A Characterization of the McLaughlin's Simple Group

Zvonimir Janko and S. K. Wong
Department of Mathematics, Ohio State University, Columbus, Ohio 43210

Received February 4, 1971
to professor richard brauer, to commemorate his seventieth birthday, february 10,1971

1. Introduction

Recently, J. McLaughlin [6] discovered a new simple group Mc of order $898,128,000$. From the character table of this group (which was computed by J. G. Thompson), we can see casily that the group Mc has precisely one conjugate class of involutions (elements of order 2) and that the centralizer of an involution in Mc is isomorphic to \hat{A}_{8}. Here \hat{A}_{8} denotes the unique perfect central extension of the alternating group A_{8} by a group of order 2 . We shall prove the converse of this fact.

Theorem. Let G be a finite group of even order which possesses an involution z such that the centralizer H of \approx in G is isomorphic to \hat{A}_{8}. Assume further that $G \neq H \cdot O_{2^{\prime}}(G)$, where $O_{2^{\prime}}(G)$ denotes the maximal normal odd order subgroup of G. Then G is isomorphic to the McLaughlin's simple group Mc of order 898,128,000.

Throughout the paper, G will denote a finite group satisfying the assumptions of our theorem. The other notation is standard (see [9]). The proof of the theorem is obtained in the following way: The structure of H which is isomorphic to $\hat{A_{8}}$ is known from the work of Schur [8]. In particular, we see that H has precisely two conjugate classes of involutions and if S is an S_{2}-subgroup of H, then $Z(S)-Z(H)=-\langle z\rangle$ and so S is an S_{z}-subgroup of G. Since $G \neq H \cdot O_{2^{\prime}}(G)$, a result of Glauberman [4] then forces that the group G has precisely one conjugate class of involutions. We then go into a detailed study of the 3 -structure of G. In particular, we show that an S_{3}-subgroup W of G must have order 3^{6} and is isomorphic to an S_{3}-subgroup of $U_{4}(3)$. The normalizer $N_{G}(W)$ of W in G has order $3^{6} \cdot 2^{3}$, and an S_{2}-subgroup of $N_{6}(W)$ is a quaternion group. We then follow Phan [7] and construct a
subgroup G_{0} isomorphic to $U_{4}(3)$. We show that G_{0} is a maximal subgroup of G. We then take an element v_{1} (of order 4) in $N_{G}(W)-G_{0}$, and show that G consists of the three distinct $\left(G_{0}, G_{0}\right)$-double cosets $G_{0}, G_{0} \sigma_{1} G_{0}$ and $G_{0} v_{1} a_{1} a_{2} v_{1} G_{0}$, with $a_{1} a_{2} \in G_{0}$. It follows that the group G is a primitive transitive rank 3 permutation group on 275 points, for which the stabilizer of a point G_{a} is isomorphic to $U_{4}(3)$ with subdegrees 1,112 , and 162 . We then construct a graph as in Wales [II] and we see that this graph is isomorphic to the graph in McLaughlin [6]. Since McLaughlin has shown that the group Mc is a subgroup of index 2 in the automorphism group of this graph, we must have that G is isomorphic to Mc. Finally, the following two properties of Mc scem interesting: The group $\left\langle x_{1}, a_{1} a_{2}\right\rangle$ is a semidihedral group of order 16 and so $G \ldots G_{0}\left\langle v_{1}, a_{1} a_{2} G_{0}\right.$, where $G_{0} \simeq U_{4}(3)$ and $v_{1}, a_{1} a_{2}$, is semidihedral of order 16. Further, there are no involutions in the double $\operatorname{coset} G_{0} v_{1} G_{\|}$.

2. Some Properties of H

We list here some properties of H which will be used in the proof of the theorem. These properties are established by using the fact that $H \simeq \hat{A}_{3}$ and also using the work of Schur [8].

Lemma 1. The group H has precisely two conjugate classes of elements of order 3 with the representatives s_{1} and s_{2}, such that $\left[s_{1}, s_{2}\right]-1$. An S_{2}-subgroup of $C_{H}\left(s_{1}\right)$ is a quaternion group and an S_{2}-subgroup of $C_{H}\left(s_{2}\right)$ is a four-group. We put $P_{i}=\left\langle s_{i}\right\rangle, i=1,2$.

Lemma 2. We have $N_{H}\left(P_{1}\right)=P_{1} F$, where $F \cap P_{1}=1, F /\langle z\rangle \sim S_{\overline{5}}$ (the symmetric group in 5 letters) and an S_{2}-subgroup of F is a generalized quaternion group of order 16; and $N_{H}\left(P_{2}\right)=P D$, where $P-\left\langle P_{1}, P_{2}\right\rangle$ and D) is a dihedral group of order 8 . We also have $N_{H}(P)==P S$, where S is a semidihedral group of order 16. Finally, P possesses in $N_{H}(P)$ precisely 4 conjugates of s_{1} and precisely 4 conjugates of s_{2}. The elements s_{1} and s_{2} are real in $N_{H}(P)$.

Lemma 3. Let S be an S_{2}-subgroup of H; then $Z(S)=Z(H)=\langle z\rangle$, and so S is also an S_{2}-subgroup of G. The group H has precisely two conjugate classes of involutions with the representatives z and t. Also $\left|C_{H}(t)\right|=2^{6} \cdot 3$, $C_{H}(t)$ is 2-closed and an S_{3}-subgroup of $C_{H}(t)$ is conjugate in H to P_{2}. The group H has precisely two conjugate classes of elements of order 4 with the representatives w and y, so that $w^{2}:=z$ and $y^{2}=t$; and H has precisely one conjugate class of elements of order 8 with the representative \tilde{w} such that $\tilde{w}^{2}=w$.

Lemma 4. Let ψ be the permutation representation of H on a subgroup of index 8. Then $\operatorname{ker} \psi=\langle z\rangle$ and we can assume the following:
(i) $\psi(t)=(12)(34)(56)(78)$;
(ii) $\psi(w)=(12)(34)$;
(iii) $\psi(\tilde{w})=(1234)(56)$;
(iv) $\psi(y)=(1234)(5678)$.

Lemma 5. Let R and Q be an S_{5}-subgroup and an S_{7}-subgroup of H, respectizely. Then $N_{H}(R)=R_{1} Z$, where Z is a cyclic group of order 8 and $R_{1}=R \times P_{1}$, a cyclic group of order $15 ;$ and $\langle\geqq\rangle$ is an S_{2}-subgroup of $N_{H}(Q)$.

Since $G \neq H \cdot O_{g^{\prime}}(G)$ we have with Lemma 3 and a result of Glauberman [4] the following result.

Lemma 6. The group G has precisely one conjugate class of involutions.

3. The 3-Structure of G

Let t be an involution in H which is distinct from z. Let \bar{P}_{2} be an S_{3}-subgroup of $C_{H}(t)$. Then by Lemma $3, \bar{P}_{2}$ is conjugate in H to P_{2}. Let X be an S_{3}-subgroup of $C_{C}(t)$ containing \bar{P}_{2}. Since t is conjugate in G to z, we have $|X|:=3^{2}$ and so $C_{X}\left(\bar{P}_{2}\right)=X$. This implies that $C_{G}\left(\bar{P}_{2}\right) \nsubseteq I I$.

Lemma 7. The centralizer $C_{G}\left(P_{2}\right)$ of P_{2} in G is not contained in H.
It follows from Lemmas 1 and 2, that an S_{2}-subgroup of $C_{6}\left(s_{1}\right)$ is a quaternion group and an S_{2}-subgroup of $C_{G}\left(s_{2}\right)$ is a four-group. Hence we have the following:

Lemma 8. The elements s_{1} and s_{2} are not conjugate in G. Hence the group G has precisely two conjugate classes of elements of order 3 which are centralized by some incolution in G.

From Lemmas 2 and 8 , it follows that if X is any 3-subgroup of G which normalizers P, then X centralizes P, and so we have

Lemma 9. The factor group $N_{G}(P) / C_{G}(P)$ has order prime to 3. If $N_{G}(P) \nsubseteq I I$, then $C_{G}\left(P_{1}\right) \nsubseteq H$. In particular, if P is not an S_{3}-subgroup of G, then $C_{G}\left(P_{1}\right) \nsubseteq H$.

We assume from now on that P is an S_{3}-subgroup of G. We now use the fact that $C_{6}\left(P_{2}\right) \nsubseteq H$.

Assume at first that $C_{G}\left(P_{2}\right)$ has no normal 2-complement. Since t, \approx is an S_{2}-subgroup of $C_{6}\left(P_{2}\right)$, it follows that $C_{6}\left(P_{2}\right)$ has precisely one conjugate class of involutions. We have $C(z) \cap C\left(P_{2}\right)=P\langle t, z$, and so by a result of Gorenstein and Walter [5], $C_{6}\left(P_{2}\right) / O_{2^{\prime}}\left(C_{6}\left(P_{2}\right)\right) \simeq L_{2}(q), q$ odd prime power. We have $O_{2^{\prime}}\left(C_{G}\left(P_{2}\right)\right) \supseteq P_{2}$ and since $O_{2}\left(C_{G}\left(P_{2}\right)\right)$ is a 3-group and P is an S_{3}-subgroup of $C_{G}\left(P_{2}\right)$, we get $O_{2^{\prime}}\left(C_{G}\left(P_{2}\right)\right) \subseteq P$. If $O_{2^{\prime}}\left(C_{G}\left(P_{2}\right)\right) \approx P$, then since z centralizes P and $\approx{ }_{C_{G}\left(P_{2}\right)} t{\widetilde{C_{G}\left(P_{2}\right)}}$ tz, we get that $\langle t, z$, centralizes P which is not the case.

Hence $O_{2^{\prime}}\left(C_{6}\left(P_{2}\right)\right)=P_{2}$ and the centralizer of an involution in $C_{6}\left(P_{2}\right) P_{2}$ is a dihedral group of order 12. It follows that

$$
C_{G}\left(P_{2}\right) / P_{2} \simeq L_{2}(11) \quad \text { or } \quad L_{2}(13)
$$

Since P_{2} splits in P, we get by a result of Gaschütz [3] that P_{2} splits in $N_{G}\left(P_{2}\right)$.

We get that $N_{G}\left(P_{2}\right)=P_{2} L, P_{2} \cap L=1$ and $C_{G}\left(P_{2}\right)=P_{2} \times L_{1}$, where L_{1} is a subgroup of index 2 in L and $L_{1} \sim L_{2}(11)$ or $L_{2}(13)$. Also, an S_{2}-subgroup of L is dihedral of order 8. It follows that $L=$ aut L_{1} and so $L \simeq P G L(2,11)$ or $P G L(2,13)$. Let t^{\prime} be an involution in $L \backslash L_{1}$. Then $C_{L_{1}}\left(t^{\prime}\right)$ is a dihedral group of order 10 or 14 which contradicts Lemma 5 .

Assume now that $C_{G}\left(P_{2}\right)$ has a normal 2 -complement X. Then $X \supset P$ and since $N_{X}(P)=C_{X}(P), X$ has a normal 3 -complement $X_{1} \neq 1$. Since

$$
X_{1}<N_{G}\left(P_{2}\right) \quad \text { and } \quad t_{N_{G}\left(P_{2}\right)} t \approx
$$

we get $X_{1}=C_{X_{1}}(t) \times C_{X_{1}}(t z), C_{X_{1}}(t) \sim C_{X_{1}}(t z) \neq 1$ and z acts fixed-pointfree and so invertingly on X_{1}. Since $C_{X}(t)=P_{2} \times C_{X_{1}}(t)$, we get that $\left|C_{X_{1}}(t)\right|=5$. But then $\langle t, z\rangle$ normalizes the group $C_{X_{1}}(t)$ of order 5 and $\langle t, z\rangle C_{X_{1}}(t) \subseteq C_{G}(t)$, which contradicts Lemma 5 . We have proved the following result.

Lemma 10. The group P is not an S_{3}-subgroup of G. In particular, an S_{3} subgroup of $C_{G}\left(P_{1}\right)$ has order 3^{3}.

Since an S_{2}-subgroup of $C_{G}\left(P_{1}\right)$ is quaternion, it follows by a result of Brauer and Suzuki [2], that $C_{C}\left(P_{1}\right) \cdots M F, M \cap F=1$ and $M=O_{2^{\prime}}\left(C_{C}\left(P_{1}\right)\right) \supset P_{1}$. The involution z acts fixed-point-free on the group M / P_{1} and so M / P_{1} is Abelian, $M^{\prime} \subseteq P_{1}, P_{1} \subseteq Z(M), M$ is nilpotent of class $\leqslant 2$. Let M_{3} be the S_{3}-subgroup of M. Then $M_{3} \supset P_{1}$ and the group \breve{F} acts faithfully on M_{3} / P_{1} This implies that $\left|M_{3}\right| P_{1} \mid \geqslant 3^{4}$ and so an S_{3}-subgroup of G has order $\geqslant 3^{6}$.

