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Abstract

Nucleotide metabolism was studied in erythrocytes of a mentally retarded child and family members. Partial hypoxanthine-guanine

phosphoribosyltransferase (HPRT) deficiency was found in the propositus and an asymptomatic maternal uncle. Studies in crude lysates

demonstrated decreased apparent Vmax and slightly decreased apparent Km for hypoxanthine in both HPRT-deficient subjects. Genomic DNA

analysis revealed a single nucleotide change with leucine-147 to phenylalanine substitution in both subjects; mother and grandmother were

heterozygous carriers of the same defect. This new variant has been termed HPRTPotenza. Increased erythrocyte concentration of NAD and

rate of synthesis by intact erythrocytes were found in the patient; increased activities of nicotinic acid phosphoribosyltransferase (NAPRT)

and NAD synthetase (NADs) were demonstrated in erythrocyte lysates, with normal apparent Km for their substrates and increased Vmax.

These alterations were not found in any member of the family, including the HPRT-deficient uncle. These findings show multiple

derangement of nucleotide metabolism associated with partial HPRT deficiency. The enzyme alteration was presumably not the cause of

neurological impairment since no neurological symptoms were found in the HPRT-deficient uncle, whereas they were present in the

propositus’ elder brother who had normal HPRT activity. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hypoxanthine-guanine phosphoribosyltransferase

(HPRT) (EC 2.4.2.8) catalyses salvage of the purine bases

hypoxanthine and guanine to their respective monophos-

phate nucleosides (IMP and GMP) by a 5V-phosphoribosyl-
1-pyrophosphate (PPRibP)-dependent reaction. It is a cyto-

plasmic enzyme ubiquitous in humans, displaying different

specific activities during development and in different

tissues (highest activities in testis and brain tissue) [1–3].

The genetically determined deficiency of HPRT is associ-

ated with a number of clinical phenotypes mainly depending

on the degree of deficiency. Marked uric acid overproduc-

tion resulting in hyperuricemia, nephrolithiasis and gout

presenting at an early age is a common feature. Neurological

abnormalities may be absent (previously called Kelley–

Seegmiller syndrome, KSS) [4], or mild in cases with

intermediate severity (some degree of mental retardation,

spasticity, dystonia), while the most severely affected cases

display a disabling neurological syndrome, characterized by

choreoathetosis, spasticity and compulsive self-injurious

behavior [5,6]. The latter most severe form is usually

associated with virtually complete deficiency and is known

as Lesch–Nyhan syndrome (LNS) [7]. The connection

between the neurological syndrome described in LNS

patients and HPRT deficiency is still unclear.

Human HPRT is encoded by a single structural gene at

Xq26–27 [8], consisting of nine exons and eight introns.

The entire HPRT gene has been sequenced [5], and several
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different alterations in the coding region have been de-

scribed as responsible for HPRT deficiency [5,9]. The

amino acid sequence of HPRT has been determined [10],

the physical and kinetic properties have been studied, and

different alterations of the enzyme in patients with various

degrees of deficiency have been reported [1,11–17]. Addi-

tional biochemical tissue-specific alterations have been

reported in patients with different degrees of HPRT defi-

ciency. They have mostly been detected in erythrocytes, and

include increased PPRibP concentrations (also found in

lymphoblasts and mainly fibroblasts) [18], increased UDP-

sugars (UDPs) and appreciable levels of 5-amino-4-imida-

zole-carboxamide riboside 5V-triphosphate (ZTP) [19],

increased activities of adenine phosphoribosyltransferase

(APRT) and IMP dehydrogenase [20], grossly increased

NAD concentrations [21] and GTP depletion. Involvement

of NAD and its precursors in different neurological syn-

dromes has been reported also in connection with the neu-

rotransmitter serotonine [22,23] and has stimulated research

in this rather neglected field. The increased NAD concen-

trations in erythrocytes of patients with HPRT deficiency

have not yet been explained. Altered intracellular stability

of the coenzyme can be ruled out [24], and underutilization

has not been found. We reported altered NAD synthesis in

intact erythrocytes of a patient with partial HPRT deficiency

and of an LNS patient [25] and in fibroblasts of an LNS

patient [26].

Here we present data on purines, pyridines and pyrimi-

dines in the erythrocytes of a mentally retarded child and

several family members. Partial deficiency of HPRT was

found in the propositus and an asymptomatic maternal uncle.

