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spectrum inclusion. In addition, the isolated points of these two classes of operators will
be fully characterized.
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1. Introduction

In the recent past the relationship between, on the one hand,Weyl and Browder’s theorems and their generalizations and,
on the other, tensor products and elementary operators has been intensively studied, see for example [1–8]. In particular,
given two operators that satisfy Browder’s theorem, it is proved in [6] that a necessary and sufficient condition for the
tensor product operator to satisfy Browder’s theorem is that theWeyl spectrum identity holds, see the latter cited article or
Section 4.

The main objective of this work is to characterize when given two operators that satisfy the generalized Browder’s
theorem, the tensor product operator also satisfies the generalized Browder’s theorem, using in particular the B-Weyl
spectrum identity. Furthermore, since one inclusion always holds for operators satisfying the generalized Browder’s
theorem, it is enough to consider the B-Weyl spectrum inclusion, see Section 4. It is worth noticing that since Browder’s
and the generalized Browder’s theorem are equivalent [9], the results of this work also provide a characterization for the
transfer property of the Browder’s theorem for the tensor product operator.

However, to prove the key characterization of Section 4, the set of isolated points of the tensor product operator need to be
studied. In particular, after Section 2where several basic definitions and facts will be recalled, the poles and the complement
of the poles in the isolated points of the tensor product operator will be characterized in terms of the corresponding sets
of the source operators. It is important to note that these results continue and deepen the characterization of the isolated
points of the tensor product operator presented in [3, see Section 3].

Finally, since the same arguments can be applied to the left–right multiplication operator, similar characterizations will
be proved for elementary operators.
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2. Preliminary definitions

From now on X and Y shall denote infinite dimensional complex Banach spaces and B(X, Y) the algebra of all bounded
linearmaps defined onX andwith values inY. As usual, whenX = Y, B(X, X) = B(X). Given A ∈ B(X),N(A), R(A), σ (A)
and σa(A) will stand for the null space, the range, the spectrum and the approximate point spectrum of A respectively. In
addition, X∗ will denote the dual space of X, and if A ∈ X, then A∗

∈ B(X∗) will stand for the adjoint map of A.
Recall that A ∈ B(X) is said to be aWeyl operator, if the dimensions both of N(A) and of X/R(A) are finite and equal. Let

σw(A) be the Weyl spectrum of A, i.e., σw(A) = {λ ∈ C: A − λ is not Weyl}, where A − λ stands for A − λI, I the identity
map of X. Note, in addition, that the concept of Weyl operator has been generalized recently. An operator A ∈ B(X) will
be said to be B-Weyl, if there exists n ∈ N for which the range of R(An) is closed and the induced operator An ∈ B(R(An)) is
Weyl [10]. It is worth noticing that if for some n ∈ N, An ∈ B(R(An)) is Weyl, then Am ∈ B(R(Am)) is Weyl for allm ≥ n [11].
Naturally, from this class of operators the B-Weyl spectrum of A ∈ B(X) can be derived in the usual way; this spectrumwill
be denoted by σBW (A).

On the other hand, a Banach space operator A ∈ B(X) is said to be Drazin invertible, if there exists a necessarily unique
B ∈ B(X) and somem ∈ N such that

Am
= AmBA, BAB = B, AB = BA.

If DR(B(X)) = {A ∈ B(X): A is Drazin invertible}, then the Drazin spectrum of A ∈ B(X) is the set σDR(A) = {λ ∈ C: A−λ ∉

DR(B(X))} [12,13].
The ascent (respectively the descent) of A ∈ B(X) is the smallest non-negative integer a = asc(A) (respectively

d = dsc(A)) such that N(Aa) = N(Aa+1) (respectively R(Ad) = R(Ad+1)); if such an integer does not exist, then asc(A) = ∞

(respectively dsc(A) = ∞). Recall that λ ∈ σ(A) is said to be a pole of A, if the ascent and the descent of A − λ are finite
(hence equal). The set of poles of A ∈ B(X) will be denoted by Π(A). Note that Π(A) = σ(A) \ σDR(A) [14, Theorem 4]. In
particular, if A ∈ B(X) is quasi-nilpotent, then according to [14, Theorem 5], necessary and sufficient for A to be nilpotent
is that Π(A) = {0}. In addition, the set of poles of finite rank of A is the set Π0(A) = {λ ∈ Π(A):α(A − λ) < ∞}, where
α(A − λ) = dimN(A − λ).

Recall that an operator A ∈ B(X) is said to satisfy Browder’s theorem, if σw(A) = σ(A) \ Π0(A), while A is said to satisfy
the generalized Browder’s theorem, if σBW (A) = σ(A) \ Π(A) = σDR(A). According to [9, Theorem 2.1], the Browder’s and
generalized Browder’s theorems are equivalent. Moreover, according to [15, Theorem 2.1(iv)], the generalized Browder’s
theorem is equivalent to the fact that acc σ(A) ⊆ σBW (A). Here and elsewhere in this article, for K ⊆ C, iso K will stand for
the set of isolated points of K and acc K = K\ iso K for the set of limit points of K . The generalized Browder’s theorem was
studied in [8,9,15–17].

