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Abstract

In this paper, we consider some families of one-dimensional locally infinitely divisible Markov processes
{ηϵt }0≤t≤T with frequent small jumps. For a smooth functional F(x[0, T ]) on space D[0, T ], the following
asymptotic expansions for expectations are proved: as ϵ → 0,

EϵF(ηϵ [0, T ]) = E F(η0
[0, T ])+

s
i=1

ϵi/2 E Ai F(η0
[0, T ])+ o(ϵs/2)

for some Gaussian diffusion η0 as the weak limit of ηϵ , suitable differential operators Ai , and a positive
integer s depending on the smoothness of F .
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Let {ηϵt }0≤t≤T on space (Ω ϵ,Fϵ, Pϵ) be a family of stochastic processes depending on a
parameter ϵ ≥ 0. We also write ηϵ(t) instead of ηϵt where it seems appropriate. Assume the
trajectories of {ηϵt }0≤t≤T are in a metric function space X. We write ηϵ[0, T ] to stress that each
trajectory is an element in function space X. Weak convergence of processes ηϵ[0, T ] to a process
η0

[0, T ] can be formulated as follows

EϵF(ηϵ[0, T ]) = E0 F(η0
[0, T ])+ o(1), (1)
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for any bounded and continuous functionals F on X, where Eϵ, ϵ ≥ 0 denote expectations with
respect to probability measures Pϵ . Now we are interested in the exact order of o(1) in (1). The
inspiration behind this problem is from classical asymptotic expansions in limit theorems for
sums of independent and identically distributed (i.i.d.) random variables.

It is quite clear that Berry–Esseen theorem gives a more precise result (under some restrictive
conditions on moments) on convergence of distributions than central limit theorems. If more
conditions are imposed on i.i.d. ξi , then we have an asymptotic expansion for distribution
functions Fn of (ξ1 + · · · + ξn)/

√
n : Fn(x) = F∞(x)+


1≤i≤N Pi (x)n−i/2

+ o(n−N/2) where
F∞ is the limiting distribution of Fn . If we write this in an expectation form for a smooth function
F , then it can be proved that E F((ξ1+· · ·+ξn)/

√
n) = E F(ξ∞)+


1≤i≤N pi n−i/2

+o(n−N/2),
where ξ∞ is the random variable corresponding to distribution function F∞ (see for example [4]
for related works). This expansion leads us to expect the exact order of o(1) in (1). For various
classes of families of stochastic processes, results concerning the exact order of o(1) were
obtained in [3,5–7].

In [7] Wentzell proved

EϵF(ηϵ[0, T ]) = E0 F(η0
[0, T ])+

s
i=1

ϵi/2 E0 Ai F(η0
[0, T ])+ o(ϵs/2) (2)

for bounded smooth F and for some class of families of locally infinitely divisible processes ηϵ

with s = 1. When one tries to extend the results in [7] to general s ≥ 1, unbounded functionals
arise even if F and its derivatives are bounded, and thus several technical difficulties appear such
as extending the domain of a compensating operator to include some unbounded functionals,
upper estimates for a functional f (t, x[0, t]) which is defined in Section 3.1. Another reason to
consider some unbounded functionals is from the study of the asymptotic expansions on large
deviations of the form

Eϵ

exp{ϵ−1 F(ξ ϵ)}


= exp{ϵ−1

[F(φ0)− S(φ0)]}

 
0≤i≤s/2

Ki · ϵi
+ o


ϵs/2


(3)

for some families of locally infinitely divisible Markov processes ξ ϵ defined through ηϵ , where S
is the normalized action functional and φ0 is the unique maximizer of F − S. It turns out that the
expansions on large deviations in (3) can be derived from the expansions on normal deviations
(2) for some unbounded functionals. This idea was used by Cramér (see [1]) to derive precise
large deviations for sums of independent and identically distributed random variables. But for
stochastic processes, nothing has been done for precise large deviations in this direction based
on normal deviations (2). This is because no such a tool exists. This paper is devoted to such a
tool, namely (2).

In this paper we first show expansions (2) with s = 1 for certain class of unbounded
functionals F (see Theorems 2.1 and 4.1), and then apply these for s = 1 to get expansions for
general s ≥ 1 (see Theorems 5.1 and 5.2). Those technical difficulties are tackled in Section 3
based on linear transformations of stochastic processes and suitable truncation arguments.

1.1. Locally infinitely divisible processes

Let us introduce several concepts. If (ξt , Ps,x ), t ∈ [s, T ], is a Markov process (the subscript
s,x means the process starts from x at time s), we use Ps,t , 0 ≤ s ≤ t ≤ T , to denote the
corresponding multiplicative family of linear operators acting on functions according to the
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formula

Ps,t f (x) = Es,x f (ξt ),

where Es,x is the expectation with respect to probability measure Ps,x . The compensating
operator A of this Markov process, taking functions f (t, x) to functions of the same two
arguments, is defined by

Ps,t f (t, ·)(x) = f (s, x)+

 t

s
Ps,uA f (u, ·)(x)du (4)

under suitable assumptions on the measurability in (t, x) of A f (t, x), where Ps,t f (t, ·)(x)
means that Ps,t is applied to function f (t, x) in its second argument x , and Ps,uA f (u, ·)(x)
means that Ps,u is applied to function g(u, x) := A f (u, x) in its second argument x . If some
measurability conditions are imposed on the process ξt (ω), then (4) is equivalent to that

f (t, ξt )−

 t

s
A f (u, ξu)du

is a martingale with respect to the natural family of σ -algebras and every probability measure
Ps,x . Of course, compensating operator A is not defined uniquely. Different versions are such that
A f (u, ξu) coincide almost surely except on a set of time argument u of zero Lebesgue measure.

We say At is the generating operator of our process (ξt , Ps,x ) if for s ≤ t,

Ps,t f (x) = f (x)+

 t

s
Ps,u Au f (x)du

for suitable f . Also a generating operator has different versions. For a wide class of Markov
processes, a version of the compensating operator A of process ξt for smooth functions f (t, x)
is given by

A f (t, x) =
∂ f

∂t
(t, x)+ At f (t, ·)(x),

where generating operator At acts on functions of the spatial argument x only.
(a) In this paper, we consider a class of families of locally infinitely divisible processes

(ξ ϵt , Pξ
ϵ

0,x ), t ∈ [0, T ] (again sometimes we also write ξ ϵ(t) instead). For each fixed ϵ > 0,
let ξ ϵ have the compensating operator (a version)

Aξ
ϵ

f (t, x) =
∂ f

∂t
(t, x)+ Aξ

ϵ

t f (t, ·)(x), (5)

where the generating operator Aξ
ϵ

t is

Aξ
ϵ

t f (t, ·)(x) = α1(t, x)
∂ f

∂x
(t, x)+

ϵ

2
a(t, x)

∂2 f

∂x2 (t, x)

+ ϵ−1
 

f (t, x + ϵu)− f (t, x)− ϵu
∂ f

∂x
(t, x)


µt,x (du) (6)

for bounded functions f (t, x) that are absolutely continuous in t for fixed x and twice
continuously differentiable in x for fixed t with bounded derivatives ∂ f/∂t, ∂ f/∂x, ∂2 f/∂x2. We
impose a condition on measures µt,x in order to make sense of everything:


u2µt,x (du) < ∞.
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The probability measures Pξ
ϵ

0,x mean that ξ ϵ0 = x for some x in the real line. We will use the
following symbols to denote the moments

α2(t, x) = a(t, x)+


u2µt,x (du)

α j (t, x) =


u jµt,x (du), β j (t, x) =


|u|

jµt,x (du), j > 2.
(7)

Let us set

ηϵ(t) = ϵ−1/2(ξ ϵ(t)− x∗(t)),

where x∗ is the unique solution of differential equation x ′(t) = α1(t, x(t)) with a prescribed
initial condition. For each ϵ > 0, the process ηϵ(t) is also a Markov process (the generating
operator Aη

ϵ

t is given in the Appendix), and it can be easily checked that for any x0 in the real
line

Pη
ϵ

0,x0
= Pξ

ϵ

0,x∗(0)+ϵ1/2x0
.

Throughout this paper we assume that process ηϵ starts from one same fixed point x0 in the real
line at 0 for every ϵ > 0. For instance, we can set x∗(0) = 0 and ξ ϵ(0) = ϵ1/2x0.

It can be proved that under some additional assumptions the process ηϵ converges as ϵ → 0
to a process η0 (see Theorem 1 and Lemma 6 in [7]), and η0 is a Gaussian diffusion process on
the real line with generating operator

Aη
0

t f (x) = α1
2(t, x∗(t)) · x · f ′(x)+

1
2
α2(t, x∗(t)) · f ′′(x), (8)

where the subscript 2 means differentiation in second spatial argument.
(b) To formulate our main result, we introduce a class of locally infinitely divisible processes.

The space Dx [0, T ] consists of functions defined on [0, T ] starting from x at 0 which are right
continuous with left limits, and D[t1, t2], t1 < t2, is the space of all functions over [t1, t2] that
are right continuous having left limits. Class A is the collection of locally infinitely divisible
processes


ξ(t), Pt,x


whose compensating operators are given by A f = ∂ f/∂t + At f,

At f (x) = α1(t, x) f ′(x)+
1
2

a(t, x) f ′′(x)

+

 
f (x + u)− f (x)− u f ′(x)


µt,x (du),

and it can be approximated by pure jump processes

ξ θ (t), Pθt,x


with compensating operators

Aθ f = ∂ f/∂t + Aθt f,

Aθt f (x) =


[ f (x + u)− f (x)]µθt,x (du),

with bounded µθt,x so that the distribution of ξ θ [t1, t2] in space D[t1, t2] with respect to the
probability Pθt,x converges weakly in the Skorohod topology to that of ξ [t1, t2] with respect to
Pt,x , and Aθt f (x) → At f (x) uniformly with respect to t, to x , to f changing in every class of
uniformly bounded function with uniformly bounded and equicontinuous derivative f ′′.