Lemma 11. An S_{3}-subgroup of G has order $\geqslant 3^{6}$.

We shall determine now $N_{G}\left(P_{2}\right)$. Assume at first that $C_{G}\left(P_{2}\right)$ has no normal 2-complement. Since $\langle t, z\rangle$ is an S_{2}-subgroup of $C_{G}\left(P_{2}\right)$, it follows that $C_{G}\left(P_{2}\right)$ has precisely one conjugate class of involutions. We have $C(z) \cap C\left(P_{2}\right)=$ $P\langle t, z$ and so by a result of Gorenstein and Walter [5], we have

$$
C_{G}\left(P_{2}\right) / O_{2^{\prime}}\left(C_{G}\left(P_{2}\right)\right) \simeq L_{2}(q)
$$

q odd. We have $O_{2} \cdot\left(C_{6}\left(P_{2}\right)\right) \supseteq P_{2}$ and $O_{2}\left(C_{6}\left(P_{2}\right)\right)$ is a 3-group. If $O_{2^{\prime}}\left(C_{G}\left(P_{2}\right)\right)=P_{2}$, then $C_{G}\left(P_{2}\right) / P_{2} \simeq L_{2}(11)$ or $L_{2}(13)$ which contradicts the fact that an S_{3}-subgroup of $C_{G}\left(P_{2}\right)$ has order $\geqslant 27$.

Hence, we must have $O_{2^{2}}\left(C_{6}\left(P_{2}\right)\right) \supset P_{2}$. Put $N=O_{2^{2}}\left(C_{6}\left(P_{2}\right)\right)$. Since $C_{N}(t, z)=P_{2}$ and $N \supset P_{2}$, we must have $C_{N}(z)=3^{2}$ and so $P C N$. But \approx, t and $t z$ are conjugate in $C_{6}\left(P_{2}\right)$, and so $C_{N}(t) \simeq C_{N}(t z)$ are elementary Abelian of order 9. It follows that $N ;=3^{4}$, and since the centralizer of an involution in $C_{6}\left(P_{2}\right) / N$ is a four-group, we get that $C_{6}\left(P_{2}\right) / N \simeq A_{4}$ or A_{5}. But if $C_{C}\left(P_{2}\right) / N \simeq A_{5}$, then an S_{5}-subgroup Y of $C_{C}\left(P_{2}\right)$ acts trivially on N, since Y centralizes P_{2} and $|N|=3^{4}$. Thus $C\left(P_{2}\right)=N \cdot\left(C(N) \cap C\left(P_{2}\right)\right)$, and so a four-subgroup in $C_{C}\left(P_{2}\right)$ centralizes N, a contradiction. Hence, we must have $C_{6}\left(P_{2}\right) / N \simeq A_{4}$, and since an S_{2}-subgroup of $N_{6}\left(P_{2}\right) / \lambda$ is dihedral of order $8, N_{G_{i}}\left(P_{2}\right) / N \simeq S_{4}$.

Assume now that $C_{G}\left(P_{2}\right)$ has a normal 2-complement N. Since $N \supset P$ and P is not an S_{3}-subgroup of N, it follows (since t is conjugate to $t z$ in $N_{6}\left(P_{2}\right)$) that $J=3^{4}$. We have proved the following result:

Lemma 12. Let N be the maximal normal odd order subgroup of $N_{G}\left(P_{2}\right)$. Then $V^{T}=3^{4}$ and $N_{G}\left(P_{2}\right) / N$ is either a dihedral group of order 8 or is isomorphic to S_{4}. In any case, $C_{G}(N)=Z(N)$.

We want to determine the structure of N. Put $\left\langle t, z, t^{\prime}\right\rangle=D \simeq D_{8}$. Since $P=C_{N}(z)$ is D-admissible, it follows that $N_{N}(P)(\supset P)$ is D-admissible. Since $t \widetilde{D} t z$, we get that $C(t) \cap N_{N}(P)=\mid C(t z) \cap N_{N}(P)$ and so $P \rightarrow N$.

Hence $P \subseteq Z(N)$ (from Lemma 9).
Assume that N is non-Abelian. Then $Z(N)=P$. If $C_{G}\left(P_{2}\right) / N \simeq A_{4}$, then the three involutions z, t and $t z$ are conjugate in $C_{6}\left(P_{2}\right)$ and since $C_{N}(s) \subseteq Z(N)$, we get $C_{N}(t) \subseteq Z(N)$ and $C_{N}(t z) \subseteq Z(N)$; and so N is Abelian, a contradiction. Thus $C_{G}\left(P_{2}\right)$ has the normal 2-complement N. Let N_{1} be a subgroup of order 3^{5} of G containing N. Then $N_{1} \cap N_{G}\left(P_{2}\right)=N$ and since P is characteristic in N, we get $P \triangleleft N_{1}$, and so by Lemma $9, P \subseteq Z\left(N_{1}\right)$, a contradiction.

Hence, N is Abelian, and since it is generated by the elementary Abelian subgroups $P, C_{N}(t)$ and $C_{N}(t z)$, it follows that N is elementary Abelian. We have proved the following result:

Lemma 13. The group N is elementary Abelian of order $3^{4}, C_{C}(N) \cdots N$ and $C_{G}(P)=N\langle z\rangle$, with $N<N\langle z\rangle$.

We have $N_{H}(P)=P B$, where $B \supset D$ and B is a semidihedral group of order 16. Hence B normalizes $N\langle z\rangle$ and so normalizes N. It follows from Lemma 12 that $N_{G}(N) \supset N_{G}\left(P_{2}\right)$ and $B \subseteq N_{G}(N)$. Assume that B is not an S_{2}-subgroup of $N_{G}(N)$. Let B_{1} be a 2 -group in $N_{G}(N)$ which contains B as a subgroup of index 2. Then $\langle\mathcal{z}\rangle \triangleleft B_{1}$, and so B_{1} normalizes $P=C_{A}(z)$ and $P B_{1} C_{C} C_{C}(z) \cdots H$, a contradiction. It follows that the semidihedral group B of order 16 is an S_{2}-subgroup of $N_{G}(N)$, and $C(z) \cap N(N)=P B$.

Assume now that $N_{\mathrm{G}}\left(P_{2}\right) / N$ is a dihedral group of order 8 . Acting with $\langle s, i\rangle$ on $O_{2^{\prime}}\left(N_{G}(N)\right)$, we get that $N=O_{2^{\prime}}\left(N_{G}(N)\right)$. But N is not an S_{3}-subgroup of G and so 3 divides the order of $N_{i}(N) / N$, which implies that $N_{i}(N)$ does not have a normal 2 -complement. Since the centralizer of an involution in $N_{G}(N) / N$ is semidihedral of order 16, it follows that $N_{G}(N)$ has a normal subgroup L of index 2 , where L has no subgroup of index 2 , and an S_{2}-subgroup of L is dihedral of order 8 . Since the centralizer of an involution in L / N is dihedral of order 8 , it follows that $L / N \sim L_{2}(7)$ or $L_{2}(9)$ and so we have $\left|N_{G}(N): C_{G}\left(P_{2}\right)\right|=2^{2} \cdot 3 \cdot 7$ or $2^{2} \cdot 3^{2} \cdot 5$, which is a contradiction.

Hence by Lemma 12, we must have $C_{6}\left(P_{2}\right) N \simeq A_{4}$ and $N_{C}\left(P_{2}\right) N \sim S_{1}$. Since $C_{0}\left(P_{2}\right)$ has precisely one conjugate class of involutions, it follows that the group $N_{G}(N)$ must have precisely one conjugate class of involutions. Now, the centralizer of an involution in $N_{6}(N) / N$ is semidihedral of order 16 , and so it follows that $N_{G}(N)$ has a subgroup L of index 2 , where L has no subgroup of index 2, and an S_{2}-subgroup of L is dihedral of order 8 . Since the centralizer of an involution in L / N is dihedral of order 8 , we have $L / \Lambda \sim L_{2}(7)$ or $L_{2}(9)$. But $C_{6}(N)=N$, and so $L / N \simeq L_{2}(9) \simeq A_{6}$. There are no involutions in $N_{C}(N) L$, and $N_{G}(N) / N$ is a subgroup of the automorphism group of L / N with a semidihedral group of order 16 as an S_{2}-subgroup. We have proved:

Lemma 14. We have $N_{6}\left(P_{2}\right) / N \simeq S_{4},\left|C_{6}\left(P_{9}\right)\right|=2^{2} \cdot 3^{5}$ and $N_{6}(N)$ has a subgroup L of index 2 such that $L / N \sim A_{6}$. An S_{2}-subgroup of $N_{C}(N)$ is semidihedral of order 16 . Thus $N_{G}(N) / N$ is an automorphism group of L / N. There are no involutions in $N_{G}(N) \backslash L$.

Put $P_{i} \cdots\left\langle s_{i}\right\rangle, i=1,2$ Since $\left|N_{6}(N): C_{6}\left(s_{2}\right)\right|=60$, there are precisely 60 conjugates of s_{2} in $N_{G}(N)$. There are $80-60-20$ nontrivial elements left in N. An S_{5}-subgroup of $N_{C}(N)$ acts fixed-point-free on N and so $\left|N_{6}(N): C\left(s_{1}\right) \cap N(N)\right|-n$ is divisible by 5 . Also, there is no four-subgroup in $C_{G}\left(s_{1}\right)$ and so $10 n$. Hence $3+n$. Assume that $n=10$. Then, an $S_{2}-$ subgroup of $C\left(s_{1}\right) \cap N(N)$ has order 8 . But there is an element in B which inverts P_{1} and so an S_{2}-subgroup of $N\left(P_{1}\right) \cap N(N)$ has order 16 and so is
semidihedral. This contradicts the fact that $N_{G}\left(P_{1}\right)$ does not contain foursubgroup. Hence $n=20$. We have proved:

Lemma 15. We have $\left|C\left(s_{1}\right) \cap N(N)\right|=2^{2} \cdot 3^{6}$ and an S_{2}-subgroup of $C\left(s_{1}\right) \cap N(N)$ is cyclic (of order 4). We have that $C\left(s_{2}\right) \cap N(N)=C_{G_{6}}\left(s_{2}\right)$ has order $2^{2} \cdot 3^{5}$. Hence $N^{* /}$ consists of precisely 20 conjugates in $N_{G}(N)$ of s_{1} and 60 conjugates in $N_{C}(N)$ of s_{2}, where $P_{i}=\left\langle s_{i}\right\rangle, i=1,2$. Finally, (since an element of order 4 in B inverts $\left.P_{1}\right) N\left(P_{1}\right) \cap N(W)=W Q$ is 3-closed, where W is an S_{3}-subgroup of $N_{6}(N)$ of order 3^{6} and Q is a quaternion group. Also $N(W) \cap N(N)=W Q$, where the quaternion group Q acts fixed-point-free on W / N and so Q acts transiticely on $(W / N)^{*} ;$ also $Z(Q) \subseteq L$.

All elements of order 3 in $N_{G}(N) / N$ lie in a single conjugate class in $N_{C}(N) / N$. Let X / N be a subgroup of L / N isomorphic to A_{4} and $x \in X \backslash N$, where x has 3-power order. There is an clement y in X such that $\left\langle x, x^{y\rangle}\right\rangle N / N=X / N$, and so $\left\langle x, x^{\prime \prime}\right\rangle$ contains a four-subgroup.

Assume now that there is an element of 3-power order $x \in N_{G}(N) \backslash N$ such that $\left|C_{N}(x)\right| \geqslant 3^{3}$. Then, there is an element $y \in N_{G}(N)$ such that $\left\langle x, x^{*}\right\rangle$ contains a four-group and $\left|C_{N}\left(x^{2}\right)\right| \geqslant 3^{3}$. Thus, $\left|C_{N}\left(\left\langle x, x^{3}\right\rangle\right)\right| \geqslant 3^{2}$ and so a four-group centralizes a group of order 3^{2}, a contradiction.