In what follows, given Banach spaces X and Y, X⊗Y will stand for the completion, endowed with a reasonable uniform
cross-norm, of the algebraic tensor productX⊗Y ofX andY. In addition, if A ∈ B(X) and B ∈ B(Y), then A⊗B ∈ B(X⊗Y)
will denote the tensor product operator defined by A and B.

On the other hand, τAB ∈ B(B(Y, X)) will denote the multiplication operator defined by A ∈ B(X) and B ∈ B(Y), i.e.,
τAB(U) = AUB, where U ∈ B(Y, X) and X and Y are two Banach spaces. Note that τAB = LARB, where LA ∈ B(B(Y, X))
and RB ∈ B(B(Y, X)) are the left and right multiplication operators defined by A and B respectively, i.e., LA(U) = AU and
RB(U) = UB,U ∈ B(Y, X).

3. The isolated points

In this section the isolated points both of the tensor product and of the left–right multiplication operator will be studied.
To this end, some preparation is needed.

Remark 3.1. Let X be a Banach space, consider A ∈ B(X) and set I(A) = iso σ(A) \ Π(A).

(i) Necessary and sufficient for λ ∈ σ(A) to belong to I(A) is that there exist M and N , two closed and complemented
subspaces of X invariant for A, such that if A1 = A |M and A2 = A |N , then A1 − λ is quasi-nilpotent but not nilpotent
and A2 − λ is invertible. Note that σ(A) = I(A) = {λ} if and only if N = 0.

(ii) Let λ ∈ σ(A). The complex number λ belongs to Π(A) if and only if there areM ′ and N ′ two closed and complemented
subspaces of X invariant for A, such that if A′

= A |M ′ and A′′
= A |N ′ , then A′

− λ is nilpotent and A′′
− λ is invertible.

As in statement (i), σ(A) = Π(A) = {λ} is equivalent to the fact that N ′
= 0.

Statements (i)–(ii) are well known and they can be easily deduced from [13, Theorem 12] and [14, Theorem 5]. Now let
Y be a Banach space and consider B ∈ B(Y).

(iii) Since σ(A ⊗ B) = σ(A)σ (B) = σ(τAB) [18, Theorem 2.1] and [19, Corollary 3.4], according to [3, Theorem 6],

(iso σ(A ⊗ B)) \ {0} = (iso (τAB)) \ {0} = (iso σ(A) \ {0})(iso σ(B) \ {0}).

(iv) Set

L = (I(A) \ {0})(I(B) \ {0}) ∪ (I(A) \ {0})(Π(B) \ {0}) ∪ (Π(A) \ {0})(I(B) \ {0}).

Then clearly, (iso σ(A ⊗ B)) \ {0} = (iso (τAB)) \ {0} = L ∪ (Π(A) \ {0})(Π(B) \ {0}).
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(v) Let λ ∈ (iso σ(A⊗ B)) \ {0} = (iso (τAB)) \ {0}. Then, it is not difficult to prove that there exist finite sequences {µi}
n
i=1

and {νi}
n
i=1 of points µi ∈ iso σ(A) \ {0} and νi ∈ iso σ(B) \ {0} such that λ = µiνi for all i = 1, . . . , n.

(vi) Note that if 0 ∈ iso σ(A ⊗ B) = iso σ(τAB), then one of the following possibilities holds:

(a) σ(A) = {0} or σ(B) = {0};
(b) (σ(A) ≠ {0} and σ(B) ≠ {0}) 0 ∈ iso σ(A) and 0 ∉ σ(B) or 0 ∉ σ(A) and 0 ∈ iso σ(B);
(c) (σ(A) ≠ {0}, σ (B) ≠ {0}, 0 ∈ σ(A) ∩ σ(B)) 0 ∈ iso σ(A)∩ iso σ(B).

In the next theorem the position of 0 ∈ C in the isolated points will be characterized. To this end, if X and Y are
two Banach spaces, then I1 and I2 will denote the identity map on X and Y respectively. Moreover, given x ∈ X and
f ∈ Y∗,Ux,f ∈ B(Y, X) is the map defined as follows: Ux,f (y) = xf (y), y ∈ Y.

Theorem 3.2. Let X and Y be two Banach spaces and consider A ∈ B(X), B ∈ B(Y), A⊗ B ∈ B(X⊗Y) and τAB ∈ B(B(Y, X)).
Suppose that 0 ∈ iso σ(A ⊗ B) = iso σ(τAB).

(i) If σ(A) = Π(A) = {0} or σ(B) = Π(B) = {0}, then σ(A ⊗ B) = Π(A ⊗ B) = {0} = Π(τAB) = σ(τAB).
(ii) If σ(A) = I(A) = {0} and B is not nilpotent or σ(B) = I(B) = {0} and A is not nilpotent, then σ(A ⊗ B) = I(A ⊗ B) =

{0} = I(τAB) = σ(τAB).
(iii) If 0 ∈ Π(A) and 0 ∉ σ(B) or 0 ∉ σ(A) and 0 ∈ Π(B), then 0 ∈ Π(A ⊗ B) ∩ Π(τAB).
(iv) If 0 ∈ I(A) (σ (A) ≠ {0}) and 0 ∉ σ(B) or 0 ∉ σ(A) and 0 ∈ I(B) (σ (B) ≠ {0}), then 0 ∈ I(A ⊗ B) ∩ I(τAB).
(v) If 0 ∈ Π(A) ∩ Π(B), then 0 ∈ Π(A ⊗ B) ∩ Π(τAB).
(vi) If 0 ∈ I(A)∩Π(B) and B is not nilpotent, 0 ∈ Π(A)∩I(B) and A is not nilpotent, or 0 ∈ I(A)∩I(B), then 0 ∈ I(A⊗B)∩I(τAB).

