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ABSTRACT The measurement of the efficiency of Forster long-range resonance energy
transfer between donor (D) and acceptor (A) luminophores attached to the same macromo-
lecular substrate can be used to estimate the D-A separation, R. If the D and A transition
dipoles sample all orientations with respect to the substrate (the isotropic condition) in a time
short compared with the transfer time (the dynamic averaging condition), the average
orientation factor <K2> is 2/3. If the isotropic condition is not satisfied but the dynamic
averaging condition is, upper and lower bounds for <K2>, and thus R, may be obtained from
observed D and A depolarizations, and these limits may be further narrowed if the transfer
depolarization is also known. This paper offers experimental protocols for obtaining this
reorientational information and presents contour plots of <K2>1.n and <K2> as functions
of generally observable depolarizations. This permits an uncertainty to be assigned to the
determined value of R. The details of the D and A reorientational process need not be known,
but the orientational distributions are assumed to have at least approximate axial symmetry
with respect to a stationary substrate. Average depolarization factors are derived for various
orientational distribution functions that demonstrate the effects of various mechanisms for
reorientation of the luminophores. It is shown that in general the static averaging regime does
not lend itself to determinations of R.

INTRODUCTION

Orientational molecular probes are old tools of the physical chemist. They permitted Perrin to
estimate the lifetimes of excited molecules in solution by the use of steady-state polarization
spectroscopy some 50 years ago (Perrin, 1926), and more recently have become useful to the
biochemist for probing the dynamics and supramolecular structure of anisotropic systems
such as membranes (Badley et al., 1973; Kawato et al., 1977). While these and similar uses of
orientational probes are based on the interaction between a single transition dipole and the
electric vector of a photon, it is the interaction between the two transition dipoles that plays
the important role in determining the energy transfer rate between pairs of luminophores.

In most biochemical applications an orientational probe does not have a unique direction in
the framework of a quasi-stationary substrate, but has limited freedom of motion with respect
to it. This motion may be rapid or slow compared with the emission lifetime, and the range of
allowed orientations may be narrowly defined or close to isotropic.
The work presented here develops a model that makes it possible to estimate the effect of

orientational freedom of optical probes on experimental parameters such as fluorescence
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depolarization and F6rster energy transfer rates. The last-named application is of primary
concern and makes possible more accurate determinations of intramolecular distances, but a
discussion of fluorescence depolarization in terms of models for limited orientational freedom
based on several axially symmetrical distribution functions is included. The latter is primarily
of heuristic value, because experimental methods for determining such distributions are not
available at present, except possibly in oriented systems.

In the 30 years or so since Frster developed an exact quantum mechanical theory of
resonance energy transfer for the "very weak" dipole-dipole coupling limit (Frster, 1948,
1951, 1965), an extensive and still rapidly growing literature has described the utilization of
the phenomenon to determine intramolecular separations (e.g., recently Wu et al., 1976;
Langlois et al., 1976; Shepherd et al., 1976; Wright and Takahashi, 1977; Papadakis and
Hammes, 1977; Zukin et al., 1977) and conformational dynamics (Haas et al., 1975, 1977;
Ohmine et al., 1977) of mainly biological macromolecules. Further impetus to such studies
was undoubtedly provided by the finding that the predicted inverse sixth-power distance
dependence of the transfer rate holds closely for several series of oligomers having donor (D)
and acceptor (A) moieties bound covalently at their ends, the separation of which depends on
the number of intermediate monomer units (Stryer and Haugland, 1967; Conrad and Brand,
1968; Gabor, 1968).
However, as recently emphasized (Eisinger and Dale, 1974; Dale and Eisinger, 1974,

1975), the use of the energy transfer technique as a "spectroscopic ruler" (Stryer and
Haugland, 1967) has, with but few possible exceptions (Luk, 1971; Baugher et al., 1974;
Mar6ti and Szalay, 1976), suffered from a lack of knowledge of the relative orientations of the
donor and acceptor transition moments, D and A, upon which the rate of transfer is also
strongly dependent-to the extent that, in the most unfavorable case, no energy transfer
occurs no matter what the separation' (Chang and Filipescu, 1972). Usually, a value for the
dipole orientation factor K2, corresponding to a dynamic average or sometimes also a
completely inappropriate static average (see below and Appendix A) over all orientations of
both D and A is taken to be a good approximation, the tacit or stated assumption being that,
even if orientational averaging is limited, extreme values, in particular those near zero, are
unlikely. As pointed out earlier (Eisinger and Dale, 1974) and as demonstrated analytically in
Appendix B, this argument has no statistical validity; indeed the opposite is true.
The fact that, in many cases, partial averaging of orientations undoubtedly occurs on a

time-scale shorter than the transfer time (dynamic averaging), as indicated by some degree of
depolarization of D and/or A emission, does not usually justify the use of the isotropic
dynamic average value of 2/3, as can readily be seen from examples given previously (Dale
and Eisinger, 1975). Fortunately, the assumption of isotropic dynamic orientational averaging
for D and A need not be relied upon, since polarization spectroscopy can be used to obtain
information on both the orientational freedom of the donor and acceptor luminophores and on
their relative orientations. While this kind of information does not normally yield a unique
dynamic average value for the orientation factor, it always delineates realistic upper and lower
bound. As will be seen, the range of possible values can, under favorable conditions, be quite

'At very close separations, transfer mechanisms other than the very weak coupling dipole-dipole (F6rster) transfer
considered here predominate (see, e.g., Eisinger et al., 1969). The remarks above and throughout the rest of this text
apply only to Forster transfer.
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narrow. However, even if it is not, as is the case for a fixed D-A configuration, this
methodology provides a meaningful estimate of the intrinsic uncertainty in the average value
of K2 and hence in the D-A separation, without restrictive assumptions about the orientations
ofD and A.

ENERGY TRANSFER THEORY

The rate of (one-way) energy transfer in the very weak dipole-dipole coupling limit between D
and A moieties of suitable spectroscopic properties is given (Forster, 1948, 1951, 1965) by

kT = (1/TD)(RO/R)6, (1)
where rD is the (singly exponential) decay time of D emission in the absence of A, R is the
D-A separation and Ro is the characteristic (Forster) separation.

6 = CK2, (2)
where C is a constant for the system under investigation, made up of universal constants, a
spectral overlap integral, the quantum yield of D in absence of A, and the refractive index of
the intervening medium.
The orientation factor K2 gives the dependence of the interaction between two electric

dipoles on their orientations. It can be defined by

K2 = (COS OT- 3 cos OD COS OA)2, (3)

where 0T iS the angle between the D and A moments, given by

cos OT =sin 0D sin 0A COS ) + COS 0D COS OA (4)
in which 0D, 0A are the angles between the separation vector R, and D and A, respectively, and
4 is the azimuth between the planes (D, R) and (A, R) (Fig. 1).