At molecular level, a mutation was found in exon 6. We also

detected biochemical alterations of purines and pyridines and

a significant increase in the activities of two enzymes,

nicotinic acid phosphoribosyltransferase (NAPRT) (EC

2.4.2.11) and NAD synthetase (NADs) (EC 6.3.5.1) catalys-

ing NAD synthesis from nicotinic acid (NA), previously

reported in LNS patients [27] (Fig. 1). These findings sup-

port the hypothesis that the biochemical basis for increased

NAD concentrations in erythrocytes of all HPRT-deficient

patients examined so far is increased synthesis. The clinical

manifestations are peculiar since neither the propositus nor

the uncle with the same HPRT alteration had classical KSS.

At our knowledge the propositus’ uncle is the second case

with apparently no symptoms related to enzyme deficiency

[28].

2. Materials and methods

2.1. Patients and relatives

The propositus, L.C., male, Italian, was the second child

of apparently healthy parents. At age 9 months he developed

epileptic seizures and hypotonia. At age 11 months, he

showed severe neurodevelopmental retardation, was unable

to walk and spoke only a few words. His purine metabolism

was first investigated during a screening of 150 children

with neurological impairment and partial HPRT deficiency

was found. Analyses were repeated on blood samples drawn

at the age of 14, 21, 36 months and 5 years. At 5 years he

could hardly sit, with frequent falls on his right hand side,

and could only stand and walk few steps with support.

Speech was virtually absent, and frequent stereotypes (roll-

ing) and attempts to bite himself appeared. Seizures were

frequent, with short attacks of impaired consciousness. The

following family members of L.C. were examined: the elder

brother (G.C.), age 8 years when first investigated, who had

severe neurodevelopmental retardation, drug-resistant seiz-

ures and autistic features but could sit and walk properly;

father, mother, grandmother and mother’s sisters (A, C and

R) and brother (G.M.). The latter, maternal uncle of L.C.,

age 34 years, had no clinical symptoms, not even related to

any kidney impairment, but turned out to have partial HPRT

deficiency.

Control children without metabolic dysfunction, 1–14

years of age were also examined (14 females and 12 males).

Control adults were 32 healthy volunteers 18–64 years of

age (17 females and 15 males). All subjects, including the

propositus’ parents and relatives, gave their informed con-

sent to the study. Blood samples were obtained as part of the

treatment programme or provided by voluntary donors and

thus ethical committee approval was not required.

2.2. Materials

Reagents of analytical grade were purchased from Sigma

(St. Louis, MO, USA). Chemicals for HPLC separation

were of the highest available quality.

2.3. Biochemical analysis

Non-radiochemical HPLC-linked methods previously

described [27,29–32] were used to measure purine and

pyridine nucleotide content in erythrocyte extracts, nucleo-

sides and bases in plasma extracts and urine, as well as

enzyme activities in erythrocyte lysates. The activities of the

Fig. 1. Synthesis of NAD in human erythrocytes. NA: nicotinic acid; NAm:

nicotinamide; NAMN: NA mononucleotide; NMN: NAm mononucleotide;

NAAD: NA adenine dinucleotide; NAD: NAm adenine dinucleotide;

PPRibP: 5-phosphoribosyl-1-pyrophosphate; gln: glutamine. (1) NA

phosphoribosyltransferase (EC 2.4.2.11); (2) NAm phosphoribosyltransfer-

ase (EC 2.4.2.12); (3) NAMN adenylyltransferase (EC 2.7.7.18) and NMN

adenylyltransferase (EC 2.7.7.1); (4) NAD synthetase (EC 6.3.5.1).
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following enzymes were detected by previously described

methods: HPRT, APRT [27], PPRibP synthetase (PRPS)

[30], adenosine deaminase (ADA), purine nucleoside phos-

phorylase (PNP) [21], NAPRT [29], nicotinic acid mono-

nucleotide (NAMN) and nicotinamide mononucleotide

(NMN) adenylyltransferase (NAMN/NMN-AT), NADs

[31], orotate phosphoribosyltransferase (OPRT) and OMP

decarboxylase (ODC) [32]. Urine samples were prepared

according to Simmonds et al. [33]; 24-h urine specimens

collected after 3 days of low-purine diet, preserved with

toluene, were warmed at 56 jC for 30 min with frequent

shaking to dissolve precipitated compounds, and diluted

1:31 with HPLC eluant A for HPLC processing (see below).