Proof. (i) According to Remark 3.1(ii), A or B is nilpotent, which implies that A ⊗ B is nilpotent.
On the other hand, since LA ∈ B(B(X)) or RB ∈ B(B(Y)) is nilpotent, τAB is nilpotent.
(ii) Suppose thatσ(A) = I(A) = {0} and B is not nilpotent. Clearly,σ(A⊗B) = {0}. In addition, according to Remark 3.1(i),

A is not nilpotent. In particular, for each k ∈ N there exist xk ∈ X and yk ∈ Y such that ∥Ak(xk)∥ = 1 and ∥Bk(yk)∥ = 1.
Therefore, since X⊗Y is endowed with a reasonable uniform cross norm, ∥(A ⊗ B)k(xk ⊗ yk)∥ = 1, for each k ∈ N. As a
result, A ⊗ B is not nilpotent, equivalently I(A ⊗ B) = {0}.

On the other hand, it is clear that σ(τAB) = {0}. Moreover, since B is not nilpotent, B∗
∈ B(Y∗) is not nilpotent. In

particular, for each k ∈ N there exist xk ∈ X and fk ∈ Y∗ such that ∥Ak(xk)∥ = 1 and ∥(B∗)k(fk)∥ = 1. Consider
Uxk,fk ∈ B(Y, X). Then, ∥τ k

AB(Uxk,fk)∥ = 1. Consequently, τAB is not nilpotent and I(τAB) = {0}.
The remaining case can be proved in a similar way.
(iii) If 0 ∈ Π(A) and 0 ∉ σ(B) or 0 ∉ σ(A) and 0 ∈ Π(B), then it is not difficult to prove that A ⊗ B and τAB are Drazin

invertible, equivalently 0 ∈ Π(A ⊗ B) ∩ Π(τAB).
(iv) If 0 ∈ I(A), then, according to Remark 3.1(i), there exist M1 and M2 two closed and complemented subspaces of X

invariant for A such that A1 ∈ B(M1) is quasi-nilpotent but not nilpotent and A2 ∈ B(M2) is invertible, where A1 = A |M1
and

A2 = A |M2
. Now, clearly X⊗Y = M1⊗Y ⊕ M2⊗Y, A1 ⊗ B is quasi-nilpotent and, since M2 ≠ 0 (σ (A) ≠ {0}), A2 ⊗ B is

invertible. However, using an argument similar to the one in the proof of statement (ii), A1⊗B is not nilpotent. Consequently,
according to Remark 3.1(i), 0 ∈ I(A ⊗ B).

To prove that 0 ∈ I(τAB), consider the decompositions of X and A recalled in the previous paragraph. Note that
B(Y, X) = B(Y,M1) ⊕ B(Y,M2) and then, decomposing τAB as a block operator, τAB is a diagonal operator with entries
τA1B ∈ B(B(Y,M1)) and τA2B ∈ B(B(Y,M2)). Clearly, τA1B is quasi-nilpotent and τA2B is invertible. However, using an
argument similar to the one in the proof of statement (ii), τA1B is not nilpotent. In particular, 0 ∈ I(τAB).

The remaining case can be proved in a similar way.
(v) If 0 ∈ Π(A) ∩ Π(B), then A and B are Drazin invertible, which implies that A ⊗ I2 and I1 ⊗ B are Drazin invertible.

Since A ⊗ I2 and I1 ⊗ B commute, according to [12, Proposition 2.6], A ⊗ B is Drazin invertible, equivalently 0 ∈ Π(A ⊗ B).
On the other hand, it is not difficult to prove that LA and RB are Drazin invertible. Moreover, since LA and RB commute, τAB

is Drazin invertible, in particular 0 ∈ Π(τAB).
(vi) If 0 ∈ I(A) ∩ Π(B), then, according to Remark 3.1(i)–(ii), there exist M1 and M2 (respectively N1 and N2) two closed

and complemented subspaces of X (respectively Y ) invariant for A (respectively B) such that A1 is quasi-nilpotent but not
nilpotent and A2 is invertible (respectively B1 is nilpotent and B2 is invertible), where A1 = A |M1

and A2 = A |M2
(respectively

B1 = B |N1
and B2 = B |N2

). Now, it is clear that X⊗Y = M1⊗N1 ⊕ M2⊗N1 ⊕ M1⊗N2 ⊕ M2⊗N2, A1 ⊗ B1 ∈ B(M1⊗N1) and
A2 ⊗ B1 ∈ B(M2⊗N1) are nilpotent, A1 ⊗ B2 ∈ B(M1⊗N2) is quasi-nilpotent and A2 ⊗ B2 ∈ B(M2⊗N2) is invertible. As a
result, to prove that 0 ∈ I(A ⊗ B), it is enough to prove that A1 ⊗ B2 ∈ B(M1⊗N2) is not nilpotent. However, since B is not
nilpotent, N2 ≠ 0, and then, using the argument in the proof of statement (ii), A1 ⊗ B2 is not nilpotent.