We have $P_{1} \subseteq Z(W)$ and assume that $Z(W) \supset P_{1}$. Then $Z(W) \subseteq N$ and $\vdots Z(W)=3^{2}$. But $Z(W)$ is Q-admissible and $Z(Q)$ centralizes P_{1}. Every subgroup of order 3 of $Z(W)$ is conjugate in $N_{G}(N)$ to P_{1} and so $Z(Q)$ cannot centralize $Z(W)$. Hence $[Z(W), Z(Q)]$ has order 3 and is acted upon faithfully by Q, a contradiction. Hence $Z(W)=P_{1}$.

Assume now that N is not a characteristic subgroup of W. Then there is an automorphism σ of W such that $N^{\sigma} \neq N$. If $\left|N \cap N^{\sigma}\right|=3^{3}$, then an element in $N^{\sigma} \backslash N$ centralizes a subgroup of order 3^{3} in N, a contradiction. If $\mid N \cap N^{\sigma} ; 3^{2}$, then $W=N \cdot N^{\sigma}$ and so $N \cap N^{\sigma} \subseteq Z(W)$, a contradiction. It follows that N char W. We have proved:

Lemma 16. For every element $x \in W \backslash N$, we have $\left|C_{N}(x)\right| \leqslant 3^{2}$. Also $Z(W)=P_{1}$ and N is a characteristic subgroup of W and W has no Abelian subgroups of order 3^{5}.

It follows that $N_{G}(W) \subseteq N_{G}(N)$ and $N_{G}(W)=W Q$. Hence, W is an S_{3}-subgroup of G and $|W|=3^{6}$ and $Z(W)=P_{1}$.

Now, we know that P is an S_{3}-subgroup of $C_{H}\left(P_{1}\right)$. Then, if we use the notation in the proof of Lemma 11, we have $\left|M_{3}\right| P_{1} \mid=3^{4}$ and $\left|M_{3}\right|=3^{5}$; also $M_{3} \triangleleft N_{G}\left(P_{1}\right)$ and so $W \supset M_{3}$. Since $W \supseteq P$, and $P \nsubseteq M_{3}$ we have $W=P_{1} \cdot M_{3}$, where \bar{P}_{1} is conjugate in H to P_{1}. Since $|N|=3^{4}$ and $N \supset P, N \subseteq W$, we get that $\left|N \cap M_{3}\right|=27$. Since N contains 20 elements conjugate to s_{1} in G, it follows that $N \cap M_{3}$ contains a subgroup \bar{P}_{2} conjugate
to P_{2} in G. Since M is nilpotent, it follows from Lemma 14 that $M=M_{3}$. On the other hand, W has no Abelian subgroups of order 3^{5}, and so M is non-Abelian. Hence $M^{\prime} \cdots P_{1}$. Since an S_{5}-subgroup of $N_{6}\left(P_{1}\right)$ acts irreducibly on M / P_{1}, it follows that M does not possess characteristic subgroups which are strictly in between P_{1} and M. It follows that M is an extra-special group of order 3^{5} and exponent 3 . Also z acts invertingly on $M \mid P_{1}$ and so an S_{2}-subgroup of $N_{G}\left(P_{1}\right)$ (which is generalized quaternion of order 16) acts fixed-point-free on M / I_{1}. Now $C\left(\bar{P}_{2}\right) \cap N\left(I_{1}\right) \supseteq N$ and since \vec{P}_{2} is conjugate to P_{2} in G, all elements in $M Z(M)$ lie in a single conjugate class in $N_{C}\left(P_{1}\right)$ and are all conjugate in G to s_{2}. Also $W^{\prime} \subseteq M$ and $W^{\prime} \subseteq N$, and so $W^{\prime} \subseteq N \cap M$, where $N \cap M$ is elementary Abelian of order 27. By Lemma 16, we have that $W^{\prime} \supset P_{1} \quad Z(W)$. We know that $N_{G}(W)=$ $N(W) \cap N\left(P_{1}\right)=W Q$, where Q is a quaternion group. Since $Z(Q)$ acts invertingly on $W^{\prime} / Z(W)$, it follows that Q acts faithfully on $W^{\prime} Z(W)$ and so $W^{\prime}=27$. So $W^{\prime \prime}=N \cap M$ is elementary Abelian of order 27. Also $\sigma^{1}(W) \subseteq N \cap M$ and so $W^{\prime} \quad D(W)$ and W is of class 3 because $\left[W, W^{\prime \prime}\right] \% 1$, $\left[W, W^{\prime}\right] \perp Z(W),\left[W, W^{\prime}\right] \subseteq W^{\prime}$, and Q acts faithfully on $W^{\prime}\left[W, W^{\prime}\right]$ which implies that $\left[W, W^{*}\right]=Z(W)=P_{1}$.

Now, take an element $y \in M N$. Then, $M: C_{M}(y) \quad 3$ and by Lemma 16, $C_{M}(y)$ does not contain $N \cap M$. Thus, $M=(N \cap M) C_{M}(y)$ and so the group $C_{M}(y)$ covers $M M \cap N$. It follows that we can have an clement $y_{1} \in C_{A}(y)$ so that $M-(M \cap N) y, y_{1}$. But $\left\langle y, y_{1}\right.$ is an elcmentary Abelian group of order 9 which complements N in W and every subgroup of order 3 in $\left.y, y_{1}\right\rangle$ is conjugate to P_{2} in G. We have proved:

Lemma 17. The group W (of order 3^{6}) is an S_{3}-subgroup of G. Also $N_{G}(W)-N(W) \cap N(N)=N(W) \cap N\left(P_{1}\right)=W Q$, where Q is a quaternion group. The maximal normal odd order subgroup M of $N_{G}\left(P_{1}\right)$ is an extra-special group of order 3^{5} and exponent 3. Every subgroup of order 3 in M which is distinct from $P_{1}=\gamma(M)$ is romjugate to P_{2} in G, and the set $M P_{1}$ is a single comjugate class in $N_{G}\left(P_{1}\right)$. We have $W^{\prime}=D(W) \cdots N \cap M$ which is elementary Abelian of order 27. The group N splits in W (because $N \cap M$ splits in M and $W \supset M, W \supset N$ and $W=M N$, and so N splits in $N_{G}(N)$. We have $W-N X$, $X \cap N=1$ and every subgroup of order 3 in X is conjugate in G to P_{2}. We have $\left[W, W^{\prime}\right]=Z(W)=P_{1}$ and so W is of class 3. For every $y \in M \backslash N$, we have $\left|C_{N}(y)\right|=3^{2}$ and $C_{W}(y)$ covers W / N and so $C_{W}(y)$ (of order 3^{4}) is an S_{3}-subgroup of $C(y) \cap N(N)$ and $C_{W}(y)$ is non-Abelian (in fact $C_{W}(y) \cdots$ $\left.C_{M}(y)\right)$. Further, we have $C_{G}\left(s_{1}\right)=M \cdot F$, where $M \cap F=1$ and $F \mid\langle z\rangle \simeq A_{5} ;$ and hence $\left|C_{G}\left(s_{1}\right)\right|=2^{3} \cdot 3^{6} \cdot 5$.

We now determine a lower bound on the order of an S_{5}-subgroup of G. Let R be an S_{5}-subgroup of H; then by Lemma 5, we have $C_{H}(R)=R_{1}\langle s\rangle$,
where $R_{1}=R \times P_{1}$ and $\left|P_{1}\right\rangle=3$. Hence $\langle z\rangle$ is an S_{2}-subgroup of $C_{G}(R)$ and so $C_{G}(R)$ has a normal 2-complement U. From Lemma 17, $N_{U}\left(P_{1}\right)=$ $P_{1} \times R$, and so P_{1} is an S_{3}-subgroup of U and, hence, U has a normal 3-complement V. By Lemma 14, the group $N_{G}(N)$ contains an element of order 5 inverted by an involution, and since R is not inverted by any involution (see Lemma 5), R cannot be an S_{5}-subgroup of G. Since \approx acts fixed-point-free on V / R, it follows that V / R is Abelian. Let V_{5} be an S_{5}-subgroup of V. Then $V_{\mathrm{B}} \supset R$ and since P_{1} acts fixed-points-free on V_{5} / R, we see that; $V_{5} / R, 5^{2}$ and so we have proved the following result:

Lemma 18. An S_{5}-subgroup of G has order $\geqslant 5^{3}$.

4. Construction of a Subgroup G_{0} Isomorphic to $U_{4}(3)$

Let ψ as in Lemma 4, be the permutation representation of H on a subgroup of index 8. Without loss of generality, we may assume that σ_{1} is an element in H such that $\psi\left(\sigma_{1}\right)=(123)$ and $\sigma_{1}{ }^{3}=1$. Let a_{1}, u, v, and v_{1} be elements of H such that $\psi\left(a_{1}\right)=(14)(23), \psi(u)=(15)(26)(37)(48), \psi(v)=(23)(67)$ and $\psi\left(\tau_{1}\right)=(67)(48)$. Now let

$$
b_{1}=a_{1}^{\sigma_{1}}, \quad a_{2}=a_{1}^{u}, \quad \sigma_{2}=\sigma_{1}^{4} \quad \text { and } \quad b_{2}=a_{2}^{\sigma_{2}} .
$$

Replacing a_{1} by a_{1}^{-1} and b_{1} by b_{1}^{-1} if necessary, we may assume that

$$
b_{i}^{\sigma_{i}}=a_{i} b_{i} \quad \text { for } \quad i=1,2 .
$$

From Lemmas 1, 3 and 4, we have the following relations:

$$
\begin{gather*}
\sigma_{i}^{3}=1, \quad a_{i}^{2}=b_{i}^{2}=z, \quad a_{i}^{b_{i}}=a_{i}^{-1}, \quad a_{i}^{v}=a_{i}^{-1} \\
\text { for } \quad i=1,2 ; \tag{1}\\
{\left[a_{1}, a_{2}\right]=\left[a_{1}, b_{2}\right]=1, \quad v^{2}=v_{1}^{2}=z, \quad u^{2}=1,} \\
\tau^{u}=v^{-1}, \quad v^{v_{1}=v^{-1} ; \quad \sigma_{i}^{v}=\sigma_{i}^{-1} \quad \text { for } \quad i=1,2,} \begin{array}{c}
\sigma_{1}^{v_{1}=\sigma_{1} \quad \text { and } \quad \sigma_{2}^{v_{1}}=\sigma_{2}^{-1} .}
\end{array} .
\end{gather*}
$$

Replacing τ_{1} by v_{1}^{-1} and v by v^{-1} if necessary, we may assume

$$
\left(v_{1} a_{2}\right)^{3}=1 \quad \text { and } \quad\left(v_{1} u\right)^{2}=v
$$

Then $\left(v_{1} a_{1}\right)^{3}=v$ and $\left(v_{1} a_{1} a_{2}\right)^{4}=z$.

Now let $L_{i}=\left\langle a_{i}, b_{i}, \sigma_{i}\right\rangle$ for $i=1,2$. Then we have that $L_{i} \simeq S L(2,3)$, [L_{1}, L_{2}] $=1$ and $L_{1} \cap L_{2}=\langle z\rangle$. The group $\langle v, u\rangle$ is a dihedral group of order 8 and normalizes the group $L_{1} L_{2}$. Leet $H_{0}=L_{1} L_{2}\langle v, u\rangle$. Then, from the relations in (1), we have that H_{0} is isomorphic to the centralizer of an involution in $U_{4}(3)$ and $H_{0} \mid-2^{7} \cdot 3^{2}$ (see Phan [7]). Since $H \sim \hat{A}_{8}$ and H_{0} is a maximal subgroup of H, we have $H=\left\langle I_{0}, v_{1}\right\rangle$. From the relations in (1) and the structure of \hat{A}_{8}, we can prove the following:

Lemma 19. The group $H_{0}=L_{1} L_{i_{2}}<v, u$ is a maximal subgroup of H and is isomorphic to the centralizer of an involution in $U_{4}(3)$. Further, the group H consists of precisely the following three distinct $\left(H_{0}, H_{0}\right)$-double cosets: H_{0}, $H_{0} v_{1} H_{0}$ and $H_{0} v_{1} a_{1} a_{2} v_{1} H_{0}$.