For a particular D-A pair, i, characterized by an orientation factor K, the energy transfer
efficiency T, is given by

FIGURE I Visualization of the angles used to define the relative orientations of the donor and acceptor
transition moments (D and A) and the separation vector (R).
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Ti= kTi/(rH,' + kT,) = K,/(C R + K,).(

As has been emphasized elsewhere (Dale and Eisinger, 1976; Eisinger, 1976), only when each
D-A pair in the experimental ensemble has the same fixed orientation, or, equivalently, the
same extent of dynamic averaging (fast compared with the fluoresence and transfer rates), is
it valid to substitute a single or average value for K? in Eq. 5, although for low transfer
efficiencies this will be a good approximation in the static averaging regime too. This is true
independently of whether the transfer efficiency is obtained by steady-state measurements of
relative intensities, as has usually been the case, by time-resolved measurements of the
decrease in donor lifetime (Wu and Stryer, 1972), or by analysis of the rise and decay of
acceptor emission excited by light absorbed by the donor (Schiller, 1975), a method
apparently not exploited experimentally to date. Definition of an appropriate unique or
dynamic average value of the orientation factor in any given system is usually impossible
without independent crystallographic information, which, with few exceptions (Luk, 1971;
Baugher et al., 1974; Maroti and Szalay, 1976), is not currently available and even then is of
uncertain validity for the solution conditions generally employed in the energy transfer
experiment.
An inappropriate isotropic static average value of 0.476 (Galanin, 1955; Maksimov and

Rozman, 1962; Steinberg, 1968) has also been quoted quite extensively. Its inapplicability to
the problem of intramolecular energy transfer is indicated in Eq. 5, which demonstrates that
no average value independent of the D-A separation can be defined, as has been discussed in
some detail elsewhere (Dale and Eisinger, 1976). It seems unlikely that isotropic averaging in
the static limit will provide an appropriate model in any experimental single D-A pair system,
but the effect of this is examined in Appendix A, included less for its practical applicability
than to illustrate how much energy transfer efficiencies can be affected by the orientational
averaging regime.

Fluoresence Depolarization
It has been known for more than 50 years that in general luminescence is partially polarized.
This is true even for an assembly of randomly oriented luminophores in solution excited by
polarized or, indeed, unpolarized light, provided only that complete thermal orientational
relaxation does not occur in the interval between excitation and emission. The explanation of
this phenomenon of photoselection (Albrecht, 1961) is that molecules whose transition
moments are aligned closer to the direction of the electric vector of the exciting light (and
therefore more nearly perpendicular to its propagation direction) are preferentially selected
for excitation even when the exciting light is unpolarized. In many cases, certainly in most
cases of interest in energy transfer studies, the observed polarization properties of the system
can be well described in terms of specific transition moments associated with absorption and
emission. The extent of depolarization of the emission transition moment from such a
photoselected assembly reflects the change in orientation between the initial absorption and
final emission transitions.
The most useful measure of the extent of polarization is the emission anisotropy (EA) r

introduced relatively recently (Jablofnski, 1960), but used implicity much earlier (Perrin,
1936). This quantity may be defined by
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r = (Iv- IH)/I,

where Iv, IH are the vertically and horizontally polarized components of the emission observed
at right angles to an arbitrarily polarized excitation beam, the excitation and emission
directions being in the horizontal plane. I represents the sum of any three orthogonally
polarized intensities and corresponds to the total emission intensity. For V-polarized excita-
tion, which is usually employed since it gives rise to the maximum EA,

I= Iv + 2IH, (7)

since the symmetry of the system dictates that the third (unobserved) polarized component of
the emission intensity is equal to the (observed) H-polarized component. Under these
conditions the EA attains its limiting value of 0.4 if the absorption and emission moments
coincide in the luminophore framework, and no extrinsic reorientation due, for instance, to
rotation occurs.2 If a series of depolarizing events intervenes between absorption and emission
and each reorientation is azimuthally isotropic with respect to the preceding one, the EA is
lowered from this limiting value, and according to Soleillet's theorem (Soleillet, 1929)

r = 0.4 di (8)

where di represents depolarization factors (Soleillet, 1929; Perrin, 1936) defined by

d, =3/2cos,OS-1/2, (9)

0i being the angle by which the transition moment is changed in the ith depolarization step.
More commonly, a distribution of 0 values is of interest, and the use of an average
depolarization factor

<d>i = 3/2 <cos2 0>i-I/2 (10)

is appropriate.
Thus, in energy transfer between D and A fixed with respect to an immobile substrate, for

instance, the observed EA for the transferred excitation energy (rT) is

rT = 0.4 (/2 COS 0T - /2) = 0.4 dT. (11)

The azimuthal averaging that justifies the use of Soleillet's theorem is assured in this case,
because in a solution containing an ensemble of D-A pairs there exists an axially isotropic
distribution of planes containing 0T about D.

2In principle these vectors are coincident in a lowest-lying nondegenerate transition. As discussed elsewhere (Dale and
Eisinger, 1975), cases of excitation or transfer into higher transitions, the moments of which are not parallel to that of
emission, do not lend themselves to the analysis of the energy transfer problem proposed here. Axially symmetric
degeneracy of transitions contribute to the overall depolarization process, according to Eqs. 8 and 9, while slight
planar degeneracy, such as may account for limiting EA values less than 0.4 even in dilute rigid or highly viscous
solutions, can be treated in the same way, at least to first order. In the following, therefore, both D and A will be taken
to represent coincident, i.e. nondegenerate, absorption and emission transition moment vectors.

DALE ET AL. Orientational Freedom and K2

(6)

165



POLARIZED INTRAMOLECULAR EXCITATION ENERGY TRANSFER

For many applications of interest to the biochemist or polymer chemist, a realistic model for
an ensemble of identical macromolecules in solution, each endowed with an equivalent D-A
pair, is one in which both D and A have some degree of reorientational freedom with respect to
a rigid macromolecular framework that defines their fixed separation. The macromolecule
itself may be free to rotate in the supporting solvent, but the effect of slow substrate rotation,
considered artifactual in the present analysis, can be accounted for experimentally (Dale and
Eisinger, 1975). This and the effect of segmental flexibility, which may alter the D-A
separation (Cantor and Pechukas, 1971; Grinvald et al., 1972; Haas et al., 1975, 1977;
Ohmine et al., 1977), have been discussed elsewhere (Dale and Eisinger, 1975, 1976) and are
excluded from further consideration here.

In the following, this model in the dynamic averaging limit is analyzed to investigate the
effects of limited orientational freedom of D and A on the orientation factor in Forster energy
transfer and on the transfer depolarization. It is shown how estimates of upper and lower
bounds for the average value of the orientation factor may be obtained by utilizing the
information available from polarization measurements.

