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Abstract The major constituent of Alzheimer�s disease paired
helical filaments (PHF) core is intrinsically disordered protein
(IDP) tau. In spite of a considerable effort, insoluble character
of PHF together with inherent physical properties of IDP tau
have precluded so far reconstruction of PHF 3D structure by
X-ray crystallography or NMR spectroscopy. Here we present
first crystallographic study of PHF core C-terminus. Using
monoclonal antibody MN423 specific to the tertiary structure
of the PHF core, the in vivo PHF structure was imprinted into
recombinant core PHF tau. Crystallization of the complex led
to determination of the structure of the core PHF tau protein
fragment 386TDHGAE391 at 1.65 Å resolution. Structural anal-
ysis suggests important role of the core PHF C-terminus for
PHF assembly. It is reasonable to expect that this approach will
help to reveal the structural principles underlying the tau protein
assembly into PHF and possibly will facilitate rationale drug
design for inhibition of Alzheimer neurofibrillary changes.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Tertiary structure dependent monoclonal antibodies are an

important tool for investigation of the mechanism of patholog-

ical assembly of intrinsically disordered proteins (IDPs) [1,2].

Monoclonal antibody MN423 was raised against the paired

helical filaments (PHF) core, protease resistant product of pro-

teolytic cleavage of Alzheimer�s PHF, which retains its charac-

teristic morphological features and consists mainly of tau

protein [3]. The MN423 has unequivocal specificity for tau

ordered in the course of Alzheimer�s disease into the PHF

tau [4,5] and represents an in vivo imprint of the core PHF.

The potential of MN423 in solving the core PHF tau structure
Abbreviations: IDP, intrinsically disordered protein; PHF, paired
helical filaments
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was observed already in our first studies [3,6]. The epitope

analysis revealed that three- and four-repeat tau isoforms are

core constituents and allowed to determine the precise extent

of 12 kDa, 93–95 amino acids long protease resistant tau unit

of the core PHF [7,8]. Detailed analyzes showed that PHF core

C-terminal pentapeptide 387DHGAE391 is the main contribu-

tor to reactivity of MN423. For full reactivity a small contribu-

tion of PHF core N-terminal segments 306VQIVYK311,
321KCGSL325 is required [9].

IDP tau has no defined structure [10]. However, it can un-

dergo an induced folding or disorder-to-order transition when

bound to its partner [11], which is in our study MN423. We

have found that recombinant version of the core PHF tau

showed the same binding properties as in vivo derived core

PHF tau. Detailed examination of the binding mechanism sug-

gests that recombinant core PHF tau undergoes folding transi-

tion during binding to MN423 – the core PHF mold. We have

used this transition property of recombinant tau for crystallo-

graphic study of the core PHF tau. Here we describe the 3D

structure of the PHF core C-terminus in the complex with

MN423.
2. Materials and methods

2.1. Protein crystallization
Recombinant core PHF tau units tau306–391 and dGAE (tau297–

391) were prepared as described previously [12]. MN423 Fab produc-
tion, purification and preparation of two crystal forms (I and II) were
described in [13]. From a number of co-crystallization trials with the
complexes MN423–dGAE and MN423–tau306–391 only the later
yielded well diffracting crystals. Crystals grew after 3 months from
3 ll drops containing equimolar amounts of MN423 Fab and recom-
binant tau306–391 mixed with precipitant solution in 1:1 ratio. The
concentration of MN423 in 10 mM Tris–HCl, pH 7.2, with 50 mM
NaCl was 10 mg/ml. As a precipitant solution 12% (w/v) PEG 3350
in 100 mM MES buffer, pH 7.0, etc. was used. The drop contained
1 mM DTT and 4 mM iodoacetamide.
2.2. Structure determination and refinement
X-ray data collection and processing was described previously [13].

