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Abstract

Our aim in this paper is to deal with Sobolev embeddings for Riesz potentials of order α for functions f

satisfying the Orlicz type condition∫ ∣∣f (y)
∣∣p(y)(log

(
c + ∣∣f (y)

∣∣))q(y)
dy < ∞,

where p(·) and q(·) are variable exponents satisfying the log-Hölder conditions.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The Sobolev space is a useful tool of the study for the existence and regularity of solutions of
partial differential equations. The famous Sobolev’s inequality says that the Riesz potential Iαf
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of order α with f ∈ Lp(Rn) belongs to Lp∗
(Rn) when 1 < p < ∞ and 1/p∗ = 1/p − α/n > 0.

If f satisfies the Orlicz condition∫ ∣∣f (y)
∣∣p(

log
(
e + ∣∣f (y)

∣∣))q
dy < ∞,

then it is known (see e.g. Cianchi [1]) that∫ (∣∣Iαf (x)
∣∣(log

(
e + ∣∣f (y)

∣∣))q/p)p∗
dx < ∞.

When p = 1, the situation is a little different (see O’Neil [13]).
In the present paper, we aim to establish Sobolev’s inequality for Riesz potentials of functions

in the Orlicz spaces of variable exponent. In recent years, the generalized Lebesgue spaces have
attracted more and more attention, in connection with the study of elasticity, fluid mechanics
and differential equations with p(·)-growth; see for example Orlicz [14], Kováčik–Rákosník
[9], Edmunds–Rákosník [4] and Růžička [15]. In the limiting case we are also concerned with
exponential integrabilities of Trudinger type and continuity for Riesz potentials.

For 0 < α < n, we define the Riesz potential of order α for a locally integrable function f on
Rn by

Iαf (x) =
∫

Rn

|x − y|α−nf (y) dy.

Here it is natural to assume that∫
Rn

(
1 + |y|)α−n∣∣f (y)

∣∣dy < ∞

(see [10, Theorem 1.1, Chapter 2]).
In this paper, following Cruz-Uribe and Fiorenza [2], we consider variable exponents p(·) and

q(·) such that∣∣p(x) − p(y)
∣∣ � a

log(e + 1/|x − y|) for all x, y ∈ Rn, (1.1)∣∣q(x) − q(y)
∣∣ � b

log(e + log(e + 1/|x − y|)) for all x, y ∈ Rn, (1.2)

1 � p− ≡ inf
x∈Rn

p(x) � sup
x∈Rn

p(x) ≡ p+ < ∞ (1.3)

and

−∞ < q− ≡ inf
x∈Rn

q(x) � sup
x∈Rn

q(x) ≡ q+ < ∞ (1.4)

for a, b > 0. Moreover, suppose there exist ε0 > 0 and C > 0 such that

sp(x)−1(log(e + s)
)q(x)−ε0 � Ctp(x)−1(log(e + t)

)q(x)−ε0 (1.5)

whenever 0 < s < t and x ∈ Rn. This is true if

K
(
p(x) − 1

) + q(x) � ε0

for some positive constant K .
Let G be a bounded Borel set in Rn. Let Φ(x, t) be a nonnegative function on G × R such

that
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(1) Φ(·, t) is measurable for each t .
(2) Φ(x, ·) is continuous and convex for each fixed x ∈ G.

Define the norm by

‖f ‖Φ(·,·)(G) = inf

{
λ > 0:

∫
G

Φ
(
x,

∣∣f (x)/λ
∣∣)dx � 1

}
and denote by Φ(·,·)(G) the space of all measurable functions f on G with ‖f ‖Φ(·,·)(G) < ∞.

If p(x) < n/α, then we set

1/p∗(x) = 1/p(x) − α/n.

Define

Φ(x, t) = tp(x)
(
log(c + t)

)q(x)
,

Ψ (x, t) = {
t
(
log(c + t)

)q(x)/p(x)}p∗(x)

and

Ψ̃ (x, t) = {
t
(
log(c + t)

)q(x)/p(x)−p(x)/p∗(x)}p∗(x)
,

where c � e is chosen so that Φ(x, ·), Ψ (x, ·) Ψ̃ (x, ·) are all convex on [0,∞).
For 0 < δ < n/α, divide G into four sets:

G1 = {
x ∈ G: 1 � p(x) < 1 + δ

}
,

G2 = {
x ∈ G: 1 + δ � p(x) < n/α

}
,

G3 = {
x ∈ G: p(x) � n/α and q(x) < p(x) − 1

}
,

G4 = {
x ∈ G: p(x) � n/α and q(x) � p(x) − 1

}
.

Denote by χE the characteristic function of a measurable set E.
Our main result is the following, which is an extension of Futamura–Mizuta [5], Futamura–

Mizuta–Shimomura [6] and Harjulehto–Hästö [7].

Theorem 1.1. Let p(·) and q(·) be as above. Then there exist constants c1, c2, c3, c4 > 0 such
that ∫

G

{
Ψ̃

(
x, Iαf1(x)

)
χG1(x) + Ψ

(
x, c−1

1 γ1(x)−1Iαf2(x)
)
χG2(x)

+ exp

(
Iαf3(x)p(x)/(p(x)−q(x)−1)

(c2γ3(x))p(x)/(p(x)−q(x)−1)

)
χG3(x)

+ exp

(
exp

(
Iαf4(x)p(x)/(p(x)−1)

c
p(x)/(p(x)−1)

3

))
χG4(x)

}
dx � c4

for all nonnegative measurable functions f on G with ‖f ‖Φ(·,·)(G) � 1, where fj = f χGj
(j =

1,2,3,4),

γ1(x) = p∗(x)(q(x)+p(x)−1)/p(x)
(
logp∗(x)

)q(x)/p(x)
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and

γ3(x) = γ2(x)−(p(x)−1)/p(x)
(
log

(
1/γ2(x)

))q(x)/p(x)

with γ2(x) = min{p(x) − q(x) − 1,1/2}.

The proof is given by discussing the cases (i) 1 � p(x) � p+ < n/α (Section 2), (ii) 1 <

p− � p(x) < n/α (Section 3), (iii) p− � n/α, q(x) < p(x) − 1 (Section 4) and (iv) p− � n/α,
q(x) � p(x) − 1 (Section 5), separately.

In their paper [7], Harjulehto–Hästö gave an integrability result of Sobolev functions by diving
the domain of integration into countably many measurable sets.