By Lemma 2, $\left.N_{H}\left\langle\sigma_{1}, \sigma_{2}\right\rangle-\cdots\left\langle\sigma_{1}, \sigma_{2}\right\rangle v, v_{1}, u\right\rangle$ where $(v u)^{8}=1$, $(v u)^{u}=(v u)^{3}$; hence, the group $\left\langle v, v_{1}, u\right\rangle$ is a semidihedral group of order 16. Let $P=\left\langle\sigma_{1}, \sigma_{2}\right\rangle, N_{H}(P)=P \cdot B$, where $B=\left\langle v, v_{1}, u\right\rangle$ and $N_{H}\left(\left\langle\sigma_{1} \sigma_{2}\right\rangle\right)=P \cdot D$, where $D=\left\langle u, v^{\rangle}\right\rangle$is a dihedral group of order 8. Put $P_{1}=\left\langle\sigma_{1}\right\rangle$ and $P_{2}=\left\langle\sigma_{1} \sigma_{2}\right\rangle$. By Lemma 8 and the relations in (1), we sce that σ_{1} is not conjugate in G to $\sigma_{1} \sigma_{2}$. From Lemma 13, we have that $C_{G}(P)=N\langle z\rangle$, where $N\langle N\langle z\rangle$ and N is an elementary Abelian group of order 3^{4}. It follows that the group B normalizes N, and, from Lemmas 14 and 17, we have $N_{G}(N)=N \cdot K, N \cap K=1$, and there is a subgroup L of K, $L \simeq A_{6}$ and $[K: L]=2$. We may also assume that $B \subset K$. From Lemma 14, there are no involutions $N_{G}(N), N \cdot L$ and so there are no involutions in $K \backslash L$. Hence, we must have $D \subset L$ and $x_{1} \in K \backslash L$. We shall now concentrate our attention on the group $N \cdot L$.

From the structure of A_{6}, we must have $\mid N_{L}\left(\left\langle u, z^{\prime}\right) \mid=2^{3} \cdot 3\right.$ and we can assume that

$$
\begin{gather*}
N_{L}(\langle u, z\rangle)=\langle u, v\rangle\left\langle\mu, \quad \text { where } \quad \mu^{3}=1,\right. \tag{2}\\
z^{\prime \prime}=u, \quad u^{\prime \prime}=z u, \quad \text { and } \quad \mu^{v_{1}} \in N \cdot L .
\end{gather*}
$$

Then it follows that $N_{N \cdot I}(\langle u, z\rangle)=\left\langle u, w^{\rangle}\right\rangle \cdot\left\langle\mu, \sigma_{1} \sigma_{2}\right\rangle$. Let $P_{2}=\left\langle\sigma_{1} \sigma_{2}\right\rangle$ and $P_{1}=\left\langle\sigma_{1}\right\rangle$. Then, by Lemma 14, $\left|N_{G}\left(P_{2}\right)\right|=2^{3} \cdot 3^{5}$. Since $C_{N}(z)=P_{2} \times P_{1}$, we have from (2) that $C_{N}\left(z^{u}\right)=C_{N}(u)=P_{2} \times P_{1}{ }^{\mu}$ and $C_{N}(u z)=P_{2} \times P_{1}^{\mu^{2}}$. Hence the group $N=\left\langle\sigma_{1} \sigma_{2}, \sigma_{1}, \sigma_{1}{ }^{\mu}, \sigma_{1}^{\mu^{2}}\right\rangle$. By Lemmas 15 and 17, $C_{G}\left(\sigma_{1}\right) \cap N(N)=W \cdot\left\langle v_{1}\right\rangle$, where W is an S_{3}-subgroup of $G,|W|=3^{6}$, and $N_{G}(W)=N(W) \cap N(N)$. Also $N\left(P_{1}\right) \cap N(N)=W Q$, where $Q=\left\langle\boldsymbol{v}, v_{\mathbf{1}}\right\rangle$ is a quaternion group; $Z(W)=\left\langle\sigma_{1}\right\rangle$, and, if $M=O_{2^{\prime}}\left(N_{G}\left(P_{1}\right)\right), M$ is an extraspecial of exponent 3 of order 3^{5}. From (1), $\sigma_{2}=\sigma_{1}{ }^{4}$, and so, by Lemma 17, we have $W=M \cdot\left\langle\sigma_{2}\right\rangle$. Now $M \cap N=W^{\prime}-D(W)$ is an clementary Abelian group of order 27 and is normalized by $Q-\left\langle\boldsymbol{v}, v_{1}\right\rangle$. The group
$C_{M \cap N}(z)=\left\langle\sigma_{1}\right\rangle$, and so $M \cap N=\left\langle\sigma_{1}\right\rangle \times[M \cap N, z]$. We also know that $\mid[N, z]: 9$, and obviously $[N, z] \supseteq[M \cap N, z]$. Since $[M \cap N, z] \mid=9$, we must have $[N, z]=[M \cap N, z]$. So $M \cap N=\left\langle\sigma_{1}\right\rangle \times[N, z]$. Now $[N, z]$ is normalized by $\langle u, z\rangle$ and without loss of generality, we can assume that $\varphi_{1}, \varphi_{2} \in[N, z]$ such that

$$
\begin{equation*}
\varphi_{i}^{z}=\varphi_{i}^{-1} \quad \text { for } \quad i=1,2 ; \quad \varphi_{1}{ }^{u}=\varphi_{1}, \quad \varphi_{2}{ }^{u}=\varphi_{2}^{-1} \quad \text { and } \tag{3}
\end{equation*}
$$

the group $\left\langle\varphi_{1}, \varphi_{2}\right\rangle$ which is clementary Abelian of order 9 is normalized by $\left\langle v, v_{1}\right\rangle$.

From (3) above, we have $\varphi_{1}{ }^{\prime}=\varphi_{1}{ }^{i} \varphi_{2}{ }^{i}$, where $i, j \in\{0, \pm 1\}$. Then

$$
\varphi_{1}^{v u}=\varphi_{1}^{i} \varphi_{2}^{-j}=\varphi_{1}^{u v^{-1}}=\varphi_{1}^{i z}=\left(\varphi_{1}^{i} \varphi_{2}^{j}\right)^{z}=\varphi_{1}^{-i} \varphi_{2}^{-j}
$$

So we must have $i=0$ and $\varphi_{1}{ }^{c}=\varphi_{2}^{-1}$. Replacing φ_{2} by φ_{2}^{-1} if necessary, we can assume

$$
\begin{equation*}
\varphi_{1}^{v}=\varphi_{2} \quad \text { and } \quad \varphi_{2}^{v}=\varphi_{1}^{-1} . \tag{4}
\end{equation*}
$$

Now the element $a_{2} \in C_{G}\left(P_{1}\right)$ and since $M \triangleleft N_{G}\left(P_{1}\right)$, we have

$$
\left\langle\varphi_{1}^{\prime_{2}^{2}}, \varphi_{2}^{\prime_{2}}\right\rangle=\left\langle\varphi_{3}, \varphi_{1}\right\rangle \subseteq M .
$$

Suppose we have $\left\langle\varphi_{3}, \varphi_{4}\right\rangle \cap\left\langle\sigma_{1}, \varphi_{1}, \varphi_{2}\right\rangle \neq 1$. Then, there is an element $\varphi_{3}{ }^{i} \varphi_{4}{ }^{j} \in\left\langle\sigma_{1}, \varphi_{1}, \varphi_{2}\right\rangle$ for some i and j not both zero. Since σ_{2} centralizes the group $\left\langle\sigma_{1}, \varphi_{1}, \varphi_{2}\right\rangle$, we have

$$
\begin{aligned}
b_{2}^{-1} \varphi_{1}{ }^{i} \varphi_{2}{ }^{j} b_{2} & =\sigma_{2}^{-1} a_{2}^{-1} \sigma_{2} \varphi_{1}{ }^{i} \varphi_{2}{ }^{j} \sigma_{2}^{-1} a_{2} \sigma_{2} \\
& =\sigma_{2}^{-1} a_{2}^{-1} \varphi_{1}{ }^{i} \varphi_{2}{ }^{j} a_{2} \sigma_{2} \\
& =\sigma_{2}^{-1} \varphi_{3}{ }^{i} \varphi_{4}{ }^{j} \sigma_{2} \\
& =\varphi_{3}{ }^{i} \varphi_{4}{ }^{j} \\
& =a_{2}^{-1} \varphi_{1}{ }^{i} \varphi_{2}{ }^{j} a_{2} .
\end{aligned}
$$

Hence, $b_{2} a_{2}^{-1} \in C_{G}\left(\varphi_{1}{ }^{i} \varphi_{2}{ }^{j}\right)$ and since $\left.\left(b_{2} a_{2}\right)^{-1}\right)^{2}=z$, we have $z \in C_{G}\left(\varphi_{1}{ }^{i} \varphi_{2}{ }^{j}\right)$. This contradicts (3). So we have that $M=\left\langle\sigma_{1}, \varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\rangle$ where

$$
\begin{equation*}
\varphi_{1}^{a_{2}}=\varphi_{3}, \quad \varphi_{2}^{a_{2}}=\varphi_{4} . \tag{5}
\end{equation*}
$$

Next, we represent the group $L_{2}=\left\langle a_{2}, b_{2}, \sigma_{2}\right\rangle$ as linear transformations on the vector space $M /\left\langle\sigma_{1}\right\rangle$ over the field of 3 elements. In terms of the basis
$\varphi_{1}\left\langle\sigma_{1}\right\rangle, \varphi_{2}\left\langle\sigma_{1}\right\rangle, \varphi_{3}\left\langle\sigma_{1}\right\rangle$, and $\varphi_{4}\left\langle\sigma_{1}\right\rangle$, we have the following representation of the element a_{2} :

$$
a_{2} \rightarrow\left[\begin{array}{rrrr}
& & 1 & 0 \\
& & 0 & 1 \\
-1 & 0 & & \\
0 & -1 & &
\end{array}\right]
$$

Since $v^{-1} \varphi_{1} v=\varphi_{2}, v^{-1} \varphi_{2} v=\varphi_{1}^{1}$ and $v^{1} a_{2} v==a_{2}^{-1}$, we have

$$
\begin{equation*}
\varphi_{3}^{v}=\varphi_{4}^{-1} \quad \text { and } \quad \varphi_{4}^{v}=\varphi_{3} \tag{6}
\end{equation*}
$$

We have $W^{\prime}=M \cap N=\left\langle\sigma_{1}, \varphi_{1}, \varphi_{2}\right\rangle$ and so $\varphi_{3}^{\sigma_{2}} \in \varphi_{3}\left\langle\sigma_{1}, \varphi_{1}, \varphi_{2}\right\rangle$. Similarly, $\left.\varphi_{4}^{\sigma_{2}} \in \varphi_{4}<\sigma_{1}, \varphi_{1}, \varphi_{2}\right\rangle$. Hence we have the following representation of σ_{2} :

$$
\sigma_{2} \rightarrow\left[\begin{array}{ll}
1 & 0 \\
C & I
\end{array}\right], \quad \text { where } C \text { is a } 2 \times 2 \text { matrix }
$$

and I the 2×2 identity matrix. Since $\left(a_{2} \sigma_{2}\right)^{3}=1$, we must have $C \cdots I$ and so

$$
\varphi_{3}^{\sigma_{2}}=\varphi_{1}^{-1} \varphi_{3} \sigma_{1}{ }^{\epsilon}, \quad \text { where } \quad \epsilon=0 \text { or }=1
$$

Since the group $M=\left\langle\sigma_{1}, \varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right.$ is extra-special,

$$
\varphi_{1}^{\sigma_{3}}=p_{1} \sigma_{1}^{\delta}, \quad \text { where } \quad \delta \in\{0,-1\}
$$

Now $\varphi_{3}^{\sigma_{2}}=\varphi_{1}^{a_{2} \sigma_{2}}=\varphi_{1}^{-1} \varphi_{3} \sigma_{1}{ }^{\epsilon}$ and so $\varphi_{1}^{a_{2} \sigma_{2} a_{2}}: \varphi_{3}^{-1} \varphi_{1}{ }^{-1} \sigma_{1}{ }^{\epsilon}$. But $a_{2} \sigma_{2} a_{2} \cdots \sigma_{2}{ }^{-1} a_{2}{ }^{-1} \sigma_{2}{ }^{1}$ and so $\varphi_{1}^{a_{2} \sigma_{2} \sigma_{2}}=\varphi_{1}^{\sigma^{-1} \sigma_{2}^{-1} \sigma_{2}^{-1}}=\varphi_{1}^{-1} \varphi_{3}^{-1} \sigma_{1}^{2 \epsilon}$. But we have $\varphi_{3}^{-1} \varphi_{1}^{-1}=\varphi_{1}^{-1} \varphi_{3}{ }^{1} \sigma_{1}^{-8}$ and so $\sigma_{1}^{-\delta+\epsilon}-\sigma_{1}^{2 \epsilon}$. Thus we must have $\delta=-\epsilon \epsilon$. We have proved
$\varphi_{3}^{\sigma_{2}}=\varphi_{1}^{-1} \varphi_{3} \sigma_{1}^{\epsilon} \quad$ and $\quad \varphi_{1}^{\epsilon_{3}}=\varphi_{1} \sigma_{1}^{-\epsilon} \quad$ where $\quad \epsilon=0$ or ± 1.
Now suppose $\left[\varphi_{1}, \varphi_{3}\right]=1$. Then conjugating by the element v, we have $\left[\varphi_{2}, \varphi_{4}\right]=1$. Since M is extra-special,

$$
\varphi_{2}^{\gamma_{3}}=\varphi_{2} \sigma_{1}^{\delta} \quad \text { and } \quad \varphi_{1}^{\sigma_{4}}=\varphi_{1} \sigma_{1}^{-\delta}, \quad \text { where } \quad \delta \in\{1,-1\}
$$

