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Abstract

The Amitsur–Levitzki theorem asserts that Mn(F) satisfies a polynomial identity of degree
2n. (Here, F is a field and Mn(F) is the algebra of n × n matrices over F .) It is easy to give
examples of subalgebras of Mn(F) that do satisfy an identity of lower degree and subalgebras
of Mn(F) that satisfy no polynomial identity of degree � 2n − 2. In this paper we prove that
the subalgebras of n × n matrices satisfying no nonzero polynomial of degree less than 2n

are, up to F -algebra isomorphisms, the class of full block upper triangular matrix algebras.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with n × n matrix subalgebras that do not satisfy a poly-
nomial identity of degree < 2n. Our aim is to present and prove the following theo-
rem: Let F be a field and let A be an F -subalgebra of Mn(F). If A does not satisfy
the standard polynomial s2n−2, then A is equivalent to a full block upper triangular
matrix algebra.

To begin, let F be a field, Mn(F) the algebra of n × n matrices over F , and
F {X} = F {X1, X2, . . . } the free associative algebra over F in countably many
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variables. A nonzero polynomial f (X1, . . . , Xm) ∈ F {X} is a polynomial identity
for an F -algebra R (or, R satisfies f ) if f (r1, . . . , rm) = 0 for all r1, . . . , rm ∈ R.

The standard polynomial of degree t is

st (X1, . . . , Xt ) =
∑
σ∈St

(sg σ)Xσ(1)Xσ(2) . . . Xσ(t),

where St is the symmetric group on {1, . . . , t} and (sg σ) is the sign of the permu-
tation σ ∈ St . The standard polynomial st is homogeneous of degree t , multilinear
and alternating. If t is odd then st (1, X2, . . . , Xt ) = st−1(X2, . . . , Xt ). Thus s2t is
an identity of R if and only if s2t+1 is an identity of R. The standard polynomial sq+r

is a linear combination, with coefficients being 1 or −1, of evaluations of sqsr . This
can be shown as follows: We partition the set of permutations Sq+r by defining the
equivalence relation τ ∼ σ if the images of the interval [1, q] under τ and σ are the
same set. Then, we have

st (X1, . . . , Xt ) =
∑

σ̄∈St /∼
(sg σ)sq(Xσ(1), . . . , Xσ(q))sr (Xσ(q+1), . . . , Xσ(t)).

(1.1)

The Amitsur–Levitzki theorem asserts that Mn(F) satisfies any standard polyno-
mial of degree 2n or higher. Moreover, if Mn(F) satisfies a polynomial of degree 2n,
then it is a scalar multiple of s2n (cf. [1]).

The standard polynomial s2n is a minimal identity in the sense that Mn(F) satis-
fies no polynomial identity of degree less than 2n. More generally, if A is a subalge-
bra of Mn(F) isomorphic to a full block upper triangular matrix algebra,




*
* ∗

. . .

0 *


 ,

then A satisfies no polynomial identity of degree less than 2n. To prove this assertion,
note that every full block upper triangular matrix algebra contains the “staircase
sequence” e11, e12, e22, e23, . . . , e(n−1)(n−1), e(n−1)n, enn, and

s2n−1
(
e11, e12, e22, e23, . . . , e(n−1)(n−1), e(n−1)n, enn

) = e1n, (1.2)

where the eij are the standard matrix units.
In Section 2 we provide the building blocks for the main theorem of this paper

and its proof. This proof and some of its consequences are presented in Section 3.
For polynomial identities in Ring Theory and the polynomial identities of n × n

matrices, [2,4] are suggested general references.
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2. Building blocks

Lemma 2.1. Let A be a simple F -subalgebra of Mn(F). Then either A = Mn(F)

or A satisfies the identity s2n−2(A) = 0.

Proof. By assumption, A is a a finite dimensional central simple algebra over its
center k. Let K denote the algebraic closure of k; then A ⊗k K is a simple K-alge-
bra in a natural way (cf. [4, §1.8]), with dimK(A ⊗k K) = dimk(A). Also, A ⊗k

K ∼=Mt(K) for some t � n. Suppose that A is a proper subalgebra of Mn(F). It
follows that t < n. Hence, by the Amitsur–Levitzki theorem, A ⊗k K satisfies s2n−2,
and the result follows since A is embedded as a k algebra in A ⊗k K . �

2.1. We now consider the case when A contains a “repetition”. We will need some
notation.

(i) Let M1, . . . , Mt be matrices in A,

Mk =

ak bk ck

0 ek dk

0 0 ak


 ,

ak, ck ∈ M�(F), ek ∈ Mm(F), bk ∈ M�×m(F ), dk ∈ Mm×�(F ).

