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There is considerable interest in refining cardiovascular
risk prediction to better target preventative therapy among
those individuals considered to be at low or moderate risk
according to current guidelines. A number of additional
putative cardiovascular biomarkers have been identified,
including C-reactive protein, carotid intima-media thick-
ness, and a variety of genetic variants (1,2). However, these
factors seem to add little to existing risk estimates, such as
that derived from the Framingham Heart Study (1,3,4).
Recently, aortic stiffness has emerged (5,6) as a potential
additional candidate, and reference values have now been
published (7,8).

See page 647

Aortic stiffness can be assessed by using a variety of
noninvasive methods. One of the most frequently used
methods is carotid-femoral (aortic) pulse wave velocity
(aPWV) (9). Data from prospective observational cohort
studies indicate that aPWV relates to future cardiovascular
risk even after accounting for other accepted cardiovascular
risk factors. However, the extent to which aPWV improves
risk prediction, whether it does so equally for cardiac and
cerebral events, and if it differs by subgroups is unclear
because most studies were underpowered to examine these
issues. A recent meta-analysis using summary published data
found that aPWV predicted cardiovascular events but could
not examine subgroup effects at an individual level or
calculate the additional prognostic value of aPWV (10).

We undertook a systematic review and used data from
both newly published and unpublished cohorts with
measures of aPWV and incident cardiovascular disease to
conduct an individual participant meta-analysis. Our goal
was to address the questions of whether having information
on aPWV for both unselected, population-based individuals
and patients with manifest disease improved the prediction
of future cardiovascular events; whether risk prediction
varied according to subgroups; and whether improved risk
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prediction was additive to stan-
dard risk factors and how this
may vary by population.
Methods

We used the PRISMA 2009
guidelines (11) and undertook a
systematic search (details inOnline
Appendix 1). The following in-
clusion criteria were pre-specified:
1) the study had to be a cohort
design with a minimum of 1-year

follow-up; 2) aortic stiffness had to be assessed by direct mea-
surement of carotid-femoral aPWV; and 3) the study had
to be able to provide relevant outcome data, including all-cause
mortality, coronary heart disease (CHD) (myocardial infarction
or revascularization or as defined by the studies) and stroke
events, or CHD and stroke combined (cardiovascular events).
Where available, we also tried to differentiate between fatal
and nonfatal events, although not all studies collected data on
nonfatal events.

Anonymized individual-level subject data were requested
for each study, including aPWV, a range of covariates
(including age, sex, blood pressure, body mass index, smo-
king status, lipids, creatinine, and comorbidities), and time
to the various endpoint events or censoring.
Ethics. Each study obtained appropriate ethical approval
from its local research governance body (Online Appendix 2).
The Faculty of Medicine and Dentistry Ethics Com-
mittee, University of Bristol, also reviewed the meta-
analysis protocol and was satisfied that it met ethical
standards.
Statistical analysis. Baseline characteristics were summa-
rized for each study sample and reported as mean � SD
and number (%) for continuous and categorical variables,
respectively. For skewed continuous variables, the median
and interquartile range are stated. aPWV varies according
to the software algorithm used and the approach to transit
distance measurement. Because our main goal was to
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examine the relative value of aPWV within a study and then
pool these estimates, we used the z-score of loge-
transformed aPWV in the analyses because aPWV values
were positively skewed. Thus, effect estimates for each study
reflect the change in risk of an outcome for a 1-SD increase
in loge aPWV from the average in that population.