Transfer Depolarization

Fig. 2 illustrates the model employed for calculating the depolarization resulting from energy
transfer between two luminophores with limited orientational freedom. The axially symmetric
orientational distributions of the donor and acceptor transition moments are indicated by
cones with axes DX and AX, respectively. Fig. 2 a shows schematically the three depolarizing
events, those due to reorientation of D and A and that brought about by transfer between
them. The overall depolarization between D1 and Aj depends only on the relative orientation of
these two vectors, specifically on cos Oj = (Di * Aj) and not at all on the intermediate
orientations Dj and A,. In the dynamic reorientational limit, all possible orientations
corresponding to Dj and Ai are explored many times during the transfer period so that the
transfer rate does not depend on either the initial acceptor orientation A, into which the
transfer of excitation occurs or the final donor orientation Dj from which emission occurs. The
average transfer depolarization is therefore simply that of all Di, Aj pairs, each pair
contributing with the same weight to the average, so that

<dT> = 3/2 <Cos2 01> - 1/2. (12)

The azimuthal averaging implied in Eq. 12 is ensured by the fact that in a solution of identical
D, A-labeled macromolecules, every vector Di, flxed at the moment of excitation in the
laboratory coordinate system, has a uniform distribution of planes containing 0ij about it.
Under the circumstances detailed above, the transfer depolarization process depicted in

Fig. 2 b, involving reorientation of Di to the axial orientation DC followed by transfer to the
acceptor in its axial orientation Ax and reorientation to Aj, is entirely equivalent to that in Fig.
2 a and may formally replace it. Since Di and Aj are axially symmetrically distributed about
Dx and AX, respectively, and the azimuthal orientation of Ax about Dx (being a particular case
of Aj about Di) is random, Soleillet's theorem (Eq. 8) applies, and the average transfer

BIOPHYSICAL JOURNAL VOLUME 26 1979166



Ai AX
AN

\:1in _fi_ (a)

DX111 iAlE

_&2 _ ~~~~~~~~~~(b)

FIGURE 2 (a) Schematic representation of the three depolarizing steps after the absorption of excitation
energy by the donor: donor depolarization, transfer depolarization, and acceptor depolarization. It is
shown in the text that the depolarization corresponding to these steps is the same as in the three
depolarizing events shown in b: axial depolarization of the donor, depolarization due to transfer between
the axes of the orientational distributions of D and A, and axial depolarization of the acceptor.

depolarization factor is the product of the three depolarization factors, corresponding to the
three depolarizing events depicted in Fig. 2 b:

<dT> = <d> dx <dx>, (13)

where <dx >, <dx> will be referred to as the axial depolarization factors for D and A,
respectively, and dx as the axial transfer depolarization factor associated with their axial
(mean) orientations, that is,

dT /2 cos20T- 1/2, (14)

where OT iS the angle between Dx and Ax (cf. Fig. 3). A formal derivation of Eq. 13 is given in
the following section.
As will be shown below, the axial depolarization factors may be obtained from observed

depolarizations of D and A excited and observed separately. From these and <dT> it is
possible to determine dT, and, by use of Eq. 14, 0T, the angle between the axes of the D and A
orientational distributions. This determination is not always unique, because in a certain
range of values, the signs of <dx > and <dx> obtained in this way are indeterminate. In
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such situations 9T is rendered two-valued, as discussed in more detail later. Nevertheless,
unambiguous structural information can often, perhaps in the majority of cases, be obtained.

The Orientation Factor

Clearly, some degree of dynamic reorientational averaging of D and A or both about their
mean orientations will be reflected not only in a decreased EA (positive or negative) after
energy transfer, but also in an orientation factor closer to the isotropic value of 2/3.
Furthermore, as is the case for fixed D and A orientations (Dale and Eisinger, 1974, 1975),
the magnitudes of these effects are related.

Consider Fig. 3, in which the model for axially symmetric D and A distributions is
illustrated in detail. For the arbitrary donor and acceptor orientations defined, the orientation
factor determined by substitution of Eq. 4 into Eq. 3 is

K2= (sinODsin OAcos4 - 2cosOD COSOA )2, (15)

where the azimuth 4 is

0 ='k + OA OD- (16)
It is readily seen that the angles defining the orientation of D are related by the following
identities:

sin D cos OD = sin OD cos AD - cos0D sin4Dcos 'YD (17)

COS OD = Cos DCos {1D + sin 0Dsin ADcos'YD (18)
along with the equivalent identities for A. On substitution of Eqs. 16-18 into Eq. 15,
expansion, collection of terms and averaging over the azimuthal angles YD and yA,

<cos'y> = <siny> = <cosy sin'y> = 0, (19)

<cos2 > = <sin2y> = 1/2, (20)

and over the appropriate ranges ofAD and OA, one sees that the (dynamic) average value of the
orientation factor is

<K2> =
Kx
<dD> <dA> + 1/3 (1 - <dx>) + 1/3(1 -<d>)

+ cos2 OD <dx > (I - <dx >) + cos2 eA<dx > (I - <dx >), (21)

in which

Kx2 = (sin OD sin OA cos 4 - 2cos OD COS A )2 (22)

is the axial orientation factor defined for the axial (mean) orientations Dx and Ax, while

<dxD>= 3/2 <cCOs D> /2 (23)

and

<dx> 3A<cos2{A>'/2. (24)
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FIGURE 3 Analogous to Fig. 1, except that the place of the D and A transition moments is taken by the
symmetry axes (Dx and AX) of their distributions. This model is used in evaluating the orientation and
depolarization factors in terms of the angular parameters APD and YD, indicated along with the
corresponding acceptor parameters PA and yA, omitted here for clarity.

By using the same averaging procedures on COS2 0T defined in Eq. 4, the overall (dynamic)
average transfer depolarization factor is readily shown to be

<dT> = 3/2 <COS2OT> - 2

= (3/2<cos{> - 1/2) (3/2 cos T- I/2) (3/2 <cos {A> -OA)> (25)

where

Cos2T =(sin 0D sin (A COS 4) + COS 0D COS EA )2. (26)

Eq. 25 is seen to be identical with Eq. 13, derived by the direct application of Soleillet's
theorem.

Maximum and Minimum Values of the Orientation Factor

It is clear from Eqs. 13 or 25 that, given values of <dT>, <dx>, and <d'>, all of which
may in principle be measured experimentally, 0T can be determined. As can be seen by
comparing Eqs. 22 and 26, some limitation is thereby imposed on the otherwise indeterminate
functions of the angles 0D, OA, and 4) appearing in Eq. 21. Differentiation with respect to two
of these variables, the third being determined by the fixed value of 0T, will establish
conditions for maximum and minimum values of K2>.

Thus, differentiating Eq. 21 twice with respect to the azimuthal angle 4) shows that, if the
two axial depolarizations have the same sign, a minimum occurs when KX2 is identically zero.
Either 0, or 0A may then be eliminated, and double differentiation with respet to the other
angle reveals that <K2> has the minimum value

<K >min= 2/32 - (<dxD> + <dx >)/2

+COS T [<dx> <dx> (1 - <dx>) (1 - <dx>)]1} (27)
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when

cos20,e __ET<dl> (1- <dx>) 11/2COST ( (28)

where the subscripts (1, 2) refer either to (D, A) or to (A, D). As a result of the condition
given in Eq. 28, the sign of the term containing 0T in Eq. 27 is always positive. If the axial
depolarization factors have opposite signs, a maximum with respect to 4) obtains, but it leads
only to a minimum with respect to 0D or 0A, and then only if this angle, say 0,, is zero,
implying the unique configuration 02 = OT = r/2.