On the other hand, according to the decomposition of X and Y recalled in the previous paragraph, τAB ∈ B(B(Y, X))
can be considered as a diagonal operator with diagonal entries (τAB)11 ∈ B(B(N1,M1)), (τAB)22 ∈ B(B(N2,M1)), (τAB)33 ∈

B(B(N1,M2)) and (τAB)44 ∈ B(B(N2,M2)). Clearly, (τAB)11 and (τAB)33 are nilpotent, (τAB)44 is invertible and (τAB)22 is quasi-
nilpotent. Thus, to prove that 0 ∈ I(τAB), it is enough to prove that (τAB)22 is not nilpotent. However, since N2 ≠ 0 and B2 is
invertible, using the argument in the proof of statement (ii), (τAB)22 ∈ B(B(N2,M1)) is not nilpotent.

Similar arguments prove the remaining cases both for A ⊗ B and for τAB. �
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The following proposition will be useful to study the isolated non-null points.

Proposition 3.3. Let X and Y be two Banach spaces and suppose that A ∈ B(X) and B ∈ B(Y) are such that σ(A) =

{µ}, σ (B) = {ν}, µν ≠ 0. Consider A ⊗ B ∈ B(X⊗Y) and τAB ∈ B(B(Y, X)). Then, σ(A ⊗ B) = σ(τAB) = {µν} and
the following statements hold.

(i) If A − µ and B − ν are nilpotent, then A ⊗ B − µν and τAB − µν are nilpotent.
(ii) If either A − µ or B − ν is quasi-nilpotent but not nilpotent, then A ⊗ B − µν and τAB − µν are not nilpotent.

Proof. Clearly σ(A ⊗ B) = σ(τAB) = σ(A)σ (B) = {µν}.
(i) Note that A ⊗ B − µν = (A − µ) ⊗ B + µ ⊗ (B − ν). Since (A − µ) ⊗ B and µ ⊗ (B − ν) are nilpotent and commute,

an easy calculation proves that A ⊗ B − µν is nilpotent.
On the other hand, since τAB − µν = L(A−µ)RB + µR(B−ν), a similar argument proves that τAB − µν is nilpotent.
(ii) Since A ⊗ B − µν = (A − µ) ⊗ B + µ ⊗ (B − ν), it is not difficult to prove that

(A ⊗ B − µν)I1 ⊗ B−1
= I1 ⊗ B−1(A ⊗ B − µν) = (A − µ) ⊗ I2 − µν ⊗ (B−1

− ν−1).

Moreover, since A⊗ B− µν and I1 ⊗ B−1 commute, A⊗ B− µν is nilpotent if and only if (A⊗ B− µν)I1 ⊗ B−1 is nilpotent.
Suppose that (B − ν) ∈ B(Y) is quasi-nilpotent but not nilpotent. Then, (B−1

− ν−1) ∈ B(Y) is quasi-nilpotent but not
nilpotent. In fact, it is clear that σ(B−1) = {ν−1

}. In addition, if B−1
− ν−1 were nilpotent, then a straightforward calculation

proves that Bmust be algebraic. However, since B − ν is quasi-nilpotent, B − ν must be nilpotent, which is impossible.
Next note that since σa(A) = σ(A) = {µ}, there exists (xn)n∈N ⊂ X such that ∥xn∥ = 1, n ∈ N, and ((A − µ)(xn))n∈N

converges to 0 ∈ X. Then, given k ∈ N, ck,j =
k!

(k−j)!j! and yk ∈ Y such that |µν|
k
∥(B−1

− ν−1)k(yk)∥ = 2, there exist nk ∈ N

such that for all n ∈ N, n ≥ nk, ∥
k

j=1 ck,j(−µν)k−j(A − µ)j(xn) ⊗ (B−1
− ν−1)k−j(yk)∥ < 1. As a result, for n ≥ nk,

∥((A − µ) ⊗ I2 − µν ⊗ (B−1
− ν−1))k(xn ⊗ yk)∥ > 1.

Therefore, A⊗ B− µν is not nilpotent. A similar argument, using A⊗ B− µν = A⊗ (B− ν) + (A− µ) ⊗ ν, proves the case
A − µ quasi-nilpotent but not nilpotent for the tensor product operator.

On the other hand, since τAB − µν = L(A−µ)RB + µR(B−ν), adapting the argument used before it is not difficult to prove
that τAB −µν is not nilpotent if and only if L(A−µ) −µνR(B−1−ν−1) is not nilpotent. To prove this latter fact, consider the same
sequence (xn)n∈N ⊂ X of the tensor product operator case. In addition, since (B−1

−ν−1)∗ ∈ B(Y∗) is not nilpotent, for each
k ∈ N there exists fk ∈ Y∗ such that |µν|

k
∥((B−1

− ν−1)∗)k(fk)∥ = 2. However, an argument similar to the one used in the
tensor product operator case proves that there is n ∈ N such that

∥(L(A−µ) − µν ⊗ R(B−1−ν−1))
k(Uxn,fk)∥ > 1.