(c) For each fixed ϵ > 0, the process (ηϵ(t), Pη
ϵ

0,x0
), t ∈ [0, T ] is a Markov process. We can

consider its path ηϵ[0, t] restricted to the interval [0, t] for every t ∈ [0, T ]. We can think of
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ηϵ[0, t] as a function of t ∈ [0, T ], and ηϵ[0, t], t ∈ [0, T ], is a stochastic process taking for
each t ∈ [0, T ] values in its own function space Dx0 [0, t]. Such processes have been studied
by various authors (see [2,5]). We employ the term historical processes for such processes (see
[7,2,5]).

It is proved in [5] that we can have historical process ηϵ[0, t], t ∈ [0, T ], as a Markov process.
That is, for every x[0, s] ∈ Dx0 [0, s], the stochastic process (ηϵ[0, t], Pη

ϵ

s,x[0,s]), t ∈ [0, T ], is a

Markov process taking values for each t ∈ [0, T ] in the space Dx0 [0, t], where Pη
ϵ

s,x[0,s] for some
s ∈ [0, T ] denotes the probability measure under the assumption that process ηϵ[0, t] starts from
a function x[0, s] ∈ Dx0 [0, s] at time s. For s = 0, the probability Pη

ϵ

0,x[0,0]
is nothing but Pη

ϵ

0,x0
if x[0, 0] is the function defined at the single point 0 and taking at it the value x0. Now we can
also consider the multiplicative family of linear operators Ps,t

ηϵ of ηϵ acting on functionals of the
form f (x[0, t]) according to the formula

Ps,t
ηϵ f (x[0, s]) = Eη

ϵ

s,x[0,s] f (ηϵ[0, t])

with Eη
ϵ

s,x[0,s] denoting the expectation with respect to probability measure Pη
ϵ

s,x[0,s]. Similarly as

(4), the compensating operator Aη
ϵ

of historical process ηϵ[0, t], t ∈ [0, T ], acting on functionals
of the form f (t, x[0, t]), is defined by

Ps,t
ηϵ f (t, ·)(x[0, s]) = f (s, x[0, s])+

 t

s
Ps,u
ηϵ Aη

ϵ

f (u, ·)(x[0, s])du (9)

provided that bounded f (t, x[0, t]) satisfies suitable smoothness assumptions (see Lemma 1
of [7] for precise assumptions).

The first question arising here is to find the value of the compensating operator
Aη

ϵ
f (t, x[0, t]) on some wide classes of functionals. It is natural to expect that some smoothness

in t and x[0, t] of f (t, x[0, t]) is sufficient for the existence of the compensating operator
Aη

ϵ
f (t, x[0, t]). The partial derivative ∂ f

∂t (t, x[0, t]) could not exist since we cannot fix
x[0, t] ∈ Dx0 [0, t] while changing t . Wentzell introduced in [8,7] the pseudo-partial derivative
f(1)(t, x[0, t]) in the time argument: for each t ∈ [0, T ] and x[0, t] ∈ Dx0 [0, t], the pseudo-
partial derivative f(1)(t, x[0, t]) is a functional that is measurable in (t, x[0, t]) and such that for
0 ≤ s ≤ t ≤ T, x[0, s] ∈ Dx0 [0, s],

f (t, x s
[0, t]) = f (s, x[0, s])+

 t

s
f(1)(u, x s

[0, u])du,

where the new function x s
[0, t] over [0, t] is defined as

x s(v) =


x(v) for v < s;
x(s) for s ≤ v ≤ t.

The functional f(1)(t, x[0, t]) is not defined uniquely. If one version f(1)(t, x[0, t]) satisfies the
condition

lim
t↓s

f(1)(t, x s
[0, t]) = f(1)(s, x[0, s])

for all s ∈ [0, T ] and x[0, s] ∈ Dx0 [0, s], then this version is

f(1)(t, x[0, t]) = lim
∆↓0

∆−1
[ f (t + ∆, x t

[0, t + ∆])− f (t, x[0, t])]. (10)
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Conversely, if the limit in (10) exists for all t ∈ [0, T ) and x[0, t] ∈ Dx0 [0, t], and the pre-limit
quantity in (10) is bounded uniformly in all 0 < t < t + ∆ < T and x[0, t] ∈ Dx0 [0, t], then
one of the versions of the pseudo-partial derivatives is given by the limit (10).

It has been shown in [7] that Aη
ϵ

f (t, x[0, t]) is well-defined for bounded functionals
f (t, x[0, t]) having pseudo-partial derivative f(1)(t, x[0, t]), bounded second spatial derivative
f (2)(t, x[0, t])(I{t}, I{t}) along directions I{t}[0, t] and other suitable continuity restrictions,
namely,

Aη
ϵ

f (t, x[0, t]) = f(1)(t, x[0, t])

+ ϵ−1/2

α1(t, x∗(t)+ ϵ1/2x(t))− α1(t, x∗(t))


· f (1)(t, x[0, t])(I{t})

+
1
2

a(t, x∗(t)+ ϵ1/2x(t)) · f (2)(t, x[0, t])(I ⊗
2

{t} )

+ ϵ−1
 

f (t, x[0, t] + uϵ1/2 I{t})− f (t, x[0, t])

− uϵ1/2
· f (1)(t, x[0, t])(I{t})


µt,x∗(t)+ϵ1/2x(t)(du). (11)

We recall that under suitable restrictions on F and ηϵ , expansions (2) were proved in [7] for
the case s = 1. As explained in Section 1, unbounded functionals will arise for general s ≥ 1.
We thus first extend the domain of the compensating operator Aη

ϵ
f (t, x[0, t]) to include some

unbounded functionals f (t, x[0, t]). This is done in Proposition 3.4. Sections 2 and 3 present
our main result and its proof. Section 5 contains applications of our main result, which are the
asymptotic expansions (2) for general s. In what follows, consti , i = 1, 2, . . . denote generic
positive constants whose values may vary in different places.

2. The main result

Before our main theorem, let us introduce the functional derivatives that will be used in this
paper. We understand the differentiability of a functional F(φ) as Fréchet differentiability. As
in [7], we assume that the derivatives F ( j)(φ)(δ1, . . . , δ j ) can be represented as integrals of the
product δ1(s1) · · · · · δ j (s j ) with respect to some signed measures, denoted by F ( j)(φ; •):

F ( j)(φ)(δ1, . . . , δ j ) =


[0,T ] j

δ1(s1) · · · · · δ j (s j )F
( j)(φ; ds1 · · · ds j ). (12)

The norm of the signed measure is defined by

∥F ( j)
∥ := sup

x[0,T ]∈D0[0,T ]

F ( j)(x[0, T ]; •)

 ([0, T ]
j ).

We also use F ( j)(φ)(y[0, T ]
⊗

j
) to denote the j-th derivative F ( j)(φ)(y[0, T ], . . . , y[0, T ]) of

the functional F at point φ[0, T ] in directions y[0, T ] for short. Let us recall a differential
operator A1 which was defined in [7] for functionals F on D[0, T ]:

A1 F(x[0, T ]) =

3
k=1


[0,T ]k

Γ k
1 (x[0, T ]; s1, . . . , sk)F

(k)(x[0, T ]; ds1 · · · dsk)
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where

Γ 1
1 (x[0, T ]; s1) =

1
2

 s1

0
α1

22(t, x∗(t))x(t)
2 exp

 s1

0
α1

2(v, x∗(v))dv


dt;

Γ 2
1 (x[0, T ]; s1, s2) =

1
2

 min{s1,s2}

0
α2

2(t, x∗(t))x(t) exp


2

i=1

 si

0
α1

2(v, x∗(v))dv


dt;

Γ 3
1 (x[0, T ]; s1, s2, s3) =

1
6

 min{s1,s2,s3}

0
α3(t, x∗(t)) exp


3

i=1

 si

0
α1

2(v, x∗(v))dv


dt.

Theorem 2.1. Assume ∥α1
22∥, ∥α

2
∥, ∥α2

2∥ < ∞, α1
2(t, x) ≤ C1 for some nonnegative constant

C1, and ∥β i
∥ < ∞ for 3 ≤ i ≤ j + 1, where j > 2 is some integer. Let every process of the

family of locally infinitely divisible processes (ξ ϵ(t), Pξ
ϵ

0,x ) be in class A. Processes ηϵ and x∗

are defined as above. Assume, in addition, that α1
22(t, x), α2

2(t, x) and α3(t, x) are continuous in
x at the point x∗(t) for all t , and |u|

j+1 is uniformly integrable with respect to µt,x .

Let the functional F(x[0, T ]) on D[0, T ] be three times differentiable with the following
conditions:

(i) there is a constant B > 0 such that for all x[0, T ], y[0, T ] ∈ D[0, T ],

|F(x[0, T ])| ≤ B(1 + |x(T )| j );F (i)(x[0, T ])(y[0, T ]
⊗

i
)

 ≤ (1 + ∥y∥
i ) · B ·


1 + |x(T )| j−2


, i = 1, 2, 3;

(ii) F (3)(x[0, T ])(I[t,T ]δ, I[t,T ]δ, I[t,T ]δ) is continuous with respect to x[0, T ] uniformly as
x[0, T ] changes over an arbitrary compact subset of D[0, T ], t over [0, T ], and δ[0, T ] over
the set of Lipschitz continuous functions with constant 1, ∥δ∥ ≤ 1.