F
I I I r I I I I IT ITI I I I I I 1T I I I 1 I IIT

df--0.5 d*- 0.4
(d2)

-0.5'
df--0.3 d'--0.2

1I1 1l1 111 1 1I 1 1 I III III IIiI I I II 1
-0.5 0 0.5 1.0 -0.5 0 0.5 1.0

(dx)I
FIGURE 4 Contour plots for obtaining extreme values of <K2> consistent with the observed donor,
acceptor, and transfer depolarization factors. Contours for the minimum and maximum values appear in
the lower right and upper left halves of the diagrams, each for a particular value of d', the axial transfer
depolarization factor defined in Eqs. 13 and 14. The contours are plotted as functions of <df> and
<di>, the dynamically averaged axial depolarization factors of the two luminophores between which
transfer occurs. These axial depolarization factors are obtained from the observed donor and acceptor
depolarization factors by using Eq. 33. If one or both of the observed depolarization factors are less than l/4,
there is a degeneracy in the sign of the axial depolarization factors and the appropriate sign must be chosen
to obtain the absolute upper and lower limit of <K2> from these contour plots, as discussed in the text.
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On the other hand, maxima and minima with respect to 4) = 0 or ir occur for all relative
values of <dD> and <dA >. 0,D and 0A are related to ET in both limits of e) by

CoS 02 = COS OT COS , + sinOTsin 0, (29)

so that

KX = COS ET (3 COS2 0I-1) + 3 sin OTCOS 01 sin 01, (30)

in Eq. 21 for <K2>. No attempt was made to determine analytical maxima and minima with
respect to 0,D or, equivalently, 0A, for this function. Instead, they were found to a good
approximation by searching through the variable from 0 to ii, confining T tO the range (0 <
ET i<r/2), equivalent to searching the physically relevant range (0, ir/2) of the variable for
both possible transfer angles, 0T and (r -ET). Absolute maxima for any given values of the
axial depolarization factors were obtained directly in this way, as were minima when <d'>

1.05

0.5_

0

.n A.-(dD

(d2x)

-Q5

dx-0.1 d*-0

d a0.1 dx-0.2

-0.5 0 0.5 1.0 -0.5 0 0.5 1.0

(dr)
FIGURE 5 Contour plots for obtaining upper and lower limits of <K2>, as in Fig. 4, but for d' = -0.1,
0,0.1, and 0.2.
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and <d'> have opposite signs. Absolute minima when these depolarization factors have the
same sign required comparison of the values derived from the search with those obtained from
Eq.27.

This searching and checking procedure was accomplished by computer, and the results
were fed directly into a plotting program which, for fixed values of d', generated contours of
<K2> X and <K2>min as a function of the two axial depolarization factors. Since these
contour plots are invariant with respect to inversion of <d'> and <d'>, they are
symmetrical with respect to reflection on the diagonal, and the contours for <K2>rmin and
<K2>mma may be combined in a single square diagram. They are displayed in Figs. 4-7 for
steps in the axial transfer depolarization factor of 0.1 in the range (-0.5 ' d' 1) as
functions of <d,> and <di>, where again the subscripts (1, 2) refer to either (D, A) or
(A, D). In Fig. 8 the same contour plots for d' values of -0.5, 0,0.5, and 1 are given, and the
regions in which the isotropic assumption of <K2> = 2/3 leads to appreciable errors in the
derived intramolecular separation R are also indicated.

1.0

0.5

0

-0.5

(dx)
1.0

0.5

0

-0.5

I I I I II1rI I I I I I I I II I I I I II I I 1

d a0.3 dv-O.4

dx*O.5 dxaO6

-0.5 0 0.5 1.0-0.5 0 0.5
AllJl

1.0

(dl)

FIGURE 6 Contour plots for obtaining upper and lower limits of <K2>, as in Fig. 4, but for dT = 0.3,
0.4,0.5, and 0.6.
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(dx) T~~~~~~~(l

0.8, 0 1.0.

0.5

-0.51
dx-0.9 df*O.8

1.0.5 oA. 1. *5 0 .

0,0.9 n .5 I

When the transfer depolarization is not determined, it is inconvenient to use these plots.
Accordingly, the contour plot of Fig. 9 displays maxima and minima of <K2> obtained by
extending the search procedure used above to cover the range of eT values also. Stippling is
again used to indicate the regions in the <dx>, <dx> space in which the isotropic
assumption leads to inaccurate values of R.
When both axial depolarization factors are positive, particularly simple expressions apply.

Inspection of Eqs. 21 and 27 shows that under these conditions the maximum and minimum
values of <K2> are

<K2>ma 2/3(I + <dx > + <dxA> + 3 <dxD> <dxA>) (31)

IA A D1 A

and
<K2>min = 2/3 [I - (<dx > + <dx >)/2]. (32)

These two limiting cases correspond to Da, AX, and R being parallel-in-line and mutually
perpendicular, respectively, cases presented previously for a specific model of dynamic
distributions ofD and A (Eisinger and Dale, 1974; Dale and Eisinger, 1974, 1975).
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10dMdd0.5

Xa) I dr 5 li O0.'.zz
-0.5

dfw-05 dxnl.O
1~~~~~~~~~~~~~IIII..,Il[.1 I1. . .1111',

-0.5 0 0.5 1.0-0.5 0 0.5 1.0

(dr)1
FIGURE 8 Contour plots for obtaining upper and lower limits for <K2>, as in Fig. 4, but for d' = -0.5,
0, 0.5, and 1.0. Stippled regions of the contour plots indicate the uncertainty in R, the donor-acceptor
separation, which results from using <K2> = 2,, instead of the appropriate <K2>.. and <K2>>9=
values. The heavily and lightly stippled regions correspond to errors in R of more than 20% and between 10
and 20%, respectively, while the error is less than 10% in the unstippled domain. It is of course negligibly
small when the luminophore depolarization factors are near zero, corresponding to orientational isotropy
and to <K2>,m = <K2>,,, 2Y3. The errors become considerable for depolarization factors near unity,
which correspond to luminophores with little or no orientational freedom with respect to the substrate.

As was mentioned before and will be demonstrated below, axial depolarization factors with
values less than 0.5 may be degenerate in sign. However, because it is possible to assign a
negative value in some cases, all combinations of signs have been included in all the contour
plots. In general, though, each appropriate combination of signs should be checked to ensure
that the absolute maximum and minimum of <K2> consistent with the data are selected. As
an example, take <dT> = 0.064, <d'> = 0.8, and <d'> = +0.4. According to Eqs. 13
and 25 this corresponds to dT = ±0.2 (Figs. 4 and 5). Minimum and maximum values of
0.35 and 1.85 are obtained when <d'> and d' are both positive, and with both negative the
extrema are 0.20 and 1.6. The absolute limiting values for <K2> are therefore 0.20 and 1.85,
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FIGURE 9 Contour plot similar to those shown in Figs. 4-8, but applicable in situations in which <dT>,
and hence d', is unknown. It is obtained by maximizing and minimizing Eq. 21 and can be seen to lead to
larger ranges between <K2> w, and <K2>,, than the plots of Figs. 4-8. In the heavily stippled regions
the error in R resulting from the use of <K2> = Y3 instead of the indicated <K2>.,,, and <K2>. is
greater than 20%. It is between 10%o and 20% in the lightly stippled regions and less than 10% in the
unstippled ones.

corresponding to an uncertainty in the derived intramolecular separation of approximately
+ 18% about the mean value. For this case, if <dT> and therefore d' is unknown, <K2> lies
between 0.20 and 2. 1, so that R can be obtained with little loss of accuracy (Fig. 9). By and
large, estimation of dX becomes less helpful the greater the extent of depolarization of D and
A emission, as is immediately evident on comparing values for <K2>max and <K2>min along
the diagonals of the contour plots shown in, for example, Fig. 8.