All subsequent calculations were performed with programs from the
CCP4 package [14] unless otherwise indicated. The structure was
solved by molecular replacement with the program MOLREP [15]
using as a search model randomly chosen Fab structure 1NBV [16].
The initial model yielded an R-factor of 52% and a correlation coeffi-
cient of 27% for data at 10–3 Å resolution. Molecular replacement
blished by Elsevier B.V. All rights reserved.
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showed clearly only one protein molecule in the asymmetric unit. The
structure was refined with the maximum likelihood program REF-
MAC5, version 5.1.24 [17] against 95% of the data, the remaining
5% randomly excluded from the full data set by the program
UNIQUEIFY were used for cross-validation in which Rfree, the free
R factor [18], was calculated to follow the progress of refinement.
All data were included in the final refinement step. Refinement of
the structure was altered with correcting the amino acid sequence
and building the parts which were different from those of 1NBV.
The models were inspected against (3Fo � 2Fc, ac) and (Fo � Fc, ac)
maps and adjusted manually between the cycles of refinement with
the program XtalView [19]. After each refinement cycle, the automated
refinement procedure ARP/wARP [20] was applied for modeling and
updating the solvent structure. The structure was initially refined with
isotropic, and in the later stages after the R factor had fallen to about
25%, with anisotropic temperature factors including the contributions
to the structure factors from the hydrogen atoms. Hydrogen atoms
were generated according to established geometrical criteria on their
parent C, N and O atoms. The temperature factors of the hydrogen
atoms were set equal to those of their parent atom. The inclusion of
hydrogen atoms lowered the values of R and Rfree by more than one
unit. Isotropic and anisotropic temperature factors, bond lengths,
and bond angles were restrained according to the standard criteria em-
ployed by REFMAC. Occupancies of water molecules were set to unity
and not refined. When the refinement converged with R and Rfree fac-
tors of 16.5% and 22.0%, respectively, the residues forming the core
PHF tau fragment were included into the PDB file. Next few refine-
ment cycles converged with final R and Rfree of 16.0% and 21.8%,
respectively. The refinement statistics are in Table 2. Atomic coordi-
nates and diffraction data for the complex of monoclonal antibody
MN423 with the core PHF tau fragment have been deposited in the
Protein Data Bank, http://www.pdb.org (PDB ID code 2v17).
2.3. Docking of the core PHF tau C-terminal fragment into MN423
binding site

Structure of monoclonal antibody MN423 Fab fragment was im-
ported into the molecular modeling program Sybyl (Tripos Inc., St.
Louis, MO, USA; http://www.tripos.com) and all water molecules
were removed. Hydrogen atoms were remodeled using Sybyl Biopoly-
mer module. Amino-terminal and carboxy-terminal groups were set to
be protonated and deprotonated, respectively. Steric clashes caused by
added atoms were removed by 100 cycles of minimization of protein
energy. Model of C-terminal pentapeptide 387DHGAE391 of the core
PHF tau protein with acetylated N-terminus was created with the help
of Sybyl Biopolymer module. Carboxy-terminal group was considered
as deprotonated. The antibody binding site was defined according to
MacCallum et al. [21] with origin of the binding site at the average po-
sition of Arg30L, Lys31L, Arg52H and Lys56H. A radius of 20 Å from
the origin was used to define the active site of the protein. 100 indepen-
dent dockings of peptide to the active site were performed using the
program GOLD version 3.0 [22]. Default parameters of genetic algo-
rithm were used for each docking: a maximum number of 100000
operations were performed on a population of 100 individuals with a
selection pressure of 1.1; operator weights for crossover, mutation,
and migration were set to 95, 95 and 10, respectively. GOLD fitness
function was finally used to evaluate the accuracy of binding modes.
From these one pose was chosen on the basis of scoring fitness value
(85.04 in overall rating), geometrical fit and chemical acceptance of
contacts.
2.4. Surface plasmon resonance measurements
BIACORE3000 instrument with CM5 sensorchip (Biacore AB,

Uppsala) was used. Amine-coupling reagents (EDC, NHS, ethanol-
amine pH 8.5), P20 detergent and 10 mM sodium acetate pH 5.0 were
obtained from Biacore AB. All experiments were performed at 25 �C in
phosphate-buffered saline pH 7.4 with 0.005% of P20 (PBS-P) as the
running buffer. Typically, 5000 RU (response units) of polyclonal
anti-mouse antibody (No. Z 0420; DakoCytomation, Glostrup, Den-
mark) was coupled at pH 5.0 via primary amines simultaneously in
two flow cells, one of which was used as a reference in measurement.
In each analysis cycle, MN423 (5 lg/ml in PBS-P) was captured in
the analytical flow cell to reach immobilization level 230–250 RU.
For determination of reaction mechanism, 330 nM solution of the re-
combinant core PHF tau unit dGAE was layered on sensorchip for 1, 3
and 20 min at 10 ll/min flow rate and its dissociation was recorded for
another 15 min. The ends of injection on the sensorgrams were aligned
and overlaid. For KD determination, duplicates of two-fold serial dilu-
tions of dGAE (5–80 nM) and three-fold serial dilutions of tau306–391
(6–150 nM), including PBS-P as a control, were injected at a flow rate
50 ll/min over the sensorchip, with 3 and 7 min of association and dis-
sociation time, respectively. Kinetic binding data were double refer-
enced [23] and fitted by BIA evaluation software 4.1 (Biacore AB) to
two-phase reaction model. Kinetic rate constants were approximated
globally, maximal responses were fitted locally and bulk response
was set to zero.
3. Results

