
Theoretical Computer Science 18 (1982) 33-40
North-Ha lland Publishing Company

33

APUISHD~WN AuTowpAT0~ OR A CONTEXT-FREE
GIRAMMAR-WHICH IS MORE ECONOMICAL?*9**

Jonathan GOLDSTINE, John IS. PRICE*** and Detlef WOTSCHKE
Computer Science Department, The Pennsylvania State University, University Park, PA 168(12,
U.S.A.

Communicated by R. Book
Received January 1980
Revised September 1980

Abstract. For every pair of positive integers n and p, there is a language accepted by a real-time
deterministic pushdowc automaton with n states and p stack symbols and size O(np), for which
every context-free grammar needs at least n*p + 1 nonterminals if n > 1 (or 13 non-terminails if
n = 1). It follows that there are context-free languages which can be recognized by pushdown
automata of size O(np), but which cannot be generated by context-free grammars of size smaller
than O(n2p); and that the standard construction for converting a pushdown automaton to 3
context-free grammar is optimal in the sense that it infinitely often produces grammars with the
fewest number of nonterminals possible.

1. Introduction

When trying to describe a context-free language as concisely as possible, one often
hesitates for a second or two in order to decide whether to use a pushdown
automaton (PDA) or a context-free grammar (CFG). Most people would ir.zree that
for some languages, a PDA is pieferable, and for others a CFG is. But many
arguments have been presented, particularly by designers of programming
languages, as to why a grammar is usually the preferable tool for specifying a
context-free language. So the question remains: why, then, does One sometimes
prefer a PDA for the specification of a particular language?

In this paper, we offer a partial answer to this question. We show that, for every
pair of positive integers n and p, there is a language that can be accepted by a PDA
with n states and p stack symbols and size proportional to np, but for which every
CFG must have at least n 2p @ 1 nonterminals, where

n2p@1=ifn>1t n2p+1 elsen*p

* A preliminary version of this paper was presented at the Fifth International Colloquium on
Automa:ta, Languages and Programming in Udine, Italy, July 1978.

** Tlilis research was t;upported in part by the National Science Foundation under Grants MCS76-
10076 and MCS76- 1007CAOl.

*** Current address: Bell Laboratories, Holmdel, NJ 07733, U.S.A.

03043975/82/0000-0000/$02,75@ 1982North-Holland1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82151663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

34 J. Goldsthe, J.K Price, D. Wotschke

anQ hence must have size at least proportional to n*p. It follows that some
context-free languages can be defined much more concisely by PDAs than by CFGs.
It also follows that the usual algorithm for converting a PDA to a CFG, which uses
the seemingly large number of n*p@ 1 non-terminals for the CFG, tizznot be
improved, in the sense that no algorithm is possible that always produces fewer
nonterminals. This is shown in Section 2.

In Section 3, similar techniques are employed to show that the usual algorithm for
intersectmg a context-free language (specified by a CFG with p nonterminals) and a
regular set (specified by a deterministic finite automaton with n states) is optimal in
the sense that the resulting CFG will infinitely often have the minimal number of
nontermin’als possible. These techniques are also used to show that, for each n 2 1
and p 22, there is a linear context-free language accepted by a one-turn deter-
miniF+ic real-time PDA with n states and p stack symbols for which eve;_y CFG
(whetner linear or not) needs at least yt *(p - 1) @ 1 nonterminals.

Section 4 has a somewhat differeilt perspective, It deals with the question of
whether the smallest CFGs which generate the languages in Section 2 need to exploit
the full power of arbitrary CFGs by using ambiguity, e-productions, and the like. In
view of other results on succinctness and economy of description., it would not be
surprising if these grammars had to be ambiguous and had to use many e-produc-
tions. However, because the PDAs in Section 2 are deterministic, accept by empty
stack, and make no e-moves, they can be used to obtain minimal grammars which are
very simple in the sense that they are LR(O), hence unambiguous, and are in
Greibach Normal Form with no e-productions.

Section 5 contains some concluding remarks.

2. PDA% which are smaller than CFG’s

The standard method for converting a PDA which accepts by empty stack into an
equivalent CFG is the following ‘triple’ construction (see, e.g. [3]). Let M =
(Q, C, .r, 6, Q, z, 0) be a PDA with n = #Q states and &I= #r stack symbols. Then
for each mflv~

(~1, AA2 l 9 l A,) $2 S(qo, x, AQ) (1)

sending M from state q0 to q1 while consuming input x E C u (e} (e the empty string)
and replacing Aa on top of the stack by AlA l l l A, with A 1 on top, the triple
construction introduces context-free productions

[qo: .Aov qr-i.1]+x[~I, AI, 42][42, AZ, 431 l l l [G An qr+lIr

(42, . . . , q,+1) E cl: (2)

Here, tltc fqi, &, qj] are nonterminals and r a 0. It is then a simple matter to show by
inducticn on the length of computations and derivations that each nonterminal

Pushdown automaton vs context+ee grammar 35

[q, A, q”] generates the terminal string w iff the input w can send A4 throl,lr,h some
sequence of m’oves whose net effect is to change state from 4 to (I~ while removing A

from thlc stack:. Hence, adding the productions

if n =G # Q > I., or setting

if Q = (q}, results in a WG G with start variable S generating the same language that
M accepts by empty stack.