Therefore, τAB − µν is not nilpotent. A similar argument, using τAB − µν = LAR(B−ν) + νL(A−µ), proves the case A − µ is
quasi-nilpotent but not nilpotent for the multiplication operator. �

Given X and Y two Banach spaces and A ∈ B(X) and B ∈ B(Y), in [3, Theorem 6] the limit and the isolated points
both of the tensor product operator A ⊗ B ∈ B(X⊗Y) and of the elementary operator τAB ∈ B(B(Y, X)) were studied. In
the following theorem I(A ⊗ B) \ {0}, I(τAB) \ {0}, Π(A ⊗ B) \ {0} and Π(τAB) \ {0} will be characterized in terms of the
corresponding sets of A and B.

Theorem 3.4. Let X and Y be two Banach spaces and consider A ∈ B(X) and B ∈ B(Y). Then, the following statements hold.

(i) L = I(A ⊗ B) \ {0} = I(τAB) \ {0}.
(ii) Π(A ⊗ B) \ {0} = Π(τAB) \ {0} = (Π(A) − {0})(Π(B) − {0}) \ L.

Proof. In the first place, note that according to Remark 3.1(iv), statement (i) implies statement (ii).
To prove statement (i), let λ ∈ iso σ(A ⊗ B) \ {0}. Then, according to Remark 3.1(v), there exist n ∈ N and finite

spectral sets {µ} = {µ1, . . . , µn} ⊆ iso σ(A) and {ν} = {ν1, . . . , νn} ⊆ iso σ(B) such that λ = µiνi for all 1 ≤ i ≤ n.
Corresponding to these spectral sets there are closed subspaces M1,M2 and (M1i)

n
i=1 of X invariant for A and closed

subspaces N1,N2 and (N1i)
n
i=1 of Y invariant for B such that X = M1 ⊕ M2,M1 = ⊕

n
i=1 M1i, Y = N1 ⊕ N2,N1 =

⊕
n
i=1 N1i, σ (A1) = {µ}, σ (A2) = σ(A) \ {µ}, σ (A1i) = {µi}, σ (B1) = {ν}, σ (B2) = σ(B) \ {ν} and σ(B1i) = {νi}, where

A1 = A |M1
, A2 = A |M2

, A1i = A |M1i
, B1 = B |N1

, B2 = B |N2
and B1i = B |N1i

. Note that A ⊗ B − λ is invertible on the closed
invariant subspaces M1⊗N2,M2⊗N1,M2⊗N2 and M1j⊗N1k, 1 ≤ j ≠ k ≤ n. Moreover, X⊗Y is the direct sum of these
subspaces andM1i⊗N1i, 1 ≤ i ≤ n.

Suppose that λ ∈ L. Then, there existµ ∈ iso σ(A)\{0} and ν ∈ iso σ(B)\{0} such that λ = µν and eitherµ ∈ I(A)\{0}
or ν ∈ I(B) \ {0}. Applying what has been done in the previous paragraph to λ ∈ L, there exist an n = n(λ) ∈ N and an
i, 1 ≤ i ≤ n, such that µ = µi and ν = νi. Therefore, according to Proposition 3.3(ii) and Remark 3.1(i), λ ∈ I(A ⊗ B) \ {0}.

On the other hand, consider λ ∈ I(A ⊗ B) \ {0}. As before, there exist an n = n(λ) ∈ N and µi ∈ iso σ(A) \ {0} and
νi ∈ iso σ(B) \ {0} such that λ = µiνi, i = 1, . . . , n. Now, if λ ∉ L, then for each i = 1, . . . , n, µi ∈ (Π(A) \ {0}) and
νi ∈ (Π(B) \ {0}). However, according to Proposition 3.3(i) and Remark 3.1(ii), λ ∈ (Π(A ⊗ B) \ {0}), which is impossible.
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To prove that L = I(τAB) \ {0}, as in the tensor product operator case, consider the decompositions of X and Y into
closed complemented invariant subspaces for A and B respectively and, as in Theorem 3.2, decompose τAB as a diagonal
operator. Then, to conclude the proof, adapt the argument developed to prove that L = I(A ⊗ B) \ {0} to the case under
consideration. �

Applying the main results of this section, it is not difficult to prove that the Drazin spectra of the tensor product and of
the elementary operator coincide. Note that since the spectra of these operators are equal, both the set of limit points and
the one of isolated points of the aforementioned operators are identical.

Corollary 3.5. Let X and Y be two Banach spaces and consider A ∈ B(X) and B ∈ B(Y). Then, the following statements hold.

(i) Π(A ⊗ B) = Π(τAB).
(ii) I(A ⊗ B) = I(τAB).
(iii) σDR(A ⊗ B) = σDR(τAB).