3.1. MN423 core PHF imprint is a mold for recombinant IDP

tau

It has been shown by immunoblotting that MN423 recog-

nizes recombinant core PHF unit dGAE (tau297–391) with

an equal affinity as the genuine PHF core [8]. A quantitative

ELISA study revealed that MN423 epitope determinants on

the PHF core comprise spatial cooperation of C-terminal pen-

tapeptide 387DHGAE391 with two N-terminal segments
306VQIVYK311 and 321KCGSL325 [8,9] suggesting that

MN423 induces a conformational rearrangement and folding

of IDP tau. To confirm this assumption, we examined the

mechanism of complex formation between the MN423 and re-

combinant PHF core tau represented by dGAE. Surface plas-

mon resonance analysis revealed two-phase interaction

consisting of the fast initial phase, followed by a slower phase

which further contributes to the complex stability by decreas-

ing dissociation rate (Fig. 1A). The second slow interaction

phase reflects structural rearrangement of dGAE unit in the

course of binding. Further, we determined KD of complexes

of MN423 with core PHF tau units dGAE and tau306–391

applying two-phase reaction mechanism. Good fit was ob-

tained yielding similar affinity for both units (Fig. 1B and

C). It could be concluded that intrinsically disordered recom-

binant core PHF tau units, when exposed to interaction with

PHF core imprint – MN423, acquire an in vivo PHF core fold

and that the MN423 serves as a mold aiding the transition of

IDP tau into specific ordered state.
3.2. Structure of the core PHF tau imprint – MN423 Fab

fragment

Having confirmed the presence of a PHF core-like fold in the

complex of MN423 with recombinant PHF core tau units, we

aimed at crystallographic determination of its structure. The

structure was solved by molecular replacement and refined to

R/Rfree values of 16.0%/21.8%. There is one molecule of the

Fab fragment of monoclonal antibody MN423 in the asym-

metric unit consisting of 214 (light-chain) and 225 (heavy-

chain) residues. Due to the lack of reasonably clear electron

density, the C-terminal residues Gly223H–Pro224H–Ile225H

were not modeled. The main secondary structure elements of

the Fab fragment are b-strands with only two short a-helices

in the light chain (Fig. 2). The elbow angle corresponding to

the pseudodyad axis between the Fab constant and variable

domains is 165�. This value is within the minimum of bimodal

elbow angle distribution observed for Fab fragments [24]. The

angle was calculated by web-based service RBOW (http://

as2ts.llnl.gov/AS2TS/RBOW). The final model contains 1672

and 1651 non-hydrogen atoms in L and H chain, respectively,

http://www.pdb.org
http://www.tripos.com
http://as2ts.llnl.gov/AS2TS/RBOW
http://as2ts.llnl.gov/AS2TS/RBOW


Fig. 1. Two-phase binding of the recombinant core PHF tau units to
MN423. (A) dGAE was injected over MN423 surface with three
different contact times (red – 1 min, blue – 3 min, green – 20 min) and
its dissociation was followed for 15 min. Stability of the complex
increased in direct proportion to the contact time suggesting two-phase
reaction mechanism: first phase characterized by fast association and
fast dissociation and concomitant second phase in which additional
contacts between dGAE and MN423 were created, contributing to
decrease of dissociation rate of the complex. RU – response unit.
(B and C) Two-phase interaction model was used for KD determina-
tion of MN423–dGAE (B) and MN423–tau306–391 (C) complexes.
Calculated fits of sensorgrams (red lines) show excellent agreement
with experimental data. The association and dissociation rate
constants ka and kd, respectively, are as follows: dGAE – first phase
ka = 1.8 · 106 ± 5.5 · 104 s�1 M�1, kd = 1.4 · 10�1 ± 2.7 · 10�3 s�1;
second phase ka = 4.3 · 10�3 ± 4.4 · 10�5 s�1 M�1, kd = 2.0 · 10�3 ±
3.2 · 10�5 s�1; KD = 24 nM; tau306–391 – first phase ka = 1.4 ·
106 ± 3.4 · 104 s�1 M�1, kd = 1.4 · 10�1 ± 2.0 · 10�3 s�1; second phase
ka = 2.9 · 10�3 ± 2.9 · 10�5 s�1 M�1, kd = 2.5 · 10�3 ± 3.5 · 10�5 s�1;
KD = 46 nM.