Conversion of 14C-labelled precursors hypoxanthine

(Hyp), adenine (Ade), NA and nicotinamide (NAm) into

nucleotides was investigated after incubation of intact cells

in isotonic PPRibP-producing medium, as previously

described [27]. Incubation time with Hyp and Ade was 1

h, and that with NA and NAm was 6 h.

Two HPLC apparatus were used, consisting of a Beck-

man System Gold Module 126, with a mod. 167 dual

channel scanning detector module (System 1), or a Beck-

man 420 controller, equipped with a mod. 163 variable

wavelength detector (System 2) in-line with a mod. 171

radioisotope detector with a packed solid scintillation cell of

125 or 300 Al capacity (Beckman, San Ramon, CA, USA).

Supelcosil LC-18 columns (3 Am particle size, 75� 4.6

mm) or Beckman ODS Ultrasphere columns (3 Am particle

size, 70� 4.6 mm) or Phenomenex Luna C18 (3 Am
particle size, 75� 4.6 mm) equipped with guard columns

(Supelguard, 5 Am, 2 cm, or Phenomenex Security guard 4

mm L� 3 mm ID) were used.

The RP-HPLC elution procedures for assays conducted

on erythrocytes and plasma have been described [27]. A

gradient of 0.01 M potassium phosphate buffer pH 5.5

(eluant A) and methanol (eluant B), as described for plasma

analysis, was used for the analysis of urine samples. Peak

identities were confirmed by retention time, coelution with

internal standards and 280/260 nm absorbance ratios; con-

centration/area linear plots were developed for quantifica-

tion. A mixture of all standard solutions was injected daily

to check the reliability of separation and any modification of

RTs due to the chromatographic system. Radioactive com-

pounds were separated by Sys 2; the UV trace at 260 nm

and the radioactivity trace were monitored. Radioactive

peak area was converted to count per minute and then

nanomoles according to the specific activity of the precursor

used.

2.4. DNA analysis

Genomic DNA was purified from peripheral blood lym-

phocytes according to Miller [34]. DNA fragments of each

exon, amplified by symmetric followed by asymmetric PCR

[35], were purified with glasspowder (Geneclean, La Jolla)

and directly sequenced (Sequenase, USB, Amersham).

SSCP analysis was performed as described previously [36].

3. Results

3.1. Purine and pyridine enzymes

The activities of the enzymes of purine (PRPS, HPRT,

APRT) and pyridine (NAPRT, NMN/NAMN-AT, and

NADs) metabolism of the propositus and relatives are

reported in Table 1. HPRT activity in erythrocyte lysate of

L.C. was 17% of the normal value and APRT activity was

increased more than twofold. L.C.’s uncle, G.M., showed an

even lower HPRT activity (10%) with APRT activity in the

normal range. HPRT/APRT activity ratio was very low in

both the propositus and G.M. (0.45 and 0.38, respectively)

compared with controls (5.8F 1.6). PRPS activity was

within the normal range in all subjects except G.M., in

whom it was low. NAPRT and NADs activities were higher

than normal in the propositus, but not in G.M.; NMN/

NAMN-AT activities were within the normal range in all

subject. The activities of the purine enzymes ADA and PNP,

Table 1

Purine and pyridine enzyme activities in crude lysates of patient and relatives

Subjects HPRT APRT PRPS NAPRT NMN-AT NAMN-AT NADs

L.C. 23 51 38.2 2.50 0.37 0.29 0.89

Mother 121 20 38.8 1.49 0.25 0.27 –

Father 143 18 43.1 1.42 0.23 0.24 0.24

Brother 118 19 36.4 1.02 0.38 0.26 0.37

Uncle G.M. 11 29 14.1 1.19 0.20 0.22 0.27

Grandmother 77 22 31.3 1.09 0.20 0.19 0.20

Aunt A. 114 24 44.5 1.01 0.20 0.14 0.59

Aunt C. 121 22 43.2 1.25 0.24 0.13 0.45

Aunt R. 98 23 40.1 0.92 0.17 0.14 0.20

Controls

Adults 113F 11 21F 4 37F 9 1.01F 0.27 0.32F 0.08 0.29F 0.08 0.39F 0.11

Children 127F 30 21F 3 41F10 0.87F 0.37 0.437F 0.122 0.35F 0.12 0.45F 0.2

Activities in nmol/h/mg Hb (meanF standard deviation).
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assayed in the propositus L.C. and brother G.C., were within

the control range (control values for ADA: 78F 18 nmol/h/

mg Hb; L.C.:106, G.C.:138; control values for PNP:

4402F 965 nmol/h/mg Hb; L.C.: 5254, G.C.: 4871). The

activities of the pyrimidine enzymes OPRT and ODC were

also within control range in the propositus (OPRT 0.12,

ODC 0.18; children control range 0.33F 0.18 and 0.31F
0.14 nmol/h/mg Hb, respectively) and uncle G.M. (OPRT:

0.31, ODC 0.28; adult control values 0.19F 0.03 and

0.18F 0.03 nmol/h/mg Hb, respectively).