Proof. Statements (i)–(ii) can be derived from Theorems 3.2 and 3.4. To prove statement (iii), apply [13, Theorem12]. �

4. The B-Weyl spectrum inclusion

Recall that given A ∈ B(X) and B ∈ B(Y) two operators satisfying Browder’s theorem, the Weyl spectrum equality for
A ⊗ B, i.e., the identity

σw(A ⊗ B) = σ(A)σw(B) ∪ σw(A)σ (B),

is equivalent to the fact that A ⊗ B satisfies Browder’s theorem [6, Theorem 3]. Note that the inclusion

σw(A ⊗ B) ⊆ σ(A)σw(B) ∪ σw(A)σ (B)

always holds, so that the relevant inclusion is the reverse inclusion ‘‘⊇’’.
Similarly, under the same conditions for A and B, the Weyl spectrum equality for τAB, i.e., the identity

σw(τAB) = σ(A)σw(B) ∪ σw(A)σ (B),

is equivalent to the fact that τAB satisfies Browder’s theorem [8, Theorem 4.5]. As in the tensor product operator case, the
following inclusion always holds:

σw(τAB) ⊆ σ(A)σw(B) ∪ σw(A)σ (B).

Given A ∈ B(X) and B ∈ B(Y) two operators that satisfy the generalized Browder’s theorem, the B-Weyl spectrum
inclusion for A ⊗ B (respectively for τAB) will be said to hold, if

σ(A)σBW (B) ∪ σBW (A)σ (B) ⊆ σBW (A ⊗ B)
(respectively if σ(A)σBW (B) ∪ σBW (A)σ (B) ⊆ σBW (τAB)).

In this section the B-Weyl spectrum inclusion will be studied in relation to the transfer property for the generalized
Browder’s theorem, i.e., the conditions under which given A ∈ B(X) and B ∈ B(Y) two operators that satisfy the generalized
Browder’s theorem, A ⊗ B ∈ B(X ⊗ Y) and τAB ∈ B(B(Y, X)) also satisfy the generalized Browder’s theorem. Note that
since the Browder’s and generalized Browder’s theorems are equivalent [9, Theorem 2.1], the results of this section also
provide a characterization of the transfer property for the Browder’s theorem both for the tensor product and the left–right
multiplication operator.

In the first place the B-Weyl spectrum inclusion will be proved to be an equality, when it holds. However, since for the
main results of this article the relevant condition is an inclusion, the B-Weyl spectrum inclusion will be focused on.

Lemma 4.1. Let X and Y be two Banach spaces and consider A ∈ B(X) and B ∈ B(Y) two operators that satisfy the generalized
Browder’s theorem. Then,

(σBW (A ⊗ B) ∪ σBW (τAB)) ⊆ σ(A)σBW (B) ∪ σBW (A)σ (B).

Proof. Suppose that 0 ∈ σBW (A ⊗ B). Then, according to [10, Theorem 2.3], 0 ∈ acc σ(A ⊗ B) or 0 ∈ I(A ⊗ B). Since A and
B satisfy the generalized Browder’s theorem, if 0 ∈ acc σ(A ⊗ B), then 0 ∈ acc σ(A) ⊆ σBW (A) or 0 ∈ acc σ(B) ⊆ σBW (B).
On the other hand, if 0 ∈ I(A ⊗ B), then according to Theorem 3.2, A and B are not nilpotent and 0 ∈ I(A) ⊆ σBW (A) or
0 ∈ I(B) ⊆ σBW (B). However, in all these cases 0 ∈ σ(A)σBW (B) ∪ σBW (A)σ (B).

Next consider λ ≠ 0, λ ∈ σ(A ⊗ B) \ (σ (A)σBW (B) ∪ σBW (A)σ (B)). In particular, for each µ ∈ σ(A) and ν ∈ σ(B) such
that λ = µν, µ ∈ σ(A) \σBW (A) and ν ∈ σ(B) \σBW (B). However, since A and B satisfy the generalized Browder’s theorem,
µ ∈ Π(A) and ν ∈ Π(B). Consequently, according to Theorem 3.4, λ ∈ Π(A ⊗ B). Therefore, λ ∈ σ(A ⊗ B) \ σBW (A ⊗ B)
[10, Theorem 2.3].

A similar argument proves the inclusion for τAB. �
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In what follows the transfer property for the generalized Browder’s theorem will be studied.

Theorem 4.2. Let X andY be two Banach spaces and consider A ∈ B(X) and B ∈ B(Y) two operators that satisfy the generalized
Browder’s theorem. If the B-Weyl spectrum inclusion for A ⊗ B (respectively for τAB) holds, then A ⊗ B (respectively τAB) satisfies
the generalized Browder’s theorem.

Proof. According to [15, Theorem 2.1(iv)], acc σ(A) ⊆ σBW (A) and acc σ(B) ⊆ σBW (B). Now, since the B-Weyl spectrum
inclusion for A ⊗ B holds, according to [3, Theorem 6],

acc σ(A ⊗ B) ⊆ σ(A)(acc σ(B)) ∪ (acc σ(A))σ (B) ⊆ σ(A)σBW (B) ∪ σBW (A)σ (B) ⊆ σBW (A ⊗ B).