The CFG G has n2pE 1 nonterminals, where

n2p@1=ifn>1thenn2p+1elsen2pfi,

and it has ~2’ productions of form (2) for each move of M of form (1). Because of the
profligate uumber of productions introduced by this construction, the grammar G is
generally much larger than necessary. For example, if the productions of form (2) are
replaced by the following productions;

then an equivalent grammar is obtained which uses more nonterminals but which has
O(rn3) rather than nr productions for each move of form (1). Thus, the CFG
produd:ed by the standard triple construction will in general be far from minimal in
size, *hether size is measured by the number of produciions or by the sum of the
lengths of all productions.

Since the standard triple construction also introduces a large number n2p 0 1 of
nonterminals, it is somewhat surprising that the construction is not at all profligate in
this regard, as we now prove.

First, we introduce some notation. The letters s, r, u and H are mnemonic for set,
reset, up and down, respectively.

Notation. For positive integers n and p, let I&, be the PDA

Xn,=(Sij,rij, U,dllsi<n, lsjsp},

36 J. Goldstine, J.K. Price, D. Worrschke

and where S,, is the following partial function from 0, X &, X rp to G,, X rg :

&p(qi9 rii, zj> = (419 zl), lCiCn,lCjSp,

S,,(qi, 4 &) = !qi, 4, lSiSn,lSjSp.

[N’te: The move S,,,(qi, U, Zi) = (qi, Z’Zp) s,lips the symbol 2” under the top stack
symbol 2’9 so the stack contents are always in I’J,” u {e}.]

I%s~rc?m 9. For every pair of positive integers n and p, Mnp is a realtime deterministic
PDA with n states, p stack symbols, and 4np moves, which accepts by empty stack a
language Z,, for which every CFG needs at least n “p Q 1 nonterminals.

[Note : The number of moves of a deterministic PDA is just the number of triples
on which the next-move function S is defined.]

Proof, Obviously, M& is a realtime deterministic PDA with the required number of
states, stack symbols, and moves, Let L,, be the language accepted by Mnp, and let
G = (iv, &,,, P, S) b:? a CFC for L,,. By Ogden’s Lemma [S], there is an integer m
such that if w is in L, and if m or more distinct positions in w are designated as
distinguished, then w = w1 w2wgw4w’s9 where

(ij either wl, ~2, 193 each contain a distinguished position or ~3, w4, ws each
contain a distinguished position,

(ii) wzw3M’4 contains at most m distinguished positions, and
(iii) there is a nonterminal A in G such that

Let

Then IS’ is in L,, so w = w1 w2w3w4w5 as in Ogden’s Lemma, where every occurrence
of u and d is distinguished except for the last d. Thus,

for some nonterminal &Iiik. To complete the proof, it suffices to show that all of the
nonterminals Aiik are distinct, and that each is distinct from S if n > 1, for then G has
at least n2p 0 1 nonterminals.

By (iii), both WI wsw5 and w1w2w3w4w’5 are generated by S and hence arr, in L,,, so
w2 w4 has the same number of occurrences of u as of d, and so by (i) it has at least one
occurrence of each. But 4.~ by (ii), ~2 ~3 ~4 has at most m distinguished occurrences of u
and d in toto, so WI and wg must contain a distinguished occurrence of u and d

respectively. Thus,

Pushdown automaton vs context-free grammar 37

(3)

for some positive integers tl and t2.
Now suppose Aiik = Ai’j’kea Then Wi'j'k' has a primed formula analogous to (3), and

S+* WlAijkWs = W1Ai’j’k’Wga* W~W$W;W~WS=S~~U~'U m-t~ri'i,Sk'pdm-t;dt2~~;pd,

so the latter string is in L,,. But this is only possible if i = i’, j = j’, and k = k’. Hence,
all of the variables Aijk are distinct.

Finally, suppose ~1> 1. If S = Aijk for some l&<n, lsjsp, l<ksn, then
choose k’ # k in the range 1 s k’ S n, and observe that Aiik = S =+* sktpd, since the
latter string is in L,,. Hence, by (3),

S** SijU “Aijkd t2rkpd~*SijUt1Sk'pddt2rk,d.