Given 1 � i < j � t and σ ∈ St , set

mσ
t [i, j ] = (sg σ)aσ(1) . . . aσ(i−1)bσ(i)eσ(i+1) . . . eσ(j−1)dσ(j)aσ(j+1) . . . aσ(t),

and denote by W the set of all matrix products

{mσ
t [i, j ] : σ ∈ St and 1 � i < j � t}.

(ii) The projection ur returns the � × � upper right block of a matrix in A:

ur


a b c

0 e d
0 0 a


 = c

(iii) Given n × n matrices M1, . . . , Mt , we say that a matrix product M1 · · ·Mt

formally contains the factor A1 · · ·As if A1 = M�, A2 = M�+1, . . . , As = M�+s−1,
for some 1 � � � t . This notation is to distinguish to the case when CA1 · · ·AsD =
M1 · · ·Mt as n × n matrices, for some matrices C and D. Further, if � = 1, we say
that M1 · · ·Mt formally contains A1 · · ·As as left factor.

This is a good place to record a Lemma extracted from [1], which will be used
later.

Lemma 2.2 (AL50, Lemma 1, 450–451). If for an odd positive integer r we put Y =
Xi+1 · · ·Xi+r , and if s′ denotes the sum of all terms of sm(X) containing the common
factor Y, then

s′ = sm−r+1(X1, . . . , Xi, Y, Xi+r+1, . . . , Xm).
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Lemma 2.3. Set t = 2(� + m), and let M1, . . . , Mt be matrices in A such that for
all 1 � k � t,

Mk =

ak bk 0

0 ek dk

0 0 ak


 ,

for ak ∈ M�(F), ek ∈ Mm(F), bk ∈ M�×m(F ), dk ∈ Mm×�(F ).

Then ur[st (M1, . . . , Mt )] = 0.

Proof. First we observe that

ur[M1 · · ·Mt ] =
∑

1�i<j�t

aσ(1) . . . aσ(i−1)

× bσ(i)eσ(i+1) . . . eσ(j−1)dσ(j)aσ(j+1) . . . aσ(t),

which implies that

ur[st (M1, . . . , Mt )] =
∑
σ∈St

∑
1�i<j�t

mσ
t [i, j ]. (2.3)

To prove that ur[st (M1, . . . , Mt )] = 0, we split the right hand side into two sum-
mands:

ur[st (M1, . . . , Mt )] =
∑
σ∈St

∑
1�i<j�t
j−i−1�2m

mσ
t [i, j ] +

∑
σ∈St

∑
1�i<j�t
j−i�2m

mσ
t [i, j ]. (2.4)

Our goal is to show that each summand in (2.4) is zero. To handle the first summand
we introduce the following new equivalence relation on St . Given fixed 1 � i < j �
t , such that j − i − 1 � 2m, and given τ, σ ∈ St , say that τ is [i, j ]-equivalent to σ

if τ restricted to the initial and final intervals [1, i] and [j, t] equals the restriction of
σ to the same domain. In symbols,

τ ∼[i,j ] σ ⇐⇒ τ |[1,i] = σ |[1,i] and τ |[j,t] = σ |[j,t].
For each pair (i, j ), such that 1 � i < j � t and j − i − 1 � 2m, the relation ∼[i,j ]
yields a partition of St into disjoint subsets P k

[i,j ], k = 1, . . . , t !
(j−i−1)! . Then, we

have ∑
σ∈St

∑
1�i<j�t
j−i−1�2m

mσ
t [i, j ] =

∑
1�i<j�t
j−i−1�2m

∑
k

∑
σ∈P k[i,j ]

mσ
t [i, j ]

=
∑

1�i<j�t
j−i−1�2m

∑
k

∑
σ∈P k[i,j ]

(sg σ)aσ(1) · · · aσ(i−1)
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× bσ(i)eσ(i+1) · · · eσ(j−1)dσ(j)aσ(j+1) · · · aσ(t)

=
∑

1�i<j�t
j−i−1�2m

∑
k

(sg σk)aσk(1) · · · aσk(i−1)bσk(i)sdσk(j)aσk(j+1) · · · aσk(t),

where s = si−j+1(eσk(i+1), . . . , eσk(j−1)) and σk is a representative of the class P k
[i,j ].

Since j − i − 1 � 2m,

si−j+1(eσk(i+1), . . . , eσk(j−1)) = 0 for all k,

hence ∑
σ∈St

∑
1�i<j�t
j−i−1�2m

mσ
t [i, j ] = 0.