Therefore, A⊗ B satisfies the generalized Browder’s theorem. Since σ(τAB) = σ(A⊗ B) = σ(A)σ (B), the same argument
proves the statement concerning the operator τAB. �

Remark 4.3. (i) Note that the converse of Theorem 4.2 does not in general hold. In fact, let X and Y be two Banach spaces
and consider A ∈ B(X) and B ∈ B(Y) two operators such that A is nilpotent and B satisfies the generalized Browder’s
theorem. As a result, A ⊗ B ∈ B(X⊗Y) is nilpotent, what is more, A and A ⊗ B satisfy the generalized Browder’s theorem
(the sets of limit points of these two operators are empty). On the other hand, since A and A ⊗ B are nilpotent, according to
[10, Theorem2.3],σBW (A) = ∅ = σBW (A⊗B). In particular, necessary and sufficient forσ(A)σBW (B)∪σBW (A)σ (B) = ∅ is that
σBW (B) = ∅ (observe, however, that the operators A, B and A⊗B satisfy the equality σw(A⊗B) = σ(A)σw(B)∪σw(A)σ (B)).
Naturally, the same can be said for the operator τAB.

(ii) Let X be a Banach space and consider A ∈ B(X) an operator that satisfies the generalized Browder’s theorem.
According to [13, Theorem 3], [20, Theorem 1.5] and [21, Theorem 2.7], σBW (A) = ∅ if and only if A is algebraic, i.e., there
exists a non-constant polynomial P ∈ C[X] such that P(A) = 0. Clearly, since the spectrum of an algebraic operator is a finite
set (actually in this case σ(A) = Π(A) [20, Theorem 1.5]), algebraic operators satisfy the generalized Browder’s theorem.
Moreover, if A ∈ B(X) and B ∈ B(Y) are algebraic operators, then σ(A)σBW (B)∪σBW (A)σ (B) = ∅ and the B-Weyl spectrum
inclusionboth forA⊗B ∈ B(X⊗Y) and for τAB ∈ B(B(Y, X))holds. Furthermore, it is not difficult to prove, using in particular
Theorems 3.2 and 3.4, that A ⊗ B and τAB satisfy the generalized Browder’s theorem and σBW (A ⊗ B) = ∅ = σBW (τAB).
Therefore, to characterize when the transfer property implies the B-Weyl spectrum inclusion, it is enough to consider two
cases: first, when only one operator is algebraic (observe that according to (i) the algebraic operator must not be nilpotent);
second, when both operators are not algebraic.

Before going on, to study the converse of Theorem 4.2 set

S = σ(A)σBW (B) ∪ σBW (A)σ (B).

Theorem 4.4. Let X and Y be two Banach spaces and consider A ∈ B(X) and B ∈ B(Y) such that A is an algebraic but not
nilpotent operator and B is a non-algebraic operator that satisfies the generalized Browder’s theorem. Then, if A ⊗ B ∈ B(X⊗Y)
(respectively if τAB ∈ B(B(Y, X))) satisfies the generalized Browder’s theorem, the following statements are equivalent.

(i) The B-Weyl spectrum inclusion for A ⊗ B (respectively for τAB) holds;
(ii) B is not Drazin invertible.

Furthermore, if one of the equivalent statements holds, then S = σBW (A⊗ B) (respectively S = σBW (τAB)), while if this is not
the case, then S = σBW (A ⊗ B) ∪ {0} (respectively S = σBW (τAB) ∪ {0}).

Proof. Note that since according to Remark 4.3(ii) σ(A) = Π(A), S = Π(A)σBW (B). On the other hand, recall that
σBW (B) = I(B)∪ acc σ(B) and σBW (A ⊗ B) = I(A ⊗ B)∪ acc σ(A ⊗ B) [13, Theorem 12]. In particular, since I(A ⊗ B) \

{0} = (Π(A) \ {0})(I(B) \ {0}) (Theorem 3.4) and acc σ(A ⊗ B) \ {0} = (Π(A) \ {0})( acc σ(B) \ {0}) [3, Theorem 6],
S \ {0} = σBW (A ⊗ B) \ {0}. Therefore, according to Lemma 4.1, statement (i) is equivalent to the following implication:
0 ∈ S ⇒ 0 ∈ σBW (A ⊗ B). Now, 0 ∈ S if and only if 0 ∈ Π(A) or 0 ∈ σBW (B). If 0 ∈ σBW (B), then using in particular
statements (ii), (iv) and (vi) of Theorem 3.2 and the fact that A is not nilpotent, it is not difficult to prove that 0 ∈ σBW (A⊗B).
On the other hand, if 0 ∈ Π(A), according to what has been proved, if 0 ∈ σBW (B), then 0 ∈ σBW (A ⊗ B), while if
0 ∈ Π(B) or 0 ∉ σ(B), equivalently if B is Drazin invertible, then according to statements (iii) and (v) of Theorem 3.2,
0 ∈ Π(A ⊗ B) = σ(A ⊗ B) \ σBW (A ⊗ B). Consequently, since all the possible cases have been considered, the B-Weyl
spectrum inclusion for A ⊗ B holds if and only if B is not Drazin invertible.

The last statement is clear.
The statements concerning the operator τAB ∈ B(B(Y, X)) can be proved in a similar way. �

Naturally, under the same conditions as Theorem 4.4, if the properties of A and B are interchanged, similar statements
can be proved. Next follows the remaining case, i.e., when both operators are not algebraic.