Then as ϵ ↓ 0,

Eη
ϵ

0,x0
F(ηϵ[0, T ]) = Eη

0

0,x0
F(η0

[0, T ])+ ϵ1/2 Eη
0

0,x0
A1 F(η0

[0, T ])+ o(ϵ1/2), (13)

where A1 is a third-order differential operator defined above.

Remark. We point out here that |F (i)(x[0, T ])(y[0, T ]
⊗

i
)| ≤ (1 + ∥y∥

i ) · B ·

1 + |x(T )| j−2


in above condition (i) can be replaced by:F (i)(x[0, T ])(y1[0, T ], . . . , yi [0, T ])

 ≤ σ(∥y1∥, . . . , ∥yi∥) · B ·


1 + |x(T )| j−2


with σ(x1, . . . , xi ) denoting any real valued function that takes a bounded set in Ri to a bounded
set in R. For instance, we can choose σ(x1, . . . , xi ) = x1 · · · xi . The condition that was assumed
in (i) is just for simplicity.

Some examples of functionals satisfying all the conditions in Section 2 can be produced by
carefully taking into account the upper bounds. For instance, a class of examples is given by

F(x[0, T ]) = g(x(T ))

for some smooth function g(x) having an upper bound 1 + |x |
j together with its derivatives.

We can take g(x) = xk for example where k is any positive integer. More classes of examples
are given after Theorem 4.1 where a better condition on the upper bound of the functionals is
assumed.
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3. Proof of Theorem 2.1

3.1. Properties of f (t, x[0, t])

As in paper [7], for x[0, t] ∈ D[0, t] we introduce

f (t, x[0, t]) := Eη
0

t,x[0,t]F(η
0
[0, T ]). (14)

Let us analyze (14) in detail for x[0, t] ∈ Dx0 [0, t]. If α1
2(t, x∗(t)) = 0, then from (8) we know

η0 is a time-inhomogeneous Wiener process with local variance α2(t, x∗(t)). In particular, it has

independent increments. So the distribution of η0
[0, T ] under probability Pη

0

t,x[0,t] is the same as

the distribution of x t
[0, T ] + η0

t [0, T ] under probability Pη
0

0,x0
, where

x t (s) = x(s) if s ≤ t, = x(t) if s > t;

η0
t (s) = η0(s)− (η0)t (s) where (η0)t (s) is defined similarly as above x t (s).

To see why these two distributions are the same (provided independent increments), we notice
that for any measurable C ⊆ Dx0 [0, T ],

Pη
0

t,x[0,t]


η0

[0, T ] ∈ C


= Pη
0

t,x(t)


η0

t [t, T ] + x(t) ∈ Cx[0,t]


according to [5], where Cx[0,t] = {y[t, T ] : x t y[0, T ] ∈ C}. By the Markov property for the
process η0 with respect to time t , and the independent increments of η0, we have

Pη
0

t,x(t)


η0

t [t, T ] + x(t) ∈ Cx[0,t]


= Pη

0

0,x0


η0

t [t, T ] + x(t) ∈ Cx[0,t]


.

This is nothing but Pη
0

0,x0


(x t

[0, T ] + η0
t [0, T ]) ∈ C


. Thus (14) becomes

f (t, x[0, t]) = Eη
0

t,x[0,t]F(η
0
[0, T ]) = Eη

0

0,x0
F(x t

[0, T ] + η0
t [0, T ]). (15)

If α1
2(t, x∗(t)) ≠ 0, then η0 is a general Gaussian diffusion which may not have independent

increments. In this case, a linear transformation η0
∗(t) = exp


−
 t

0 α
1
2(s, x∗(s))ds


·η0(t) is used.

It is then easy to deduce that η0
∗ is a time-inhomogeneous Wiener process with local variance

α2(t, x∗(t)) · exp

−2

 t
0 α

1
2(s, x∗(s))ds


. If we define

F∗(y[0, T ]) = F


y[0, T ] · exp


•

0
α1

2(s, x∗(s))ds


,

then it follows from (15) that

f (t, x[0, t]) = Eη
0

t,x[0,t]F(η
0
[0, T ])

= Eη
0

t,x[0,t]F


η0

∗[0, T ] · exp


•

0
α1

2(s, x∗(s))ds


= Eη

0

t,x[0,t]F∗


η0

∗[0, T ]


= Eη

0

0,x0
F∗(x

t
[0, T ] + (η0

∗)t [0, T ])

= Eη
0

0,x0
F


x t

[0, T ] · exp


•

0
α1

2(s, x∗(s))ds


+ η0

t [0, T ]


, (16)

that is, the functional F is taken of a function over [0, T ] whose value at a point v ∈ [0, T ] is
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x t (v) · exp{
 v

0 α
1
2(s, x∗(s))ds} + η0

t (v). Here we use


•

0 α
1
2(s, x∗(s))ds to denote a real valued

function defined on [0, T ].

3.2. Estimates

In this section, j > 2 is some integer as in previous section. Let us first prove an auxiliary
result.

Lemma 3.1. Under conditions ∥β i
∥ < ∞ for 3 ≤ i ≤ j + 1, ∥α2

∥ < ∞ and condition
α1

2(t, x) ≤ C1 for some nonnegative constant C1, then for any ϵ0 > 0,

sup
t∈[0,T ]

sup
ϵ∈[0,ϵ0)

Eη
ϵ

0,x0
|ηϵ(t)| j+1 < (|x0|

j+1
+ 1) · const.(T, j) < ∞.

Proof. Without loss of generality we may assume j is an odd number. First we can find
generating operators Aη

ϵ

t of processes ηϵ from generating operators Aξ
ϵ

t of processes ξ ϵ (see

the Appendix for details). Let us consider a sequence of functions fn(x) =
xk

1+(x/n)k
for an

even positive integer k. Then, according to the formula for Aη
ϵ

t in the Appendix, the generating
operator Aη

ϵ

t applying to fn gives

Aη
ϵ

t fn(x) = ϵ−1/2 f ′
n(x)


α1(t, xϵ1/2

+ x∗(t))− α1(t, x∗(t))


+
1
2

a(t, xϵ1/2
+ x∗(t)) f ′′

n (x)

+ ϵ−1
 

fn(x + ϵ1/2u)− fn(x)− ϵ1/2u · f ′
n(x)


µt,xϵ1/2+x∗(t)(du)

= x · f ′
n(x) · α1

2(t, θ1xϵ1/2
+ x∗(t))+

1
2

a(t, xϵ1/2
+ x∗(t)) f ′′

n (x)

+
f ′′
n (x)

2


u2µt,xϵ1/2+x∗(t)(du)

+ · · · +
1
k!


ϵ

k−2
2 uk f (k)n (x + θ2ϵ

1/2u)µt,xϵ1/2+x∗(t)(du)

which is less than or equal to

≤ const1 + const2 × fn(x),

since f (k)n is bounded, and x · f ′
n(x), f ′′

n , f ′′′
n , . . . , f (k−1)

n are bounded by const3+const4× fn(x).
So

Eη
ϵ

0,x0


fn

ηϵt


≤ fn(x0)+

 t

0


const1 + const2 × Eη

ϵ

0,x0


fn

ηϵs


ds

≤ C + const2

 t

0
Eη

ϵ

0,x0


fn

ηϵs


ds,

where constant C = C(x0, k, T ) = |x0|
k

+ T · const1. Applying Gronwall’s lemma with such
nonnegative Eη

ϵ 
fn

ηϵt


, we obtain

Eη
ϵ

0,x0


fn

ηϵt


≤ C · exp{const2 · t},

then the proof is done by sending n to infinity and choosing k = j + 1. �
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Lemma 3.2. Assume ∥β i
∥ < ∞ for 3 ≤ i ≤ j + 1, ∥α2

∥ < ∞ and condition α1
2(t, x) ≤ C1 for

some nonnegative constant C1, and condition (i) in Theorem 2.1 holds, then there is a constant
B ′

= B ′(x0, T, j) such that

| f (t, x[0, t])| ≤ B ′(1 + |x(t)| j ),

for all x[0, t] ∈ Dx0 [0, t].

Proof. According to (16), we have

| f (t, x[0, t])|

=

Eη0

0,x0
F


x t

[0, T ] · exp


•

0
α1

2(s, x∗(s))ds


+ η0

t [0, T ]


≤ B · Eη

0

0,x0


1 +


|x(t)| · exp

 T

0
α1

2(u, x∗(u))du


+ |η0(T )− x(t)|

 j
≤ B(1 + |x(t)| j

· const1 + const2 · Eη
0

0,x0
|η0(T )| j )

≤ B ′(1 + |x(t)| j ), for some B ′ from Lemma 3.1. �

Lemma 3.3. Assume ∥β i
∥ < ∞ for 3 ≤ i ≤ j + 1, ∥α2

∥ < ∞ and condition α1
2(t, x) ≤ C1 for

some nonnegative constant C1, and condition (i) in Theorem 2.1 holds, then there is a constant
B ′′

= B ′′(x0, T, j) such that f (i)(t, x[0, t])(I ⊗
i

{t} )

 ≤ B ′′(1 + |x(t)| j−2), i = 1, 2, 3,

for all x[0, t] ∈ Dx0 [0, t].