With the aid of O’Neil [13], one sees that if f ∈ L1(G), then∫
G

∣∣Iαf (x)
∣∣p∗(

log
(
e + ∣∣Iαf (x)

∣∣))−β
dx < ∞

when β > 1; this is not true when β = 1. Theorem 1.1 extends his result to the valuable exponent
case. In case p > 1, the maximal function is a crucial tool by Hedberg’s trick (see Hedberg [8]).
In case p− = 1, our strategy is to give an estimate of Iαf by use of a logarithmic type potential∫

{y∈G: |x−y|−ε<f (y)}

(
log

(
c + |x − y|−1))ε−1|x − y|−n

(
log

(
c + f (y)

))−ε
g(y) dy,

which plays a role of maximal functions, where g(y) = Φ(y,f (y)). Thus our proof is quite
different from that of O’Neil [13].

In Section 7, we are concerned with continuity of Riesz potentials when p(x) � n/α and
q(x) > p(x) − 1 for x ∈ Rn.

We define the logarithmic potential for a locally integrable function f on Rn by

Inf (x) =
∫

Rn

(
log+(

1/|x − y|))f (y)dy,

where log+ r = max{0, log r}. Here it is natural to assume that∫
Rn

(
log

(
e + |y|))∣∣f (y)

∣∣dy < ∞

(see [10, Theorem 1.1, Chapter 2]).
Finally, in Section 8, we show the exponential integrability of logarithmic potentials Inf .

2. Variable exponents near 1

Throughout this paper, let C denote various positive constants independent of the variables in
question and C(a, b, . . .) be a constant that depends on a, b, . . . .

Let us begin with Sobolev’s inequality for Riesz potentials of functions in Φ(·,·)(G) when
1 � p(x) � p+ < n/α, which gives an extension of O’Neil [13].

Theorem 2.1. Let p(·) and q(·) be as in the Introduction. Suppose

1 � p(x) � p+ < n/α
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for x ∈ Rn. Then there exists a constant c1 > 0 such that

‖Iαf ‖Ψ̃ (·,·)(G) � c1‖f ‖Φ(·,·)(G)

for all f ∈ Φ(·,·)(G).

When p(x) = p = 1 and q(x) = ε0 > 0 for x ∈ Rn, Theorem 2.1 says that(∫
G

∣∣Iαf (x)
∣∣p∗(

log
(
e + ∣∣Iαf (x)

∣∣))ε0p
∗−1

dx

)1/p∗

� C

for all measurable functions f satisfying∫
G

∣∣f (y)
∣∣(log

(
e + ∣∣f (y)

∣∣))ε0 dy � 1,

which is a consequence of O’Neil [13].
The case p− > 1 is treated in the next section, by use of maximal functions. However the

maximal operator fails to be bounded in Lp(·)(G) when p− = 1. To show Theorem 2.1, we
introduce the logarithmic type potential

J ≡
∫

{y∈G: |x−y|−ε<f (y)}
ρε−1

(|x − y|)(log
(
c + f (y)

))−ε
g(y) dy,

which plays a role of maximal functions; here g(y) = Φ(y, |f (y)|) and ρε−1(r) =
r−n(log(c + 1/r))ε−1 for 0 < ε < ε0/2 with ε0 in (1.5).

We use the notation B(x, r) to denote the open ball centered at x ∈ Rn of radius r > 0.

Lemma 2.2. Let p(·) and q(·) be as in Theorem 2.1. Let f be a nonnegative measurable function
on G with ‖f ‖Φ(·,·)(G) � 1. If

δ = J−1/n
(
log(c + J )

)−p(x)/n
,

then

I ≡
∫

{y∈G∩B(x,δ): |x−y|−ε<f (y)}
|x − y|α−n

(
log

(
c + 1/|x − y|))−ε(log

(
c + f (y)

))ε
f (y) dy

� C
{
J 1/p∗(x)

(
log(c + J )

)p(x)/p∗(x)−q(x)/p(x) + 1
}
.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1. First consider
the case when J � 1. We have by (1.5) for k > 0

I � k
(
log(c + k)

)ε
∫

{y∈G∩B(x,δ): |x−y|−ε<f (y)}
|x − y|α−n

(
log

(
c + 1/|x − y|))−ε

dy

+
∫

{y∈B(x,δ): |x−y|−ε<f (y)}
|x − y|α−n

(
log

(
c + 1/|x − y|))−ε(

log
(
c + f (y)

))ε
f (y)

× C

(
f (y)

)p(y)−1( log(c + f (y))
)q(y)−2ε

dy

k log(c + k)
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� C

{
k
(
log(c + k)

)ε
δα

(
log(c + 1/δ)

)−ε

+ δα
(
log(c + 1/δ)

)1−2ε
∫

{y∈B(x,δ): |x−y|−ε<f (y)}
ρε−1

(|x − y|)(log
(
c + f (y)

))−ε
g(y)

×
(

1

k

)p(y)−1( 1

log(c + k)

)q(y)−2ε

dy

}
.

Set

k = J 1/p(x)
(
log(c + J )

)−q(x)/p(x)
.

Since
logJ

log(1/δ)
= logJ

log(J 1/n(log(c + J ))p(x)/n)
� C,

we see that if y ∈ B(x, δ), then

J−p(y) = J−p(y)+p(x)J−p(x) � J a/ log(1/δ)J−p(x) � CJ−p(x)

and similarly(
log(c + J )

)p(y) �
(
log(c + J )

)a/ log(1/δ)(log(c + J )
)p(x) � C

(
log(c + J )

)p(x)
,

so that

k−p(y) � CJ−1(log(c + J )
)q(x)

and (
log(c + k)

)−q(y) � C
(
log(c + J )

)−q(x)
.

Consequently it follows that

I � C
{
J 1/p(x)

(
log(c + J )

)−q(x)/p(x)(log(c + J )
)ε

δα
(
log(c + 1/δ)

)−ε

+ δα
(
log(c + 1/δ)

)1−2ε
J 1/p(x)

(
log(c + J )

)−q(x)/p(x)+2ε}
� CJ 1/p(x)−α/n

(
log(c + J )

)−q(x)/p(x)−αp(x)/n+1
.

In the case J � 1, we set k = 1. The above considerations gives I � C. Now the result fol-
lows. �
Lemma 2.3. Let p(·) and q(·) be as in Theorem 2.1. Suppose p+ < n/α. Let f be a nonnegative
measurable function on G with ‖f ‖Φ(·,·)(G) � 1. Then∫

G\B(x,δ)

|x − y|α−nf (y) dy � Cδα−n/p(x)
(
log(c + 1/δ)

)−q(x)/p(x)

for all x ∈ G and δ > 0.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1. For y ∈ G \
B(x, δ), set

N(x,y) = |x − y|−n/p(x)
(
log

(
c + |x − y|−1))−q(x)/p(x)

.