From (7) and the assumption that $\left[\varphi_{1}, \varphi_{3}\right]=1$, we have $\varphi_{3}^{\sigma_{2}}=\varphi_{1}^{1} \varphi_{3}$, i.e., $\sigma_{2}^{\varphi_{3}}=\sigma_{2} \varphi_{1}$; and $\varphi_{4}^{\sigma_{2}}=\varphi_{2}^{-1} \varphi_{4}$, i.e., $\sigma_{2}^{\varphi_{4}}-\sigma_{2} \varphi_{2}$. But the element φ_{1} is conjugate in G to $\sigma_{1} \sigma_{2}$, and so by Lemma $14, C_{G}\left(\varphi_{1}\right)=2^{2} \cdot 3^{5}$ and $C_{G}\left(\varphi_{1}\right)$ is not 3-closed. So $C_{\sigma_{1}}\left(\varphi_{1}\right)=\left\langle\sigma_{1}, \sigma_{2}, \varphi_{1}, \varphi_{2}, \varphi_{3}, u\right\rangle$ and $N \quad\left\langle\sigma_{1}, \sigma_{2}, \varphi_{1}, \varphi_{2}\right\rangle$ is normal in $C_{G}\left(\varphi_{1}\right)$. Sincc $C_{C}\left(\varphi_{1}\right) / N \simeq A_{4}$, we have $\left(u \varphi_{3}\right)^{3} \in\left\langle\sigma_{1}, \sigma_{2}, \varphi_{1}, \varphi_{2}\right\rangle$.

But $\sigma_{2}^{\left(u F_{3}\right)^{3}}=\sigma_{1} \varphi_{1} \neq \sigma_{2}$ and so we have a contradiction. Hence we have proved that

$$
\varphi_{1}^{\sigma_{3}}=\varphi_{1} \sigma_{1}^{-\epsilon} \quad \text { and } \quad \varphi_{3}^{\sigma_{2}}=\varphi_{1}^{-1} \varphi_{3} \sigma_{1}^{\epsilon}, \quad \text { where } \quad \epsilon= \pm 1
$$

Conjugating the relations above by the element v, we have

$$
\begin{equation*}
\varphi_{2}^{\epsilon_{4}}=\varphi_{2} \sigma_{1}^{-\epsilon} \quad \text { and } \quad \varphi_{4}^{\sigma_{2}}=\varphi_{2}^{-1} \varphi_{4} \sigma_{1}{ }^{\epsilon} . \tag{8}
\end{equation*}
$$

Now $\varphi_{1}^{\sigma_{3}}=\varphi_{1} \sigma_{1}{ }^{\delta}$, where $\delta \in\{0, \pm 1\}$. If $\delta=\epsilon$, then from (8), the element $\varphi_{3} \varphi_{4}$ centralizes φ_{1}. Since u also centralizes φ_{1}, we have as above that
 a contradiction in the case $\hat{\delta}=-\epsilon$. Hence we have proved the following relations:

$$
\begin{equation*}
\left[\varphi_{1}, \varphi_{4}\right]=\left[\varphi_{2}, \varphi_{3}\right]=1 \tag{9}
\end{equation*}
$$

So, the elements $u \approx$ and φ_{3} centralize φ_{2}. Since $\varphi_{2} \underset{G}{ } \sigma_{1} \sigma_{2}$, we have $\left(u \approx \varphi_{3}\right)^{3}=\sigma_{1}, \sigma_{2}, \varphi_{1}, \varphi_{2}$. But from (5), we have $\varphi_{3}=a_{2}^{-1} \varphi_{1}^{G} a_{2}$ and using the relations in (1), we have that $u_{\approx \varphi_{3}} \in C_{6}\left(a_{2}^{-1} u a_{2}\right)$. Since there are no elements of order 9 in the group $C_{G}\left(a_{2}^{-1} u a_{2}\right)$, we have $\left(u \approx \varphi_{3}\right)^{3}=1$. From the relations in (1) and (6), we have

$$
u \varphi_{4}=v\left(u z \varphi_{3}\right) v^{-1} \quad \text { and so } \quad\left(u \varphi_{4}\right)^{3}=1 .
$$

Next, the elements zuv and $\varphi_{3}^{-1} \varphi_{4}^{-1}$ centralize $\varphi_{1} \varphi_{2}^{-1}$ and so $\left(z u v \varphi_{3}^{-1} \varphi_{4}^{-1}\right)^{3} \mathrm{E}$ $\left\langle\varphi_{1}, \varphi_{2}, \sigma_{1}, \sigma_{2}\right\rangle$. But $z u v \varphi_{3}^{-1} \varphi_{4}^{-1} \in C_{G}\left(u \nabla a_{1} a_{2}\right)$ and since $u ष a_{1} a_{2}$ is involution, we have

$$
\left(z u \tau \varphi_{3}^{-1} \varphi_{4}^{-1}\right)^{3}=1
$$

But $v^{-1}\left(\approx u v \varphi_{3}^{-1} \varphi_{4}^{-1}\right) v=u v \varphi_{3}^{-1} \varphi_{4}$ and so $\left(u \approx \varphi_{3}^{-1} \varphi_{4}\right)^{3}=1$. We have proved the following:

Lemma 20. The following relations hold:

$$
\left(a_{2} \sigma_{2}\right)^{3}=\left(u z \varphi_{3}\right)^{3}=\left(u \varphi_{4}\right)^{3}=\left(u v \varphi_{3}^{-1} \varphi_{4}\right)^{3}=\left(z u v \varphi_{3}^{-1} \varphi_{4}^{-1}\right)^{3}=1 .
$$

We have from (8) that

$$
\varphi_{4}^{\sigma_{2}}=\varphi_{2}^{-1} \varphi_{4} \sigma_{1}{ }^{\epsilon}, \quad \text { where } \quad \epsilon= \pm 1 .
$$

Now suppose $\epsilon=-1$. Then $\sigma_{2}^{\varphi_{4}}=\sigma_{2} \varphi_{2} \sigma_{1}^{-1}$. From Lemma 20, $\left(u \varphi_{4}\right)^{3}=1$, and so $\sigma_{1}=\sigma_{1}^{\left(u \varphi_{4}\right)^{3}}$. But $\sigma_{1}{ }^{u}=\sigma_{2}$ and so $\sigma_{1}^{\left(u \varphi_{4}\right)^{3}}=\sigma_{2}$, a contradiction. Hence in (8) we must have $\epsilon=1$. Together with the relations in (3), (4), (5), and (9) we have determined uniquely the structure of an S_{3}-subgroup W of G and we have proved

Lemma 21. The group $W=N\left\langle\varphi_{3}, \varphi_{4}\right\rangle$ is an S_{3}-subgroup of G and has the following structure:

$$
N=T T_{1} T_{2}
$$

is an elementary abelian group of order 3^{4}, where

$$
\begin{aligned}
& T=C_{N}(z)=\left\langle\sigma_{1}, \sigma_{2}\right\rangle, \\
& T_{1}=C_{N}(u)=\left\langle\sigma_{1} \sigma_{2}, \varphi_{1}\right\rangle, \\
& T_{2}=C_{N}(u z)=\left\langle\sigma_{1} \sigma_{2}, \varphi_{2}\right\rangle,
\end{aligned}
$$

are elementary abelian groups of order 9; and

$$
\begin{aligned}
& {\left[\varphi_{3}, \sigma_{1}\right]=\left[\varphi_{4}, \sigma_{1}\right]=\left[\varphi_{1}, \varphi_{4}\right]=\left[\varphi_{2}, \varphi_{3}\right]=\left[\varphi_{3}, \varphi_{4}\right]=1,} \\
& \varphi_{1}^{\sigma_{3}=}=\varphi_{1}^{\sigma_{1}^{-1}}, \quad \varphi_{2}^{\sigma_{4}}=\varphi_{2} \sigma_{1}^{-1}, \quad \varphi_{3}^{\sigma_{2}}=\varphi_{1}^{-1} \varphi_{3} \sigma_{1}, \quad \varphi_{4}^{\sigma_{2}}=\varphi_{2}^{1} \varphi_{4} \sigma_{1} . \\
& \text { Moreover, } v^{-1} \varphi_{1} v=\varphi_{2}, v^{1} \varphi_{2} v: \varphi_{1}^{1}, v^{-1} \varphi_{3} v=\varphi_{4}^{-1} \text { and } v^{1} \varphi_{4} v=\varphi_{3} . \\
& \text { Now } W \subseteq C_{G}\left(\sigma_{1}\right) \text { and so }
\end{aligned}
$$

$$
W \cap W^{\mu_{1} \sigma_{2}} \subseteq C_{G}\left(\sigma_{1}\right) \cap C_{G}\left(\sigma_{1}^{\sigma_{1}^{a_{2}}}\right) \subseteq C_{G}\left(\sigma_{1}\right) \cap C_{6}\left(a_{1} b_{1}\right)=\left\langle\sigma_{2}, a_{2}, b_{2}\right\rangle
$$

Since $\sigma_{2} \widetilde{G} \sigma_{1}$, we have by Lemmas 1 and 2, that an S_{2}-subgroup of $N_{6}\left(\sigma_{2}\right)$ is a generalized quaternion group of order 16 . Since the involution $a_{1} a_{2}$ normalizes $W \cap W^{a_{1} a_{2}}$, we have $W \cap W^{a_{1} a_{2}}-1$. We have proved

Lemma 22. The group W and its conjugate $W^{a_{1} a_{2}}$ have trivial intersection.
From the relations given in (1), we have
Lemma 23. The group $R=\left\langle v, a_{2}, u\right\rangle\langle v\rangle$ is a dihedral group of order 8 and is generated by the involutions $\gamma_{1}=a_{2}\langle v\rangle$ and $\gamma_{2}=u\left\langle v_{\rangle}\right.$.

Now let $B=W\left\langle\boldsymbol{\psi}, A<\left\langle v, a_{2}, u_{\gamma}, \omega\left(\gamma_{1}\right)-a_{2}\right.\right.$ and $\omega\left(\gamma_{2}\right)=u$. For any $\gamma \in R$ and $\gamma=\gamma_{i_{1}}, \ldots, \gamma_{i_{s}}$, define $\omega(\gamma)=\omega\left(\gamma_{i_{1}}\right) \cdots \omega\left(\gamma_{i_{s}}\right)$. We shall denote $B \gamma B$ to mean $B \omega(\gamma) B$. Then with the relations given in (1) and Lemmas 20, 21, 22, and 23, Phan [7, pp. 29-33] has proved the following:

Lemma 24. The set of elements $G_{0} \cdots B A B$ is a subgroup of G and if $B \gamma_{1} B=B \gamma_{2} B$, then $\gamma_{1}=\gamma_{2}$. Further, the group G_{0} has order $2^{7} \cdot 3^{6} \cdot 5 \cdot 7$.

It is obvious from Lemma 17, Sylow's theorem and the fact that $B \cdots-W\left\langle\sigma_{0}\right.$, that G_{0} has no subgroup of index 2 and $N_{\sigma_{0}}(W)=W\langle\sigma\rangle$. Now the group H_{0} (see Lemma 19) has order $2^{7} \cdot 3^{2}$ and is isomorphic to the centralizer of an involution in $U_{4}(3)$. Obviously H_{0} is a subgroup of G_{0}. Since H_{0} is a maximal subgroup of H and $v_{1} \notin G_{0}$, we have $C_{G_{0}}(\approx)=H_{0}$.