Proof. From Lemma 4 in [7], with ψ[t,T ](s) = I[t,T ](s) exp
 s

t α
1
2(v, x∗(v)dv)


,

f (i)(t, x[0, t])(I ⊗
i

{t} ) = Eη
0

t,x[0,t]F
(i)(η0

[0, T ])(ψ⊗
i

[t,T ]
).

It follows from (16) that

f (i)(t, x[0, t])(I ⊗
i

{t} ) = Eη
0

0,x0
F (i)


x t

[0, T ] · exp


•

0
α1

2(s, x∗(s))ds


+ η0

t [0, T ]


× (ψ⊗

i

[t,T ]
). (17)

Thus  f (i)(t, x[0, t])(I ⊗
i

{t} )


=

Eη0

0,x0
F (i)


x t

[0, T ] · exp


•

0
α1

2(s, x∗(s))ds


+ η0

t [0, T ]


(ψ⊗

i

[t,T ]
)


≤ B · Eη

0

t,x0


(1 + ∥ψ[t,T ]∥

i )


1 + |x(t)| · exp

 T

0
α1

2(u, x∗(u))du


+ |η0(T )− x(t)|

 j−2


≤ B ′′(1 + |x(t)| j−2), for some B ′′ depending on x0, T and j. �

According to Lemma 3.1, we can select B ′
= const5(1+|x0|

j ) and B ′′
= const6(1+|x0|

j−2).
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3.3. Proof of Theorem 2.1

For each fixed ϵ > 0, the compensating operator Aη
ϵ

of ηϵ[0, T ] is well defined for
nice bounded functionals f (t, x[0, T ]) (see (11) and Lemma 1 in [7]). As explained in the
introduction, we need to extend the domain of the compensating operator Aη

ϵ
to include some

unbounded functionals.

Proposition 3.4. Assume ∥β i
∥ < ∞ for 3 ≤ i ≤ j + 1, ∥α2

∥ < ∞, ∥α2
2∥ < ∞, ∥α1

22∥ < ∞,

α1
2(t, x) ≤ C1 for some nonnegative constant C1, and condition (i) in Theorem 2.1 holds, then the

compensating operator Aη
ϵ

of historical process ηϵ[0, t], t ∈ [0, T ], can be applied to functional
f (t, x[0, t]) on D[0, t] given by (14) with F in Theorem 2.1.

Proof. For x[0, t] ∈ D[0, t], let us define

fn(t, x[0, t]) = f (t, x[0, t]) · h


x(t)

n


· h


x(0)

n


,

where h is a non-negative smooth function with supx h(x) ≤ 1, and is equal to 1 in (−1, 1) and
to 0 outside (−2, 2).

Claim. For each positive integer n,

Eη
ϵ

0,x0
fn(T, η

ϵ
[0, T ]) = fn(0, x0)+

 T

0
Eη

ϵ

0,x0
Aη

ϵ

fn(t, η
ϵ
[0, t])dt. (18)

As explained at the beginning of Section 3.3, equality (18) holds for nice bounded functionals
with suitable continuity conditions. We will show the following:

(a) f (1)n (t, x[0, t])(I{t}) is continuous in x[0, t] with respect to Skorohod topology for every t;
(b) f (2)n (t, x[0, t])(I{t}, I{t}) is bounded and uniformly continuous in x[0, t] in uniform topology;
(c) fn(t, x[0, t]) and the pseudo-partial derivative ( fn)(1)(t, x[0, t]) are bounded and

continuous in x[0, t] in uniform topology for every t.

Proof of (a) and (b): Let us compute the first Gâteaux derivative of fn(t, x[0, t]) in its second
argument along direction y[0, t] as follows

lim
δ→0

δ−1 [ fn(t, x[0, t] + δy[0, t])− fn(t, x[0, t])]

= lim
δ→0

δ−1


f (t, x[0, t] + δy[0, t]) · h


x(t)+ δy(t)

n


· h


x(0)+ δy(0)

n


− f (t, x[0, t]) · h


x(t)

n


· h


x(0)

n


= f (1)(t, x[0, t])(y[0, t]) · h


x(t)

n


· h


x(0)

n


+ f (t, x[0, t])


h′


x(t)

n


·

y(t)

n
· h


x(0)

n


+ h


x(t)

n


· h′


x(0)

n


·

y(0)
n


.

We note that the first Gâteaux derivative at x[0, t] as a functional on space D[0, t] is linear and
continuous in y[0, t], and it is continuous in x[0, t] as a mapping from D[0, t] to L(D[0, t], R)
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which is the space of all linear and continuous functionals over D[0, t], so fn(t, x[0, t]) is first
Fréchet differentiable in the second argument x[0, t] and for t > 0,

f (1)n (t, x[0, t])(I{t}) =


f (1)(t, x[0, t])(I{t}) · h


x(t)

n


+ f (t, x[0, t]) · h′


x(t)

n


·

1
n


· h


x(0)

n


.

Similarly fn(t, x[0, t]) is twice Fréchet differentiable and for t > 0,

f (2)n (t, x[0, t])(I ⊗
2

{t} ) =


f (2)(t, x[0, t])(I ⊗

2

{t} ) · h


x(t)

n


+ f (1)(t, x[0, t])(I{t}) · h′


x(t)

n


·

2
n

+ f (t, x[0, t]) · h′′


x(t)

n


·

1

n2


· h


x(0)

n


.

From definition of h, we get

sup
x[0,t]∈D[0,t]

| fn(t, x[0, t])| = sup
x[0,t]∈D[0,t]

| f (t, x[0, t])| · h


x(t)

n


· h


x(0)

n


≤ B ′

· sup
x[0,t]∈D[0,t]


1 + |x(t)| j


· h


x(t)

n


· h


x(0)

n


≤ const5(1 + (2n) j )2.

And from Lemma 3.3, it follows

sup
x[0,t]∈D[0,t]

 f (1)n (t, x[0, t])(I{t})
 < ∞; sup

x[0,t]∈D[0,t]

 f (2)n (t, x[0, t])(I ⊗
2

{t} )

 < ∞.

Note that fn, f (1)n and f (2)n are continuous in x[0, t]. Lemmas in Section 3.2 tell us we can
consider fn, f (1)n and f (2)n just for x(t) in [−2n, 2n] because outside this interval h, h′ and h′′

are zeros, from which uniform continuity follows. For instance, the proof of uniform continuity

for f (2)n (t, x[0, t])(I ⊗
2

{t} ) can be done as follows. For x[0, t], y[0, t] ∈ D[0, t] with ∥y − x∥ ≤ 1,
we estimate the following f (2)n (t, y[0, t])(I ⊗

2

{t} )− f (2)n (t, x[0, t])(I ⊗
2

{t} )


=

 f (2)(t, y[0, t])(I ⊗
2

{t} )h


y(t)

n


h


y(0)

n


− f (2)(t, x[0, t])(I ⊗

2

{t} )h


x(t)

n


h


x(0)

n


+ other terms


≤ I1 + I2 + |other terms|,

where

I1 =

 f (2)(t, y[0, t])(I ⊗
2

{t} )h


y(t)

n


h


y(0)

n


− f (2)(t, y[0, t])(I ⊗

2

{t} )h


x(t)

n


h


x(0)

n


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≤

 f (2)(t, y[0, t])(I ⊗
2

{t} )

 · h′


θx(t)+ (1 − θ)y(t)

n

 1
n

· |y(t)− x(t)|

+

h′


θ ′x(0)+ (1 − θ ′)y(0)

n

 1
n

· |y(0)− x(0)|


≤ const6(1 + (2n + 1) j−2)2 ·
2
n

· sup
x

|h′(x)| · ∥y − x∥.

Term I2 can be estimated as follows,

I2 =

 f (2)(t, y[0, t])(I ⊗
2

{t} )− f (2)(t, x[0, t])(I ⊗
2

{t} )

 h


x(t)

n


h


x(0)

n


=

 f (3)(t, x[0, t] + θ(t, x[0, t], y[0, t])

· (y[0, t] − x[0, t]))(I{t}, I{t}, y[0, t] − x[0, t])
 · h


x(t)

n


h


x(0)

n


≤ const6(1 + (2n + 1) j−2)2 · ∥y − x∥,

where θ(t, x[0, t], y[0, t]) is between 0 and 1 depending on t, x[0, t] and y[0, t]. The other terms
are

|other terms|

=

 f (1)(t, y[0, t])(I{t}) · h′


y(t)

n


2
n

− f (1)(t, x[0, t])(I{t}) · h′


x(t)

n


2
n

+ f (t, y[0, t]) · h′′


y(t)

n


·

1

n2 − f (t, x[0, t]) · h′′


x(t)

n


·

1

n2

 h


x(0)

n


.

Similar estimates can be made for the other terms. The uniform continuity of the second

derivative f (2)n (t, x[0, t])(I ⊗
2

{t} ) in x[0, t] then follows from these estimates.

Proof of (c): First we show the functional f (t, x[0, t]) = Eη
0

t,x[0,t]F(η
0
[0, T ]) given by (14)

has a pseudo-partial derivative f(1)(t, x[0, t]) with F in Theorem 2.1. If functional F were
bounded together with its derivatives, then pseudo-partial derivative f(1)(t, x[0, t]) exists and
even an explicit formula can be found (see Lemma 4 of [7]). Here F in Theorem 2.1 may not be
bounded, so we set, for x[0, t] ∈ D[0, t] and h defined above,

f̂m(t, x[0, t]) = Eη
0

t,x[0,t]


F(η0

[0, T ])h


η0(T )

m


.

