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This paper considers the Maximum Likelihood (ML) estimation of the five 
parameters of a linear structural relationship y = OL + /3x when OL is known. 
The parameters are g, the two variances of observation errors on x and y, the 
mean and variance of x. When the ML estimates of the parameters cannot be 
obtained by solving a simple simultaneous system of five equations, they are 
found by maximizing the likelihood function directly. Some asymptotic 
properties of the estimates are also obtained. 

1. INTRODUCTION 

Consider a bivariate random variable (x, y) satisfying the linear relation 
y = OL + /3x, /3 being unknown and to be estimated. Suppose x and y cannot 
be observed exactly, but instead we observe 6 = x + 6 and 7 = y + E, where 
the errors 6 and E have zero means and unknown variances uap and ac2 respec- 
tively. 

If 01 is unknown, x, 6 and E are independent and normally distributed, and x 
has unknown mean p and variance u 2, then j3 is not identifiable and cannot be 
estimated consistently from n independent observations (& , Q), i = l,..., n 
(cf. Kendall and Stuart 1973, ch. 29; Moran 1971a). When oa2 (or u,2) or o~/os2 
is known, /3 becomes identifiable and Maximum Likelihood (ML) estimates in 
these cases have been obtained (Lindley 1947; Birch 1964). 

If CY. is known and p is only known to be non-zero, then /l also becomes 
identifiable and can be estimated consistently by (7. - a)/.$., where ij. = C V&Z, 
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5. = C &/n, and C denotes summation from i = 1 to n. Without loss of 
generality, let OL be zero. The model then ,becomes 

The ML estimate (i;, 6, @, ag2, 6,2) of (p, fi, 02, os2, u,2) is well-known when 
&a, 6.62 and eE2 are non-negative. However, when one of the variance estimates 
is negative no full solution to the estimation of (p, fi, 02, ua2, CT,“) was available, 
as pointed out by Moran (1971a, p. 252) and Zellner (1971, p. 130). Here we 
provide a complete ML solution and also obtain its asymptotic properties. 

2. MAXIMUM LIKELIHOOD SOLUTION 

The model considered here is 

Ti = Bxi + Ei , i = l,..., n, 

where the (xi, 6i , Q) are independent and identically distributed normal 
variates, and xi , 6, and l i are mutually independent with mean (p, 0,O) and 
variances u2, ug2 and uE2, respectively. We further assume that the distribution 
of (fi , Q) is non-singular, so that each (fi , Q) has the bivariate normal distribu- 
tion with mean (CL, /3~) and positive definite covariance matrix 

v= ( a2 + Ud2 pu2 pu: a,2 . 1 
The positive definiteness of V is equivalent to the condition that at most one of as, 
ud2 and uc2 is zero and /3 # 0 if uE2 = 0. The likelihood function L for (si , Q), 
i = l,..., 71, is thus the product of the bivariate normal probability functions. 

Let m,, = C [<Ti/n, mpc = x fi2jn, m,,, = C $/n. Then (f., ij., mat - f-2, 
- +j.2, rn& - f.f.) = (t., +j., sEE , s,,, , sE,J is the unique ML estimate of the 

zisformed parameters E(f) = p, E(T) = /3~, Var(t) = d2 + ~~2, Var(T) = 

fQ2u2 + uc2, Cov(f, ‘1) = p u2 when L is considered as a function of the trans- 
formed parameters. The transformation is one-to-one if p # 0. Consider first 
the ML estimation with the restriction that j3 # 0. It will be shown later that 
the probability that L is maximized at a point with p = 0 is zero. By lemma 3.2.3 
of Anderson (1958), the solution (,G, fl , a2, 6.62, eE2) for the equations 

5 = I4 ii- =&-h 

Sff = a2 + ua2, snn = pu2 + u,2, SEn = pu2 
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maximizes L on D = {(TV, /I, a2, og2, c Q a): p # 0, /3 # 0, V is positive definite}. 
Hence it is the ML estimate of (p, /3, u2, Use, u:) provided that @ > 0, aa2 3 0 
and 6,” > 0. In this case, we have 

82 = s,,((./?j.) = rn(,(f+j.) - $2, 

(jag zzz sac - d3j.) = mcp - ~dlViiJ~ 

06 m *2=s - sdr)./l.) = m,, - m&id.). 

(2-l) 

I., $, mEE , m,,, and m(,, are also jointly sufficient statistics. 
However, a complication arises when one of the &a, 662 and 6,Z is less than zero. 