Hence, by a result of Phan [7], $G_{0} \simeq U_{4}(3)$. Now, suppose G_{0} is not a maximal subgroup of G. Let G_{1} be a proper subgroup of G such that $G_{1} \supset G_{\mathbf{0}}$. Since an S_{2}-subgroup of G_{0} is an S_{2}-sugroup of G, the group G_{1} has no subgroup of index 2. Hence by a result of Phan [7], $C_{G_{1}}(z) \supset H_{0}$ and so $C_{G_{1}}(z)==I$. Also $G_{1} \neq I I \cdot O_{2^{\prime}}\left(G_{1}\right)$ and so by Lemma 6, G_{1} has precisely one class of involutions; and if z_{1} is any involution in G_{1}, then $C_{G}\left(z_{1}\right) \subseteq G_{1}$. Also, if T is an S_{2}-subgroup of G_{1}, then T is also an S_{2}-subgroup of G; and since $Z(T)$ is cyclic, $N_{G}(T) \subseteq G_{1}$. Now suppose all involutions of G lie in G_{1}. Then the group $\Omega_{1}(G)$ generated by all involutions of G is contained in G_{1} and is a normal subgroup of G. Obviously $\Omega_{1}(G) \supseteq G_{0}$ as G_{0} is a simple group. Now $N_{G_{0}}(W)-W \cdot\langle v\rangle$ and so by Lemma 17 and the Frattini argument, we have $\left[G: \Omega_{1}(G)\right]=2$. But this contradicts the fact that an S_{2}-subgroup of G has order 2^{7}. Hence there are involutions of G in $G \backslash G_{1}$. It then follows that G contains a strongly embedded subgroup in the sense of Bender [1]; and from Bender's classification of finite groups with a strongly embedded subgroup we arrive at a contradiction. Hence we have

Lemma 25. The group G_{0} is isomorphic to $U_{4}(3)$ and G_{0} is a maximal subgroup of G.

5. Identification of G with McLaughlin's Group Mc

We shall now determine the action of the element τ_{1} on the S_{3}-subgroup W of G. From the relations in (3) and (4),

$$
\begin{align*}
& \varphi_{1}^{v_{1}}=\varphi_{1}{ }^{i} \varphi_{2}{ }^{j}, \quad \varphi_{2}^{v_{1}}=\varphi_{1}{ }^{j} \varphi_{2}^{-i}, \quad \text { and } \quad \varphi_{1}^{v_{1} t}=\varphi_{1}{ }^{i} \varphi_{2}^{-j}, \\
& \text { where } \tag{10}\\
& i, j \in\{0, \pm 1\} .
\end{align*}
$$

But from (1), we have $\left(v_{1} u\right)^{2}=v$ and so $\varphi_{1}^{v_{1} u}=\varphi_{1}^{v u v_{1}^{-1}}=\varphi_{2}^{v_{1}}$. Hence in (10), we must have $i=j$, i.e.,

$$
\begin{equation*}
\varphi_{1}^{v_{1}}=\varphi_{1}^{i} \varphi_{2}^{j} \quad \text { and } \quad \varphi_{2}^{v_{1}}=\varphi_{1}{ }^{i} \varphi_{2}^{-j}, \quad \text { where } \quad i= \pm 1 \tag{11}
\end{equation*}
$$

Again, represent the elements a_{2}, σ_{2}, v_{1} as linear transformations on the vector space $M \mid\left\langle\sigma_{1}\right\rangle$ over the field of 3 elements. In terms of the basis $\varphi_{1}\left\langle\sigma_{1}\right\rangle$, $\varphi_{2}\left\langle\sigma_{1}\right\rangle, \varphi_{3}\left\langle\sigma_{1}\right\rangle$, and $\varphi_{4}\left\langle\sigma_{1}\right\rangle$, we have from (5), (11) and Lemma 21, the following representations of a_{2}, σ_{2} and v_{1} :

$$
\begin{aligned}
& a_{2} \rightarrow\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right], \\
& \sigma_{2} \rightarrow\left[\begin{array}{cc}
I & 0 \\
-I & I
\end{array}\right],
\end{aligned}
$$

and

$$
v_{1} \rightarrow\left[\begin{array}{ccc}
i & i & 0 \\
i & -i & 0 \\
C & D
\end{array}\right]
$$

where I is the 2×2 identity matrix and C, D are 2×2 matrices.
From the relations $\sigma_{2}^{v_{1}}=\sigma_{2}^{-1}$ and $\left(v_{1} a_{2}\right)^{3}=1$, we have

$$
v_{1} \rightarrow\left[\begin{array}{rrc}
i & i & \\
i-i & 0 \\
& -1 & -i \\
-I & -i & i
\end{array}\right]
$$

So with (4) and (6), we have
$\varphi_{3}^{v_{1}}=\sigma_{1}{ }^{\epsilon} \varphi_{1}^{-1} \varphi_{3}^{-i} \varphi_{4}^{-i} \quad$ and $\quad \varphi_{1}^{\nu_{1}}=\sigma_{1}^{-\epsilon} \varphi_{2}^{-1} \varphi_{3}^{-i} \varphi_{4}{ }^{i}, \quad$ where $\quad \epsilon=0$ or ± 1.

Now, conjugating these relations by z and using Lemma 21, we find that $\epsilon=-i$ and so

$$
\begin{align*}
& \varphi_{3}^{v_{1}}=\sigma_{1}^{-i} \varphi_{1}^{-1} \varphi_{3}^{-i} \varphi_{4}^{-i}, \\
& \varphi_{4}^{v_{1}}=\sigma_{1}^{i} \varphi_{2}^{-1} \varphi_{3}^{-i} \varphi_{4}^{i}, \tag{12}\\
& \text { with } i \text { as in (11). }
\end{align*}
$$

Then using the relations in (11), (12) and Lemma 21, we find that $i=1$ and so we have proved

$$
\begin{array}{ll}
\varphi_{1}^{v_{1}}-\varphi_{1} \varphi_{2}, & \varphi_{2}^{\gamma_{1}}=\varphi_{1} \varphi_{2}^{-1}, \tag{13}\\
\varphi_{3}^{v_{1}}=\sigma_{1}^{-1} \varphi_{1}^{-1} \varphi_{3}^{-1} \varphi_{4}^{-1} & \text { and }
\end{array} \varphi_{4}^{\psi_{1}}=\sigma_{1} \varphi_{2}^{-1} \varphi_{3}^{-1} \varphi_{4} .
$$

The structure of the group $N_{G}(W)=W \cdot\left\langle v, v_{1}\right\rangle$ is now completely determined. Our aim now is to show that the group G has precisely three distinct (G_{0}, G_{0})-double cosets. We know from Lemmas 24 and 25 , that the group $G_{0}=B A B$, where $B=W\langle v\rangle$ and $A=\left\langle v, u, a_{2}\right\rangle$ is isomorphic to $U_{4}(3)$; and the 8 distinct (B, B)-double cosets of G_{0} are
$B, \quad B u B, \quad B a_{2} B, \quad B a_{2} u B, \quad B u a_{2} B$,

$$
\begin{equation*}
B a_{1} B, \quad B a_{1} a_{2} B \quad \text { and } \quad B a_{1} a_{2} u B, \quad \text { with } \quad a_{1}=u a_{2} u \tag{14}
\end{equation*}
$$

From the structure of $U_{4}(3), N_{G_{0}}(W)=W\langle r\rangle$. Since $v_{1} \in N_{G}(W)$, we have $v_{1} \notin G_{0}$ and hence by Lemma $25, G=\left\langle G_{0}, v_{1}\right\rangle$. If we conjugate the 8 (B, B)-double cosets in (14) by v_{1} and using the relations in (1), we have

$$
\begin{align*}
B^{v_{1}} & =B, & (B u B)^{v_{1}} & =B u B, \\
\left(B a_{2} B\right)^{v_{1}} & =B a_{2} v_{1} a_{2} B, & \left(B a_{2} u B\right)^{r_{1}} & =B a_{2} v_{1} a_{2} u B, \tag{15}\\
\left(B u a_{2} B\right)^{v_{1}} & =B u a_{2} v_{1} a_{2} B, & \left(B a_{1} B\right)^{v_{1}} & =B a_{1} v_{1} a_{1} B, \\
\left(B a_{1} a_{2} B\right)^{r_{1}} & =B v_{1} a_{1} a_{2} v_{1} B, & \text { and } & \left(B a_{1} a_{2} u B\right)^{r_{1}}
\end{align*}=B v_{1} a_{1} a_{2} v_{1} u B .
$$

We observe from (15) that $(B \gamma B)^{v_{1}} \subseteq G_{0} \cup G_{0} v_{1} G_{0}$ for all $\gamma \in A$, except when $\gamma \in a_{1} a_{2}\langle v, u\rangle$. Hence, if $v_{1} a_{1} a_{2} v_{1} \in G_{0} \cup G_{0} v_{1} G_{0}$, then we see from (14) and (15) that the set $G_{0} \cup G_{0} v_{1} G_{0}$ is a group and so $G=G_{0} \cup G_{0} \varepsilon_{1} G_{0}$. Since $C_{G_{0}}(z)=H_{0}, v_{1} a_{1} a_{2} v_{1} \notin G_{0}$ and so $v_{1} a_{1} a_{2} v_{1} \in G_{0} v_{1} G_{0}$. Then from (15), we see that $G_{0} \cap G_{0}^{v_{1}}=B \cup B u B$. But u normalizes the group N and so by Lemma 14, we have $\langle B, u\rangle \mid N \simeq A_{6}$. Since $\langle B, u\rangle=B \cup B u B$, we have $\left|G_{0} \cap G_{0^{r_{1}}}\right|=2^{3} \cdot 3^{6} \cdot 5$. Hence $|G|=\left|G_{0}\right|\left(1+2^{4} \cdot 7\right)=2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 113$ and this contradicts Lemma 18. Hence, the three (G_{0}, G_{0})-double cosets $G_{0}, G_{0} v_{1} G_{0}$ and $G_{0} v_{1} a_{1} a_{2} v_{1} G_{0}$ are all distinct. Our aim is to show that

$$
\begin{equation*}
G=G_{0} \cup G_{0} v_{1} G_{0} \cup G_{0} v_{1} a_{1} a_{2} v_{1} G_{0} \tag{16}
\end{equation*}
$$

We let $G_{1}=G_{0} \cup G_{0} v_{1} G_{0} \cup G_{0} v_{1} a_{1} a_{2} v_{1} G_{0}$. To prove (16), it suffices by Lemma 25 to show that G_{1} is a group. Hence, we have to verify the following three conditions:

$$
\begin{array}{r}
v_{1} g_{0} v_{1} \in G_{1} \\
v_{1} g_{0} v_{1} a_{1} a_{2} v_{1} \in G_{1} \tag{18}
\end{array}
$$

and

$$
\begin{equation*}
v_{1} a_{1} a_{2} v_{1} g_{0} v_{1} a_{1} a_{2} v_{1} \in G_{1} \tag{19}
\end{equation*}
$$

where g_{0} is an element in G_{0}.
However, (17) is true because of (14) and (15). Further, since $a_{1} a_{2} \in G_{0}$, condition (19) will hold if we have verified (18). Hence it only remains to verify (18). If $g_{0} \in G_{0}$ such that $v_{1} g_{0} v_{1} \in G_{0} \cup G_{0} v_{1} G_{0}$, then by (17) we have $v_{1} g_{0} v_{1} a_{1} a_{2} v_{1} \in G_{1}$. Hence we only need to verify (18) for those $g_{0} \in G_{0}$ such that $v_{1} g_{0} v_{1} \notin G_{0} \cup G_{0} v_{1} G_{0}$. From (15), we see that $g_{0} \in B a_{1} a_{2} B \cup B a_{1} a_{2} u B$. But $\left(v_{1} u\right)^{2}=v$, and, since v_{1} normalizes B, we only need to verify (18) for those $g_{0} \in B a_{1} a_{2} B$. Now, using the relations in (1), (3), (5), and (13), and the fact that v_{1} normalizes B, we can assume that $g_{0}-a_{1} a_{2} \sigma_{1}{ }^{i} \sigma_{2}{ }^{3} \varphi_{1}{ }^{k}{ }_{q_{2}}{ }^{{ }^{2}}$, with $i, j, k, \ell \in\{0, \pm 1\}$. Hence, to show that G_{1} is a group it suffices to verify that

$$
\begin{equation*}
v_{1} a_{1} a_{2} \sigma_{1}{ }^{i} \sigma_{2}{ }^{j} \varphi_{1}{ }^{k} \varphi_{2}{ }^{\ell} v_{1} a_{1} a_{2} v_{1} \in G_{1}, \quad \text { where } \quad i, j, k, \ell \in\{0, \perp 1\} \tag{20}
\end{equation*}
$$

We first prove the following lemmas:
Lemma 26. The element $v_{1} a_{2} u a_{2} \sigma_{1} \varphi_{1}^{-1} \varphi_{3}^{-1} \varphi_{4}^{-1} u a_{2} v_{1}$ lies in the double coset $G_{0} v_{1} G_{0}$.

