, j16). We computed

dimC(Ii ∩ H ′) for i ≤ 40 and found dimC(I40 ∩ H ′) = 6612 = dimC(I40), so that I40 ⊆ H ′. But then H ′

contains powers of all invariants of degree 8, so that in particularD8 ∈
√
H ′. But then

√
H =
√
H ′ = I .

Thus,

N (V9) = V(j4, B8,D10, j12, B12, j14, j16),

and from Proposition 5.1 it follows that {j4, B8,D10, j12, B12, j14, j16} is a homogeneous system of
parameters of I . �

Remark. As a consequence of this result, the proof of Proposition 3.1 no longer requires
Proposition 1.1. On the other hand, since the end of the proof of the theorem needs computer work
anyway, one can avoid all discussion of the nullcone following Proposition 5.1 and show directly that
√
H = I . From Proposition 3.1 we learn that I is generated by invariants of degrees 4, 8, 10, 12, 14, 16,
18, 20, 22. Now one can verify that Im ⊆ H ′ for 36 ≤ m ≤ 44 and m = 48, hence

√
H =
√
H ′ = I .

Thus, Theorem 4.1 also follows from Dixmier (1985) and computer work.

6. The degrees in a system of parameters

We give some restrictions on the set of degrees for the forms in a homogeneous system of
parameters (hsop). Assume n ≥ 3.

Lemma 6.1. Fix integers j, t with t > 0. If an invariant of degree d is nonzero on a form
∑
aixn−iyi with

the property that all nonzero ai have i ≡ j (mod t), then d(n− 2j)/2 ≡ 0 (mod t).

Proof. For an invariant of degree d with nonzero term
∏
amii we have

∑
mi = d and

∑
imi = nd/2.

If i ≡ j (mod t)when ai 6= 0, then nd/2 =
∑
imi ≡ j

∑
mi = jd (mod t). �

Lemma 6.2. Fix integers j, t with t > 1 and 0 ≤ j ≤ n. Among the degrees d of a hsop, at least b(n− j)/tc
satisfy d(n− 2j)/2 ≡ 0 (mod t).
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Proof. Wemay suppose 0 ≤ j < t . There are 1+b(n− j)/tc coefficients ai with i ≡ j (mod t), so that
the subvariety of Vn defined by ai = 0 for i 6≡ j (mod t) has dimension at least b(n − j)/tc. If this is
zero, there is nothing to prove. Otherwise, adding the conditions that the elements of a hsop vanish
reduces this subvariety to a subset of the nullcone. But the part of this subvariety defined by ai 6= 0
for i ≡ j (mod t) is disjoint from the nullcone. Indeed, consider the form ajxn−jyj + · · · + an−kxkyn−k,
where 0 ≤ j < t and 0 ≤ k < t and j+ k ≤ n− t and aj, an−k are nonzero but ai = 0 when i 6≡ j (mod
t). The nullcone consists of the forms with a zero of multiplicity more than n/2, but x = 0 and y = 0
are zeros of multiplicity j and k, respectively, and if e.g. j > n/2, then k ≤ n − t − j < n − 2j < 0,
impossible. This means that a zero of multiplicity more than n/2 also is a zero of ajxn−j−k+· · ·+an−k,
but this is a polynomial in xt and has no roots of multiplicity more than n/t . �

Proposition 6.3. Let t be an integer with t > 1.
(i) If n is odd, and j is minimal such that 0 ≤ j ≤ n and (n− 2j, t) = 1, then among the degrees of any

hsop at least b(n− j)/tc are divisible by 2t.
(ii) If n is even, and j is minimal with 0 ≤ j ≤ 1

2n and (
1
2n− j, t) = 1, then among the degrees of any

hsop at least b(n− j)/tc are divisible by t. �

Corollary 6.4. Let t = pe be a power of a prime p, where e > 0.
(i) Suppose p = 2. If n is odd, then among the degrees of any hsop at least bn/tc are divisible by 2t.

If n/2 is odd, then at least bn/tc degrees are divisible by t. If 4|n, then at least b(n − 2)/tc degrees are
divisible by t.
(ii) Suppose p > 2. Among the degrees of any hsop at least b(n− 1)/tc are divisible by t. �

For example, there exist homogeneous systems of parameters with degree sequences 4 (n = 3);
2, 3 (n = 4); 4, 8, 12 (n = 5); 2, 4, 6, 10 (n = 6); 4, 8, 12, 12, 20 and 4, 8, 8, 12, 30 (n = 7); 2, 3, 4, 5,
6, 7 (n = 8).