It is clear that limm→∞ f̂m(t, x[0, t]) = f (t, x[0, t]). Now F(η0
[0, T ])h


η0(T )

m


is bounded

together with its derivatives, then it follows that f̂m(t, x[0, t]) has a pseudo-partial derivative
( f̂m)(1)(t, x[0, t]), that is, for any 0 ≤ s ≤ t ≤ T, x[0, t] ∈ D[0, t],

f̂m(t, x s
[0, t]) = f̂m(s, x[0, s])+

 t

s
( f̂m)(1)(u, x s

[0, u])du. (19)

What is more,

( f̂m)(1)(t, x[0, t]) = −α1
2(t, x∗(t))x(t)( f̂m)

(1)(t, B−1x[0, t])(I{t})

−
1
2
α2(t, x∗(t))( f̂m)

(2)(t, B−1x[0, t])(I ⊗
2

{t} ),



144 X. Yang / Stochastic Processes and their Applications 123 (2013) 131–155

where Bx(t) = exp{
 t

0 α
1
2(s, x∗(s))ds} · x(t) is a one-to-one mapping from D[0, T ] onto itself.

By sending m to infinity in (19) we get

f (t, x s
[0, t]) = f (s, x[0, s])+

 t

s


−α1

2(u, x∗(u))x(t) f (1)(u, B−1x s
[0, u])(I{u})

−
1
2
α2(u, x∗(u)) f (2)(u, B−1x s

[0, u])(I ⊗
2

{u}
)


du.

This suggests that a version f(1)(t, x[0, t]) of the pseudo-partial derivatives is given by

f(1)(t, x[0, t]) = −α1
2(t, x∗(t))x(t) f (1)(t, B−1x[0, t])(I{t})

−
1
2
α2(t, x∗(t)) f (2)(t, B−1x[0, t])(I ⊗

2

{t} ).

From (15) we know

lim
t↓s

f(1)(t, x s
[0, t]) = f(1)(s, x[0, s])

for all s ∈ [0, T ] and x[0, s] ∈ D[0, s], so this version satisfies

f(1)(t, x[0, t]) = lim
∆↓0

∆−1
[ f (t + ∆, x t

[0, t + ∆])− f (t, x[0, t])].

We thus can compute the pseudo-partial derivative of fn as follows:

( fn)(1)(t, x[0, t]) = lim
∆↓0

∆−1  fn(t + ∆, x t
[0, t + ∆])− fn(t, x[0, t])


= lim

∆↓0
∆−1  f (t + ∆, x t

[0, t + ∆])− f (t, x[0, t])


· h


x(t)

n


· h


x(0)

n


= f(1)(t, x[0, t]) · h


x(t)

n


· h


x(0)

n


.

From Lemma 3.3 we have

sup
x[0,t]∈D[0,t]

( fn)(1)(t, x[0, t])
 < ∞.

The continuity in x[0, t] of ( fn)(1)(t, x[0, t]) is proved in the same way as in (a) and (b). The
claim is thus proved.

Now we apply limn→∞ to both sides of (18). For limn→∞ Eη
ϵ

0,x0
fn(T, ηϵ[0, T ]), we can find

a dominating function as follows fn(T, η
ϵ
[0, T ])

 ≤
 f (T, ηϵ[0, T ])

 ≤ B ′(1 + |ηϵ(T )| j ).

Noticing that B ′(1 + |ηϵ(T )| j ) is integrable by Lemma 3.1, we get from Lebesgue dominated
convergence theorem that limn→∞ Eη

ϵ

0,x0
fn(T, ηϵ[0, T ]) = Eη

ϵ

0,x0
f (T, ηϵ[0, T ]). Now for the

limit on the right hand side limn→∞

 T
0 Eη

ϵ

0,x0
Aη

ϵ
fn(t, ηϵ[0, t])dt, we use Lebesgue dominated

convergence theorem twice to first interchange limn→∞ and
 T

0 and then interchange limn→∞
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and Eη
ϵ

0,x0
. More precisely, the dominating function can be chosen as follows:Aηϵ fn(t, η

ϵ
[0, t])

 ≤


const1 + const2 · |ηϵ(t)| j

 
1 + |x0|

j


where finite constants const1 and const2 are independent of n (but they depend on ∥α2
2∥ and

∥α1
22∥, and this is why we assume these two are finite). At the end, we get

Eη
ϵ

0,x0
f (T, ηϵ[0, T ]) = f (0, x0)+

 T

0
Eη

ϵ

0,x0
Aη

ϵ

f (t, ηϵ[0, t])dt,

which means Aη
ϵ

f (t, x[0, t]) is well defined. �

Proof of Theorem 2.1. Since we have Proposition 3.4, we rewrite Aη
ϵ

f (t, x[0, t]) as follows,

Aη
ϵ

f (t, x[0, t]) = ϵ1/2


1
2
α1

22(t, x∗(t)+ ϵ1/2θ ϵ1 ) · x(t)2 · f (1)(t, x[0, t])(I{t})

+
1
2
α2

2(t, x∗(t)+ ϵ1/2θ ϵ2 ) · x(t) · f (2)(t, x[0, t])(I ⊗
2

{t} )

+


1
6

u3 f (3)(t, x[0, t] + ϵ1/2θ ϵ3

· u · I{t})(I
⊗

3

{t} )µt,x∗(t)+ϵ1/2x(t)(du)


, (20)

where θ ϵi , i = 1, 2, 3, are between 0 and 1 depending on ϵ (and some other elements).
We want to show ϵ−1/2Aη

ϵ
f (t, x[0, t]) converges to

B f (t, x[0, t]) :=


1
2
α1

22(t, x∗(t)) · x(t)2 · f (1)(t, x[0, t])(I{t})

+
1
2
α2

2(t, x∗(t)) · x(t) · f (2)(t, x[0, t])(I ⊗
2

{t} )

+
1
6
α3(t, x∗(t)) f (3)(t, x[0, t])(I ⊗

3

{t} )


, (21)

uniformly as x[0, t] varies over every compact subset of Dx0 [0, t]. We prove such uniform
convergence in several steps (note that uniform convergence can be easily derived except for
the last integral term in (20)).

Step 1: As ϵ → 0,

f (3)(t, x[0, t] + ϵ1/2θ ϵ3 · u · I{t})(I
⊗

3

{t} ) → f (3)(t, x[0, t])(I ⊗
3

{t} )

uniformly for |u| ≤ const. and for x[0, t] changing over every compact subset of Dx0 [0, t]. This
is from (ii) of Theorem 2.1 and (17). To see this, we notice that (17) gives that for i = 3 and for
any y[0, t] ∈ Dx0 [0, t],

f (3)(t, y[0, t])(I ⊗
3

{t} ) = Eη
0

0,x0
F (3)


yt

[0, T ] · exp


•

0
α1

2(s, x∗(s))ds


+ η0

t [0, T ]


(ψ⊗

3

[t,T ]
)
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=


D0[0,T ]

F (3)


yt
[0, T ] · exp


•

0
α1

2(s, x∗(s))ds


+ z[0, T ]


(ψ⊗

3

[t,T ]
)µη0

t [0,T ]
(dz[0, T ]), (22)

where µη0
t [0,T ]

represents the distribution of η0
t [0, T ] on space D0[0, T ]. We now replace

y[0, t] in (22) by yϵ[0, t] = x[0, t] + ϵ1/2θ ϵ3 · u · I{t}[0, t] for x[0, t] ∈ Dx0 [0, t] (the initial
point yϵ(0) = x(0) = x0 for t > 0), then from (ii) we know the integrand converges to

F (3)(x t
[0, T ] · exp


•

0 α
1
2(s, x∗(s))ds


+ z[0, T ])(ψ⊗

3

[t,T ]
) uniformly for |u| ≤ const. and for

x[0, t], z[0, T ] changing over every compact subset of Dx0 [0, t], D0[0, t] respectively. What is

more, integrand F (3)(yt
ϵ[0, T ] · exp


•

0 α
1
2(s, x∗(s))ds


+ z[0, T ])(ψ⊗

3

[t,T ]
) is bounded on every

compact set (for z[0, T ]) and uniformly integrable with respect to probability measure µη0
t [0,T ]

.
These facts complete the proof of Step 1.

Step 2: u3 f (3)(t, x[0, t] + ϵ1/2θ ϵ3 uI{t})(I
⊗

3

{t} )µt,x∗(t)+ϵ1/2x(t)(du)

−α3(t, x∗(t)) f (3)(t, x[0, t])(I ⊗
3

{t} )


≤


|u|

3
 f (3)(t, x[0, t] + ϵ1/2θ ϵ3 · u · I{t})(I

⊗
3

{t} )

− f (3)(t, x[0, t])(I ⊗
3

{t} )

µt,x∗(t)+ϵ1/2x(t)(du)

+

 f (3)(t, x[0, t])(I ⊗
3

{t} )

 ·  u3µt,x∗(t)+ϵ1/2x(t)(du)−


u3µt,x∗(t)(du)


=: J1 + J2.