This takes care of the first term in (2.4). We now turn to the second summand. For
a given q, with 2 � q � t , denote by Rq the set of all q-tuples r = (r1, . . . , rq) of
different elements from {1, . . . , t} and by T(r1,... ,rq ) the set of matrix products w

formally containing the common factor br1er2 · · · erq−1drq . Considering all possible
q and q-tuples, the sets T(r1,... ,rq ) form a partition of W . We are interested in the case
when q � 2m + 1. Observe that

∑
σ∈St

∑
1�i<j�t
j−i�2m

mσ
t [i, j ] =

2m+1∑
q=2

∑
r∈Rq

∑
w∈T(r1,... ,rq )

w.

Fix q odd, a q-tuple (r1, . . . , rq), and the corresponding set of matrix products
T(r1,... ,rq ). Then,

∑
w∈T(r1,... ,rq )

w is the sum of all matrix products formally contain-

ing the common factor y = br1er2 · · · erq−1drq . Each matrix product w ∈ T(r1,... ,rq )

corresponds uniquely to a permutation σ ∈ St and a pair (i, j), such that the q-tuple
(r1, . . . , rq) is the image under σ of (i, . . . , j). Explicitly, the correspondence is
w = mσ

t [i, j ]. We can now apply Lemma 2.2 and the alternating property of the
standard polynomials. If σ0 ∈ St is a fixed permutation such that

σ0 : i → ri, 1 � i � q,

we have ∑
w∈T(r1,... ,rq )

w = (sg σ0)st−q+1
(
y, aσ0(q+1), . . . , aσ0(t)

)

where y = br1er2 · · · erq−1drq . Since t − q + 1 � 2�, and since all the arguments of
st−q+1 in the last equation are � × � matrices, it follows that
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∑
w∈T(r1,... ,rq )

w = 0, when q is odd and (r1, . . . , rq) is a fixed q-tuple. (2.5)

Therefore

2m+1∑
q=2
qodd

∑
r∈Rq

∑
w∈T(r1,... ,rq )

w = 0.

Suppose now that q is even, so q � 2m, and fix an arbitrary q-tuple r = (r1, . . . , rq).
We will split further the sets Tr . First consider all w ∈ Tr formally containing in
common the left factor y = br1er2 · · · erq−1drq , and call this subset Lr . Then, for each
r0 	∈ {r1, . . . , rq} consider the (q + 1)-tuple (r0, r) and the subset G(r0,r) of w ∈ Tr

formally containing in common the factor y = ar0br1er2 · · · erq−1drq . The sum of all
matrix products in the set Tr can be split as∑

w∈Tr

w =
∑
w∈Lr

w +
∑

r0:r0 /=r1,... ,rq

∑
w∈G(r0,r)

w.

For the terms in Lr we have

∑
w∈L(r1,... ,rq )

w = (sg σ0)yst−q

(
aσ0(q+1), . . . , aσ0(t)

)
, (2.6)

where y = br1er2 · · · erq−1drq , and where σ0 ∈ St is a fixed permutation such that

σ0 : i → ri, 1 � i � q.

Since t − q � 2�, we obtain∑
w∈Lr

w = 0. (2.7)

Finally, for a suitable fixed r0, the sequence (r0, r) has odd length, so we can
argue as in (2.5) to obtain∑

w∈G(r0,r)

w = (sg σ0)st−q+1
(
y, aσ0(q+2), . . . , aσ0(t)

) = 0,

where y = ar0br1er2 · · · erq−1drq , and where σ0 ∈ St is a fixed permutation such that

σ0 =
{

1 → r0,

i → ri−1, for 2 � i � q + 1.

This finishes the proof of Lemma 2.3. �
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Proposition 2.1. Let

A =




a b c

0 e d

0 0 a


 : a, c ∈ M�(F), e ∈ Mm(F), b ∈ M�×m(F), d ∈ Mm×�(F )


 .

Then, A satisfies s2(�+m).

Proof. For any t and matrices Mk ∈ A, k = 1 . . . t , set

Mk =

ak bk ck

0 ek dk

0 0 ak


 ,

ak, ck ∈ M�(F), ek ∈ Mm(F), bk ∈ M�×m(F ), dk ∈ Mm×�(F ).

By direct calculations, we obtain

ur[st (M1, . . . , Mt )] =
t∑

i=1

st (a1, . . . , ai−1, ci, ai+1, . . . , at )

+
∑
σ∈St

∑
1�i<j�t

mσ
t [i, j ].