Outcome measures were all-cause mortality, cardiovas-
cular mortality, CHD events, stroke, and cardiovascular
events (CHD and stroke). For each measure, Cox propor-
tional hazards models were fitted that estimated the hazard
ratio (HR) of aPWV: 1) adjusted for age and sex; 2) addi-
tionally adjusted for systolic blood pressure; and 3)
additionally adjusted for total cholesterol, high-density
lipoprotein cholesterol, smoking status, diabetes, and cur-
rent antihypertensive medication (12). We also repeated
these models but replaced systolic blood pressure with pulse
pressure. Continuous covariates were expressed as cohort-
specific z-scores. All models were also stratified according
to race for 1 study that had a pronounced split in white and
African-American populations (details regarding subgroup
analysis for ethnicity are given below). We checked whether
the association of aPWV with outcomes was linear by visual
inspection of graphs of aPWV quintiles against the corre-
sponding HR and formal testing for nonlinearity by using
fractional polynomials (13). The proportional hazards
assumption was assessed by using tests based on Schoenfeld
residuals in models fitted separately to each study.

Models were fitted separately for each study, and the
fully- or partially-adjusted estimates pooled by using random
effects meta-analysis to account for between-study hetero-
geneity. Forest plots for each model and outcome show the
study-specific effects and the overall pooled estimate, with
95% confidence intervals (CIs) and random effects weight-
ings. In sensitivity analyses, we fitted all models using first,
inverse aPWV, and second, the untransformed data but still
assessed by using z-scores within studies. The sensitivity of
effects to missing covariate data was examined by repeating
analyses using only the 13 studies with all covariates
measured (Online Appendix 3). The presence of small study
effects and publication bias were examined by using both
visual inspection of funnel plots and formal Egger tests. We
also considered the influence of each individual study on the
pooled meta-analysis effect estimate to examine if any 1
study had undue influence as an outlier.

The protocol pre-specified analyses of the following
potential effect modifiers: sex, age group, type of population
(healthy vs. disease group), smoking status, renal function
measured by the Modification of Diet in Renal Disease
(14) estimated glomerular filtration rate (�90 ml/min/1.73 m2

vs. <90 ml/min/1.73 m2), diabetes, and antihypertensive use
at baseline. For each potential effect modifier considered, we
estimated the strata-specific effect of aPWV in each study
separately. These estimates were pooled across studies,
which were then tested to see if the effect of aPWV differed
between strata. For type of population (which is a study-level
variable), we used meta-regression to test for differences in
effect of aPWV between clinical and population-based
studies. Post-hoc, we also tested for any potential differ-
ences in the results dependent on either: 1) the method used
to measure distance in calculating aPWV; or 2) the ethnic
differences related to participants from the Far East versus
European and North American populations (Online
Appendix 3).

To compare the discriminatory power of aPWV against
simpler hemodynamic measures such as systolic blood pre-
ssure, or other established risk factors, the fully adjusted
models were fitted with and without loge aPWV. We
calculated study-specific measures of discrimination (Harrell’s
C-index and Royston and Sauerbrei’s D measure) and then
pooled these statistics weighted by the number of events (15).

We also examined reclassification of subjects to risk
groups due to the addition of aPWV to conventional
cardiovascular risk factors (net reclassification index) (16).
We used reclassification based on 5-year risk because not all
studies had sufficient length of follow-up to use the standard
clinical cutoff points based on 10-year risk. Risk cutoff
points were calculated in each study, based on quartiles of
predicted risk from the model without aPWV, considering
only those individuals with events. These cutoffs were then
applied to the whole study sample. Subjects were ranked
according to predicted risk from the models first with
and then without aPWV and assigned to low-risk (first
quartile), medium-risk (second and third quartiles), and
high-risk groups (fourth quartile). Only studies with at least
2 participants experiencing events within 5 years were
included in this reclassification exercise. Individuals experi-
encing an event after 5 years were censored. The number of
events available to calculate discrimination statistics is
therefore less than the number available to fit the Cox
proportional hazards models. Categorizations under the 2
models were cross-tabulated, and the number of subjects
moving in the correct direction (up for those experiencing
events and down for those not experiencing events) on
inclusion of aPWV in the model were counted. The overall
percentage of correct reclassifications was combined from
those with an event, and those without, across all the studies.
We calculated the net reclassification improvement based
both on all participants and limited to those at intermediate
risk (i.e., in risk quartiles 2 and 3). We also derived the
integrated discrimination improvement, which measures
improvement in risk prediction on a continuous scale and is
independent of the choice of cutoff points for risk catego-
rization. We also undertook a series of sensitivity analyses
(Online Appendix 3).