18 Y. Mizuta et al. / Bull. Sci. math. 134 (2010) 12–36
By conditions (1.1), (1.2) and (1.5), we see that∫
G\B(x,δ)

|x − y|α−nf (y) dy

�
∫

G\B(x,δ)

|x − y|α−nN(x, y) dy

+ C

∫
G\B(x,δ)

|x − y|α−nf (y)

(
f (y)

N(x, y)

)p(y)−1( log(c + f (y))

log(c + N(x,y))

)q(y)

dy

� C

{
δα−n/p(x)

(
log(c + 1/δ)

)−q(x)/p(x)

+
∫

G\B(x,δ)

|x − y|α−n/p(x)
(
log

(
c + 1/|x − y|))−q(x)/p(x)

g(y) dy

}

� Cδα−n/p(x)
(
log(c + 1/δ)

)−q(x)/p(x)
(

1 +
∫

G\B(x,δ)

g(y) dy

)

� Cδα−n/p(x)
(
log(c + 1/δ)

)−q(x)/p(x)
,

where g(y) = f (y)p(y)(log(c + f (y)))q(y), as required. �
We denote by |E| the volume of E.

Proof of Theorem 2.1. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
For

δ = J−1/n
(
log(c + J )

)−p(x)/n
,

write

Iαf (x) =
∫

G∩B(x,δ)

|x − y|α−nf (y) dy +
∫

G\B(x,δ)

|x − y|α−nf (y) dy

= I1 + I2.

For 0 < ε < min{ε0/2, α}, set

J =
∫

{y∈G: |x−y|−ε<f (y)}
ρε−1

(|x − y|)(log
(
c + f (y)

))−ε
g(y) dy.

In view of Lemma 2.2, we find

I1 �
∫

G∩B(x,δ)

|x − y|α−n−ε dy

+
∫

{y∈B(x,δ): |x−y|−ε<f (y)}
|x − y|α−n (log(c + f (y)))ε

(log(c + |x − y|−ε))ε
f (y) dy

� C
{
1 + J 1/p∗(x)

(
log(c + J )

)p(x)/p∗(x)−q(x)/p(x)}
.
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Moreover, Lemma 2.3 yields

I2 � Cδα−n/p(x)
(
log(c + 1/δ)

)−q(x)/p(x)
,

so that

Iαf (x) � C
{
1 + J 1/p∗(x)

(
log(c + J )

)p(x)/p∗(x)−q(x)/p(x)

+ δα−n/p(x)
(
log(c + 1/δ)

)−q(x)/p(x)}
� C

{
1 + J 1/p∗(x)

(
log(c + J )

)p(x)/p∗(x)−q(x)/p(x)}
.

Hence we have∫
G

Ψ̃
(
x, Iαf (x)

)
dx � C

∫
G

(1 + J )dx.

By using Fubini’s theorem, we obtain∫
G

Ψ̃
(
x, Iαf (x)

)
dx

� C

{∫
G

( ∫
{y∈G: |x−y|−ε<f (y)}

ρε−1
(|x − y|)dx

)(
log

(
c + f (y)

))−ε
g(y) dy + |G|

}

� C

{∫
G

g(y)dy + |G|
}

� C,

which completes the proof. �
Remark 2.4. Let p(x) = p = 1 and

q(x) = 1

log(log(e + |x|−1))

for x ∈ B = B(0,1). Here, note that q(·) satisfies the condition (1.2) since

1

log(log(1/t))
− 1

log(log(1/s))
=

t−s∫
0

(
log

(
log

(
1/(r + s)

)))−2(log
(
1/(r + s)

))−1 dr

r + s

� C

t−s∫
0

(
log

(
log(1/r)

))−2(log(1/r)
)−1 dr

r

= C

log(log(1/(t − s)))

whenever 0 < s < t < 1/e. Set p∗ = n/(n − α). Then one can find f ∈ Φ(·,·)(B) such that∫
B

∣∣Iαf (x)
∣∣p∗(

log
(
c + ∣∣Iαf (x)

∣∣))p∗q(x)−1
dx = ∞.

To show this, for 0 < γ < 1/p∗, let f be a nonnegative function on B such that

f (y) = |y|−n
(
log

(
c + 1/|y|))−1(log

(
c + log

(
c + 1/|y|)))−γ−1

.



20 Y. Mizuta et al. / Bull. Sci. math. 134 (2010) 12–36
Then we have∫
B

f (y)
(
log

(
c + f (y)

))q(y)
dy < ∞

and for x ∈ B

Iαf (x) �
∫

B(0,|x|/2)

|x − y|α−nf (y) dy

� C|x|α−n

∫
B(0,|x|/2)

|y|−n
(
log

(
c + 1/|y|))−1(log

(
c + log

(
c + 1/|y|)))−γ−1

dy

� C|x|α−n
(
log

(
c + log

(
c + 1/|x|)))−γ

.

Hence it follows that∫
B

∣∣Iαf (x)
∣∣p∗(

log
(
c + ∣∣Iαf (x)

∣∣))p∗q(x)−1
dx

� C

∫
B

|x|−n
(
log

(
c + 1/|x|))−1(log

(
c + log

(
c + 1/|x|)))−γp∗

dx = ∞

when γ < 1/p∗.

3. Variable exponents near Sobolev’s exponent

Set

Ψ (x, t) = {
t
(
log(c + t)

)q(x)/p(x)}p∗(x)

and denote by Ψ (·,·)(G) the family of all measurable functions f on G such that

‖f ‖Ψ (·,·)(G) = inf

{
λ > 0:

∫
G

Ψ
(
x,

∣∣f (x)/λ
∣∣)dx � 1

}
< ∞.

Theorem 3.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.1)–(1.4) such that

1 < p− � p(x) < n/α

for x ∈ G. Then there exists a constant c1 > 0 such that∥∥γ1(·)−1Iαf
∥∥

Ψ (·,·)(G)
� c1‖f ‖Φ(·,·)(G)

for all f ∈ Φ(·,·)(G), where

γ1(x) = p∗(x)(q(x)+p(x)−1)/p(x)
(
logp∗(x)

)q(x)/p(x)
.

The case supx∈G p(x) < n/α was shown in [11, Theorem 2.8].