3.2. Metabolites in erythrocyte and plasma extracts and in

urine

Erythrocyte concentrations of nucleotides are reported in

Table 2. NAD levels were twice the normal and UDPs

concentrations were above normal in the propositus, but not

in G.M.; all the other nucleotides were within the age-

matched control range. The finding of the above alterations

in the propositus’ erythrocytes led us to suspect either HPRT

or PNP deficiency [21], but the latter was ruled out. ADP-

ribose (ADPR), produced by NAD breakdown, was also in

the normal range, though at the upper limit in G.M.

Plasma and urine concentrations of some metabolites are

reported in Table 3. Uric acid (UA) concentrations in plasma

were above the normal range in G.M., while hypoxanthine

(Hyp) concentrations were normal; the reverse situation was

found in the propositus, who showed raised levels of

hypoxanthine and normal levels of uric acid; no alteration

was detected in the propositus’ brother. In the propositus,

urinary hypoxanthine and xanthine (Xan) levels were also

above control values; uric acid was also elevated on the

basis of creatinine (crea) excretion (creatinine was 37 mg/dl

in the propositus and 32 mg/dl in the brother; control values

were 81F 45 mg/dl). Plasma concentrations of tryptophan

and Nam, possible NAD precursors, were in the control

range.

3.3. Intact cell studies

The rate of incorporation of radiolabeled hypoxanthine,

adenine, NA and NAm into nucleotides by intact erythro-

cytes is reported in Table 4. The uptake of hypoxanthine

was less than half the control in the propositus, and that of

adenine was double. The ratio of hypoxanthine uptake

versus adenine uptake was lower than controls in the

propositus (0.3, adult controls ranging 1.5F 0.5; and age-

matched controls 0.99F 0.28). Incubation with NA and

NAm yielded mono- and di-nucleotides. NAD was obtained

from both precursors; NAMN and NA adenine dinucleotide

(NAAD) from NA; NMN from NAm. The uptake of NA

and NAm was slightly above that of age-matched controls

Table 2

Nucleotide concentration in erythrocytes of patients and relatives

Subjects AMP ADP ATP GDP GTP UDPs ADPR NAD NADP

L.C. 8 111 1530 14 68 132 4.6 125 39

Uncle (G.M.) 11 120 995 7.5 68 55 12.5 66 41

Mother 11 135 1067 5 64 79 3.6 55 36

Father 24 111 1300 10 80 99 2.3 60 41

Brother 6 126 1526 10 78 82 5.4 72 46

Controls

Adults 16F 14 147F 57 1099F 264 12F 7 71F 29 67F 24 7.2F 3.9 42F 12 36F 9

Children 10F 4 151F 20 1270F 98 13F 9 85F 23 69F 4 9F 6.1 56F 22 41F16

Concentrations in nmol/ml packed cells (meanF standard deviation).

Table 3

Metabolites in plasma and urine of patients and relatives

Subjects Plasma Urine

UA Hyp Xan Trp NAm UA UA/crea Hyp Xan

L.C. 212 54 1.7 51 3.4 61.1 1.66 4.7 22.2

Uncle (G.M.) 356 5.3 3.3 36.8 1.5

Mother 181 2.3 – 35.9 1.0

Father 245 2.5 1.3 34.8 1.0

Brother 143 9.3 6.1 50.1 1.0 24.2 0.75 0.2 1.5

Controls

Adults 263F 57 3.8F 2.9 1.7F 0.8 40.7F 7 3.2F 2.1 48F 24 0.41F 0.2 1.12F 0.4 2.8F 1.7

Children 209F 50 4.2F 2.5 1.9F 0.9 39.5F 11 2.0F 1.8 69F 32 0.98F 0.39 1.13F 0.7 3.7F 2

Concentrations in plasma in nmol/ml; in urine mg/dl (meanF standard deviation).