Fig. 2. Stereo picture of the structure of MN423 Fab fragment (ribbon
diagram) with the core PHF tau C-terminal residues 386TDHGAE391

(space filling model) located in the antibody binding site. Chain L is in
red, H in blue. The figure was drawn by the program MOLSCRIPT
[40].
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44 atoms of the core PHF unit fragment and 702 water mole-

cules. There are 11 proline residues in the light and 13 in the

heavy-chain. Five of these, namely Pro8L, Pro95L, Pro141L,

Pro156H and Pro198H, and two serine residues, Ser158H

and Ser165H have the preceding peptide bond in cis conforma-

tion. The protein contains five cysteine residues in both the

light- and the heavy-chain. In each chain there are two S–S

bridges: Cys23L–Cys88L, Cys134L–Cys194L, and Cys22H–
Cys98H, Cys149H–Cys204H. Cys23L was modeled with two

conformations of SH group, each forming S–S bridge with

its partner. There are two unpaired cysteine residues, C-termi-

nal residue Cys214L and Cys137H located in a flexible surface

loop. The two cysteine residues do not occupy typical confor-

mation required for S–S bridge. The distance of their CA

atoms is only 4.82 Å, which is too short to allow formation

of the bridge. Under physiological conditions these two cys-

teine residues form a disulfide bond [13]. Breaking of the

Cys214L–Cys137H bridge is very likely caused by the presence

of DTT in crystallizing solution. As a consequence, the two

interacting loops are destabilized, having B-factor values about

three-times higher than the average (Fig. 3). As confirmed by

ELISA (data not shown), 1 mM DTT used in crystallization

solution did not decrease stability of the complex MN423–

tau306–391. It is not surprising, as the cysteines under discus-

sion are far apart from the binding site (Fig. 2). The model

contains a large number of water molecules (702). Out of these

only 14 have B factor greater than 50 Å2. These were checked

in electron density (>0.5r) and as they satisfied all criteria for

water molecules were not removed from the final model. Ther-

mal parameters of this magnitude are physically reasonable as

water molecules are only weakly held by H-bonding contacts

and are able to vibrate considerably or may not be fully occu-

pied.

3.3. Structure of the PHF core C-terminus and its binding to

MN423

Due to the long time required for crystal growth and high

susceptibility of recombinant tau to proteolysis, the proteins

from crystal used for data collection were analyzed by silver-

stained SDS–PAGE and immunoblotting. As tau306–391 has

not been found in the crystal (data not shown), it is likely that

it was digested during crystallization by an endoproteolytic

activity present in the crystallization drop. It is why the struc-

ture of only MN423 Fab fragment was refined. In parallel, the

PHF core C-terminal pentapeptide 387DHGAE391, which con-

stitutes the minimal recognition site of MN423 with the affinity



Fig. 3. Distribution of the main-chain average B values along the
light- and heavy-chain of the MN423 Fab fragment as a function of
residue numbers. Note the highly destabilized C-terminus of the light-
chain and two flexible loops in the constant region of the heavy-chain.
Destabilization of the C-terminal L region and the loop around residue
140 in the heavy-chain is caused by Cys214L–Cys137H bridge
reduction. The residues 165H–171H form a surface loop protruding
from the protein without any stabilizing contacts to the molecule
which explains its high flexibility.
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in micromolar range [25], was docked into the binding site of

MN423. Surprisingly, at the end of MN423 structure refine-

ment there was clear difference electron density at the binding

site which corresponded well to the position of in silico mod-

eled pentapeptide 387DHGAE391 (Fig. 4A). Further refinement

and rebuilding of the pentapeptide gave a unique structure

with an excellent fit to the electron density, suggesting full

occupancy and allowing to build-in also the sixth residue

Thr386 (Fig. 4B). Inclusion of the peptide improved refinement

statistics (see above). PHF core C-terminal hexapeptide
386TDHGAE391 has a form of a loop, which is not stabilized