Proof. We have

$$
\begin{aligned}
v_{1} a_{2} u a_{2} \sigma_{1} \varphi_{1}^{-1} \varphi_{3}^{-1} \varphi_{4}^{-1} u a_{2} v_{1} & =v_{1} a_{2} u\left(a_{2} \sigma_{1} \varphi_{1}^{-1} \varphi_{3}^{-1} \varphi_{4}^{-1} a_{2}^{-1}\right) a_{2} u a_{2} v_{1} \\
& =v_{1} a_{2} u \sigma_{1} \varphi_{3} \varphi_{1}^{-1} \varphi_{2}^{-1} a_{2} u a_{2} v_{1} \\
& =v_{1} a_{2} u \varphi_{1}^{-1} \varphi_{3} \varphi_{2}^{-1} a_{2} u a_{2} v_{1} \\
& =v_{1} a_{2}\left(u \varphi_{1}^{1} \varphi_{2}^{-1} u\right) u \varphi_{3} a_{2} u a_{2} v_{1} \\
& =v_{1} a_{2} \varphi_{1}^{1} \varphi_{2} u \varphi_{3} a_{2} u a_{2} v_{1} \\
& =-v_{1}\left(a_{2} \varphi_{1}^{1} \varphi_{2} a_{2}^{-1}\right) a_{2} u \varphi_{3} a_{2} u a_{2} v_{1} \\
& =v_{1} \varphi_{3} \varphi_{4}^{1} a_{2} u \varphi_{3} a_{2} u a_{2} v_{1} \\
& =\left(v_{1} \varphi_{3} \varphi_{4}^{1} v_{1}^{-1}\right) v_{1} a_{2} u \varphi_{3} a_{2} u a_{2} v_{1} \\
& =v_{0} v_{1} a_{2} u \varphi_{3} a_{2} u a_{2} v_{1} \quad \text { with } \quad w_{0} \in B \\
& =w_{0} v_{1} a_{2} u a_{2} u a_{2}\left(\varphi_{3}^{a_{2}} u a_{2}\right) v_{1} \\
& =w_{0} v_{1} u a_{2}{ }^{1} u\left(\varphi_{3}^{-1}\right) v_{1} .
\end{aligned}
$$

But by (15), the element $v_{1} u a_{2}^{-1} u \varphi_{3}^{-1} v_{1}$ lies in $B a_{1} v_{1} a_{1} B$ and since $B \subseteq G_{0}$ and $a_{1} \in G_{0}$, the lemma is proved.

Now let $w=\sigma_{1}^{-1} \varphi_{1} \varphi_{3} \varphi_{4}$; then from (6) and (13), we have

$$
w^{-1} \sigma_{2}^{-1} w=\sigma_{1} \sigma_{2}^{-1} \varphi_{1}^{-1} \varphi_{2}^{-1}, \quad\left(\sigma_{2}^{-1}\right)^{v_{1} a_{1} a_{2} v_{1}}=\sigma_{2}^{a_{2} v_{1}}
$$

and

$$
w^{v_{1} \alpha_{1} a_{2} v_{1}}=\left(\varphi_{3}^{-1}\right)^{u t_{1}}=g_{0} \in G_{0}
$$

with these relations and Lemma 26, we can prove
Lemma 27. The element $v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2}^{-1} \varphi_{1}^{-1} \varphi_{2}^{-1} v_{1} a_{1} a_{2} v_{1}$ lies in the double coset $G_{0} v_{1} G_{0}$.

Proof. From (1), we have $\left(v_{1} a_{1} a_{2}\right)^{4}=z$ and so

$$
\begin{aligned}
& v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2}^{-1} \varphi_{1}^{-1} \varphi_{2}^{-1} v_{1} a_{1} a_{2} v_{1}=a_{1} a_{2} v_{1} a_{1} a_{2}\left(\sigma_{1} \sigma_{2}^{-1} \varphi_{1}^{-1} \varphi_{2}^{-1}\right)^{v_{1} a_{1} a_{2} v_{1}} \\
&=a_{1} a_{2} v_{1} a_{1} a_{2}\left(w^{-1} \sigma_{2}^{-1} w\right)^{v_{1} u_{1} \mu_{2} c_{1} c_{1}} \\
&=a_{1} a_{2} v_{1} a_{1} a_{2}\left(v_{1}^{-1} u \varphi_{3} u v_{1}\right)\left(v_{1} a_{2} \sigma_{2} a_{2} v_{1}\right) g_{0} \\
& \text { with } g_{0} \in G_{0}
\end{aligned}
$$

Now using the relations in (1) and the fact that $\left(a_{2} \sigma_{2}\right)^{3}=1$, we have

$$
\begin{aligned}
v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2}^{-1} \varphi_{1}^{-1} \varphi_{2}^{-1} v_{1} a_{1} a_{2} v_{1} & =h_{0} v_{1} a_{2} u a_{2} v_{1}^{-1} \varphi_{3} u \sigma_{2}^{-1} a_{2} v_{1} k_{0}, \quad \text { with } \quad h_{0}, k_{0} \in G_{0} ; \\
& =h_{0} v_{1} a_{2} u a_{2} v_{1}^{-1} \varphi_{3} \sigma_{1}^{-1} u a_{2} v_{1} k_{0} \\
& =h_{0} v_{1} a_{2} u a_{2}\left(v_{1}^{-1} \varphi_{3} \sigma_{1}^{-1} v_{1}\right) v_{1}^{-1} u a_{2} v_{1} k_{0} \\
& =h_{0} v_{1} a_{2} u a_{2} \sigma_{1} \varphi_{1}^{-1} \varphi_{3}^{-1} \varphi_{4}^{-1} v_{1}^{-1} u a_{2} v_{1} k_{0} .
\end{aligned}
$$

But $\left(v_{1} u\right)^{2}=v$ and $\left(v_{1} a_{2}\right)^{3}=1$ and so

$$
v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2}^{-1} \varphi_{1}^{-1} \varphi_{2}^{-1} v_{1} a_{1} a_{2} v_{1}=h_{0}{ }^{\prime}\left(v_{1} a_{2} u a_{2} \sigma_{1} \varphi_{1}^{-1} \varphi_{3}^{-1} \varphi_{1}^{-1} u a_{2} v_{1}\right) k_{0}^{\prime},
$$

with $h_{0}{ }^{\prime}, k_{0}{ }^{\prime} \in G_{0}$. But by lemma 26 , the element in brackets lies in $G_{0} z_{1} G_{0}$ and so the lemma is proved.

We shall now proceed to verify (20):
(I) All elements of the form $v_{1} a_{1} a_{2} \sigma_{1}{ }^{i} \sigma_{2}{ }^{j} v_{1} a_{1} a_{2} v_{1}$, with $i, j \in\{0, \notin\}$ lie in H and so by Lemma 19, these elements lie in G_{1}.
(II) Now consider clements of the form $v_{1} a_{1} a_{2} \sigma_{1}{ }^{i} \varphi_{1}{ }^{j} \varphi_{2}{ }^{k} v_{1} a_{1} a_{2} v_{1}$, where $i, j, k \in\{0, \pm 1\}$. Using the relations in (1) and (5), we have

$$
\begin{aligned}
v_{1} a_{1} a_{2} \sigma_{1}^{i} \varphi_{1}^{j} \varphi_{2}{ }^{k} v_{1} a_{1} a_{2} v_{1} & =v_{1} a_{1}\left(a_{2} \sigma_{1}^{i} \varphi_{1}^{j} \varphi_{2}^{k} a_{2}^{-1}\right) a_{2} v_{1} a_{1} a_{2} v_{1} \\
& =v_{1} a_{1} \sigma_{1}^{i} \varphi_{3}^{-j} \varphi_{4}^{-k} a_{2} v_{1} a_{2} a_{1} v_{1} \\
& =v_{1} a_{1} \sigma_{1}^{i} \varphi_{3}^{-j} \varphi_{4}^{-j} v_{1} a_{2} a_{1} v_{1} v a_{1} \\
& =v_{1} a_{1} v_{1}\left(v_{1}^{-1} \sigma_{1}^{i} \varphi_{3}^{-j} \varphi_{4}^{-k} v_{1}\right) a_{2} a_{1} v_{1} v a_{1} \\
& =v^{-1} a_{1} v_{1} a_{1}\left(v_{1}^{-1} \sigma_{1}^{i} \varphi_{3}^{-j} \varphi_{4}^{-k} v_{1}\right) a_{2} a_{1} v_{1} v a_{1} .
\end{aligned}
$$

But the element $v_{1}^{-1} \sigma_{1}{ }^{i} \varphi_{3}^{-j} \varphi_{4}^{-k}{\sigma_{1}} \in G_{0}$ and so by (14) and (15),

$$
\tau_{1} a_{1} a_{2} \sigma_{1}{ }^{i} \varphi_{1}{ }^{j} \varphi_{2}{ }^{k} v_{1} a_{1} a_{2} z_{1} \in G_{1} .
$$

(III) From the relations in (1) and (3), we have

$$
\begin{aligned}
u\left(v_{1} a_{1} a_{2} \sigma_{2}{ }^{i} \varphi_{1}{ }^{i} \varphi_{2}{ }^{i} v_{1} a_{1} a_{2} v_{1}\right) u & =v_{1} a_{1} a_{2} \sigma_{1}{ }^{i} \varphi_{1}^{j} \varphi_{2}^{-k} v_{1} v^{-1} a_{1} a_{2} v_{1}^{-1} v^{2} \\
& =v v_{1} a_{1} a_{2} \sigma_{1}{ }^{i} \varphi_{1}^{j} \varphi_{2}^{-k} v_{1} a_{1} a_{2} v_{1} .
\end{aligned}
$$

Hence by (II) above, elements of the form $v_{1} a_{1} a_{2} \sigma_{2}{ }^{i} \varphi_{1}{ }^{j} \varphi_{2}{ }^{k} v_{1} a_{1} a_{2} v_{1} \in G_{1}$, where $i, j, k \in\{0, \pm 1\}$.
(IV) Now by Lemma 27, the element $w-v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2}^{-1} \psi_{1}^{-1} \varphi_{2}^{-1} v_{1} a_{1} a_{2} v_{1}$ lies in $G_{0} v_{1} G_{0}$ and so the element

$$
w^{*}-v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2}^{-1} \varphi_{1} \varphi_{2} v_{1} a_{1} a_{2} v_{1}=\approx w s \subset G_{0} v_{1} G_{0} .
$$

But

$$
\begin{aligned}
v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1} \varphi_{2} v_{1} a_{1} a_{2} v_{1} & =w^{*} v_{1} a_{2} \sigma_{2} a_{2} v_{1} \\
& =w^{*} v_{1} \sigma_{2}^{-1} a_{2}^{-1} \sigma_{2}^{-1} v_{1} \\
& =w^{*} \sigma_{2} v_{1} a_{2}^{1} v_{1} \sigma_{2} \\
& =w^{*} \sigma_{2} a_{2} v_{1} a_{2} \sigma_{2} .
\end{aligned}
$$

Since $w^{*} \in G_{0} v_{1} G_{0}$, we have by (14) and (15) that the element

$$
v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1} \varphi_{2} v_{1} a_{1} a_{2} v_{1} \in G_{1}
$$

Now $u\left(v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1} \varphi_{2} v_{1} a_{1} a_{2} v_{1}\right) u=v \tau_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1} \varphi_{2}^{-1} v_{1} a_{1} a_{2} v_{1}$ and so the element $v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1} \varphi_{2}^{-1} v_{1} a_{1} a_{2} v_{1} \in G_{1}$. Similarly, we can show that all the elements of the form

$$
v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1}{ }^{i} \varphi_{2}{ }^{j} v_{1} a_{1} a_{2} v_{1} \in G_{1}, \quad \text { where } i, j \in\{1,-1\}
$$

Next, consider the element $\ell=v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1}{ }^{i} v_{1} a_{1} a_{2} v_{1}$, where $i \in\{1,-1\}$. The element u centralizes $a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1}^{i}$ and $v_{1} a_{1} a_{2} v_{1}$ and so the element

$$
\left(a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1}^{i}\right)^{v_{1} a_{1} a_{2} v_{1}} \in C_{\sigma}(u)
$$