Results

The flow chart of the selection of papers in the systematic
review is shown in Figure 1. From a potential of 29 papers
assessed for eligibility, 9 were excluded that were either
duplicates or did not meet the eligibility criteria on further
examination. An additional 7 studies were unable to supply



Figure 1 Flow Diagram Illustrating the Process of Study Identification

PI ¼ principal investigator.
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individual participant data (5,17–22). The resulting 13
eligible studies (details given in Online Table 1) for which
the original investigators were willing to provide data access
were supplemented by 3 additional studies that were not
formally published and were identified through other
methods (23–37). The study by Cruickshank et al. (26)
recruited 2 cohorts, a population-based sample and a
sample of diabetic patients; therefore, the study was con-
sidered as 2 study cohorts in the analyses, resulting in 17
cohorts in the main analysis and comprising 17,635 partic-
ipants with 1,785 (10%) CVD events.
Table 1
Pooled Adjusted Hazard Ratios (95% CIs
for All-Cause Mortality, CVD Mortality, C

Model 1*

CHD events (n ¼ 1,195) 1.35 (1.22–1.50)

CVD events (n ¼ 1,785) 1.45 (1.30–1.61)

Stroke events (n ¼ 641) 1.54 (1.34–1.78)

CVD mortality (n ¼ 395) 1.41 (1.27–1.56)

All-cause mortality (n ¼ 2,041) 1.22 (1.16–1.27)

*Model 1 adjusts for sex and age group; model 2 adjusts for sex, age group,
risk factors (cholesterol, high-density lipoprotein cholesterol, smoking status
race in the Sutton-Tyrell study (27). Not all studies had data on every risk fa
aPWV ¼ aortic pulse wave velocity; CHD ¼ coronary heart disease; CI ¼
There was a mix of cohorts, with 8 of the 17 cohorts based
on patients with known diseases and the rest from
population-based studies. Baseline characteristics of the
various cohorts are shown in Online Table 1. Most studies
included approximately equal numbers of men and women,
except for the Caerphilly Prospective Study (23), which
included only men. All except 4 studies had information on
all adjustment variables, and all except 5 studies had event
rates and follow-up times for all outcome measures. The
distribution of raw aPWV measures across the studies is
shown in Online Figure 1.
) of a 1-SD Increase in Loge-Transformed aPWV
HD Events, Stroke Events, and CVD Events

Model 2* Model 3*

1.32 (1.18–1.48) 1.23 (1.11–1.35)

1.37 (1.23–1.52) 1.30 (1.18–1.43)

1.37 (1.21–1.54) 1.28 (1.16–1.42)

1.35 (1.20–1.53) 1.28 (1.15–1.43)

1.20 (1.15–1.26) 1.17 (1.11–1.22)

and systolic blood pressure; and model 3 additionally adjusts for other
, presence of diabetes, and antihypertensive medication), stratified by
ctor.
confidence interval; CVD ¼ cardiovascular disease.



Figure 2 Forest Plot for aPWV and Combined Cardiovascular Events Adjusting for Various Risk Factors

(A) Adjustment for age and sex. Loge aortic pulse wave velocity (aPWV) is shown. Size of box represents the study-specific weight for the meta-analysis. (B) Adjustment for age,

sex, and other cardiovascular risk factors. Loge aPWV is shown. Adjusted for age, sex, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, diabetes,

and antihypertensive use. Data from the Baltimore Longitudinal Study of Aging were excluded because there were too few events. Size of box represents the study-specific

weight for the meta-analysis. BTC ¼ Belgian Transplant Cohort; CaPS ¼ Caerphilly Prospective Study; CI ¼ confidence interval; CORD ¼ Calcification Outcome in Renal Disease;