7. Écritures minimales

Dixmier (1982) defines an écriture minimale of the Poincaré series as an expression P(t) =
a(t)/

∏
(tdi−1)withminimal a(1) (or, equivalently, withminimal

∏
di; indeed, lim

t→1
(t−1)n−2P(t) =

a(1)/
∏
di). He gives the example of V7 where P(t) = a(t)/

∏
(tdi − 1) = b(t)/

∏
(tei − 1) with

di = 4, 8, 12, 12, 20 and ei = 4, 8, 8, 12, 30, and there exist systems of parameters of degrees 4, 8,
12, 12, 20 and of degrees 4, 8, 8, 12, 30.
In our case n = 9, in view of the restrictions given in the previous section, the Poincaré series can

be written in precisely five minimal ways:

degree a(t) degrees of factors in denominator

66 4, 8, 10, 12, 12, 14, 16
74 4, 4, 10, 12, 14, 16, 24
78 4, 4, 8, 12, 14, 16, 30
86 4, 4, 8, 10, 12, 16, 42
90 4, 4, 8, 10, 12, 14, 48

and we saw that the first corresponds to a system of parameters. In fact all five do, as one can show
by following the approach of Dixmier (1985).

Proposition 7.1 (Dixmier (1985)). Let G be a reductive group over C, with a rational representation in a
vector space R of finite dimension over C. Let C[R] be the algebra of complex polynomials on R, C[R]G the
subalgebra of G-invariants, and C[R]Gd the subset of homogeneous polynomials of degree d in C[R]G. Let V
be the affine variety such that C[V ] = C[R]G. Let δ = dim V . Let (q1, . . . , qδ) be a sequence of positive
integers. Assume that for each subsequence (j1, . . . , jp) of (q1, . . . , qδ) the subset of points of V where all
elements of all C[R]Gj with j ∈ {j1, . . . , jp} vanish has codimension not less than p in V . Then C[R]G has a
system of parameters of degrees q1, . . . , qδ .
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Dixmier gives the covariant l := (f , f )8 and invariants qj of degree j (j = 4, 8, 10, 12, 14, 16) such
that if l = 0 and all qj vanish then f belongs to the nullcone. It follows that the set of elements in V
where l = 0 and p of the invariants qj vanish has codimension not less than p+ 1.
Note that when all invariants of degree 3j vanish then also all invariants of degree j vanish.

Therefore, each of the above five sequences has the property that a subsequence σ of length p + 1
contains at least p distinct elements, and the set of elements in V where l = 0 and all invariants of the
degrees in σ vanish has codimension not less than p+ 1.
Let [j1, . . . , jp]′ be the codimension in V of the set of elements where l 6= 0 and all invariants

of degrees in {j1, . . . , jp} vanish. In order to show that each of the five sequences above is the
sequence of degrees of a system of parameters it suffices to show that [4, 14]′ ≥ 3, [4, 10, 14]′ ≥ 4,
[4, 8, 10, 14]′ ≥ 5, [4, 8, 14, 16, 30]′ ≥ 6, [4, 8, 10, 16, 42]′ ≥ 6, given that Dixmier already proved
the requirements of the proposition for the first sequence.
We did this, using instead of ‘all invariants of degree j’ the invariants p4, q4, p8, p10, p12, p14, p16

defined by Dixmier, and moreover p30 and p42 found by putting τ1 := (ψ8, ψ10)0 ∈ V6,10, τ2 :=
(ψ8, ψ10)1 ∈ V4,10, τ3 := (ψ9, ψ10)0 ∈ V6,14, τ4 := (ψ9, ψ10)1 ∈ V4,14, p30 := ((τ1, τ1)4, τ2)4,
p42 := ((τ3, τ3)4, τ4)4. The details are very similar to the computationmade by Dixmier. The only less
trivial part was to show that [4, 10, 14]′ ≥ 4, which was done using the computer algebra system
Singular. Thus:

Proposition 7.2. The ring of invariants of V9 has systems of parameters with each of the five sequences of
degrees 4, 8, 10, 12, 12, 14, 16 and 4, 4, 10, 12, 14, 16, 24 and 4, 4, 8, 12, 14, 16, 30 and 4, 4, 8, 10, 12, 16,
42 and 4, 4, 8, 10, 12, 14, 48. �
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