But since k # k’, the latter string is not in L,, even though it is generated by S. This is
a contradiction. Hence, S is distinct from all of the Aiik when n > 1.

The number of moves of A&, is O(np), as is the length of a description of A&, in
any reasonable coding. [This assumes that each coding alphabet contains the input
alphabet &,. If the O(np) input symbols must be coded into a single alphabet of fixed
size, then the length of a description of Iw,p would be O(np log(np)).] On the other
hand, any CFG for the corresponding language L,, must have at least O(n*p)
nonterminals by Theorem 1, and hence must have size at least O(n “p), whether size is
measured by the number of productions or by the length of a description in any of the
usual coding schemes. Hence, any CFG equivalent to 1%&P is at least O(n) times
larger than Mnp. Thus, for large ~2, L,, is an example of a context-free language which
can be described much more concisely by a PDA than by 2 Cl%_

In addition, it follows from Theorem 1 that the triple construction produces a
minimal CFG for each PDA Mk,, where a CFG is minima! if no equivalent CFG has
fewe:r nonterminals. Therefore, while the grammars produced by the triple con-
struction are in general extravagantly large, the numbers of nonterminals in them are
not, for there is no construction that always produces fewer nonterminals.

3. Behavior of related conversion techniques

In this section, we investigate the behavior of one commonly used construction fcr
intersecting a context-free language with a regular set. We also investigate the
performance of the triple construction on one-turn PDAs.

There are two freqriently used methods for intersecting a context-free language L
with a regular set R. The first one takes the state set Qr of a PDA accepting L and the
state set Q2, of a finite automaton accepting R. It then forms a new PDA accepting
L n R which has Q1 x Q2 as its state set. The second construction uses a CFG G

38 J. Goldstine, J.K. Price, D. Wotschke

gcnera?ing L and a finite automaton M accepting R. It then produces a CFG G’
generating I, n R. The grammar C;’ has nonterminals of the form [q, A, r], where q

and P are states in M and A is a nonterminal of (3, as well as a separate start symbol if
M has more than one state. We now show that it foRlows from Theorem 1 that the

second construction, like the triple construction, yields a minimal grammar infinitely
often.

Theorem 2. FOP every pair of positive integers n and p, there is a finite automaton M
witah n states and a CFG G with p nonterminals such that L(G) nL(M) can be
generated only by a CFG having at least n2p 0 1 nonterminals.

proof, IRt M = (Q,,, I&, 8, ql, Q,), where Qn and Zip were defined PreViOUSlY9 and

Siql, sij) = qi, a(qi9 rij) = 419

S(qi* U) = qi9 S(q, d) 3 qi*

Let G = f&,, &, P, ZJ, where P is the set of productions

21 4 sijzj9 Zj -) rijZ1,

Then L(G) A L(M) = C,, which has the required property by Theorem 1.

Suppose that a context-free language is considered grammatically complex if it can
be defined by a PDA with FZ states and ~1 stack symbols and size O(np), but can only
be generated by a CFG with O(n 2p) nonterminals. Then the languages used in
Theorem 1 are grammatically complex. But the following theorem shows that a slight
modification of the PDAs in Theorem 1 produces one-turn PDAs, and hence that
even languages as simple as the linear context-free languages can be grammatically

complex. The lowfer bound on the number of nonterminals is slightly less than
n*p 0 I, but it applies to all CFGs for the linear language, and not just to linear

CFGs.

The~eanr 3. For every pair of integers n S= I and p 3 2, there is a linear context-free
language accepted by empty stack by a realtime deterministic one-turn PDA with n
states and p stack symbols for which every CFG needs at least n’(p - I) 0 I =
(n *p @ 1) - n ’ nonterminals.

P~c&. Let Mk, be the PDA Mnp with the moves S,,(q, U, Zj) = (qi, Ziz,) deleted
for j = p, with &,(qk, d, Zj) = (q;o e) de&ed for j f p, and with &,(qk, rkp, z,,)
redefined to be (qk, 2,). Then during the first phase of any computation, the stack

contents are in r,,-iZ,* and the stack height cannot decrease. Once an input symbol
skp is encountered, thle stack contents remain in 2: a+ *L -+ llol LLIb bLack height can never
agairc increase. Thus, Mk, is a one-turn PDA.

Pushdown automatort us context-free gramn:?r 39

The remainder of the proof is the same as that of Theorem 1, but with j constrained
to the range l<jsp--1.