CVD ¼ cardiovascular disease; ES ¼ effect size.
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In Cox proportional hazards models, loge aPWV was
linearly associated with risk for each of the outcomes, and
proportional hazards assumptions were valid. The pooled
age- and sex-adjusted hazard ratio (95% confidence interval
[CI]) per 1-SD change in loge aPWV was 1.35 (95% CI:
1.22 to 1.50; p < 0.001] for coronary heart disease, 1.54
(95% CI: 1.34 to 1.78; p < 0.001) for stroke, and 1.45 (95%
CI: 1.30 to 1.61; p < 0.001) for CVD. Table 1 shows the
HRs for the pooled associations of aPWV with our outcome
measures for each of the 3 models. For all outcomes, loge
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aPWV was strongly associated with increased risk, although
additional adjustment resulted in some attenuation. After
adjusting for conventional risk factors, aPWV remained
a predictor of coronary heart disease (1.23 [95% CI: 1.11 to
1.35]; p < 0.001), stroke (1.28 [95% CI: 1.16 to 1.42];
p < 0.001), and CVD events (1.30 [95% CI: 1.18 to 1.43];
p < 0.001). The study-specific HRs of combined cardio-
vascular events for aPWV together with the pooled estimate
are shown in Figure 2A, adjusted for age and sex, and in
Figure 2B, fully-adjusted for all risk factors. Funnel plots
and formal Egger tests fitted to estimates from the simple
age- and sex-adjusted models indicated limited problems of
small study effects, with any differences likely due to some
studies having limited numbers of events. There were no
overly influential studies.

There was no evidence that the increased risk associated
with aPWV was modified by sex, population type, smoking
Figure 3 Forest Plot for aPWV With Cardiovascular Events Accordin

Loge aPWV is shown. Data are adjusted for age and sex where applicable. Data from the Ba

Abbreviations as in Figure 2.
status, renal function, baseline diabetes, or antihypertensive
use. However, aPWV was more strongly related to the risk
of CHD (pinteraction ¼ 0.001) and stroke (pinteraction ¼ 0.004)
in younger participants. For example, the hazard ratios
decreased with age (1.89, 1.77, 1.36, and 1.23 for 50, 51 to
60, 61 to 70, and >70 years, respectively, for CVD events;
pinteraction <0.001). This age effect remained in the fully
adjusted models for both CHD and cardiovascular events
(p ¼ 0.006 and p ¼ 0.03, respectively). The results of
subgroup analyses for combined cardiovascular events are
shown in Figure 3 and in Online Figures 2A to 2D for other
outcomes.

Results from the sensitivity analyses that used inverse
aPWV and the untransformed aPWV did not materially
differ from those using loge aPWV (data not shown). We
found that the models that used pulse pressure rather than
systolic blood pressure were essentially the same, although
g to Pre-Specified Subgroups

ltimore Longitudinal Study of Aging were excluded because there were too few events.
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the HRs were attenuated for stroke (data not shown) but
with clearly overlapping 95% CIs. A change in aPWV of 1 m/s
(weighted mean 10.1 � 3.3 m/s) was associated with an HR
for cardiovascular events of 1.07 (95% CI: 1.02 to 1.12) for
a male age 60 years who was a nonsmoker, not diabetic, not
on any blood pressure medication, and with systolic blood
pressure of 120 mm Hg, total cholesterol of 5.5 mmol/l, and
high-density lipoprotein cholesterol of 1.3 mmol/l. We
found that the fully adjusted HRs were slightly attenuated in
the models that were restricted to the studies with a full set
of covariate data (data not shown).