Remark 3.2. For 0 < δ < 1, we can find f ∈ Φ(·,·)(G) such that∫
G

Ψ
(
x, γ1(·)−δIαf (x)

)
dx = ∞

with q(x) = 0, so that the weight γ1(·)−1 in Theorem 3.1 is needed.
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For this, consider

p(x) = n

α
− 1

log(1/|x|)
for x ∈ B0 = B(0,1/e) and

f (y) = |y|−α
(
log

(
1/|y|))−β

for y ∈ B0. If α/n < β < 1, then∫
B0

f (y)p(y) dy < ∞.

If x ∈ B0, then

Iαf (x) �
∫

{y∈B0: |y|�|x|/2}
|x − y|α−nf (y) dy

� C

∫
{y∈B0: |y|�|x|/2}

|y|−n
(
log

(
1/|y|))−β

dy � C
(
log

(
1/|x|))−β+1

when β < 1. Now take β such that α/n < β < 1 and

−δ(1 − α/n) − β + 1 > 0.

Since p∗(x) = (n/α)2 log(1/|x|) − n/α, there exists a constant c0 > 0 such that γ1(x) �
C(log(1/|x|))1−α/n and p∗(x) > c0 log(1/|x|) for x ∈ B0. Hence we find∫

B0

Ψ
(
x, γ1(·)−δIαf (x)

)
dx � C

∫
B0

(
log

(
1/|x|))p∗(x)(−δ(1−α/n)−β+1)

dx

� C

∫
B0

(
log

(
1/|x|))c0(−δ(1−α/n)−β+1) log(1/|x|)

dx = ∞.

For a proof of Theorem 3.1, we prepare several results.

Lemma 3.3. Suppose 0 < a � R0 and 0 � b � R0. Then there exists a constant C(R0) > 0 such
that

1/2∫
δ

t−a
(
log(1/t)

)−b dt

t
� C(R0)a

−b−1δ−a
(
log(1/δ)

)−b

for all 0 < δ < 1/2.

Proof. Note that ua(s) = s−a(log(1/s))−b attains a minimum value of ebb−bab at s = e−b/a for
0 < s < 1. If 1/2 � e−b/a , then ua is decreasing on (0,1/2]. Hence

ua(t) � ua(δ) for 0 < δ � t < 1/2.
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If e−b/a < 1/2, then ua is decreasing on (0, e−b/a] and increasing on [e−b/a,1/2]. Hence, in the
case e−b/a � δ we have

ua(t) � ua(1/2)

ua(e−b/a)
ua(δ) = 2a(log 2)−b

ebb−bab
ua(δ) for 0 < δ � t < 1/2,

and, in the case 0 < δ < e−b/a we have

ua(t) � ua(δ) for 0 < δ � t < e−b/a,

ua(t) � 2a(log 2)−b

ebb−bab
ua(δ) for e−b/a � t < 1/2.

Therefore, we obtain

ua(t) � C(R0)a
−bua(δ) for 0 < δ � t < 1/2, (3.1)

so that

1/2∫
δ

t−a
(
log(1/t)

)−b dt

t
� C(R0)(a/2)−bua/2(δ)

1/2∫
δ

t−a/2 dt

t

� C(R0)2
b+1a−b−1δ−a

(
log(1/δ)

)−b

for all 0 < δ < 1/2, as required. �
Lemma 3.4. Let p(·) and q(·) be as in Theorem 3.1. Let f be a nonnegative measurable function
on G with ‖f ‖Φ(·,·)(G) � 1. Then∫

G\B(x,δ)

|x − y|α−nf (y) dy � Cγ1(x)δα−n/p(x)
(
log(1/δ)

)−q(x)/p(x)

for all x ∈ G and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
First note that∫

G\B(x,p∗(x)−1/n)

|x − y|α−nf (y) dy � p∗(x)1−α/n

∫
G

f (y)dy

� p∗(x)1−α/n

∫
G

{
1 + g(y)

}
dy

� Cp∗(x)1−α/n

� Cp∗(x)1−1/p(x)

� Cγ1(x)

since p∗(x)1/p∗(x) � C, where g(y) = f (y)p(y)(log(c + f (y)))q(y) as before.
Setting η(x) = p∗(x)−1/p(x)(logp∗(x))q(x)/p(x) and N(x,y) = |x − y|−n/p(x)(log(1/|x −

y|))−q(x)/p(x), we have
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∫
B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−nf (y) dy

�
∫

B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−n
{
η(x)N(x, y)

}
dy

+
∫

B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−nf (y)

× C

(
f (y)

η(x)N(x, y)

)p(y)−1( log(c + f (y))

log(c + η(x)N(x, y))

)q(y)

dy.

Here note that for y ∈ B(x,p∗(x)−1/n){
η(x)N(x, y)

}−p(y) � Cη(x)−p(x)|x − y|n(log
(
1/|x − y|))q(x)

since

p∗(x)p(y) � p∗(x)a/(logp∗(x)1/n)p∗(x)p(x) � Cp∗(x)p(x)

and

η(x)−p(y) � Cη(x)−p(x).

Further, noting that

log(c + st) � C log(c + s) log(c + t) when s, t > 0, (3.2)

we obtain{
log

(
c + η(x)N(x, y)

)}−q(y) � C
(
logp∗(x)

)q(y)(log
(
1/|x − y|))−q(y)

� C
(
logp∗(x)

)q(x)(log
(
1/|x − y|))−q(x)

for y ∈ B(x,p∗(x)−1/n). It follows from Lemma 3.3 and (3.1) that∫
B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−nf (y) dy

� C

{
η(x)

(
n/p(x) − α

)−q(x)/p(x)−1
δα−n/p(x)

(
log(1/δ)

)−q(x)/p(x)

+ η(x)1−p(x)
(
logp∗(x)

)q(x)

×
∫

B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−n/p(x)
(
log

(
1/|x − y|))−q(x)/p(x)

g(y) dy

}

� C

{
γ1(x)δα−n/p(x)

(
log(1/δ)

)−q(x)/p(x) + η(x)1−p(x)
(
logp∗(x)

)q(x)

× (
n/p(x) − α

)−q(x)/p(x)
δα−n/p(x)

(
log(1/δ)

)−q(x)/p(x)
∫

∗ −1/n

g(y) dy

}

B(x,p (x) )\B(x,δ)
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� Cγ1(x)δα−n/p(x)
(
log(1/δ)

)−q(x)/p(x)
(

1 +
∫

B(x,p∗(x)−1/n)\B(x,δ)

g(y) dy

)

� Cγ1(x)δα−n/p(x)
(
log(1/δ)

)−q(x)/p(x)
,

which proves the lemma. �
For a locally integrable function f on G, we set

fB = 1

|B|
∫

B∩G

f (y)dy.