Then the likelihood function L has to be maximized directly. L has only one 
local maximum on the open set Q at (p, 8, e2, I?~~, 6:). If one of the @, es2 and 
eEa is negative, then when restricted to the set of all admissible values w = 

i(PY 89 u2, us2, u,“): p # 0, j3 # 0, u2 >, 0, u8” 3 0, uE2 > 0, V is positive definite}, 
L cannot have a local maximum at a point such that all u2, ug2 and uE2 are positive. 
Thus the problem reduces to maximizing L in each case when u2 = 0, ug2 = 0 
or a,2 = 0 and taking the one which gives the largest value of L as our ML 
solution. 

Case 1. u2 = 0. One can verify that 

L = 1/((27wJY exp 1 -UP) [C (& - PL)~/Q~ + C (776 - #b)2i~~] 1. 

Hence it is clear that L is maximized when 

and at this point 

(2.2) 

InL = --n ln(27r) - (n/2) ln[(m~c - t.“)(m,, - q.“)] - n. (2.3) 

Case 2. us2 = 0. After some algebraic manipulation one finds that 

L = 1/((2muJn) exp I- (l/2) [c (5s - P12/fJ2 + c @Ii - BWU?] 1. 
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Hence L is maximized when 

(2.4) 

and at this point 

In L = --n ln(27r) - (n/2) In[(m,, - (.2)(m,, - rnQrn~&] = 71. (2.5) 

Case 3. uE2 = 0. From case 2 we have, by symmetry, 

which is maximized at 

(2.6) 

and at this point 

1nL = --n ln(27) - (n/2) ln[(m,, - ij.2)(m,b - m&/m,,,)] - n. (2.7) 

Therefore we have the following 

THEOREM 2.1. Assume that /I # 0. If one of a2, eB2 and ec2 in (2.1) is mgative, 
then the ML estimate is give9z by either (2.2), (2.4) or (2.6) depending on which of 
(2.3), (2.5) and (2.7) gives the largest value of L. 

It is not difficult to see that if es2 < 0, then (2.5) is greater than (2.7) and (2.3). 
Hence (2.4) gives the ML solution. Similarly if &c2 < 0, (2.6) gives the ML 
solution. 

Now let us remove the restriction that ,8 # 0. Suppose that L attains its 
maximum at a point (p’, /3’, u’~, u;“, ~2) with /3’ = 0. At this point V becomes 
a diagonal matrix with elements uf2 + ui” and u:“. However the point (CL’, 0, 
CT’= + a:, 0, u:“) also gives the same maximum. From case 2 we notice that 
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this point is given by (2.4). Hence mEJmCC = 0 which has probability zero of 
occurring. 

We now give a geometric interpretation of the estimation situation. Since 
y = /3x, the true structural relationship must pass through the origin P. The 
line 1 = {(x, JJ): y = fi* = (+j./E.) x is obtained by joining the sample mean } 
(<., +j.) to P and asymptotically converges to the true structural relationship. 
The two sample’regression lines ZL and I, obtained from regressing 7 on 6 and 6 
on 7, respectively, also pass through ({., ;i.) and have slopes flL = sh/sCE and 

B” = %,/%I > respectively. Now consider co-ordinate axes with origin at ($., +). 
Since /?& > 0, the two slopes have the same sign and consequently IL and I, 
must pass through the same two quadrants. From the Schwartz inequality 
1 fiL 1 < I/!$, 1 we then have the following three situations. 

(1) If P lies between IL. and 1, , the slopes /$ flL and & all have the same 
sign and 1 flL I < 1 fl I < 1 flu I. Consequently, from (2.1) e2 > 0 aa2 > 0 and 
se2 > 0 and the normal situation occurs with (fl, fl, a2, ba2, e:) gking the ML 
estimate. 

(2) If P lies in the same quadrants as IL. and I, but outside the region 
enclosed by these regression lines, then fl, flL and fiLi are still of the same sign 
andeither//?] <~fi~loor~fl,I ~I~~.Thu~frorn(2.1)6~=s,,/~=~~~~~/~~O. 
If P is closer to ZL than E, , then / fl / < I flL 1 so that from (2.1) eB2 < 0 and 
case 2 gives the ML estimate. Otherwise ee2 < 0 and case 3 gives the ML 
estimate. Moran (1971a) discussed these situations intuitively and pointed out 
that in these cases, the sample variances and covariance of .$ and 77 should give 
some information on the slope parameter /I. Estimates of /3 in (2.4) and (2.6) 
therefore give the necessary adjustment when ,!? lies outside the bounds fiL 

aW%- 
(3) If P lies in the quadrants in which IL and 1, do not lie, then fl has the 

opposite sign to flL . In this case e2 = sccfiJ/? < 0. 