The discrimination and reclassification statistics calcu-
lated to assess improvement in 5-year risk prediction asso-
ciated with the inclusion of loge aPWV in models are shown
in Table 2. Small differences in C and D statistics and
integrated discrimination improvement indicated modest
improvement in risk prediction when loge aPWV was
added to conventional Framingham risk factors. The inte-
grated discrimination improvement presented evidence of
improvements in discrimination for all outcomes when
including loge aPWV in the models. However, calculation of
the net reclassification improvement for each outcome
indicated improvements in reclassification that have some
clinical relevance, especially for those at intermediate risk
(Table 3).

The net reclassification index for 10-year predicted risk
was slightly lower than that for 5-year risk, which may be
due to the attenuation of the accuracy of predictions with
increasing extrapolation beyond the actual period of obser-
vation. We did not find any evidence that any of the results
for our various outcomes differed either by the method used
to define the distance over which aPWV was calculated
or whether the study populations came from the Far
East versus Europe or North America. Online Appendix 3
presents results from the sensitivity analysis.

Discussion

The main finding of the current study is that aortic stiffness,
assessed by measurement of aPWV, can predict future
cardiovascular events and mortality, even after accounting for
other established cardiovascular risk factors. The predictive
value of aPWV was stronger in younger versus older subjects
but was not modified by hypertension, smoking, sex, dia-
betes, or kidney disease. Addition of aPWV into risk
prediction models also increased the number of participants
who were correctly classified, particularly among younger
individuals at intermediate risk, and it improved the overall
10-year classification by 13%.

The optimal approach to cardiovascular disease screening
and risk stratification remains controversial, with some
favoring a strategy based on targeting high-risk individuals
(38) and others arguing for a population-based approach
(39). The former strategy focuses on measuring traditional
risk factors, and the relative cost-effectiveness of such an
approach has not been assessed in clinical practice (38).



Table 3
Net Reclassification Statistics Showing Percent Change in 5-Year Risk Prediction (and 5- and 10-Year Overall Reclassification)
Associated With Including loge aPWV as a Risk Factor in the Fully-Adjusted Model

Controls (Event ¼ 0) Cases (Event ¼ 1)

5-Year Overall
Reclassification*

10-Year Overall
Reclassification*

Whole
Sample

Clinical
Population

General
Population

Age
�61 Yrs

Whole
Sample

Clinical
Population

General
Population

Age
�61 Yrs

Whole sample

All-cause
mortality

0.66
(14,125)

1.11
(4,703)

0.44
(9,422)

�0.17
(7,011)

4.30
(1,023)

3.37
(356)

4.80
(667)

4.08
(147)

4.96
(4.11–5.81)
(15,148)

1.73
(0.87–2.59)
(12,837)

CVD
mortality

3.95
(9,275)

0.99
(2,618)

5.11
(6,657)

1.43
(3,975)

8.22
(219)

10.45
(67)

7.24
(152)

16.00
(25)

12.17
(10.68–13.66)

(9,494)

8.34
(7.17–9.51)
(10,271)

CHD events 0.28
(14,158)

3.05
(3,212)

�0.54
(10,946)

�0.84
(7,158)

4.66
(730)

7.55
(212)

3.47
(518)

8.77
(114)

4.94
(4.00–5.88)
(14,888)

3.03
(2.24–3.82)
(12,503)

CVD events 0.28
(13,828)

3.06
(3,104)

�0.52
(10,724)

�0.72
(7,092)

5.09
(1,060)

5.31
(320)

5.00
(740)

10.56
(180)

5.37
(4.38–6.36)
(14,888)

4.43
(3.53–5.33)
(12,503)

Stroke
events

�0.04
(13,397)

0.33
(2,142)

�0.12
(11,255)

�0.73
(6,407)

9.52
(315)

8.49
(106)

10.05
(209)

13.79
(58)

9.48
(8.36–10.60)
(13,712)

5.60
(4.39–6.81)
(10,465)

Intermediate-risk only
(quartiles 2 and 3)

All-cause
mortality

5.49
(3,933)

7.69
(1,053)

4.69
(2,880)