Theorem 4.5. Let X and Y be two Banach spaces and consider A ∈ B(X) and B ∈ B(Y) two non-algebraic operators that
satisfy the generalized Browder’s theorem. Then, if A⊗ B ∈ B(X⊗Y) (respectively if τAB ∈ B(B(Y, X))) satisfies the generalized
Browder’s theorem, the following statements are equivalent.
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(i) The B-Weyl spectrum inclusion for A ⊗ B (respectively for τAB) holds;
(ii) 0 ∉ Π(A ⊗ B) (=Π(τAB));
(iii) A ⊗ B (respectively τAB) is invertible or A ⊗ B (respectively τAB) is not Drazin invertible.

Furthermore, if one of the equivalent statements holds, then S = σBW (A ⊗ B) (respectively S = σBW (τAB)), while if this is
not the case, then S = σBW (A ⊗ B) ∪ {0} (respectively S = σBW (τAB) ∪ {0}).

Proof. Consider the operator A ⊗ B ∈ B(X⊗Y). Recall that since A, B and A ⊗ B satisfy the generalized Browder’s theorem,
according to [13, Theorem12],σBW (A) = I(A)∪ accσ(A), σBW (B) = I(B)∪ accσ(B) andσBW (A⊗B) = I(A⊗B)∪ accσ(A⊗B).
Now setA = (acc σ(A))σ (B)∪σ(A)(acc σ(B)) andB = I(A)I(B)∪I(A)Π(B)∪Π(A)I(B). Note thatB\{0} = L = I(A⊗B)\{0}
(Theorem 3.4) and S = A ∪ B.

(i)⇒ (ii). Suppose that 0 ∈ Π(A⊗B) ⊆ σ(A⊗B) = σ(A)σ (B). Then, since neitherAnor B is algebraic, 0 ∈ S ⊆ σBW (A⊗B),
which is impossible for Π(A ⊗ B) = σ(A ⊗ B) \ σBW (A ⊗ B).

(ii) ⇒ (iii). Apply [13, Theorem 12].
(iii) ⇒ (i). Note that three cases must be considered: 0 ∉ σ(A ⊗ B); 0 ∈ acc σ(A ⊗ B); 0 ∈ I(A ⊗ B). Suppose that

0 ∉ σ(A⊗ B) or 0 ∈ acc σ(A⊗ B). Then, according to [3, Theorem 6], acc σ(A⊗ B) = A. If 0 ∉ σ(A⊗ B), then B = I(A⊗ B),
in particular, S = σBW (A ⊗ B), while if 0 ∈ acc σ(A ⊗ B) = A, since B \ {0} = I(A ⊗ B), S = σBW (A ⊗ B).

Next suppose that 0 ∈ I(A ⊗ B) ⊆ σBW (A ⊗ B) ⊆ σ(A ⊗ B). Since neither A nor B is algebraic, 0 ∈ S. Moreover, since
B \ {0} = I(A ⊗ B) \ {0} and acc σ(A ⊗ B) = A \ {0} [3, Theorem 6], S = σBW (A ⊗ B).

Concerning the last statement, according to Lemma 4.1, it is enough to consider the case σBW (A ⊗ B) ( S. Suppose that
0 ∈ Π(A ⊗ B). Then, since neither A nor B is algebraic, 0 ∈ S \ σBW (A ⊗ B). However, since acc σ(A ⊗ B) = A \ {0}
[3, Theorem 6] and I(A ⊗ B) \ {0} = B \ {0}, S = σBW (A ⊗ B) ∪ {0}.

Finally, a similar argument proves the statements concerning the left–right multiplication operator. �

Remark 4.6. Note that under the same hypotheses as Theorems 4.4 and 4.5, if σBW (A ⊗ B) ( σ(A)σBW (B) ∪ σBW (A)σ (B),
then σ(A)σBW (B) ∪ σBW (A)σ (B) = σBW (A ⊗ B) ∪ {0}. Moreover, a similar observation holds for τAB.

In the following theorem the transfer property for the generalized Browder’s theorem will be characterized. Note that
if an operator is not Drazin invertible, then it is not algebraic. Recall that according to [9, Theorem 2.1], Browder’s theorem
and the generalized Browder’s theorem are equivalent. Moreover, recall that Browder’s theorem both for the tensor product
operator and for the elementary operator is equivalent to the respective Weyl spectrum equality, see [6, Theorem 3] and
[8, Theorem 4.5] respectively.

Theorem 4.7. Let X andY be two Banach spaces and consider A ∈ B(X) and B ∈ B(Y) two operators that satisfy the generalized
Browder’s theorem. Suppose either that A and B are not algebraic and 0 ∉ Π(A ⊗ B) (=Π(τAB)) or that only one of them, say A,
is algebraic but not nilpotent and the other, say B, is not Drazin invertible.
(a) The following statements are equivalent.
(i) The (generalized) Browder’s theorem for A ⊗ B ∈ B(X⊗Y) holds;
(ii) σBW (A ⊗ B) = σ(A)σBW (B) ∪ σBW (A)σ (B).
(iii) σw(A ⊗ B) = σw(A)σ (B) ∪ σ(A)σw(B).
(b) The following statements are equivalent.
(i) The (generalized) Browder’s theorem for τAB ∈ B(B(Y, X)) holds;
(ii) σBW (τAB) = σ(A)σBW (B) ∪ σBW (A)σ (B).
(iii) σw(τAB) = σw(A)σ (B) ∪ σ(A)σw(B).

Proof. Apply Theorems 4.2, 4.4 and 4.5. �
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