by any direct intrachain hydrogen bonds (Fig. 4B). The surface

area of the hexapeptide is 829 Å2, approximately one-half of it

(421 Å2) is buried in the binding site showing high shape and

charge complementarity (Fig. 4C). The core fragment makes

seven direct and five water mediated hydrogen bonds with

MN423 (Fig. 4D and Table 1). The C-terminal main-chain car-

boxyl of Glu391A of tau fragment, which was previously

shown to be indispensable for the MN423 recognition [8,26],

forms four H-bonds: two with Arg52H and one with Tyr33H

and Tyr94L. The Asp387A side-chain carboxyl has been

shown to confer the ultimate contribution to the affinity of

the C-terminus of the core PHF tau [25], it forms two H-bonds

with Arg30L. To the binding affinity contributes also H-bond
between Ala390A main-chain nitrogen and Tyr94L main-chain

oxygen as well as H-bonds mediated through water molecules.

Dense packing of amino acids around Gly389A, the CA atom

of which is directly facing the aromatic ring of Phe32L (Fig. 5),

does not allow any amino acid but glycine to occupy this posi-

tion. It is structural confirmation of our previous observation

on absolute requirement for Gly at the �3 position for MN423

recognition [26].

3.4. Accuracy of the model

Electron density was clear throughout the whole structure

except for a few flexible surface loops with highest B values.

These can be identified from the plot of average B values of

the main-chain atoms as a function of residue numbers

(Fig. 3). Estimated standard uncertainty (ESU) based on R

and Rfree factors (the Cruickshank�s dispersion precision indi-

cator DPI, [27]) and the average temperature factors for pro-

tein atoms and water molecules are shown in Table 2. The

temperature factors are in good agreement with the estimates

from the Wilson plot [28]. The Ramachandran plot [29] calcu-

lated by the program PROCHECK [30] for the structure

shows that there are 90.4% in the L chain and 91.0% in the

H chain of residues in the most favored regions. The reminders

are in the additionally allowed regions except Arg30L and

Ser165H, the torsion angles of which are in generously allowed

region. Inspection of the electron density around Arg30L,

which is very clear, does not show any indication of errors in

placing the main-chain atoms. Ser165H is in the flexible sur-

face loop which might have caused deviations of its torsion an-

gles from ideal values. The x angle deviates from planarity for

most of residues in the model. For some residues x deviates by

as much as 20�. This agrees with observations in a number of

very accurate atomic resolution structures [31–33]. The average

value for x angle is 178.0� and 178.4� with standard deviations

of 6.4� and 7.3� for L and H chains, respectively.
4. Discussion

This work represents the first crystallographic insight into

the intrinsically disordered protein tau in Alzheimer�s disease

core PHF. There are a number of laboratories struggling to

determine the structure of the core PHF tau. Each laboratory

has developed its own methodology and the use of different

techniques, as circular dichroism, nuclear magnetic resonance,

X-ray diffraction and some others. There have been suggested

several models of the arrangement of tau molecules within the

PHFs or in solution (e.g. [34–38] and others). In spite of that

the structure of tau still escapes its determination.

MN423 is the core PHF-specific antibody representing 3D

imprint of the in vivo PHF tertiary structure. As it reacts with

recombinant version of the core PHF tau in similar way as

with in vivo derived core PHF tau, it is reasonable to say that

MN423 represents a PHF core mold for recombinant tau. The

C-terminal hexapeptide of the compact PHF core was fixed in

the MN423 binding site and its structure was determined. As

the MN423 was raised against a compact, protease resistant

core PHF tau [3,5], the hexapeptide directly interacting with

MN423 is an integral part of the compact PHF core. The loop

conformation of the hexapeptide 386TDHGAE391, described in

this study thus represents the genuine structure of core PHF

tau C-terminus. Notwithstanding the hexapeptide lies outside
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Fig. 4. Structure of the C-terminal hexapeptide 387TDHGAE391 of PHF core and its binding by antibody MN423. (A) Difference electron density
(1r) at the binding site of antibody MN423 and in silico modeled pentapeptide 387DHGAE391 with acetylated N-terminus before the residues were
included in the refinement. (B) Electron density and the model of hexapeptide 387TDHGAE391 after refinement. (C) The core PHF fragment in the
binding site of the antibody MN423 (in stereo) shows shape and charge fit. The molecular surface is colored by electrostatic potential isocontours
(blue +71.5 kT/e; red –71.5 kT/e). (D) Detailed stereoview on the core PHF tau C-terminal segment (chain A, in red) and the surrounding residues of
the antibody (black) with the most important direct H-bonds (dashed lines). The conformation of the docked pentapeptide, drawn in light black, is
close to that determined by X-rays. The figures (A) and (B) were drawn by the program BOBSCRIPT [41], the figure (C) was prepared by the
program PYMOL (http://pymol.sourceforge.net) with surface electrostatic potential calculated by APBS [42] in the PYMOL, the figure (D) was
drawn by the program MOLSCRIPT [40].
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the repeat region known to convert to beta-structure during