Trp: tryptophan; Nam: nicotinamide.
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in the propositus (NAMN and NAD productions were

elevated).

3.4. HPRT studies

3.4.1. Apparent kinetic characteristics

The apparent Vmax and Km for both substrates of HPRT

(hypoxanthine and PPRibP) were determined in crude

hemolysates of the propositus and his uncle, parents and

brother. Markedly decreased apparent Vmax (14 and 11

nmol/h/mg Hb in L.C. and G.M., respectively, compared

to 76.3F 3.2 nmol/h/mg Hb in controls) and slightly

decreased apparent Km for hypoxanthine (0.5 and 1.8

Amol/l in L.C. and G.M., respectively, compared to

5.2F 0.2 Amol/l in controls) were found. To our knowledge,

this type of kinetic alteration had not been reported pre-

viously. The Km for PPRibP was within the control range

(43.9 and 37.9 Amol/l in L.C. and G.M., respectively,

compared to 37.5F 8.5 Amol/l in controls).

3.5. Enzyme stability

Recovery of HPRT activity after storage of erythrocytes

at � 80j and after heating lysates to 60 jC was measured in

order to check enzyme stability. No difference was found

among patients L.C. and G.M. and controls in either case

(no decay of enzyme activity after storage for up to 3 years

nor after heating for up to 8 min; data not shown).

3.6. Molecular studies

The complete nucleotide sequence of the coding region

of the HPRT gene of patient L.C. showed substitution of

C538 to T in exon 6. This mutation, confirmed by sequenc-

ing of the complementary strand and SSCP, changes leu-

cine-147 into phenylalanine. This is a new variant, not

reported previously, and has been termed HPRTPotenza.

The same mutation was confirmed in uncle G.M. No

alterations were found in any other exon. The mother and

grandmother were heterozygous for the mutation, whereas

the father, brother and mother’s sisters were homozygous

for the normal sequence. Fig. 2 shows sequence analysis of

PCR-amplified DNA of exon 6 of the HPRT gene in closest

relatives. To our knowledge this is the first Italian patient

with partial deficiency in whom mutation of the HPRT gene

has been investigated.

3.7. NAPRT and NADS studies

The increased activity of NAPRT and NADs in crude

lysate of the propositus may be due to an increased number

of active molecules, or the presence of altered molecules, or

Table 4

Production of purine nucleotides from radiolabeled Hyp and Ade (1 h incubation), and of pyridine nucleotides from NA and NAm (6-h incubation) in intact

erythrocytes

Precursor Hyp Ade NA NAm

Products IMP AMP+ADP+ATP NAMN NAAD NAD NMN NAD

Subjects

L.C. 76 235 410 11 105 8.9 11.2

Brother 215 169 370 14 98 11.0 5.1

Controls

Adults 173F 56 106F 27 346F 37 15.1F 8.4 55.9F 27.0 6.1F 2.3 7.2F 2.3

Children 160F 39 169F 37 296F 53 16.3F 8.6 56.7F 17.8 6.5F 4.4 5.04F 3.3

Production rates in nmol/ml erythrocytes (meanF standard deviation).

Fig. 2. SSCP analysis of PCR-amplified DNA of exon 6 of the HPRT gene in closest relatives.
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even the presence of endogenous metabolites activating

both enzymes. The latter hypothesis was ruled out by

comparing the activity measured in lysates from L.C. with

that measured in mixtures of equal volumes of lysate from

the patient and control lysate. No significant increase in

activity with respect to the expected mean value was found

for either enzyme (NAPRT—expected mean for L.C. plus

control 1.28 nmol/h/mg Hb, measured activity 1.37 nmol/h/

mg Hb; NADs—expected mean for L.C. plus control 0.62

nmol/h/mg Hb, measured activity 0.67 nmol/h/mg Hb).

Storage of washed erythrocytes for up to 1 year at

� 80jC did not show any difference in enzyme stability

(no significant decay in patients or controls; data not

shown).