We consider the maximal function Mf defined by

Mf (x) = sup
B

|f |B,

where the supremum is taken over all balls B = B(x, r). Diening [3] was the first who proved the
local boundedness of maximal functions in the Lebesgue spaces of variable exponents satisfying
the log-Hölder condition. In our case, we need the following result (see also D. Cruz-Uribe and
A. Fiorenza [2]):

Proposition 3.5. (See [11, Theorem 2.7].) Let p(·) and q(·) be two variable exponents on Rn

satisfying (1.1)–(1.4) such that

p− > 1.

Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1. Then∫
G

Φ
(
x,Mf (x)

)
dx � C.

Proof of Theorem 3.1. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
Write

f = f χ{y∈G: f (y)<1} + f χ{y∈G: f (y)�1} = f1 + f2.

Then Iαf1(x) � C.
We have by Lemma 3.4

Iαf (x) =
∫

B(x,δ)

|x − y|α−nf (y) dy +
∫

G\B(x,δ)

|x − y|α−nf (y) dy

� C
{
δαMf (x) + γ1(x)δα−n/p(x)

(
log(1/δ)

)−q(x)/p(x)}
for 0 < δ < 1/2. Here, considering

δ = C
(
γ1(x)−1Mf (x)

)−p(x)/n(log
(
γ1(x)−1Mf (x)

))−q(x)/n

when γ1(x)−1Mf (x) � 1, we find

Iαf (x) � Cγ1(x)αp(x)/nMf (x)1−αp(x)/n
(
log

(
c + γ1(x)−1Mf (x)

))−αq(x)/n
.
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If γ1(x)−1Mf (x) < 1, then

Iαf (x) � C
{
Mf (x) + γ1(x)

}
� Cγ1(x).

Hence it follows that

γ1(x)−1Iαf (x) � C
{(

γ1(x)−1Mf (x)
)1−αp(x)/n(log

(
c + γ1(x)−1Mf (x)

))−αq(x)/n + 1
}

� C
{
Mf (x)p(x)/p∗(x)

(
log

(
c + Mf (x)

))−αq(x)/n + 1
}

since γ1(x)−1/p∗(x) � C, so that{
c−1

1 γ1(x)−1Iαf (x)
(
log

(
c + γ1(x)−1Iαf (x)

))q(x)/p(x)}p∗(x) � C
{
Φ

(
x,Mf (x)

) + 1
}
.

By Proposition 3.5, we have∫
G

Ψ
(
x, c−1

1 γ1(x)−1Iαf (x)
)
dx � C

∫
G

{
Φ

(
x,Mf (x)

) + 1
}
dx � C,

which completes the proof. �
4. Trudinger’s exponential integrability

This section is concerned with the exponential integrability of Trudinger’s type.

Theorem 4.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.1)–(1.4) such that

p(x) � n/α and q(x) < p(x) − 1

for x ∈ G. Then there exist constants c1, c2 > 0 such that∫
G

exp

(
Iαf (x)p(x)/(p(x)−q(x)−1)

(c1γ3(x))p(x)/(p(x)−q(x)−1)

)
dx � c2

for all nonnegative measurable functions f on G with ‖f ‖Φ(·,·)(G) � 1, where

γ3(x) = γ2(x)−(p(x)−1)/p(x)
(
log

(
1/γ2(x)

))q(x)/p(x)

with γ2(x) = min{p(x) − q(x) − 1,1/2}.

Corollary 4.2. Let p(·) and q(·) be as in Theorem 4.1. Then there exists a constant c3 > 0 such
that ∫

G

{
exp

(
Iαf (x)p(x)/(p(x)−q(x)−1)

(c3γ3(x))p(x)/(p(x)−q(x)−1)

)
− 1

}
dx � 1

for all nonnegative measurable functions f on G with ‖f ‖Φ(·,·)(G) � 1.

Remark 4.3. For 0 < δ < 1, we can find f ∈ Φ(·,·)(G) such that∫
exp

((
γ3(x)−δIαf (x)

)p(x)/(p(x)−q(x)−1))
dx = ∞.
B0
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For this, consider

p(x) = n

α
+ 1

log(1/|x|)
for x ∈ B0 = B(0,1/4) and

f (y) = |y|−α
(
log

(
1/|y|))−1(

log log
(
1/|y|))−β

for y ∈ B0. If q(x) = p(x) − 1 − 1/ log log(1/|x|) and β > α/n, then∫
B0

f (y)p(y)
(
logf (y)

)q(y)
dy < ∞.

If x ∈ B0, then, as in Remark 3.2, we find

Iαf (x) � C
(
log log

(
1/|x|))−β+1

when β < 1. Now take β and ε > 0 such that α/n < β < 1 and

−δ(1 − α/n + ε) − β + 1 > 0.

Since

γ3(x) � C
(
log log

(
1/|x|))1−α/n(

log log log
(
1/|x|))(n−α)/n � C

(
log log

(
1/|x|))1−α/n+ε

and

p(x)/
(
p(x) − q(x) − 1

)
> (n/α) log log

(
1/|x|),

we have∫
B0

exp
((

γ3(x)−δIαf (x)
)p(x)/(p(x)−q(x)−1))

dx

�
∫
B0

exp
((

C log log
(
1/|x|))(−δ(1−α/n+ε)−β+1)(n/α) log log(1/|x|))

dx = ∞.

Before proving Theorem 4.1, we prepare the following result.

Lemma 4.4. Let p(·) and q(·) be as in Theorem 4.1. Let f be a nonnegative measurable function
on G with ‖f ‖Φ(·,·)(G) � 1. Then∫

G\B(x,δ)

|x − y|α−nf (y) dy � Cγ3(x)
(
log(1/δ)

)(p(x)−q(x)−1)/p(x)

for all x ∈ G and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
First note that∫

1/n

|x − y|α−nf (y) dy � Cγ2(x)(α−n)/n � Cγ2(x)−1+1/p(x).
G\B(x,γ2(x) )
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Setting η(x) = γ2(x)1/p(x)(log(1/γ2))
q(x)/p(x) and N(x,y) = |x − y|−n/p(x)(log(1/|x −

y|))−(q(x)+1)/p(x), we have∫
B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−nf (y) dy

�
∫

B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−n
{
η(x)N(x, y)

}
dy +

∫
B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−nf (y)

× C

(
f (y)

η(x)N(x, y)

)p(y)−1( log(c + f (y))

log(c + η(x)N(x, y))

)q(y)

dy.