First, J2 → 0 (ϵ → 0) uniformly as x[0, t] over every compact subset of Dx0 [0, t], since α3 is
continuous at x∗(t) in its second argument. For J1, let C > 0,

J1 =


|u|

3
 f (3)(t, x[0, t] + ϵ1/2θ ϵ3 uI{t})(I

⊗
3

{t} )

− f (3)(t, x[0, t])(I ⊗
3

{t} )

µt,x∗(t)+ϵ1/2x(t)(du)

=


|u|≤C

|u|
3
 f (3)(t, x[0, t] + ϵ1/2θ ϵ3 uI{t})(I

⊗
3

{t} )

− f (3)(t, x[0, t])(I ⊗
3

{t} )

µt,x∗(t)+ϵ1/2x(t)(du)

+


|u|>C

|u|
3
 f (3)(t, x[0, t] + ϵ1/2θ ϵ3 uI{t})(I

⊗
3

{t} )

− f (3)(t, x[0, t])(I ⊗
3

{t} )

µt,x∗(t)+ϵ1/2x(t)(du)

≤


|u|≤C

|u|
3
 f (3)(t, x[0, t] + ϵ1/2θ ϵ3 uI{t})(I

⊗
3

{t} )

− f (3)(t, x[0, t])(I ⊗
3

{t} )

µt,x∗(t)+ϵ1/2x(t)(du)
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+


|u|>C

|u|
3


const1 + const2|u|
j−2ϵ

j−2
2

+ const3 · |x(t)| j−2

µt,x∗(t)+ϵ1/2x(t)(du)

=: J3 + J4,

where J3 converges to zero (for any C) uniformly in x[0, T ] over a compact set according
to Step 1. The first part


|u|>C |u|

3const1µt,x∗(t)+ϵ1/2x(t)(du) of J4 goes to zero as C → ∞

uniformly in all x[0, t] (not necessary over compact set) since |u|
3 is uniformly integrable

with respect to the measures µt,x (this can be seen from ∥β4
∥ < ∞). The second part

|u|>C |u|
3const2 · |u|

j−2
·ϵ

j−2
2 µt,x∗(t)+ϵ1/2x(t)(du) also converges to zero uniformly in all x[0, t]

because |u|
j+1 is uniformly integrable with respect to µt,x . The same uniform integrability of

|u|
j+1 implies that the last part


|u|>C |u|

3const3 ·|x(t)| j−2µt,x∗(t)+ϵ1/2x(t)(du) of J4 goes to zero
uniformly in x[0, T ] over any compact set.

At the same time, we note that ϵ−1/2Aη
ϵ

f (t, x[0, t]) is dominated by

B ′′


const1 + const2 · |x(t)| j


,

which is uniformly integrable with respect to distributions of ηϵ because of Lemma 3.1,

sup
ϵ∈(0,ϵ0)

Eη
ϵ

0,x0
|ηϵ(t)| j+1 < ∞.

Then weak convergence of ηϵ to η0 (which was proved by Theorem 1 and Lemma 6 in [7])
completes the proof. �

4. An extension of Theorem 2.1

As mentioned in the remark of Theorem 2.1, the condition (i) of Theorem 2.1 is restrictive to
some extent. In this section, we will weaken this condition.

Theorem 4.1. Under conditions of Theorem 2.1, but with (i) replaced by:
(i)′ there is a constant C > 0 such that for all x[0, T ], y[0, T ] ∈ D[0, T ],

|F(x[0, T ])| ≤ C


1 + |x(T )| j

+

 T

0
|x(s)| j ds


;F (i)(x[0, T ])(y[0, T ]

⊗
i
)

 ≤ (1 + ∥y∥
i )C


1 + |x(T )| j−2

+

 T

0
|x(s)| j−2ds


,

i = 1, 2, 3,

the following holds: as ϵ ↓ 0,

Eη
ϵ

0,x0
F(ηϵ[0, T ]) = Eη

0

0,x0
F(η0

[0, T ])+ ϵ1/2 Eη
0

0,x0
A1 F(η0

[0, T ])+ o(ϵ1/2).

Proof. First note that under condition (i)′, by using similar proofs as in Lemmas 3.2 and 3.3, we
can prove there are constants C ′ and C ′′

| f (t, x[0, t])| ≤ C ′


1 + |x(t)| j

+

 t

0
|x(s)| j ds


; f (i)(t, x[0, t])(I ⊗

i

{t} )

 ≤ C ′′


1 + |x(t)| j−2

+

 t

0
|x(s)| j−2ds


.
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Then we can prove that the compensating operator Aη
ϵ

of ηϵ[0, T ] can be applied to function
f (t, x[0, t]) given by (14) provided F satisfies condition (i)′. To do this, we apply similar
arguments as in Proposition 3.4, but this time we define

fn(t, x[0, t]) = f (t, x[0, t]) · h


x(t)

n


· h


x(0)

n


· h

 t
0 (x(s))

2 j ds

n


,

for a smooth function h which is equal to 1 in (−1, 1) and to 0 outside (−2, 2). Similarly we can
get (20). The rest of the proof will be almost the same as that of Theorem 2.1. �

Now more classes of examples can be produced based on the condition (i)′. The first class of
examples takes the form

F(x[0, T ]) = φ

 T

0
g(x(s))ds


where two smooth functions φ and g satisfy suitable upper bound assumptions in order to validate

(i)′. For instance, we can take F(x[0, T ]) =

 T
0 xk1(s)ds

k2
for two positive integers k1 and k2.

More generally, we can produce functionals combining the end point value x(T ) and the integral
type functional as follows

F(x[0, T ]) = φ


x(T ),

 T

0
g(x(s))ds


.

It is straightforward to check the differentiability of F given the smoothness of φ(x, y) and
g. Also, the condition (i)′ is fulfilled if all the partial derivatives of φ(x, y) are bounded by
1 + |x |

k
+ |y|

k and the derivatives of g(x) are bounded by 1 + |x |
k for some positive integer k.

A specific example of this kind is F(x[0, T ]) =

 T
0 xk1(s)ds

k2
· xk3(T ) for positive integers

k1, k2 and k3.

5. Applications of Theorem 2.1: general expansions

First let us introduce some symbols:

α
j
(i)(t, x) := α

j
22 · · · 2  

i

(t, x).

The subscript 2 denotes the differentiation in the second spatial argument x . Thus α j
(i)(t, x)means

the i times differentiation in x of α j (t, x).

Theorem 5.1. Let processes ηϵ and x∗ be in Theorem 2.1. Consider an integer s ≥ 3. Assume
α1

2(t, x) ≤ C1 for some nonnegative constant C1, and

∥β i
∥ < ∞ for 3 ≤ i ≤ 3(s − 2)+ 1; ∥α2

∥ < ∞;
∥α1

22∥, ∥α
1
222∥, . . . , ∥α

1
(s−1)∥ < ∞,

∥α2
2∥, ∥α2

22∥, . . . , ∥α
2
(s−2)∥ < ∞,

∥α3
2∥, ∥α3

22∥, . . . , ∥α
3
(s−3)∥ < ∞,

· · ·

∥αs−1
2 ∥ < ∞.
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Assume, in addition, that α1
(s−1)(t, x), α2

(s−2)(t, x), . . . , αs−1
2 (t, x) and αs(t, x) are continuous

in x at the point x∗(t) for all t , and |u|
s+2 is uniformly integrable with respect to µt,x .

Let the functional F(x[0, T ]) on Dx0 [0, T ] be 3(s − 2) times differentiable with the following
conditions:

(I) there is a constant B > 0 such that for all x[0, T ], y[0, T ] ∈ D[0, T ]

|F(x[0, T ])| ≤ B(1 + |x(T )|s);F (i)(x[0, T ])(y[0, T ]
⊗

i
)

 ≤ (1 + ∥y∥
i ) · B ·


1 + |x(T )|s−2


,

i = 1, 2, . . . , 3(s − 2);

(II) F (i)(x[0, T ])(I[t,T ]δ, . . . , I[t,T ]δ), 1 ≤ i ≤ 3(s − 2), are continuous with respect to x[0, T ]

uniformly as x[0, T ] changes over an arbitrary compact subset of D[0, T ], t over [0, T ], and
δ[0, T ] over the set of Lipschitz continuous functions with constant 1, ∥δ∥ ≤ 1.

Then as ϵ ↓ 0,

Eη
ϵ

0,x0
F(ηϵ[0, T ]) = Eη

0

0,x0
F(η0

[0, T ])+

s−2
i=1

ϵ
i
2 Eη

0

0,x0
Ai F(η0

[0, T ])+ o(ϵ
s−2

2 ), (23)

where A1 is a third-order differential operator defined before, A2 is a sixth-order differential
operator given by

A2 F(x[0, T ]) =

 T

0
A1F(x[0, t])dt +

 T

0


1
3!
α1

222(t, x∗(t))x(t)
3 f (1)

× (t, x[0, t])(I{t})+
1
4
α2

22(t, x∗(t))x(t)
2 f (2)(t, x[0, t])(I ⊗

2

{t} )

+
1
3!
α3

2(t, x∗(t))x(t) f (3)(t, x[0, t])(I ⊗
3

{t} )

+
1
4!
α4(t, x∗(t)) f (4)(t, x[0, t])(I ⊗

4

{t} )


dt

with F(x[0, t]) =
1
2
α1

22(t, x∗(t))x
2(t) f (1)(t, x[0, t])(I{t})

+
1
2
α2

2(t, x∗(t))x(t) f (2)(t, x[0, t])(I ⊗
2

{t} )

+
1
6
α3(t, x∗(t)) f (3)(t, x[0, t])(I ⊗

3

{t} ), (24)

and A3, . . . , As−2 are suitable differential operators defined through derivatives of f.