Axial and Observed Depolarization Factors

Because <dx> and <d'> are used to parametrize the contour plots for <K2> min and
<K2> max, while experiments yield <dD> and <dA>, a general relationship between axial
and observed depolarization factors is needed and is derived in this section. Due to the
dynamic orientational averaging postulated above, the emission of A excited directly will be
depolarized, i.e., the apparent ro values derived either from a Perrin plot or from nanosecond
time-resolved EA decay measurements will be less than the fundamental one of 0.4.
Analogously, the same is true for the emission from D alone, either in the absence or the
presence of energy transfer.3 From the donor geometry schematized in Fig. 2, it is evident that

3A difference in the apparent ro for these two conditions indicates either (a) all or part of the reorientation is on the
same time scale as transfer (ro is always larger, i.e. less depolarization occurs, when transfer competes with
deactivation because the emission lifetime shortens) or (b) presence of the acceptor has induced some conformational
change affecting the rang,e over which dynamic reorientation can occur (ro may be larger or smaller in the presence of
the acceptor). The second condition obtains also for acceptor emission in the presence or absence of donor.
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the directly observed depolarization factor <dD> is an average over all initial and final
orientations D, and Dj, respectively, where it is considered that emission rather than transfer
takes place at the orientation Dj. Because once again only the initial and final orientations
determine the depolarization, and each orientation Di and Dj is azimuthally averaged about
the axial orientation DY, and moreover covers identically the same reorientational range,
Soleillet's theorem in a degenerate form applies, so that

roD/0.4 = <dD> <d> (33)

obtains along with the corresponding relationships for A.4 Eq. 33 is seen to be equivalent to
Eqs. 13 and 25 when dT is unity (DX and Ax parallel) and the axial depolarization factors of D
and A are the same.
The simple relationship of Eq. 33 allows rather precise determination of the axial

depolarization factors ofD and A (bar possible uncertainty in their signs in the range -0.5 '
<dD,A> 0.5) independently of the reorientational distribution function as long as it
possesses axial symmetry. Even in the absence of strict axial symmetry, however, eq. 33 can be
expected to constitute a reasonable approximation, because, for an irregular distribution,
some "center of gravity" orientation about which pseudo-axial symmetry obtains should exist
in most cases.
A number of illustrative axially symmetric distributions, which may constitute reasonably

realistic models for restricted dynamic reorientational relaxation of fluorophores attached or
adsorbed to a macromolecular substrate, are presented in Appendix C. Among them,
possibilities of negative axial depolarization factors are clearly demonstrated by those models,
which start in the limit of a rigid planar oscillator (corresponding, for instance, to two
degenerate orthogonal transitions), which is formally allowed to perform axially symmetric
vibrations out of plane.

SUMMARY

In this section the conditions under which long-range resonance energy transfer experiments
lend themselves to the determination of intramolecular donor-acceptor separations are
summarized and experimental protocols for evaluating this distance with known uncertainty
are suggested.
As has been pointed out, the dynamic averaging regime is the preferred one and lends itself

to unequivocal interpretation. In the static regime, on the other hand, since there is no
luminophore depolarization, no information about the orientational distribution of the donor
and acceptor can be obtained. The transfer depolarization factor alone provides no useful
information about the orientation factor and thereby the D-A separation.
The intermediate averaging regime, in which the reorientational motion of the probe can in

principle be separated from that of the substrate as a whole, may be interpreted in terms of the
dynamic averaging case to a reasonable approximation, as discussed elsewhere (Dale and
Eisinger, 1974). In the intermediate case, the transfer efficiency will always be lower than

4In previous publications on this topic a different nomenclature was employed: <d>d was used to represent the
(dynamically averaged) axial depolarization factor <dx>, while <d'>d referred to the observed factor designated
here by <d>.
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that which would obtain for the same geometry in the strict dynamic limit (compare the
isotropic example in Appendix A), implying that both extrema derived for R under the
dynamic limit assumption will represent overestimates. The error due solely to this effect
actually increases as the distributions become more isotropic.
When extrinsic labels are used, they should be chosen to be closely approximated by the

limits of either a linear or planar transition moment. The chromophores' vibrational or
rotational reorientation may then be estimated by the model and the experimental methods
discussed here. To measure the transfer depolarization factor, excitation into higher donor
transitions should be avoided, for in such cases, as discussed at length in an earlier publication
(Dale and Eisinger, 1975), the orientation and transfer depolarization factors are not
correlated.

Because even a modest degree of reorientational freedom can reduce the uncertainty in
<K2> appreciably, it is important that the depolarization factors for both luminophores with
respect to the substrate be measured as accurately as possible, preferably by determining the
time dependence of the overall depolarization process directly. As discussed above, an
additional measurement of <dT> serves to narrow the range of uncertainty of <K2>
further.

It is useful to consider three cases under which <K2> from polarized intramolecular
excitation energy transfer might be analyzed.

Neither <dD> Nor <dA> Known

<K2> under these conditions may be arbitrarily close to its limits of 0 or 4. This sets a
maximum separation approximately 35% higher than under the isotropic assumption
(<K2> = 2/3), but allows an arbitrarily small minimum separation. Knowledge of <dT> is
not helpful in this case.

<dD> and/or <dA> Known, <dT> Unknown
When both donor and acceptor depolarization factors are determined, but the transfer
depolarization factor is not available, the contour plot of Fig. 9 should be consulted. It is
important to remember that, if one or both of the measured depolarization factors are less
than 0.25, the <d'> and/or <d'> values obtained as their square roots (Eq. 33) are of
unknown sign in the absence of independent information (e.g. as to whether one or the other of
them corresponds to a planar transition). All combinations of possible signs must therefore be
taken into consideration in determining the maximum and minimum values of <K2> from
this plot. The same plot may be employed when only one of the depolarization factors is
known, the absolute maximum and minimum being obtained by searching along the line
defined by the known <dx> through all values of the other depolarization factor.

Note that if one of the depolarization factors is determined to be zero, corresponding to
complete reorientational isotropy of that luminophore, the extreme values of <K2> are 4/3 and
s/3,So that the maximum error in R due to the assumption of 2/3 for <K2> is only about 12%.

<dD>, <dA>, and <dT> Known

The appropriate plots from among those presented in Figs. 4-7 are chosen with due regard to
any ambiguity in the sign of d', as indicated in the body of the text. The maxima and minima
thus obtained represent estimates of the true and, in the absence of additional structural
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information, irreducible uncertainty associated with the relative orientations of donor and
acceptor moieties.

It is worth stressing again that the protocol described here is independent of the particular
orientational distribution functions that may be chosen for the luminophores and requires only
that they are at least approximately axially symmetric.