4. Minimal grammars with additional properties

Recently, several studies have been made on succinctness and economy of
description [2,4,6,8,10,11,12,13]. Many of them are of the flavor: if you take a
device P\ that is more powerful than a device B, then the description of a set in terms
of A can be more economical or succinct than the description in terms of B. In this
section, we present a rasult that lies at the other end of the spectrum. The following
theorem shows that there are infinitely many context-free languages for which an
LR(0) grammar in Greibach Normal form requires no more nonterminals than does
a more general CF& In other words, there are nontrivial cases where we do not have
to pay with extra nonterminals for such nice features as Greibach Normal Form,
unambiguity, and the like. This contrasts with the fact that the various algorithms for
converting a CFG to Greibach Normal Form [1] introduce a large number of
additional nonterminals; and the fact that the increase in size needed to replace an
ambiguous CFG by an equivalent unambiguous one, -+hen this can be done at al!, is
recursively unbounded [121.

Theorem 4. There are infinitely many context-free languages having minimai
grammars which are LR(0) (hence unambiguous) and in Greibach Normal Form with
no e-productions.

Proof. Let G,, be the grammar obtained by applying the triple construction to the
PDA M&,, and let GL, be the grammar obtained from G,, by using Algorithm 2.11 in
Aho and Ullman [l] to remove productions of the form S + A. Since G,, is minimal
by Theorem 1, and since Gnp and GL, have the same number of nonterminals, G$, is
also minimal. The other properties of Gx, are derived from those of A&,.
Specifically, G I, is LR(0) because hJ&, is deterministic, ad G& is in Greibach
Normal Form 66th no e-productions because A&, is real-time. (For a detailed
explanaltion of why G& is LR(O), see the proof of Theorem 12.9 in Hopcroft and
Ullman 171.)

5. Conclusion

The following simple argument shows that for theJ?DAs Mnp, a reduction in the
number of states by a factor of k will force the number of stack symbols to increase by
a factor of at least k2. Suppose that the number of states in A&, is reduced by a factor
k to obtain an equivalent FDA M$,. Let G,,.and Gkp be the grammars obtained by
applying the triple construction to A&, and M&, respectively. If ML, had fewer than

43 J. Goidstine, J.K. Price, D. Wotschkc

& * times as many stack symbols as .rw,P, then G&, would have fewer nonterminals
than Gnp But by Theorem I, this is impossible since Gnp is minimal.

Thus, a re&xtion in the number of states of a PDA can necessitate a larger
proportionate increase in the number of stack symbols. This observation leads to the
general question: is it more economical to keep the number of states or the number of
stack symbols small when designing a PDA? This que,,, “*ion deserves further investi-
gation.

[I] A.V. Aho and J.D. Pullman, 77ze Theory of Pursin,, 0 Translation, and Compiling, Vol. 1 (Prentice-
Hall, Et@:wood Cliffs, NJI, 1972).

i2] MM. Gel&r, H.B. Hunt, III, T.G. Szymanski and S.D. Ullman, Economy of description by parsers,
DPDAs arld PDAs, Theoret. Comput. Sci. 4 (1977) 143-153.

[3] S, Giasbur3, EzeMathematical Theory of Context-Free Languages (McGraw-Hill, New York, 1966).
[4j S. Ginsburg and N. Lynch, Size complexity in context-free grammar forms, J. ACM 23 (1976)

582-598.
l?i] S. Ginsburg and E. H. Spanner, Finite-turn pushdown automata, SIAMJ. Control 4 (1966) 423-434.
[6] J. Gruska, Descrlptional complexity (of languages), a short survey, Proc. Conference on Muthemati-

cuf Foundations ofcomputer Science, Gddnsk, September 1976, Lecture Notes in Computer Science
45 (Springer, Berlin, 1976) 65-80.

171 I.E. Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata (Addison-
Wesley, Reading, MA, 1969).

[g] A.K. Meyer and M.J. Fischer, Economy of description by automata, grammars, and formal systems,
i=rw. 12th Symposium on Switching and Automata Theory (1971) 188-191.

pj W. Ogden, A helpful result for proving inherent ambiguity, Math. Systems Theory 2 (1968) 191-194.
[101 A, Pirick& Complexity and normal forms of context-free languages, Proc. Conference on Muthema-

tkal Foundations of Computer Science, June 1974, Lecture Notes in Computer Science 28 (Springer,
Berlin, 1974) 292-297,

1113 A. Plriel:B-K 1 e emenovsi, Greibach normal form complexity, Proc. Conference nn Mathematictzl
FoundutiIms of Computer Science, September 1975, Lecture Notes in Computer Science 32
(Springer. Berlin, 1975) 344-350.

1123 E, Schmidt and T. Szymanski, Succinctness of descri&ns of unambiguous context-free languages,
SUlMJ. Comput. 6 (1977) 547-553.

[13] L,G. Valiant, A note on the succinctness of descriptions of deterministic languages, Information and
i.Tuntiol a2 (1976) 139-145.