Now set t = 2(� + m). It follows from (2.3) that

∑
σ∈St

∑
1�i<j�t

mσ
t [i, j ] = ur[st (M ′

1, . . . , M ′
t )] = 0,

where M ′
k is the matrix in A obtained by replacing the upper right corner ck of Mk

by 0 ∈ M�(F). Suitable applications of the Amitsur–Levitzki identity give us

ur[st (M1, . . . , Mt )] = 0,

st

((
a1 b1
0 e1

)
, . . . ,

(
at bt

0 et

))
= 0,

and

st

((
e1 d1
0 a1

)
, . . . ,

(
et dt

0 at

))
= 0.

Combining these three equations, it follows that st (M1, . . . , Mt ) = 0. �
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3. Main theorem

In this section we prove that if an F -subalgebra of Mn(F) does not satisfy the
standard polynomial s2n−2, then it is isomorphic as F -algebra to a full block upper
triangular matrix algebra.

3.1. We first introduce our notation and review some necessary background (cf. [3]).
(i) Let t be a positive integer, let �1, �2, . . . , �t be positive integers summing up

to n, and set

E(�1,�2,... ,�t )(F ) =




M�1 (F ) M�1×�2 (F ) · · · M�1×�t−1 (F ) M�1×�t (F )

0 M�2 (F ) · · · M�2×�t−1 (F ) M�2×�t (F )

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · M�t−1 (F ) M�t−1×�t (F )

0 0 · · · 0 M�t (F )




,

a full block upper triangular matrix subalgebra of Mn(F).
(ii) Recall that every F -algebra automorphism τ of Mn(F) is inner (i.e., there

exists an invertible Q in Mn(F) such that τ(a) = QaQ−1 for all a ∈ Mn(F)). We
will say that two F -subalgebras A, A′ of Mn(F) are equivalent provided there exists
an automorphism τ of Mn(F) such that τ(A) = A′.

(iii) We will say that a subalgebra � of E(�1,�2,... ,�t )(F ) is an (�1, �2, . . . , �t )-
extension of simple blocks if the projections πi : � → M�i

(F ), for 1 � i � t , are all
irreducible representations (when F is algebraically closed, of course, the represen-
tation πi is irreducible if and only if πi(�) = M�i

). Note that, every F -subalgebra A

of Mn(F) is equivalent to an (�1, �2, . . . , �t )-extension of simple blocks � for some
suitable (�1, �2, . . . , �t ).

Theorem 3.1. Let F be a field and let A be an F -subalgebra of Mn(F). If A does
not satisfy the standard polynomial s2n−2, then A is equivalent to a full block upper
triangular matrix algebra.

Proof. Without loss of generality we assume that A is an extension of simple blocks.
We proceed by induction on t , the number of diagonal blocks in A. If t = 1, A

is a simple algebra and therefore, in view of Lemma 2.1, A is a full matrix alge-
bra. Now suppose that there are t diagonal blocks of sizes �1, �2, . . . , �t , with n =
�1 + · · · + �t . The desired conclusion is: If A does not satisfy s2n−2, then it is full
block upper triangular. Assume that each matrix B ∈ A has the form

B =




B11 B12 · · · B1(t−1) B1t

0 B22 · · · B2(t−1) B2t

...
...

...
...

...

0 0 · · · B(t−1)(t−1) B(t−1)t

0 0 · · · 0 Btt


 .
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If A does not satisfy s2n−2, then it does not satisfy s2(�1+�2+···�t−1)−2s2�t . This implies
that the image of A gotten by deleting the last row and the last column does not
satisfy s2(�1+�2+···�t−1)−2, and by induction it is full block upper triangular. Similarly,
the image of A gotten by deleting the first row and the first column is full block upper
triangular. Since A can not be semisimple, A is full block upper triangular unless
the projections B → B11 and B → Btt are equivalent representations of A, which
means that there is a fixed matrix T such that T B11T

−1 = Btt for all B ∈ A. But
then Proposition 2.1 implies that A satisfies s2n−2. �

Corollary 3.1. The standard polynomial s2n−2 is an identity for any proper subal-
gebra of Un(F ), the algebra of upper triangular matrices over the field F.

Proof. Immediate from Theorem 3.1. �

Remark. The standard polynomial of degree 2n − 2 is not necessarily an iden-
tity for any proper subalgebra of Un(C) when C is a commutative ring: Let I be
a nonzero ideal of C, and consider the C-subalgebra B of Un(C) defined by the
property that the (1, 2)-entry of matrices in B lie in I . A staircase argument shows
that s2n−2(B) /= 0.
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