Proof. The case when s = 3 is actually Theorem 2.1. In what follows, sometimes f (k) will

be used to denote f (k)(t, x[0, t])(I ⊗
k

{t} ) for short. Now we first prove this for s = 4. Applying
Taylor’s formula we write

Aη
ϵ

f (t, x[0, t])

= ϵ1/2


1
2!
α1

22(t, x∗(t))x(t)
2
+

1
3!
α1

222(t, x∗(t)+ ϵ1/2θ ϵ1 x(t))ϵ1/2x(t)3


× f (1)(t, x[0, t])(I{t})
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+
1
2


α2

2(t, x∗(t)) · x(t)+
1
2!
α2

22(t, x∗ + ϵ1/2θ ϵ2 x(t)) · ϵ1/2x(t)2


· f (2)(t, x[0, t])(I ⊗
2

{t} )+

 
1
3!

u3 f (3)(t, x[0, t])(I ⊗
3

{t} )

+
1
4!

u4
· ϵ1/2 f (4)(t, x[0, t] + ϵ1/2θ ϵ3 · uI{t})(I

⊗
4

{t} )


µt,x∗(t)+ϵ1/2x(t)(du)


.

Then, if we write α3(t, x∗(t) + ϵ1/2x(t)) = α3(t, x∗(t)) + α3
2(t, x∗(t) + ϵ1/2θx(t)) · ϵ1/2x(t),

then

ϵ−1/2


ϵ−1/2Aη

ϵ

f (t, x[0, t])−


1
2!
α1

22(t, x∗(t)) · x(t)2 · f (1)

+ 1/2α2
2(t, x∗(t)) · x(t) · f (2) +

1
3!
α3(t, x∗(t)) f (3)(t, x[0, t])(I ⊗

3

{t} )



→


1
3!
α1

222(t, x∗(t)) · x(t)3


· f (1)(t, x[0, t])(I{t})

+
1
4
α2

22(t, x∗) · x(t)2 · f (2)(t, x[0, t])(I ⊗
2

{t} )

+
1
3!
α3

2(t, x∗(t))x(t) f (3)(t, x[0, t])(I ⊗
3

{t} )+
1
4!

f (4)(t, x[0, t])(I ⊗
4

{t} )α
4(t, x∗(t))


,

uniformly as x[0, t] varies over every compact subset of Dx0 [0, t] (The proof on uniform
convergence can be done similarly as that of Theorem 2.1. The uniform integrability of |u|

6

with respect to measures µt,x is used and this is a consequence of ∥β7
∥ < ∞.) Besides,

ϵ−1/2


ϵ−1/2Aη

ϵ

f (t, x[0, t])−


1
2!
α1

22(t, x∗(t)) · x(t)2 · f (1)

+ 1/2α2
2(t, x∗(t)) · x(t) · f (2) +

1
3!
α3(t, x∗(t)) f (3)(t, x[0, t])(I ⊗

3

{t} )


can be dominated by a functional which is uniformly integrable with respect to distributions of
ηϵ . Thus we have

Eη
ϵ

0,x0
Aη

ϵ

f (t, ηϵ[0, t])

= ϵ1/2 Eη
ϵ

0,x0


1
2!
α1

22(t, x∗(t))η
ϵ(t)2 f (1) + 1/2α2

2(t, x∗(t))η
ϵ(t) f (2)

+
1
3!
α3(t, x∗(t)) f (3)(t, ηϵ[0, t])(I ⊗

3

{t} )


+ ϵ · Eη

0

0,x0


1
3!
α1

222(t, x∗(t)) · η0(t)3 · f (1) +
1
4
α2

22(t, x∗) · η0(t)2 · f (2)

+
1
3!
α3

2(t, x∗(t))η
0(t) f (3) +

1
4!

f (4)(t, η0
[0, t])(I ⊗

4

{t} )α
4(t, x∗(t))


+ o(ϵ). (25)
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Now we want to apply the case s = 3 to write the term Eη
ϵ

0,x0
F(ηϵ[0, t]) as Eη

0

0,x0
F(η0

[0, t]) +

ϵ1/2 Eη
0

0,x0
A1F(η0

[0, t]) + o(ϵ1/2), thus we have to apply Theorem 2.1 to functional F(x[0, t])

defined by (24). First we have to check F(x[0, t]) satisfies all conditions of Theorem 2.1: here
we just check that the first term of F(x[0, t]) (which is x2(t) f (1)(t, x[0, t])(I{t})) satisfies (i) and
(ii) of Theorem 2.1. It can be easily seen that x2(t) f (1)(t, x[0, t])(I{t}) is differentiable andx2(t) f (1)(t, x[0, t])(I{t})

 ≤ x2(t) · B ′′
· (1 + |x(t)|s−2),

x2(t) f (1)(t, x[0, t])(I{t})
(1)

(y[0, t])

= lim
h→0

h−1

(x + hy)2(t) f (1)(t, (x + hy)[0, t])(I{t})− x2(t) f (1)(t, x[0, t])(I{t})


= x2(t) f (2)(t, x[0, t])(I{t}, y[0, t])+ 2x(t)y(t) f (1)(t, x[0, t])(I{t}).

Proceeding in this way, we can find

x2(t) f (1)

(2)
and


x2(t) f (1)

(3)
. For the derivative

[x2(t) f (1)](1), there is a term involving x2(t) f (2), and condition (I) of Theorem 5.1 implies
|x2(t) f (2)| ≤ const1 + const2|x2+s−2(t)|. Thus in order to make the first derivative satisfy
condition (i) of Theorem 2.1, we should require, in case s = 4, ∥β i

∥ < ∞, 3 ≤ i ≤ 7. For
condition (ii) of Theorem 2.1, we need uniform continuity of F (3) in some sense: note that F (3)
consists of f (i), 2 ≤ i ≤ 3(s − 2) = 6, and this is the reason why we assume condition (II) of
Theorem 5.1, i.e. uniform continuity of F (i), 2 ≤ i ≤ 3(s − 2) = 6 (here we actually do not
need uniform continuity of F (1), but we will see that uniform continuity of F (1) is needed when
we prove the case when s = 5).

Applying Theorem 2.1 with t in lieu of T to F and then putting the result back to (25), we get
a new version of (25) and put it in the following equality

Eη
ϵ

0,x0
F(ηϵ[0, T ]) = Eη

0

0,x0
F(η0

[0, T ])+

 T

0
Eη

ϵ

0,x0
Aη

ϵ

f (t, ηϵ[0, t])dt.

This proves (23) when s = 4, and gives A2, which is a sixth-order differential operator. In
conclusion, for s = 4, we require F to be six times differentiable and ∥β i

∥ < ∞ for 3 ≤ i ≤ 7.
Now we prove the case s = 5. We use Taylor’s formula to write one term further,

Aη
ϵ

f (t, x[0, t]) = ϵ1/2


1
2!
α1

22x(t)2 +
1
3!
α1

222ϵ
1/2x(t)3

+
1
4!
α1
(4)(t, x∗(t)+ ϵ1/2θ ϵ1 x(t))ϵx(t)4


f (1)(t, x[0, t])(I{t})

+ 1/2

α2

2 x(t)+
1
2!
α2

22ϵ
1/2x(t)2

+
1
3!
α2

222(t, x∗ + ϵ1/2θ ϵ2 x(t))ϵx(t)3


f (2)(t, x[0, t])(I ⊗
2

{t} )

+

 
1
3!

u3 f (3) +
1
4!

u4ϵ1/2 f (4)

+
1
5!

u5ϵ f (5)(t, x[0, t] + ϵ1/2θ ϵ3 uI{t})(I
⊗

5

{t} )


×µt,x∗(t)+ϵ1/2x(t)(du)


.
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Then, by expanding α3 and α4, we get

ϵ−1


ϵ−1/2Aη

ϵ

f (t, x[0, t])−


1
2!
α1

22(t, x∗(t)) · x(t)2 · f (1)

+ 1/2α2
2(t, x∗(t)) · x(t) · f (2) +

1
3!
α3(t, x∗(t)) f (3)(t, x[0, t])(I ⊗

3

{t} )



− ϵ1/2


1
3!
α1

222x(t)3 f (1) +
1
2!
α2

22x(t)2 f (2) +
1
3!
α3

2 x(t) f (3) +
1
4!
α4 f (4)



→


1
4!
α1
(4)(t, x∗(t)) · x(t)4


· f (1)(t, x[0, t])(I{t})

+
1

12
α2

222(t, x∗) · x(t)3 · f (2)(t, x[0, t])(I ⊗
2

{t} )

+
1
3!
α3

22(t, x∗) · x(t)2 · f (3)(t, x[0, t])(I ⊗
3

{t} )

+
1
4!
α4

2(t, x∗) · x(t) · f (4)(t, x[0, t])(I ⊗
4

{t} )

+
1
5!

f (5)(t, x[0, t])(I ⊗
5

{t} )α
5(t, x∗(t))


,

uniformly as x[0, t] varies over every compact subset of Dx0 [0, t]. Just like before, it follows

Eη
ϵ

0,x0
Aη

ϵ

f (t, ηϵ[0, t])

= ϵ1/2
· Eη

ϵ

0,x0


1
2!
α1

22(t, x∗(t)) · ηϵ(t)2 · f (1) + 1/2α2
2(t, x∗(t)) · ηϵ(t) · f (2)

+
1
3!
α3(t, x∗(t)) f (3)(t, ηϵ[0, t])(I ⊗

3

{t} )



+ ϵ · Eη
ϵ

0,x0


1
3!
α1

222η
ϵ(t)3 f (1) +

1
2!
α2

22η
ϵ(t)2 f (2) +

1
3!
α3

2η
ϵ(t) f (3) +

1
4!
α4 f (4)


+ ϵ3/2

· Eη
0

0,x0


1
4!
α1
(4)(t, x∗(t)) · η0(t)4 · f (1) +

1
12
α2

222(t, x∗) · η0(t)3 · f (2)

+
1
3!
α3

22(t, x∗) · η0(t)2 · f (3) +
1
4!
α4

2(t, x∗) · η0(t) · f (4)

+
1
5!

f (5)(t, η0
[0, t])(I ⊗

5

{t} )α
5(t, x∗(t))


+ o(ϵ3/2).