9.92
(393)

9.18
(512)

10.67
(178)

8.38
(334)

0
(31)

14.67
(12.63–16.71)

(4,445)

6.14
(4.05–8.23)
(3,970)

CVD
mortality

11.68
(1,970)

15.72
(439)

10.52
(1,631)

17.86
(84)

11.43
(105)

13.33
(30)

10.67
(75)

37.50
(8)

27.17
(29.61–37.73)

(2,075)

24.27
(20.65–27.89)

(2,164)

CHD events 6.85
(3,929)

13.80
(1,196)

3.81
(2,733)

9.26
(994)

7.92
(366)

7.48
(107)

8.11
(259)

0
(50)

14.77
(12.41–17.13)

(4,295)

9.69
(7.61–11.77)

(3,346)

CVD events 5.99
(3,774)

15.65
(1,061)

2.21
(2,713)

7.72
(868)

7.97
(527)

4.43
(158)

9.49
(369)

7.25
(69)

13.96
(11.41–16.51)

(4,301)

13.05
(10.69–15.41)

(3,473)

Stroke
events

5.80
(3,740)

8.66
(693)

5.15
(3,047)

8.66
(658)

13.38
(157)

11.32
(53)

14.42
(104)

20.83
(24)

19.18
(16.38–21.98)

(3,897)

10.89
(7.97–13.81)

(3,141)

Values are risk factor (sample n) unless otherwise indicated. Results shown for the whole sample and those at intermediate risk. *Values are NRI (95% CI) (n).
NRI ¼ net reclassification index; other abbreviations as in Table 1.
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Novel biomarkers may improve risk stratification. However,
when these potential biomarkers have been entered into
risk prediction models, such as Framingham, they do not
seem to improve risk prediction very much beyond that
already provided by established risk factors such as blood
pressure, blood glucose, and cholesterol. Interest has also
focused on markers of tissue or end-organ damage such as
carotid intima-media thickness, which has been included in
European Society of Hypertension and European Society of
Cardiology guidelines (40). However, despite the recom-
mendation in published guidelines, carotid intima-media
thickness is rarely measured in routine clinical practice,
and its utility remains controversial (3,41,42).

During the last 10 years, a large amount of evidence has
accumulated demonstrating that arterial stiffness is an
important risk factor for cardiovascular disease. Aortic stiff-
ness can be assessed in a number of ways, but aPWV is re-
garded as the current gold standard (9) and has the
most evidence available linking it to cardiovascular risk.
aPWV can be assessed in a routine clinical setting by using
a number of commercially available devices, making it
a potentially attractive cardiovascular biomarker. Indeed,
assessment of arterial stiffness is included in the latest Euro-
pean Society of Hypertension/European Society of Cardio-
logy guidelines (40), but the American College of Cardiology
Foundation and the American Heart Association felt that
there was insufficient evidence to recommend measures of
arterial stiffness for asymptomatic individuals (43).

Our results confirm those of a previous summary meta-
analysis (10) that aPWV predicts future fatal and nonfatal
cardiovascular events. We have greatly extended this
finding with the addition of new data, the ability to
examine important subgroups, and by specifically calcu-
lating the prognostic value of aPWV beyond established
risk factors. After full adjustment, a 1 m/s increase in
aPWV was associated with a 7% increased risk of
a cardiovascular events for a 60-year-old man (nonsmoker,
not diabetic, not on any blood pressure medication, and
with systolic blood pressure of 120 mm Hg, total choles-
terol of 5.5 mmol/l, and high-density lipoprotein
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cholesterol of 1.3 mmol/l). We have shown that aPWV
was a stronger risk factor among younger individuals,
although it was still predictive in older individuals. This
finding may be because individuals with stiff aortae who
are susceptible to cardiovascular disease die younger
(“healthy survivor effect”), other risk factors attenuate the
effects of aPWV at older ages, and/or systolic pressure is
a better surrogate of aortic stiffness in older people than in
younger people; therefore, including aPWV in models
already containing systolic pressure would be expected to
add less predictive value. Indeed, the age-related rise in
systolic pressure, and development of isolated systolic
hypertension, closely mirrors the age-related rise in aPWV
(7,44). Conversely, systolic hypertension in younger indi-
viduals seems to be driven predominantly by an elevated
cardiac output and stroke volume; as such, systolic or pulse
pressure is a poor surrogate for stiffness in the young (45).