3. ASYMPTOTIC BEHAVIOUR OF THE ML ESTIMATE 

Let 0 = (0, ,..., 0s) = (CL, /3, u2, og2, uc2). Direct computation shows that the 
information matrix C = [cij], where ci3 = -,??(a2 lnL/aBi at?,), is given by 
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where 6,, = j?ab2, 6, = bacr82 + u,s, u12 = pus, oI1 = ~2 + ~~2 and a,, = 

/RJ~ + uC2. After some lengthly algebraic manipulation, it is seen that 

r 

a11 -UP r 

--612lP ~221P2 --s 

D zc-1 z; r -s (%U2 + %fJaa) 8-" + k 

--r s (hula - 41ucY B-" - k 

L /3"r -/3"s (u%,2 - u&,,) + pk 

-r P-r 

s -ps 

&,u,, - u,,u,2) p-2 - k (0%: - us2ua2) + pk 

(%~a2 + 82) r2 + k (dd - u2&) - F2k 

( u,2uE2 - u26,,) - flak h~aa + (uc2>' + B4k 

where k = (u~)~S,&~U)~, r = u~u,~/~, s = u~&&~~) = /3klu2. Also D,, , D,, 
and D,, are matrices of order 2 x 2, 2 x 3 and 3 x 3 respectively. The 
Q = (4, p, 62,662,&y of (2.1) is therefore asymptotically normally distributed 
with mean 0 and covariance matrix D. To investigate the asymptotic behaviour 
of the ML estimate & of 8, two cases have to be distinguished. 

(1) u2, Da2 and uE2 are all positive. In this case, since 6 is consistent, the 
probability that all 62, ea2 and a<2 are positive tends to one as n tends to infinity. 
Thus we have 

THEOREM 3.1. Pr(QM = 6) -+ 1 as n + co and consequently QM is asymp- 
totically distributed as N( 0, D). The asymptotic probability that b2, &a2 and 6.,2 are 
all non-negative is given by 

Ifs m  m  co fnh , xz > 4 4 dx, 4 , 0 0 0 

whet2 f& , x 2 , x3) is the probability density function of a trivariate normal 
distribution with mean ( ua, ug2, uC2) and covariance matrix D.&s. 

(2) One of u2, uB2 and ue2 is zero. We discuss only the case ua2 = 0. The 
other cases are similar. Chant (1974) and Moran (1971 b) discussed ML estima- 
tion when some of the true parameters lie on the boundary of the parameter 
space. 

683/9/z-9 
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Since e2 -tp a2 > 0 and ec2 -+p us2 > 0, where “+*” denotes convergence 
in probability, Pr(e2 > 0 and ec2 > 0) --+ 1. Therefore with probability tending 
to one & is given either by 6 or 6, where 6 = (b, /?, c2, 0, ecz) is defined by (2.4). 
In fact, we have 

THEOREM 3.2. If us2 = 0, then both Pr(@ = 6) and Pr(QM = 6) tend to 
~asn+ccl. 

Proof. We have 

Pr(n1/26c 3 0) > Pr(QM = 6) 

= Pr(&,s > 0, e2 > 0 and 6: >, 0) 

= Pr(e8s > 0) + Pr(@ 3 0 and es2 3 0) - Pr(6a2 > 0 

or both o2 and ac2 > 0) 

>, Pr(nlls&,s > 0) + Pr(# 3 0 and a62 > 0) - 1. 

Since lim, Pr(b2 > 0 and as2 > 0) = 1, where lim, denotes the limit as n + co, 
and nrk?6s is asymptotically distributed as N(0, (p2 + 02)usu,2/(&)2), we have 

where z is distributed as N(0, (p2 + u~)u~u~~/(&.L)~). Thus lim, Pr(6M = 8) = Q . 
Similarly lim, Pr(QM = 6) = ) . 

Now we proceed to find the limiting distribution of a, = nl/2(6M - 9). For 
any vectors a = (a, ,..., a,)’ and b = (b, ,..., b,)‘, we use a < b to denote 
ai < b, for all i = l,..., p. Let El be the event that 62, ea2 and a,2 are non- 
negative and E, be the event that ea2 < 0. We have 

F,(t) = Pr(z, < t) = Pr(nl12(6 - 0) < t, El) + Pr(n1/2(6 - 0) < t, E,) 

+ Pr(z, < t, EIe r\ E2c). (3.1) 

Let the t2 , ts and t, oft = (tr ,..., ts) be positive. If any of t2 , t4 and t, is negative, 
FJt) = 0. We notice immediately that as n -+ co 

Pr(z, < t, E,c n E,o) < Pr(EIc n E,o) 

= Pr(one of &a and acz is negative) --t 0. 