If y ∈ B(x, γ2(x)1/n), then γ2(x)−p(y) � Cγ2(x)−p(x), so that

η(x)−p(y) � Cη(x)−p(x).

Hence{
η(x)N(x, y)

}−p(y) � Cη(x)−p(x)|x − y|n(log
(
1/|x − y|))q(x)+1

and by inequality (3.2){
log

(
c + η(x)N(x, y)

)}−q(y) � C
(
log

(
1/γ2(x)

))q(x)(log
(
1/|x − y|))−q(x)

for y ∈ B(x, γ2(x)1/n). Consequently it follows from Lemma 3.3 that∫
B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−nf (y) dy

� C

{
η(x)γ2(x)−1(log(1/δ)

)(p(x)−q(x)−1)/p(x) + η(x)−p(x)+1(log
(
1/γ2(x)

))q(x)

×
∫

B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−n/p(x)
(
log

(
1/|x − y|))(p(x)−q(x)−1)/p(x)

g(y) dy

}

� Cγ3(x)
(
log(1/δ)

)(p(x)−q(x)−1)/p(x)

(
1 +

∫
B(x,γ2(x)1/n)\B(x,δ)

g(y) dy

)

� Cγ3(x)
(
log(1/δ)

)(p(x)−q(x)−1)/p(x)
,

where g(y) = f (y)p(y)(log(c + f (y)))q(y) as before.
Thus we have proved that∫

G\B(x,δ)

|x − y|α−nf (y) dy � C
{
γ2(x)−1+1/p(x) + γ3(x)

(
log(1/δ)

)(p(x)−q(x)−1)/p(x)}
� Cγ3(x)

(
log(1/δ)

)(p(x)−q(x)−1)/p(x)

for 0 < δ < 1/2, which gives the lemma. �
Proof of Theorem 4.1. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
Then Lemma 4.4 gives
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Iαf (x) � C
{
δαMf (x) + γ3(x)

(
log(1/δ)

)(p(x)−q(x)−1)/p(x)}
for 0 < δ < 1/2. Here, considering

δ = C
(
γ3(x)−1Mf (x)

)−1/α(
log

(
γ3(x)−1Mf (x)

))(p(x)−q(x)−1)/(αp(x))

when γ3(x)−1Mf (x) � 1, we find

Iαf (x) � C
{
γ3(x)

(
log

(
c + γ3(x)−1Mf (x)

))(p(x)−q(x)−1)/p(x) + γ3(x)
}

� Cγ3(x)
(
log

(
c + Mf (x)

))(p(x)−q(x)−1)/p(x)
.

Hence it follows that

c−1
1 γ3(x)−1Iαf (x) �

(
log

(
c + Mf (x)

))(p(x)−q(x)−1)/p(x)
,

so that

exp

(
Iαf (x)p(x)/(p(x)−q(x)−1)

(c1γ3(x))p(x)/(p(x)−q(x)−1)

)
� c + Mf (x) � C

{
Φ

(
x,Mf (x)

) + 1
}
.

By Proposition 3.5, we have∫
G

exp

(
Iαf (x)p(x)/(p(x)−q(x)−1)

(c1γ3(x))p(x)/(p(x)−q(x)−1)

)
dx � C

(∫
G

Φ
(
x,Mf (x)

)
dx + 1

)
� C,

as required. �
5. Trudinger’s double exponential integrability

This section is devoted to the study of the double exponential integrability.

Theorem 5.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.1)–(1.4) such that

p(x) � n/α and q(x) � p(x) − 1

for x ∈ Rn. Then there exist constants c1, c2 > 0 such that∫
G

exp

(
exp

(
Iαf (x)p(x)/(p(x)−1)

c
p(x)/(p(x)−1)

1

))
dx � c2

for all nonnegative measurable functions f on G with ‖f ‖Φ(·,·)(G) � 1.

Lemma 5.2. Let p(·) and q(·) be as in Theorem 5.1 and let f be a nonnegative measurable
function on G with ‖f ‖Φ(·,·)(G) � 1. Then∫

G\B(x,δ)

|x − y|α−nf (y) dy � C
(
log

(
log(1/δ)

))(p(x)−1)/p(x)

for all x ∈ G and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
First note that∫

|x − y|α−nf (y) dy � C.
G\B(x,1/4)
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Next, setting N(x,y) = |x − y|−n/p(x)(log(1/|x − y|))−1(log(log(1/|x − y|)))−1/p(x), we
have ∫

B(x,1/4)\B(x,δ)

|x − y|α−nf (y) dy

�
∫

B(x,1/4)\B(x,δ)

|x − y|α−nN(x, y) dy

+
∫

B(x,1/4)\B(x,δ)

|x − y|α−nf (y)

(
f (y)

N(x, y)

)p(y)−1( log(c + f (y))

log(c + N(x,y))

)q(y)

dy

� C

{(
log

(
log(1/δ)

))(p(x)−1)/p(x) +
∫

B(x,1/4)\B(x,δ)

|x − y|α−n/p(x)

× (
log

(
1/|x − y|))p(x)−q(x)−1(log

(
log

(
1/|x − y|)))(p(x)−1)/p(x)

g(y) dy

}
� C

(
log

(
log(1/δ)

))(p(x)−1)/p(x)
,

where g(y) = f (y)p(y)(log(c + f (y)))q(y), as required. �
Proof of Theorem 5.1. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
Then Lemma 5.2 gives

Iαf (x) � CδαMf (x) + C
(
log

(
log(1/δ)

))(p(x)−1)/p(x)

for 0 < δ < 1/4. Here, considering

δ = CMf (x)−1/α
(
log

(
log

(
Mf (x)

)))(p(x)−1)/(αp(x))

when Mf (x) � e2, we find

Iαf (x) � C
(
log

(
c + log

(
c + Mf (x)

)))(p(x)−1)/p(x)
.

Hence it follows that

c−1
1 Iαf (x) �

(
log

(
log

(
c + Mf (x)

)))(p(x)−1)/p(x)
,

so that

exp

(
exp

(
Iαf (x)p(x)/(p(x)−1)

c
p(x)/(p(x)−1)

1

))
� C

{
Φ

(
x,Mf (x)

) + 1
}
.

Now Proposition 3.5 yields∫
G

exp

(
exp

(
Iαf (x)p(x)/(p(x)−1)

c
p(x)/(p(x)−1)

1

))
dx � C

(∫
G

Φ
(
x,Mf (x)

)
dx + 1

)
� c2,

as required. �
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6. Proof of Theorem 1.1

Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1. Let p1(x) =
min{p(x),1 + δ} for 0 < δ < n/α. Then Theorem 2.1 yields∫

G1

Ψ̃
(
x, Iαf1(x)

)
dx � C.