For ϵ1/2
· Eη

ϵ

0,x0
, we want to apply the result of case s = 4 to write

ϵ1/2
· Eη

ϵ

0,x0
Fηϵ[0, t] = ϵ1/2


Eη

0

0,x0
Fη0

[0, t] + ϵ1/2 Eη
0

0,x0
A1Fη0

[0, t]

+ ϵEη
0

0,x0
A2Fη0

[0, t] + o(ϵ)

,
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so we need F to be six times differentiable. Thus F should be nine times differentiable.
Furthermore, in order to use the case s = 4, we have to assume the uniform continuity ofF (i), 2 ≤ i ≤ 6, which consist of f (i), 1 ≤ i ≤ 3(s − 2) = 9 (this is why we also include
uniform continuity of F (1) in assumption (II) of Theorem 5.1). Noticing that the derivatives of F
contain a term ηϵ(t)2 · f (i), we get from condition (I) of Theorem 5.1 that

|ηϵ(t)2 f (i)| ≤ const1 + const2|ηϵ(t)|2+s−2
= const1 + const2|ηϵ(t)|5.

Thus in order to use the result of case s = 4, we need ∥β i
∥ < ∞ for 3 ≤ i ≤ 10 (we notice

that when s = 4, if condition (I) is modified to be ∥y∥
i
· B ·


1 + |x(T )|5


, then we just need

∥β i
∥ < ∞ for 3 ≤ i ≤ 10).

For term ϵ · Eη
ϵ

0,x0
, we will apply the case s = 3 so that we can get o(ϵ3/2). When we check

condition (i) of Theorem 2.1 for the third derivative, we will meet a term x3(t) f (4), and condition
(I) of Theorem 5.1 implies |x3(t) f (4)| ≤ const1 + const2|x(t)|6. In order to make the derivative
satisfy condition (i) of Theorem 2.1, ∥β i

∥ < ∞ for 3 ≤ i ≤ 10 is enough.
In a word, for s = 5, we need F to be nine times differentiable and ∥β i

∥ < ∞ for 3 ≤ i ≤ 10.
For general s ≥ 6, we notice that the order of differentiability of F will increase by 3 each

time, and finiteness of ∥β i
∥, 3 ≤ i ≤ 3(s − 2)+ 1 will be required. Thus the proof can be done

by writing more and more terms in Taylor’s formulas. �

For future use in the theory of large deviations, we state an extension of Theorem 5.1 as
follows. The proof copies that of Theorem 5.1 by using Theorem 4.1 instead of Theorem 2.1
everywhere.

Theorem 5.2. Under conditions of Theorem 5.1, but with (I) replaced by:

(I)′ there is a constant C > 0 such that for all x[0, T ], y[0, T ] ∈ D[0, T ]

|F(x[0, T ])| ≤ C


1 + |x(T )|s +

 T

0
|x(t)|sdt


;F (i)(x[0, T ])(y[0, T ]

⊗
i
)

 ≤ (1 + ∥y∥
i )C


1 + |x(T )|s−2

+

 T

0
|x(t)|s−2dt


for i = 1, 2, . . . , 3(s − 2), the following holds: as ϵ ↓ 0.

Eη
ϵ

0,x0
F(ηϵ[0, T ]) = Eη

0

0,x0
F(η0

[0, T ])+

s−2
i=1

ϵ
i
2 Eη

0

0,x0
Ai F(η0

[0, T ])+ o(ϵ
s−2

2 ),

where A1, A2, . . . , As−2 are same as in Theorem 5.1.
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Appendix. Compensating operators after transformations

In this section, we give the details on deriving compensating operators for stochastic processes
defined through linear transformations of some processes. Recall that the family of locally
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infinitely divisible processes (ξ ϵ(t), Pξ
ϵ

s,x ) in Section 1.1 has generating operators Aξ
ϵ

t given by

Aξ
ϵ

t f (x) = α1(t, x) f ′(x)+
ϵ

2
a(t, x) f ′′(x)

+
1
ϵ

 
f (x + ϵu)− f (x)− ϵu f ′(x)


µt,x (du)

for twice continuously differentiable functions f that are bounded together with their first and
second derivatives. It was mentioned that ηϵ(t) = ϵ−1/2(ξ ϵ(t) − x∗(t)) converges as ϵ → 0 in
distribution to a Gaussian diffusion process η0 with generating operator

Aη
0

t f (x) = α1
2(t, x∗(t)) · x · f ′(x)+

1
2
α2(t, x∗(t)) · f ′′(x)

where the subscript 2 means differentiation in second spatial argument. Here x∗ is the unique
solution of ordinary differential equation x ′

∗(t) = α1(t, x∗(t)). We will show here how to get the

generating operators Aη
ϵ

t of processes ηϵ and that limϵ↓0 Aη
ϵ

t f (x) = Aη
0

t f (x) for some class of
functions f under suitable conditions on ηϵ .

The compensating operators Aξ
ϵ

of processes ξ ϵ are defined as Aξ
ϵ

f (t, x) = ∂ f (t, x)/∂t +

Aξ
ϵ

t f (t, ·)(x). To find the generating operators Aη
ϵ

t , we assume the initial position of process ξ ϵ

is ξ ϵs = x . From definitions of compensating operator and generating operator, it follows:

Ps,t
ξ ϵ f (x)− f (x) =

 t

s
Ps,v
ξ ϵ Aξ

ϵ

v f (x)dv,

Ps,t
ξ ϵ f (t, ·)(x)− f (s, x) =

 t

s
Ps,v
ξ ϵ Aξ

ϵ

f (v, ·)(x)dv,

for suitable f (x) and f (t, x), where the family Ps,t
ξ ϵ is the multiplicative family of linear

operators of Markov processes ξ ϵ defined by Ps,t
ξ ϵ f (x) = Eξ

ϵ

s,x f (ξ ϵ(t)). Term Ps,t
ξ ϵ f (t, ·)(x)

means that Ps,t
ξ ϵ is applied to function f (t, x) in its section argument x , and Ps,v

ξ ϵ Aξ
ϵ

f (v, ·)(x)

means that Ps,v
ξ ϵ is applied to function h(v, x) := Aξ

ϵ
f (v, x) in its second argument x . We derive

two connections between multiplicative families of ξ ϵ and ηϵ as follows:

Ps,t
ξ ϵ f (x) = Eξ

ϵ

s,x f (ξ ϵ(t)) = Eη
ϵ

s,ϵ−1/2(x−x∗(s))
f

ηϵ(t)ϵ1/2

+ x∗(t)


= Ps,t
ηϵ F(t, ·)


ϵ−1/2(x − x∗(s))


, F(t, x) = f


xϵ1/2

+ x∗(t)

,

Ps,t
ηϵ f (x) = Eη

ϵ

s,x f (ηϵ(t)) = Eξ
ϵ

s,xϵ1/2+x∗(s)
f

ϵ−1/2(ξ ϵ(t)− x∗(t))


= Ps,t

ξ ϵ G(t, ·)


xϵ1/2
+ x∗(s)


, G(t, x) = f


ϵ−1/2(x − x∗(t))


.

The generating operator Aη
ϵ

t can be found in the following way.

Ps,t
ηϵ f (x)− f (x) = Ps,t

ξ ϵ G(t, ·)


xϵ1/2
+ x∗(s)


− G


s, xϵ1/2

+ x∗(s)


=

 t

s
Ps,v
ξ ϵ Aξ

ϵ

G(v, ·)


xϵ1/2
+ x∗(s)


dv

=

 t

s
Ps,v
ξ ϵ g(v, ·)


xϵ1/2

+ x∗(s)


dv,
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set g(v, x) = Aξ
ϵ

G(v, ·)(x)

=

 t

s
Ps,v
ηϵ g(v, ·)(x)dv, whereg(v, x) = g


v, xϵ1/2

+ x∗(v)

.

It can be easily found that

g(v, x) = ϵ−1/2 f ′


ϵ−1/2(x − x∗(v))

 
α1(v, x)− x ′

∗(v)


+
1
2

a(v, x) f ′′

×


ϵ−1/2(x − x∗(v))


+

1
ϵ

 
f

ϵ−1/2(x + ϵu − x∗(v))


− f


ϵ−1/2(x − x∗(v))


− ϵ1/2u f ′


ϵ−1/2(x − x∗(v))


µv,x (du)

from which we get

Aη
ϵ

t f (x) = g(t, x) = ϵ−1/2 f ′(x)

α1(t, xϵ1/2

+ x∗(t))− α1(t, x∗(t))


+
1
2

a(t, xϵ1/2
+ x∗(t)) f ′′(x)

+
1
ϵ

 
f


x + ϵ1/2u


− f (x)− ϵ1/2u f ′(x)

µt,xϵ1/2+x∗(t)(du).

Now we take the limit ϵ → 0 to have

lim
ϵ→0

Aη
ϵ

t f (x) = α1
2(t, x∗(t)) · x · f ′(x)+

1
2
α2(t, x∗(t)) · f ′′(x)

for all f (x) that are bounded and continuous together with their first and second derivatives
(suitable conditions on ηϵ should be imposed). And this limit is the generating operator for some
Gaussian process η0.
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