The limit of the second term on the right hand side of (3.1) can be deduced from 
theorem 2 of Chant (1974) and is equal to 2-W(t, , t, , t, , tS), where G is the 
cumulative distribution function of N(0, nDs) and DB is the inverse of the matrix 
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obtained from C by deleting the fourth row and column and is equal to 

Thus 

G(t, , t, , t, , tS) = @(tlu-l) @(t2(p2 + u2)1’2 u,‘) ~D(t,2-“~u-~) @(t62-1’2u,2), (3.2) 

where @ is the cumulative distribution function of N(0, 1). Alternatively, 
lim, Pr(nr/2(6 - 0) < t, E,) can be found by writing 

Pr(&12(B - 0) < t, I&) = Pr(rF(6 - e) < t 1 E,) Pr(E,) 

and observing that ~(ri,z(n)~/~(@ - CL, p - ,f3, G2 - d, 5: - u,“)) = 0, where E 
denotes expectation with respect to the asymptotic distribution, so that 

li$Pr(n’/2(B - 0) < t, E,) 

= li~{Pr(n1/2(jZ - p, /? - /I, G2 - u2, 6,” - u,2) < (tr , t, , t, , tJ)} 

and the limit on the right hand side is equal to G(t, , t2 , t2 , t6). Consider the 
first terms of (3.1). Since 

Pr(&“( 8 - 0) < t, 62 >, 0) = Pr(f11/2(Q - 0) < t, Er) 

+ Pr(N2(Q - 0) < t, es2 > 0, at least one of e2 and ec2 is negative), 

the second term on the right hand side tends to 0 as n + co. Since n112(6 - 0) 
is asymptotically distributed as iV(0, nD), we have 

li~Pr(n112(B - e) < t, EJ = lipPr(P’2(B - 0) < t, 8s’ >, 0) 

(3.3) 

where g is the probability density function of a normal variate with mean 0 and 
covariance matrix nD. (3.3) is identical to the first component of (19) in theorem I 
of Moran (1971 b). Thus, we have proved 

THEOREM 3.3. If ua2 = 0, then 

lipFF,(t) = lip Pr(n1’2(BM - e) < t) 

= Pl + P2 9 

where p1 andp, are given by (3.2) and (3.3), respectively. 
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4. SOME REMARKS 

Since the parameters are unidentifiable if p = 0, in practice, before the ML 
estimation procedure is applied, it is helpful to test the hypothesis p = 0 by 
examining whether the sample mean f. is significantly different from zero 
(E(,$) = E(x) = 0). If p = 0 is rejected, the ML procedure described in 
section 2 is then carried out to obtain PM. 

Suppose the main interest is in estimating ,8. One can use the consistent 
estimate 8. However, the ML estimate PM of p, which was originally motivated 
by the case of negative estimated variances, is already seen to be a refinement 
of fl using information provided by the second order moments when fl lies 
outside the bounds formed by fiL and fl, (which asymptotically satisfy /?L < /3 < 
pLi if /3 > 0 and with inequalities reversed if /3 < 0). Therefore PM is preferable 
to @ in finite samples (asymptotically they are identical (theorem 3.1) if u2, us2 
and oC2 are positive). If oa2 = 0, then with probability tending to + (theorem 3.2), 
the ML estimate of cra2 has the value 0 and /@ could yield a higher precision 
than 8. It would be helpful to examine the accuracy of flM or fl by computing the 
estimated asymptotic variances obtained by replacing the true parameter 0 in 
the formulas in theorems 3.1 and 3.3 by dw. 

The estimate fl’ = mE,,imEC in (2.4) converges in probability to p - PcJ~~/ 
(u2 + ua2 + p2) and hence is asymptotically biased (the bias is small when /3 
and as2 are small and when u2 is large) but in general has small variance. In 
finite samples, the consistency of /!% does not ensure that it is superior to fl’. 
Thus another procedure is to choose adaptively one of flM and fl with smaller 
estimated asymptotic mean square error (AMSE) (cf. Feldstein 1974). Direct 
computation shows that 

AMSE(& = n-1e(n1i2(/? - /3 + ,Bug2/(u2 + ua2 + p2)) + f12(os2)“/(u2 + ug2 + ,u~)~ 

= ((0” + (Ja2 + p2)2[(u2 + p2)(B2G + ulE2) + %2u:l - 2/32(%y2p41 

x (0” + ua2 + p2)-++ + p2(u62)2/(u2 + u*2 + cL2)2, 

and can be estimated by replacing 8 by GM. 
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