Letting p2(x) = max{p(x),1 + δ}, we see by Theorem 3.1 that∫
G2

Ψ
(
x, c−1

1 γ1(x)−1Iαf2(x)
)
dx � C,

where c1 > 0 is as in Theorem 3.1. Hence, in view of Theorems 4.1 and 5.1, Theorem 1.1 is
proved. �
7. Continuity of Riesz potentials

In this section we are concerned with continuity properties of Riesz potentials.

Theorem 7.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.1)–(1.4) such that

p(x) � n/α and q(x) > p(x) − 1

for x ∈ Rn. If f is a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1, then Iαf (x)

is continuous and∣∣Iαf (z) − Iαf (x)
∣∣ � Cγ5(x)

(
log

(
1/|z − x|))−(q(x)−p(x)+1)/p(x)

as z → x for each x ∈ G, where

γ5(x) = γ4(x)−(p(x)−1)/p(x)
(
log

(
1/γ4(x)

))q(x)/p(x)

with γ4(x) = min{q(x) − p(x) + 1,1/2}.

Lemma 7.2. Let p(·) and q(·) be as in Theorem 7.1. Let f be a nonnegative measurable function
on G with ‖f ‖Φ(·,·)(G) � 1. Then∫

B(x,δ)

|x − y|α−nf (y) dy � Cγ5(x, δ)
(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)

for all x ∈ G and 0 < δ < 1/4, where

γ5(x, t) = γ4(x)−(p(x)−1)/p(x)−a/(p(x) log(1/t))

× (
log

(
1/γ4(x)

))q(x)/p(x)−aq(x)/(p(x) log(1/t))+b/ log(log(1/t))
.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
Setting η(x) = γ4(x)1/p(x)(log(1/γ4(x)))q(x)/p(x) and N(x,y) = |x − y|−n/p(x)(log(1/|x −

y|))−(q(x)+1)/p(x), we have
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∫
B(x,δ)

|x − y|α−nf (y) dy

�
∫

B(x,δ)

|x − y|α−nη(x)N(x, y) dy

+
∫

B(x,δ)

|x − y|α−nf (y)

(
f (y)

η(x)N(x, y)

)p(y)−1( log(c + f (y))

log(c + η(x)N(x, y))

)q(y)

dy.

Note that{
η(x)N(x, y)

}−p(y) � η(x)−p(x)−a/ log(1/δ)|x − y|n(log
(
1/|x − y|))q(x)+1

and {
log

(
c + η(x)N(x, y)

)}−q(y) � C
(
log

(
1/γ4(x)

))q(x)+b/ log(log(1/δ))(log
(
1/|x − y|))−q(x)

for y ∈ B(x, δ). Consequently it follows that∫
B(x,δ)

|x − y|α−nf (y) dy

� C

{
η(x)γ4(x)−1(log(1/δ)

)−(q(x)−p(x)+1)/p(x)

+ η(x)−p(x)+1−a/ log(1/δ)
(
log

(
1/γ4(x)

))q(x)+b/ log(log(1/δ))

×
∫

B(x,δ)

|x − y|α−n/p(x)
(
log

(
1/|x − y|))−(q(x)−p(x)+1)/p(x)

g(y) dy

}

� Cγ5(x, δ)
(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)
(

1 +
∫

B(x,δ)

g(y) dy

)

� Cγ5(x, δ)
(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)
,

where g(y) = f (y)p(y)(log(c + f (y)))q(y), as required. �
Lemma 7.3. Let p(·) and q(·) be as in Theorem 7.1. Let f be a nonnegative measurable function
on G with ‖f ‖Φ(·,·)(G) � 1. Then∫

G\B(x,δ)

|x − y|α−n−1f (y)dy � Cδ−1(log(1/δ)
)−(q(x)−p(x)+1)/p(x)

for all x ∈ G and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
First note that∫

G\B(x,1/2)

|x − y|α−n−1f (y)dy � C.

Setting N(x,y) = |x − y|−n/p(x)(log(1/|x − y|))−(q(x)+1)/p(x), we have
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∫
B(x,1/2)\B(x,δ)

|x − y|α−n−1f (y)dy

�
∫

B(x,1/2)\B(x,δ)

|x − y|α−n−1N(x,y) dy

+
∫

B(x,1/2)\B(x,δ)

|x − y|α−n−1f (y)

(
f (y)

N(x, y)

)p(y)−1( log(c + f (y))

log(c + N(x,y))

)q(y)

dy.

Since {
N(x,y)

}−p(y) � C|x − y|n(log
(
1/|x − y|))q(x)+1

and {
log

(
c + N(x,y)

)}−q(y) � C
(
log

(
1/|x − y|))−q(x)

for y ∈ B(x,1/2), it follows from Lemma 3.3 that∫
B(x,1/2)\B(x,δ)

|x − y|α−n−1f (y)dy

� C

{
δ−1(log(1/δ)

)−(q(x)−p(x)+1)/p(x)

+
∫

B(x,1/2)\B(x,δ)

|x − y|α−n/p(x)−1(log
(
1/|x − y|))−(q(x)−p(x)+1)/p(x)

g(y) dy

}

� Cδ−1(log(1/δ)
)−(q(x)−p(x)+1)/p(x)

(
1 +

∫
B(x,1/2)\B(x,δ)

g(y) dy

)

� Cδ−1(log(1/δ)
)−(q(x)−p(x)+1)/p(x)

,

where g(y) = f (y)p(y)(log(c + f (y)))q(y), as required. �
Proof of Theorem 7.1. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.

Write

Iαf (x) − Iαf (z) =
∫

B(x,2|x−z|)
|x − y|α−nf (y) dy −

∫
B(x,2|x−z|)

|z − y|α−nf (y) dy

+
∫

G\B(x,2|x−z|)

(|x − y|α−n − |z − y|α−n
)
f (y)dy.

By Lemma 7.2, we have∫
B(x,2|x−z|)

|x − y|α−nf (y) dy � Cγ5
(
x,3|x − z|)(log

(
1/|z − x|))−(q(x)−p(x)+1)/p(x)

and
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∫
B(x,2|x−z|)

|z − y|α−nf (y) dy �
∫

B(z,3|x−z|)
|z − y|α−nf (y) dy

� Cγ5
(
z,3|x − z|)(log

(
1/|z − x|))−(q(z)−p(z)+1)/p(z)

for 0 < |x − z| < 1/2. On the other hand, by the mean value theorem for analysis, we have by
Lemma 7.3∫

G\B(x,2|x−z|)

∣∣|x − y|α−n − |z − y|α−n
∣∣f (y)dy

� C|x − z|
∫

G\B(x,2|x−z|)
|x − y|α−n−1f (y)dy

� C
(
log

(
1/|z − x|))−(q(x)−p(x)+1)/p(x)

.