It should finally be mentioned that the uncertainty caused by the experimenter's ignorance
of the orientation factor can, at least in principle, be overcome in certain cases. The use of a
transition metal ion with a purportedly triply-degenerate transition as acceptor already
reduces the uncertainty in <K2> to about 12% in the worst case, i.e. when the donor
transition is linear and fixed (Latt et al., 1970, 1972; Darnall et al., 1976; Birnbaum et al.,
1977). The recent use of Tb3+, again with a purportedly triply-degenerate transition, as the
donor to Co2+ (Berner et al., 1975; Horrocks et al., 1975) presumably completely removed all
uncertainty in <K2>, although the assumption of an isotropic oscillator was not reported to
have been tested by a depolarization measurement or by other optical techniques. That the
electronic transitions of a metal ion exhibit a single bell-shaped envelope is not sufficient
ground to assume that its absorption will be isotropic. The best confirmation of isotropy is the
measurement of the absorption coefficients in a single crystal of the metal-ligand complex. It
is also sufficient that measurements in solution of the absorption, the circular dichroism, and
the magneto-circular dichroism all can be described by a single spectral feature.

While only a few macromolecules of biological interest are likely to bind transition metal
ions specifically, it should be possible to design a variety of organic chelates for these metal
ions, which may then be bound to specific sites either covalently or by adsorption, as has been
suggested earlier (Horrocks et al., 1975) and now accomplished (Leung and Meares, 1977).
This may not always be desirable or even possible (e.g. when one or both probe moieties are
intrinsic to the system). In these and all other cases, where the donor and/or acceptor lack
orientational isotropy due to a degeneracy of the transition moments, the protocols described
in this paper provide the narrowest possible limits to the donor-acceptor separation obtained
from excitation energy transfer experiments.

APPENDIX A

Intramolecular Energy Transfer in the Limit ofStatic Random (Isotropic)
Orientational Averaging

It can be seen from Eq. 5 that the statically averaged energy transfer efficiency between a donor and an
acceptor separated by a fixed distance R is

<T>s = <KTi/(TD' + KTi)> = <K3/(C R + K,)>. (34)

As has been discussed previously (Eisinger and Dale, 1974; Dale and Eisinger, 1975, 1976), this result
cannot readily be adapted, in general, to evaluate R for an ensemble of D, A pairs since the R and K2
dependence cannot be separated, each D, A pair having a different and unknown K?. The only exceptions
occur when (a) <T>, is vanishingly small so that it approaches the dynamic average efficiency <T>d
or (b) both D and A have isotropic orientational distributions. The latter situation will be considered in
the following.
The static average transfer efficiency given by Eq. 34 may be rewritten as

<T>s = 1 - <1/(1 + aK2)>, (35)
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FIGURE 10 The dynamically and statically averaged transfer efficiencies, <T>d and <T>,, as
functions of (Ro/R)', calculated under the "isotropic assumption" for the orientational freedom of both
luminophores (cf. Appendix A). The area between the curves corresponds to all averaging regimes
between the static and dynamic limits. The averaging regime is seen to make little difference if the transfer
efficiency is low.

where a = CR 6. For the case under consideration, it is most convenient to express K' in terms of the
coupling of the donor electric field vector that makes an angle w with the acceptor transition moment
(Steinberg, 1968):

K= (3 cos OD + 1) COS' . (36)

Averaging may then be accomplished by substituting x = cos 0D and y = cos w and integrating over the
appropriate ranges:

<T>s= 1- f of 1 + a(1 + 3x2)y2f] dydx,

= I1-J (I/V;) tan-' (V;) dx (37)
where b = a(l + 3x2). <T>3 may be obtained as a function of (RO/R), where Ro contains an
arbitrary-value of K2 (see Eq. 2), by numerical integration of Eq. 37. The result for K2 = Y3iS displayed in
Fig. 10, which also shows for comparison the corresponding dynamically averaged efficiency <T>d
defined by Eq. 5 with K2 = 2/3 as appropriate for the isotropic case considered.

Since in the dynamic limit all D, A orientations, including those favorable for rapid transfer, are
sampled during the transfer time, <T>d always exceeds <T>, for a given intramolecular separation.
The error in the intramolecular separation R, introduced by assuming the wrong averaging regime in
deriving R from energy transfer efficiencies, in this case is readily seen to be about 15% when <T>d is
0.5 and about 50% when <T>d is 0.9 (cf. Fig. 10). At low transfer efficiencies the error becomes
negligible, as is easily shown to be true, e.g. from Eq. 5, independently of whether the orientational
distributions are isotropic or not.

APPENDIX B

Distribution of Values of the Orientation Factor
It has frequently been stated or tacitly assumed that the average value of 2 for K2, which corresponds to
complete dynamic isotropic orientational averaging of both D and A, is a reasonable approximation for
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D-A pairs in which the D and A orientations are either fixed or incompletely averaged. It is of course
doubtful whether the use of a value equal to that for a statistical average of all possible relative D and A
orientations in the dynamic limit is justifiable in a particular situation. Leaving this question aside, the
claims for the approximate validity of the "two-thirds" assumption can be tested by investigating the
probability density and probability distribution of K2 under the assumption that all spatial orientations of
both D and A are equally likely and that the orientation of the donor is independent of that of the
acceptor.
The probability density of K2, p(K2), will be the probability density of (3 COS2 OD + 1) COS2 W taken over

all values of GD and w in Eq. 36. This is isomorphous with the probability density, p(z), of z = (3X2 +
1) y2 taken over all values of x and y between 0 and 1. For any fixed value of x, p(z) will be
proportional to 1/ x/- for 0 < y < (3X2 + 1) as p(z) = 1/2 a over the interval 0 < y < a when
Z = y2. In the interval 1 < z < 4, p(z) may be obtained from p(z) jx by integration. Substituting v =
3x2 + 1, one obtains

p(z)I X-p(z) cx (1/ '/\)f[p(v)/ fI dv. (38)

As p(v) = N/3/(v - 1), the integral is In (/ +Vvf+). Evaluating the constant of integration and
normalizing to unit total probability gives

p(K2) = [2/\/3]7] [ln (2 + V/3) - g(K2)], (39)
where g(K2) = 0 for 0 < K2 < 1 and g(K2) = In (V/K7 - 1 + V7) for 1 < K2 < 4. This probability
density function is plotted in Fig. 11 and is equivalent, though simpler in form, to an expression derived
elsewhere (Jones, 1970). It can be seen at a glance that the most probable value of K2 is zero.
The probability distribution of this density function is obtained by integrating from zero to any

arbitrary value of K2:

P(K2) = f p(z)dz. (40)

Substituting Eq. 39 into Eq. 40 and integrating gives

X/-- On (2 + 0F) ( 2 < 1)
P(K2) = / [1n(2+ /) - Pln (V7 + )- (41)

(1 < K2 < 4).

This probability distribution function is also plotted in Fig. 11. Inspection of the latter curve shows that,
for instance, there is approximately a 60% probability that K2 has a value outside the limits 1/3-4/3, and an
almost 45% probability that it is less than '/3. In addition, there is approximately a 20% probability that
K2 has a value less than 0.1 of its average value of 2/3 and almost 12% probability that it is less than 0.02.
The corresponding values derived for the D-A separation in the latter two cases are 0.11/6 and 0.031/6, i.e.
about 0.68 and 0.56, of that obtained under the assumption of an average value of 2/3 for K2.