4. Discussion

Metabolic and molecular studies were conducted in a

child (L.C.) with severe neurodevelopmental retardation and

his relatives. The child was found to have partial HPRT

deficiency without hyperuricemia, possibly due to the early

age of the child [1], and with mild hyperuricuria. His elder

brother, also mentally retarded with different features

including autistic behavior, had no deficiency in HPRT

activity. Partial deficiency was found in the propositus’

maternal uncle (G.M.) who showed no neurological or gout

symptoms. Metabolic studies involving purine, pyrimidine

and pyridine metabolism, devised to compare results with

findings in complete HPRT deficiency [21,27], were per-

formed in the erythrocytes. Molecular studies aimed at

understanding the predictable consequences of mutation

on HPRT activity were performed on genomic DNA. SSCP

analysis of PCR-amplified DNA of the two partially HPRT-

deficient subjects (L.C., G.M.) confirmed a point mutation

C538T in both and the full nucleotide sequence of genomic

DNA was determined [37]. This mutation has not been

reported previously and the new mutant form of human

HPRT was named HPRTPOTENZA. The propositus’ mother

and grandmother were found to be heterozygous carriers. To

our knowledge, L.C. is the first Italian patient in whom a

mutation of the HPRT gene causing partial deficiency has

been investigated. Moreover, the propositus’ uncle G.M. is

probably the second case of completely asymptomatic

partial HPRT deficiency [28].

Almost 300 different mutations occurring throughout the

HPRT gene have been identified so far and correlation

between mutations and phenotype investigated [5,6]. Stud-

ies lead to the conclusion that identification of mutations

provides a poor tool to predict the phenotypic manifestation.

Mutations leaving some residual enzyme activity are typi-

cally associated with less severe clinical manifestations.

Deletions and duplications within the gene have mostly

been demonstrated to cause complete enzyme deficiency

and LNS; point mutations have been identified in most

patients with either partial or complete deficiency. Con-

served amino acid substitutions are likely to alter HPRT

protein conformation less severely than nonconserved sub-

stitutions. In the mutation described here, the resulting

protein differs from normal HPRT by a single amino acid

(nonpolar leucine vs. nonpolar phenylalanine), yet the

enzyme activity is as little as 17% of normal. The amino

acid substitution found in HPRTPotenza is close to the

hypothesized binding-domain of hypoxanthine, and is

included in a homology area common to other phosphor-

ibosyltransferases [38], which suggests that also Leu147

might be involved in the binding of hypoxanthine. These

data are consistent with the slightly decreased apparent Km

for hypoxanthine found in crude hemolysates of the two

affected subjects also showing decreased Vmax. Different

kinetic alterations have been described in mutant enzymes

such as increased Km for PPRibP [15,39,40] and for

hypoxanthine [41] To our knowledge, the type of kinetic

alteration found in HPRTPotenza had not been reported

previously.

The appreciable conversion of hypoxanthine to IMP in

L.C.’s intact erythrocytes suggests that the deficiency in the

activity of crude lysates may be related to molecular

instability, though the activity did not show significant

decay either after storage or heating. The patient might

therefore have sufficient activity in his cells, as demonstra-

ted by the ratio of hypoxanthine uptake to adenine uptake,

which was one-third the normal value, whereas the ratio of

HPRT activity to APRT activity in lysates was one-tenth the

normal value.

The erythrocytes of the propositus (but not his uncle) had

the typical biochemical features reported in LNS cells

[21,27]: increased APRT activity, increased NAD concen-

trations and related activities of NAPRT and NADs. We

recently reported increased erythrocyte 5V-nucleotidase
activity in the partially deficient child L.C., as well as in a

group of LNS patients [42]. NAD concentrations in eryth-

rocytes of L.C. were twice the controls, possibly due to

increased synthesis through raised activities of NAPRT and

NADs, as suggested in LNS patients [27]. The alteration did

not seem to be caused by increased stability of the two

enzymes [43] or by the presence of intracellular activators,

and is probably related to molecular modifications or

increased synthesis of the two enzymes. OPRT and ODC

activity, often reported to be dramatically elevated in LNS

patients and possibly related to allopurinol treatment [44],

were within the normal range in L.C. and G.M., neither of

whom was on allopurinol therapy. The lack of any bio-

chemical alteration, except for low HPRT activity in G.M.’s

erythrocytes, is puzzling and suggests that partial deficiency

may have different features and vary from one patient to

another. The neurological manifestations in the child were

likely not related to partial HPRT deficiency. In fact they

were absent in the partially HPRT-deficient uncle. More-

over, a severe neurological impairment, though with differ-

ent clinical features, was also present in the elder brother

who had normal HPRT activity. The role of the biochemical
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alterations identified in patient L.C. on the neurological

manifestations is thus unknown.
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