Now we establish∣∣Iαf (x) − Iαf (z)
∣∣ � C

{
γ5

(
x,3|x − z|)(log

(
1/|z − x|))−(q(x)−p(x)+1)/p(x)

+ γ5
(
z,3|x − z|)(log

(
1/|z − x|))−(q(z)−p(z)+1)/p(z)}

for 0 < |x − z| < 1/4, which implies∣∣Iαf (z) − Iαf (x)
∣∣ � Cγ5(x)

(
log

(
1/|z − x|))−(q(x)−p(x)+1)/p(x)

as z → x for all x ∈ G. �
8. Logarithmic potentials

In this section we discuss Sobolev’s theorem for logarithmic potentials.

Theorem 8.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.2) such that
p(x) = 1 and

0 � q(x) < 1

for x ∈ Rn. Then there exist constants c1, c2 > 0 such that∫
G

{
exp

((
c1Inf (x)

)1/(1−q(x))) − 1
}
dx � c2

for all nonnegative measurable functions f on G with ‖f ‖Φ(·,·)(G) � 1.

To show this, we estimate Inf by the logarithmic potential

J =
∫
G

ρ−β

(|x − y|)g(y)dy,

where ρ−β(r) = r−n(log(2 + 1/r))−β with β > 1 and g(y) = f (y)(log(e + f (y)))q(y).
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Lemma 8.2. Let p(·) and q(·) be as in Theorem 8.1. Let f be a nonnegative measurable function
on G with ‖f ‖Φ(·,·)(G) � 1. Then

F ≡
∫

B(x,δ)

ρ−β

(|x − y|)f (y)dy � CJ
{(

log(e + J )
)−q(x) + (

log(e + 1/δ)
)−q(x)}

for all x ∈ G and δ > 0.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1. We have for
k > 0

F � k

∫
G

ρ−β

(|x − y|)dy +
∫

B(x,δ)

ρ−β

(|x − y|)f (y)

(
log(e + f (y))

log(e + k)

)q(y)

dy.

If J � δ−n, then we set

k = J
(
log(e + J )

)−q(x)
.

Since δ � J−1/n, we see that(
log(e + k)

)−q(y) � C
(
log(e + J )

)−q(x)

for y ∈ B(x, δ). Consequently it follows that

F � CJ
(
log(e + J )

)−q(x)
.

If J > δ−n, then we set

k = δ−n
(
log(e + 1/δ)

)−q(x)

and obtain

F � C
{
δ−n

(
log(e + 1/δ)

)−q(x) + (
log(e + 1/δ)

)−q(x)
J
}

� C
(
log(e + 1/δ)

)−q(x)
J.

Now the result follows. �
Lemma 8.3. Let p(·) and q(·) be as in Theorem 8.1. Let f be a nonnegative measurable function
on G with ‖f ‖Φ(·,·)(G) � 1. Then∫

G\B(x,δ)

log+(
1/|x − y|)f (y)dy � C

(
log(e + 1/δ)

)−q(x)+1

for all x ∈ G and δ > 0.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1. Let 0 < γ < n.
For y ∈ G \ B(x, δ) and δ > 0, set

N(x,y) = |x − y|−γ .

By condition (1.2), we see that
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∫
G\B(x,δ)

log+(
1/|x − y|)f (y)dy

�
∫
G

log+(
1/|x − y|)N(x,y) dy

+
∫

G\B(x,δ)

log+(
1/|x − y|)f (y)

(
log(e + f (y))

log(e + N(x,y))

)q(y)

dy

� C

{
1 +

∫
G\B(x,δ)

(
log

(
e + 1/|x − y|))−q(y)+1

g(y)dy

}

� C

{
1 + (

log(e + 1/δ)
)−q(x)+1

∫
G\B(x,δ)

g(y) dy

}

� C
(
log(e + 1/δ)

)−q(x)+1
,

where g(y) = f (y)p(y)(log(e + f (y)))q(y), as required. �
Proof of Theorem 8.1. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) � 1.
For x ∈ G and δ > 0, write

Inf (x) =
∫

B(x,δ)

log+(
1/|x − y|)f (y)dy +

∫
G\B(x,δ)

log+(
1/|x − y|)f (y)dy

= I1 + I2.

For β > 1, we infer from Lemma 8.2 that

I1 � Cδn
(
log(e + 1/δ)

)1+β
∫

B(x,δ)

ρ−β

(|x − y|)f (y)dy

� Cδn
(
log(e + 1/δ)

)1+β
J
{(

log(e + 1/δ)
)−q(x) + (

log(e + J )
)−q(x)}

.

Hence, in view of Lemma 8.3, we find

Inf (x) � C
{
δn

(
log(e + 1/δ)

)1+β
J
{(

log(e + 1/δ)
)−q(x) + (

log(e + J )
)−q(x)}

+ (
log(e + 1/δ)

)−q(x)+1}
.

Now, considering δ = J−1/n(log(e + J ))−β/n, we find

Inf (x) � C
(
log(e + J )

)−q(x)+1
,

so that

exp
((

c1Inf (x)
)1/(1−q(x))) � e + J.

Integrating both sides over G gives∫
G

exp
((

c1Inf (x)
)1/(1−q(x)))

dx � c2,

which proves the required result. �
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Theorem 8.4. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.1)–(1.4) such that

p(x) > 1 or q(x) � 1

for all x ∈ G. If f is a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) < ∞, then Inf

is continuous on G.

Proof. Let f be a nonnegative measurable function on G with ‖f ‖Φ(·,·)(G) < ∞. Then note that∫
G

f (y)
(
log

(
e + f (y)

))
dy < ∞.

Hence, it follows from [10, Theorem 9.1, Section 5.9] that Inf is continuous on G. �
In the same manner as Lemmas 8.2 and 8.3 we can show that

Inf (z) − Inf (x) = o
(|z − x|n(1−1/p(x))

(
log

(
1/|z − x|))γ )

as z → x, x ∈ G when p(x) < n′ and γ > 2 − (q(x) + 1)/p(x).
For further results, we refer the reader to the paper by Ohno [12].
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