But by (2), there exists an element $\mu \in L \subseteq G_{0}$ such that $\mu^{t_{1}} \in N \cdot L \subseteq G_{0}$; and $z^{u}=u, u^{u}=u z$. Hence, $v_{1} a_{1} a_{2} f \in C_{G}\left(z^{u}\right)$. But by Lemma 19, $C_{G}(z)$ $H_{0} \cup H_{0} v_{1} H_{0} \cup H_{0} v_{1} a_{1} a_{2} v_{1} H_{0}$ and so $v_{1} a_{1} a_{2} t$ lies in one of the following sets: $\mu^{-1} H_{0} \mu, \mu^{-1} H_{0} v_{1} H_{0} \mu$, or $\mu^{-1} H_{0} v_{1} a_{1} a_{2} v_{1} H_{0} \mu$. If $v_{1} a_{1} a_{2} \ell$ lies in $\mu^{-1} H_{0} \mu$ or $\mu^{-1} H_{0} v_{1} H_{0} \mu$, then it follows easily that ℓ will then lie in G_{1}. If $\tau_{1} a_{1} a_{2} \ell=$ $\mu^{-1} h_{0} v_{1} a_{1} a_{2} v_{1} k_{0} \mu$, where $h_{0}, k_{0} \in H_{0}$, then the element

$$
\ell=a_{1} a_{2} v_{1}^{-1} \mu^{-1} h_{0} v_{1} a_{1} a_{2} v_{1} k_{0} \mu=a_{1} a_{2}\left(v_{1}^{-1} \mu^{-1} v_{1}\right)\left(v_{1}^{-1} h_{0} v_{1} a_{1} a_{2} v_{1}\right) k_{0} \mu
$$

But $v_{1}^{-1} \mu v_{1} \in G_{0}$ and $v_{1}^{-1} h_{0} v_{1} a_{1} a_{2} v_{1} \in C_{G}(z)$ and so $\ell \in G_{1}$, i.e.,

Similarly, we can prove that the elements of the form $v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{2}{ }^{i} v_{1} a_{1} a_{2} v_{1}$, where $i \in\{1,-1\}$ lie in G. (In this case we use the element $u z$ instead of u.) Hence we have proved that all elements of the form

$$
\begin{equation*}
v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1}{ }^{i} \varphi_{2}{ }^{j} v_{1} a_{1} a_{2} v_{1} \in G_{1}, \quad \text { where } \quad i, j \in\{0, \pm 1\} \tag{21}
\end{equation*}
$$

(V) Now let $x=v_{1} a_{1} a_{2} \sigma_{1}^{-1} \sigma_{2} \varphi_{1}{ }^{i} \varphi_{2}{ }^{j} v_{1} a_{1} a_{2} v_{1}$, with $i, j \in\{0, \pm 1\}$. Then $x^{-1}=v_{1} a_{1} a_{2} v_{1} \sigma_{1} \sigma_{2}^{-1} \varphi_{1}^{-i} \varphi_{2}^{-j} a_{1} a_{2} v_{1} z=v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2} \varphi_{1}{ }^{k} \varphi_{2}{ }^{\prime} v_{1} a_{1} a_{2} v_{1} z$, where k, $\ell \in\{0, \pm 1\}$. Hence by (21) the element $x^{-1} \in G_{1}$ and so $x \in G_{1}$. From the
relations in (1) and Lemma 21, we can prove in a similar way that elements of the form

$$
v_{1} a_{1} a_{2} \sigma_{1}^{-1} \sigma_{2}^{-1} \varphi_{1}^{i} \varphi_{2}^{j} v_{1} a_{1} a_{2} v_{1} \quad \text { or } \quad v_{1} a_{1} a_{2} \sigma_{1} \sigma_{2}^{-1} \varphi_{1}{ }^{i} \varphi_{2}{ }^{j} v_{1} a_{1} a_{2} v_{1}
$$

all lie in G_{1}. With this, we have verified (20) and so we have proved
Lemma 28. The elements in $G_{1}=G_{0} \cup G_{0} v_{1} G_{6} \cup G_{6} \tau_{1} a_{1} a_{2} v_{1} G_{0}$ form a group and so $G:=G_{1}$.

Now $G_{0}^{r_{1}} \cap G_{0}=\langle B, u\rangle$ and by Lemma 14 we have $\left|G_{0}^{v_{1}} \cap G_{0}\right|=$ $2^{3} \cdot 3^{6} \cdot 5$. Hence $\left[G_{0}: G_{0}^{v_{1}} \cap G_{0}\right]=112$. Next, the group

$$
G_{0}^{v_{1} a_{1} a_{2} v_{1}} \cap G_{0} \supseteq\left\langle H_{0}^{v_{1} a_{1} a_{2} a_{2} v_{1}} \cap H_{0}, w\right\rangle,
$$

where $z=\sigma_{1}^{-1} \varphi_{1} \varphi_{3} \varphi_{4}$ and since $\left|H_{0}^{v_{1}^{v_{1}} a_{1} \alpha_{2} z_{1}} \cap H_{0}\right|=2^{6}$ (see Lemma 19), we have $2^{6} \cdot 3| | G_{0}^{r_{0} \nu_{1} u_{2} v_{2}} \cap G_{n} \mid$ By Lemma 18 , the order of G is divisible by 5^{3} and so $n=\left[G_{0}: G_{0}^{n_{1} a_{1} a_{2} r_{1}} \cap G_{0}\right]=2(\bmod 5)$. Hence $n!2 \cdot 3^{5} \cdot 7$ and so $n=2 \cdot 3 \cdot 7,2 \cdot 3^{5} \cdot 7$ or $2 \cdot 3^{4}$. However, if $n=2 \cdot 3 \cdot 7$ or $2 \cdot 3^{5} \cdot 7$ then I G is not divisible by 5^{3}, contradicting Lemma 18 ; and so we must have. $n=2 \cdot 3^{4}=162$. Hence

$$
|G|=2^{7} \cdot 3^{6} \cdot 5 \cdot 7(1+112+162)=2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11
$$

and we have
Lemma 29. The group G is a primitive transitive rank 3 permutation group on 275 points, for which the stabilizer of a point G_{n} is isomorphic to $U_{4}(3)$ with subdegrees 1,112 and 162.

We shall now consider the graph associated with the rank 3 permutation group G on the 275 conjugates in G of the subgroup G_{0} which is isomorphic to $U_{4}(3)$. (for a description of the construction of the graph, see Wales [11]). The group G is then a subgroup of the full automorphism group of the graph. Our aim is to show that this graph is isomorphic to the graph in McLaughlin [6]. We shall use the notation in [11] and set Ω to be the set of all conjugates in G of G_{0}. So by Lemma 29, we have $|\Omega|=275$ and for $\{a\}$ in $\Omega, G_{a} \simeq U_{1}(3)$. The orbits of $G_{a 2}$ are $\{a\}, \Delta(a)$, and $\Gamma(a)$, where $k=\Delta(a) \mid=112$ and $\ell=|\Gamma(a)|=162$. From the relation $\mu \ell=k(k-\lambda-1)$, we have $\mu:=56$ and $\lambda=30$. Now let $b \in \Delta(a)$ and $c \in \Gamma(a)$. Then $\left|G_{a b}\right|=$ $2^{3} \cdot 3^{6} \cdot 5$ and $\left|G_{a c}\right|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$. Todd [10] has determined the character table of $U_{4}(3)$ and he has also determined all possible subgroups of index $\leqslant 200$ in $U_{4}(3)$. From his work, we see that all subgroups of the order $2^{3} \cdot 3^{6} \cdot 5=\left|G_{a b}\right|$ are conjugate in $U_{4}(3)$ and all subgroups of order
$2^{6} \cdot 3^{2} \cdot 5 \cdot 7=\left|G_{a c}\right|$ are isomorphic to $L_{3}(4)$. There are precisely 2 conjugate classes of subgroups in $U_{4}(3)$ which are isomorphic to $L_{3}(4)$ but there are conjugate in the automorphism group of $U_{4}(3)$. From this it follows that the permutation representations of G_{a} on $\Delta(a)$ and G_{a} on $\Gamma(a)$ are unique. Hence it follows that G_{n} is a primitive rank 3 permutation group on the 112 points in $\Delta(a)$ with subdegrees 1,30 and 81 ; and G_{a} has subdegrees 1, 56, and 105 on $\Gamma(a)$. The point b is joined to $\lambda \cdots 30$ points in $\Delta(a)$ which is a union of orbits of $G_{a b}$ on $\Delta(a)$, and since there is precisely one orbit of length 30 of $G_{a b}$ on $\Delta(a)$, this union is unique. Similarly, the union of orbits of $G_{a c t}$ on $\Gamma(a)$ is unique. From the work of 'rodd [10], we see that $G_{\text {tib }}$ has precisely 2 orbits on $\Gamma(a)$, each of length 81 . Hence at this stage, we have 2 possible graphs associated with the rank 3 permutation group G. However, it can be shown that these 2 graphs are isomorphic in the automorphism group of G_{a}. Hence, the graph associated with the rank 3 permutation group G is unique and is isomorphic to the graph defined by McLaughlin [6]. Since McLaughlin has shown that the group Mc is of index 2 in the full automorphism group of this graph and $|G|=|\mathrm{Mc}|$, we must have that G is isomorphic to the McLaughlin's simple group Mc of order 898,128,000. 'The theorem is proved.

Finally, we shall prove the two remarks mentioned in the introduction: From (1), we have $\left(\tau_{1} a_{1} a_{2}\right)^{4}=\approx z$ and so $\left(v_{1} a_{1} a_{2}\right)^{a_{1} a_{2}}=\left(v_{1} a_{1} a_{2}\right)^{3}$. Hence $\left\langle v_{1} a_{1} a_{2}, a_{1} a_{2}\right\rangle$ is a semidihedral group of order 16 and so the group $G \cdots G_{0}\left\langle v_{1}, a_{1} a_{2}\right\rangle G_{0}$, where $G_{0} \simeq U_{4}(3)$ and $\left\langle v_{1}, a_{1} a_{n}\right\rangle \cdots\left\langle v_{1} a_{1} a_{2}, a_{1} a_{2}\right\rangle$ is a semidihedral group of order 16 . Next, since $[G: H]=3^{1} \cdot 5^{2} \cdot 11$ and G has precisely one class of involutions, there are preciscly $3^{4} \cdot 5^{2} \cdot 11$ involution in G. Since $\left[G_{0}: I I_{0}\right]-3^{4} \cdot 5 \cdot 7$ and G_{0} has 1 class of involutions, there are $3^{4} \cdot 5 \cdot 7$ involutions in G_{0}. It can be shown that $\left|C_{C_{0}}\left(v_{1} a_{1} a_{2} v_{1}\right)\right|=$ $2^{3} \cdot 3 \cdot 7$ and so there are $\left[G_{0}: C_{G_{0}}\left(v_{1} a_{1} a_{2} v_{1}\right)\right]=2^{4} \cdot 3^{5} \cdot 5$ involutions in the double coset $G_{0} v_{1} a_{1} a_{2} v_{1} G_{0}$. But $3^{4} \cdot 5 \cdot 7+2^{4} \cdot 3^{5} \cdot 5 \cdots 3^{4} \cdot 5^{2} \cdot 11$ and so there are no involution in the double coset $G_{0} v_{1} G_{0}$.

Acknowledgment

The authors would like to thank Drs. W. A. McWorter and F. Demana for many helpful conversations concerning some portion of this paper.

References

1. H. Bender, Finite groups having a strongly embedded subgroup, Symposium on "Theory of Finite Groups," pp. 21-24, Benjamin, New York, 1969.
2. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759.
3. W. Gaschütz, Zur erweiterungstheorie der endlichen gruppen, J. Reine Angez. Math. 190 (1952), 93-107.
4. G. Glauberman, Central elements in core-free groups, J. Algelra 4 (1960), 403-420.
5. D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J, Math. 6 (1962), 553-593.
6. J. Mclaughlin, A simple group of order $898,128,000$, Symposium on "Itheory of Finite Groups," pp. 109-111, Benjamin, New York, 1969.
7. K. W. Phan, A characterization of the finite simple group $U_{4}(3), J$. Austral. Math. Soc. 10 (1969), 77-94.
8. I. Schur, Uber die darstellung der symmetrischen und der altemierenden gruppe durch gebrochene lineare substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
9. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.
10. J. A. Town, The characters of a collincation group in five dimensions, Proc. Royal Soc. Ser. A 200 (1950), 320-336.
11. D. Wates, Uniqueness of the graph of a rank three group, Pacific J. Math. 30 (1969), 271-276.