It has in the past been argued that the "isotropic" value of 2/3 for <K2> has statistical validity for D-A
pairs with unknown relative orientations, since extreme values for K2 (O or 4) are unlikely to obtain for a
pair of independent transition dipoles. The forgoing discussion dispels the credibility of this argument.
Indeed, it shows that the opposite is true, since values of K2 near zero are seen to predominate in a
random distribution. There exists, moreover, a fundamental objection to obtaining an estimate for the
orientation factor on statistical grounds. A fluorescent label, be it intrinsic or extrinsic, is found at a
specific site of a macromolecule because of the unique structural or functional properties of its
interaction with the site. It is therefore likely that the resultant distribution of dipole orientations, while
somewhat heterogeneous, will be characterized by a narrow range of geometries. It is quite unlikely that
any particular geometry will obtain when it is calculated on the basis of probability distributions, as has
been proposed recently (Hillel and Wu, 1976), even when the calculations include, as there, estimates of
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FIGURE I11 The curve p(K') gives the probability density that any particular value of K2 obtains between
two dipoles, each of which may adopt any orientation independently of the other. P(K') is the probability
distribution of K' having a value between 0 andK,2* The probability of K' being less than 0.1, for example, is
seen to be 0.25.

restricted dynamic orientational averaging. Only a range of possible K2 values can be defined as outlined
in this work. Some value within this range will be the appropriate one, but it cannot be estimated more
closely.

APPENDIX C

Depolarization Factors for Some Axially Symmetric Orientational Distributions
In this Appendix a number of models for a luminophore attached to a macromolecular substrate with
some orientational freedom will be used to calculate the corresponding dynamically averaged axial and
observed depolarization factors. Only axially symmetric distribution functions are considered, and the
transition moments are assumed to be either linear, as would obtain for the lowest nondegenerate
transition of a luminophore, or planar, corresponding, for instance, to two degenerate orthogonal
transitions. These two limiting cases, here examined in parallel, correspond respectively to centrally and
peripherally weighted angular distributions of a linear transition. In the former case the angular
distribution is best defined by a radial density function g(4fl, where 4' is the polar angle between the
transition moment and the axis of symmetry of the distribution. It is more convenient to give the results
for planar oscillators in terms of

41 = ir/2 -6 (42)
where 4f is the angle between the planar transition dipole and the plane normal to the symmetry axis of
the orientational distribution. The axial depolarization factors for a given 4' or 4" are

dX(') =3/2cos2#1/2, (43)

or, correspondingly,

dx(o,6/ =/ sifl%f' - =/2. (44)

Average axial depolarization factors for the various distributions may be obtained by integrating Eqs. 43
and 44, weighted by the appropriate radial density function and geometrical element:

<dx> = (f dx()g(#) sin 4' do g(i) sin 4 do) (45)
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or, correspondingly,

<dx> = (fu2 dx(*)g(4/) cos')do/ g(41)) cosA4 do"). (46)

The dynamically averaged observed depolarization factors <d> are then, according to Eq. 33, simply
the squares of these axial depolarization factors.

Free Rotation about One or More Bonds
This model is useful for examining the cumulative effects of rotation about various bonds between the
luminophore and the macromolecular substrate. The radial density function for rotation about a single
bond is

9(°1 = l (+ 7 (47)

where I is the angle between the transition dipole and the bond about which free rotation is assumed to
occur. In other words, the transition moment is constrained to lie on the surface of a cone with half-angle
I. Then

<dx> = dx(I) = /2cosI-I/2, (48)

so that

<d> = <dx>2 (3/2 COS2 - '/2)2 (49)

These equations have been given elsewhere (Dale and Eisinger, 1974, 1975) and are also obtainable as
the limit of the expression for the time-dependence of depolarization derived much earlier for this model
(Gottlieb and Wahl, 1963). Figs. 12 a and b (with n = 1) display these depolarization factors as
functions of I and illustrate the fact that they vanish, corresponding to complete depolarization, at the
"magic angle"

'm = cos' (1//3) 54.70 (50)

If free rotation about several bonds is possible, Soleillet's theorem (cf. Eq. 8) permits the evaluation of
the cumulative depolarization

n

<dX+,> = d(w) IId(i) = d(w) <dx> ( 51)
i-I

where I is, as before, the angle between the transition moment and the proximal bond about which
rotation occurs, and *i are the angles between each of the n successive rotatable bonds. As always for the
axially symmetric distributions considered here, the observed depolarization factor <d+I> is the
square of this expression. Figs. 12 a and b depict <dx> and <d"> for n = 1-6 and Ij = I between 0
and r/2, since these functions are symmetrical about the latter angle. The time dependence of
depolarization caused by multiple bond rotations has also been considered previously (Wallach, 1967).

It is of interest to generalize the forgoing model to cases in which a degree of radial vibration of
amplitude e about a mean angle I occurs. The corresponding radial density function is then

(max (, min (7r, + ) (52)
gOM (elsewhere)

(2
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FIGURE 12 The curves labeled n = I in a and b give the axial and observed depolarization factors,
respectively, for a luminophore constrained to the surface of a cone of half-angle '. This orientational
constraint corresponds to the existence of a single, freely rotatable bond between the luminophore and the
substrate. The remaining curves, labeled n = 2, 3,4, 5,6, correspond to n equivalent rotatable bonds
between luminophore and substrate and are seen to give rise to ever-decreasing depolarization factors.

with ' and e ' vr/2. Upon substitution into Eq. 45 and integration,

<d {>= 3/2 (4 os2COS2E -cos2 I'-cos2) ( )

1/2 CoS(e+ e) [1 + coS (e + )] (cf.A).

These functions and the observed depolarization factors derived from them are presented in Figs. 13 a
and b for a set of E values. Frehland (1976) has recently considered the time-dependence of the
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FIGURE 13 a. Dynamically averaged axial depolarization factors of a luminophore constrained to the
volume between two cones with half angles * ± e. This model defined by g,(4k) (Eq. 52) approaches the
random walk model described by the distribution function gR(4C) (see Eq. 54 and Fig. 15), when e and I
are comparable. It corresponds to orientational isotropy with <d> = <dz> = 0 when e= e= r/2. b.
Observed, dynamically averaged depolarization factors for the same model.

depolarization suffered by probes undergoing restricted rotation in anisotropic media in terms of this
model.

Space-Filling Models
Only a few space-filling models with axial symmetry will be considered here. While these were chosen
for illustration, some correspond to constraints imposed by simple potential wells. The radial density
functions g(4') and g(4') for these models are displayed in Fig. 14. Analytical expressions can be derived
for the depolarization factors for all except the Gaussian model. Some of these expressions are rather
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FIGURE 14 Schematic representation of the various orientational distribution functions considered in
Appendix C. The curves labeled gR, gG, gE, and gT correspond to random walk, Gaussian, exponential, and
triangular distributions, respectively. The angle I is characteristic of the extent of each distribution and is
the independent variable in Figs. 15-18, which give the depolarization factors for the various distribu-
tions.

complex and lengthy, and in practice the corresponding depolarization factors were calculated, as for the
Gaussian model, by numerical integration.