Addition of aPWV to the adjusted cardiovascular
prediction models only increased the C and D statistics to
a modest degree, suggesting that aPWV may not add much
to standard risk equations when all participants are analyzed
together. However, they are relatively insensitive methods
for assessing the potential value of new biomarkers and do
not specifically focus on individuals in whom better risk
prediction is likely to make an important clinical difference
(i.e., those who are at moderate or intermediate risk) (46).
Indeed, many current guidelines advocate 10-year cardio-
vascular risk estimation and the targeting of therapy toward
individuals whose estimated risk exceeds a particular thre-
shold. However, refining estimation in those at high or low
risk is unlikely to alter management or risk prevention in
a substantial way. The performance of aPWV on the net
reclassification improvement seems more clinically infor-
mative in terms of risk stratification for those at intermediate
cardiovascular risk and in younger subjects. However, we
have presented data on reclassifying subjects at both low
(general population sample) and high (clinical sample)
absolute risk for completeness.

Our results also suggest that aPWV may be a suitable
target for novel risk reduction strategies. Although we did
not investigate the pathophysiological mechanisms under-
lying cardiovascular disease, previous studies suggest that
aPWV attenuation is associated with improved survival
(47). The majority of existing drugs do not seem to lower
aPWV in a blood pressure–independent manner, but long-
term blockade of the renin-angiotensin system (48) and
novel agents targeting elastic fiber cross-linking (49) or
calcification may afford some benefit. However, these
strategies need to be tested directly and remain speculative
(50).
Study limitations. Almost all of the studies were from
white patients or participants from the Far East, limiting
the generalizability of these findings to other ethnic pop-
ulations. A variety of different methods and devices were
used to assess aPWV that are known to influence absolute
values. However, we tried to minimize methodological
influence by calculating study-specific effects, and our
analyses revealed no significant heterogeneity between
studies or devices. A sensitivity analysis examining the
method used to calculate the distance for the carotid-
femoral path failed to find any evidence of heterogeneity.
Because we extrapolated the results from some short-term
studies to predict 10-year risk, these results should be
treated with some caution given the limited long-term
data. Our cardiovascular outcome measure was primarily
based on myocardial infarction and stroke; therefore, the
predictive value of aPWV on heart failure has not been
explicitly examined. We tried to include all published
studies, but 2 large studies were not included. However,
our observations seem consistent with those reported in the
excluded studies, and they benefit from a significantly
larger sample size than any of the individually published
studies. Recently, the Rotterdam study has published its
own data on risk prediction (51) and showed a similar 9%
reclassification of intermediate-risk group subjects. We
were able to include data from several new studies,
including 3 unpublished studies, 2 of which have published
previous data on their aPWV measures (23,24). All of our
estimates come from observational studies, and a previous
meta-epidemiological study found that the effects of
cardiovascular biomarkers were stronger in such studies
compared with randomized controlled trials (52).
Conclusions

aPWV predicts future cardiovascular risk and improves risk
classification, adjusting for established risk factors. Because
aPWV can now be reliably and easily measured (53), it may
serve as a useful biomarker to improve cardiovascular risk
prediction for patients at intermediate risk. However, before
its adoption can be recommended, randomized controlled
trials using aPWV to guide risk stratification and/or treat-
ment are required to provide convincing evidence that this
method has clinical value.
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For supplemental tables, figures, and other materials on the study protocol,
please see the online version of this article.
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