PHF assembly [39], its close association with the compact
PHF core suggests a potential role of the C-terminal core pep-

tide in PHF assembly.

http://pymol.sourceforge.net


Table 2
Refinement statistics

Space group P21

Unit cell
a (Å) 71.54
b (Å) 36.81
c (Å) 85.54
b (�) 113.93

Protein molecules in asymmetric unit 1
Resolution (Å) 1.65
R (%)a 16.0
Rfree (%)b 21.8
Model – atom sites 3323
Ligand – atom sites 44
Solvent molecules 702

Average B values (Å2)
Protein atoms L/H 14.4/15.5
Ligand 21.4
Solvent molecules 29.6
B (Wilson plot) (Å2) 12.81
Coordinates ESU based on R/Rfree (Å) 0.165/0.108
ESU based on maximum likelihood (Å) 0.064

Stereochemical restraints, r.m.s. (r)
Bond lengths (Å) 0.016
Bond angles (�) 1.663
Chiral centers (Å3) 0.182
Planar groups (Å) 0.008

B factors restraints (Å2)
Main-chain bond 1.311
Main-chain angle 2.218
Side-chain bond 2.937
Side-chain angle 4.267

aR =
P

|Fo � Fc|/
P

|Fo|, where Fo and Fc are the observed and calcu-
lated structure factors.
bRfree was calculated as R but only for 5% of data.

Table 1
Direct and water mediated hydrogen bonds between MN423 and the
ligand

Atom Distance
(Å)

Atom Distance
(Å)

Atom

His91L O 2.88 Ala390A N
Arg52H NE 2.80 Glu391A OT
Tyr33H OH 2.62 Glu391A OT
Arg52H NH2 2.88 Glu391A O
Tyr94L OH 2.72 Glu391A O
Arg30L NH1 3.52 Asp387A OD1
Arg30L NH2 2.77 Asp387A OD2
His91L ND1 2.99 W3 2.82 Ala390A O
Arg106H N 2.94 W20 2.81 Ala390A O

W20 3.50 Glu391A OE2
Ala107H N 3.19 W3 2.76 His388A O
Ser50L OG 2.75 W117 2.63 His388A ND1

Fig. 5. A detailed view on Gly389A interaction with Phe32L (in
stereo) shows dense packing of the two residues which does not allow
any other amino acid but glycine to occupy this position. The figure
was drawn by the program MOLSCRIPT [40].

J. Sevcik et al. / FEBS Letters 581 (2007) 5872–5878 5877
The structure of the complex was solved by molecular

replacement and refined with high accuracy to R/Rfree factors

of 16%/22% at a resolution of 1.65 Å. In the Protein Data

Bank there have been deposited more than 500 structures of

antibody Fab fragments, less than 20 of them with resolution

better than 1.65 Å and comparable accuracy. Geometry of

the structure is very good as judged by Ramachandran plot.

The core PHF tau fragment 386TDHGAE391 is positioned in

a cavity formed by hypervariable loops of L and H chain mak-

ing a number of contacts with the protein. Differences between

coordinates of the core PHF tau peptide found by docking and

those in the final model were small. Structure of the complex is

in perfect agreement with the previously published biochemical

data [8,9,25,26], which independently confirm correctness of

the peptide structure.

The approach presented here suggests a new possibility in

crystallographic analysis of intrinsically disordered proteins

involved in pathogenesis of neurodegenerative diseases.

Presented structure of PHF core C-terminal hexapeptide con-

firmed known property of IDPs to undergo disorder-to-order

transition when they interact with binding partners. The

PHF core imprint, monoclonal antibody MN423 serves as a

mold for a part of recombinant tau which after induced folding

acquires the same conformation as the core PHF. We are

aware of the fact that proposed approach probably cannot

solve the structure of the core PHF as a whole but by parts,

if other conformation-dependent monoclonals could be pre-

pared. In combination with in silico docking aimed at finding
a physically feasible binding mode, it may represent a powerful

tool for structural studies of IDP tau.
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