MODEL I. RANDOM WALK WITHIN THE CONFINES OF A CONE OF HALF-ANGLE I This model,
which forms an analogue of the infinitely deep square well potential in two dimensions, is the only
space-filling model considered previously in this connection (Eisinger and Dale, 1974; Dale and Eisinger,
1974, 1975; Eisinger, 1976). It corresponds to a random walk over a conical segment and has also been
invoked in connection with the time dependence of restricted rotational motion of fluorescent probes in
lipid bilayer membranes (Kawato et al., 1977; Kinosita et al., 1977). The radial density function is

gR() { 1 (0 ¼< min(*I,r)) (54)
0 (41>)

for which the axial depolarization factor reduces to

<dX> = 1/2 COS ' (1 + cosl). (55)

The depolarization factors computed on this basis are presented in Fig. 15 a.5 The corresponding model
incorporating peripheral weighting, i.e. starting in the limit of a planar transition or, equivalently, in the
limit of a linear transition rotating rapidly in a plane (cf. Kinosita et al., 1977), has the radial
distribution function

gR(W)= (1 [OSi'< min(*', 7r/2)] (56)

0 (i/'>')

and is characterized by the very simple axial depolarization factor

<dx> = -1/2cos ' . (57)

This function is displayed, along with its square, which represents the observed depolarization factor, in
Fig. 15 b.

5An error in a previous calculation of <d> (designated <d'>d there) for this model in the range (ir/2 <4 < w)
(Dale and Eisinger, 1975) is apparent and is corrected here.
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FIGURE 15 a. Dynamically averaged axial and observed depolarization factors, <dx> and <d>, for a
luminophore whose linear transition moment is constrained to lie within the volume of a cone of half-angle
I with respect to the substrate. This is the random walk model discussed in the text. b. Same as a except
that the transition moment is considered to be planar, and I is the angle between it and the plane normal
to the symmetry axis of the orientational distribution, i.e. I = (ir/2) - *.

MODEL II. TRIANGULAR DISTRIBUTION The radial density function decreases linearly from
unity at the axis or periphery (g(4,) or g(4/), respectively) to zero at the "characteristic" angle ' or '.
Thus,

gT(4,)= { (#/4') [O.<4 <min(I,ir)] (58)
O [ik > min(', 7r)]
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and the equivalent expression in 4/, I, and min (', ir/2). The resulting axial depolarization factors

1 3 sin w-sin(3S )
<dx> = sin' (0 (59)

0 ( r)

and

1 14-3 cos ,-cos (3W)) (O 4". r/2) (60)
<dX> = 24 1 cosV'( g/)(6

( Ir /2)
3 (24"W-ir + 2)

along with the observed depolarization factors <d> derived from them are given in Figs. 16 a and b.
MODEL III. EXPONENTIAL DISTRIBUTION This model corresponds to an analogue of the

two-dimensional triangular well potential. The radial density function is

gE(4) = e-(+/") (0c c r), (61)

and the equivalent for 4/ in (0, ir/2). In this case again, integration gives rise to quite simple forms for
the axial depolarization factors,

<dx> = 1/(1 + 9*2) (62)

and

I + 'I (34"- 2-/*
<dx> = 2(1 + 9*"2) (1 + V'e-"/2'0')' (63)

for centrally and peripherally weighted models, respectively. These and the corresponding <d>'s are
presented in Figs. 17 a and b, in which the ranges of I and ' are arbitrarily restricted to ir radians for
comparison with the previous distribution models.

MODEL IV. GAUSSIAN DISTRIBUTION A Gaussian radial density function may constitute the
most realistic of the models considered here and corresponds to an analogue of the two-dimensional
parabolic well potential. The radial density function is

gG (1/) =e-e/)2 (0 4 ir), (64)

along with the equivalent expression for 4" in (0, 7r/2). The corresponding depolarization factors are
visualized in Figs. 18 a and b. Since this distribution function is weighted more heavily centrally (4') or
peripherally (4') than in the exponential model, the absolute depolarization factors as functions of the
"characteristic" angles I and 4 are much smaller than those for the exponential model shown in Figs.
17 a and b.
Of course, an infinity of distributions could be invoked in this context, although presumably only a

limited number correspond to physical reality. It is important to emphasize that, for the analysis of
energy transfer experiments, it is not necessary to know the precise form of the actual distributions but
only to know that they have at least approximate axial symmetry.

It should finally be noted that the axial depolarization factor <dx> defined here has significance
beyond its use in connection with fluorescence depolarization. Thus, it appears as the electron spin
resonance order parameter for rapid anisotropic tumbling of spin labels, described in terms of some of
the distribution models discussed above, e.g. the random walk model (Van et al., 1974; Israelachvili et
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FIGURE 16 a. Dynamically averaged axial and observed depolarization factors, <dx> and <d>, for a
luminophore whose linear transition moment has a triangular radial density function (g940) in Fig. 14) of
characteristic angle '. b. Same as a except that the transition moment is considered to be planar, and ' is
the angle between it and the plane normal to the symmetry axis of the orientational distribution, i.e. V' =
(r/2) -i*.

al., 1975) and the Gaussian distribution (Gaffney and McConnell, 1974). A model not considered here,
that corresponding to a Gaussian spread about a mean bond rotation angle ',

(6) = e-l(_*)/fl2 (O 7r6. r), (65)

(compare Eqs. 52 and 64), has also been utilized by the last-named authors.
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FIGURE 17 a. Dynamically averaged axial and observed depolarization factors, <dx> and <d>, for a
luminophore whose linear transition moment has an exponential radial density function (gE(4,) in Fig. 14)
of characteristic angle I. b. Same as a except that the transition moment is considered to be planar, and I
is the angle between it and the plane normal to the symmetry axis of the orientational distribution, i.e.
V' = (X1/2) - *

ADDENDUM

Since completion of the above in final manuscript form, a number of contributions reporting
intramolecular separations using depolarization measurements to delimit upper and lower bounds have
appeared in the literature (Shepherd and Hammes, 1977; Holowka and Hammes, 1977; Dockter et al.,
1978; Pober et al., 1978; Tu et al., 1978; Hahn and Hammes, 1978). These have all made use of one or
another of the reorientational models previously reported (Dale and Eisinger, 1974, 1975). A more
complete energy transfer study of the distribution of end-to-end distances in a series of oligopeptides,
including an extensive set of polarization measurements over a wide range of solvent viscosities, has also
appeared (Haas et al., 1978a). Most recently, Haas et al. (1978b) have detailed a treatment of the
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FIGURE 18 a. Dynamically averaged axial and observed depolarization factors, <dx> and <d>, for a
luminophore whose linear transition moment has a Gaussian radial density function (gG(4,) in Fig. 14) of
characteristic angle I. b. Same as a except that the transition moment is considered to be planar, and ' is
the angle between it and the plane normal to the symmetry axis of the orientational distribution, i.e. ' =
(r/2) -.

orientation factor problem formally equivalent to that presented here, but using directly the concept of
three-dimensional transition dipole moments and formulating their results in vector form. Finally, in
both that article and a recent energy transfer review (Stryer, 1978) as well as in work previously quoted
(Hillel and Wu, 1976), a "statistical" argument is invoked in attempts to predict a "probable" narrower
range of orientation factor values than given by the absolute upper and lower bounds obtainable directly.
The applicability of this kind of approach to real situations is questionable and has been discussed here in
Appendix B.
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