JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 48, 743-748 (1974)

On the Generalization of the Volterra Principle of Inversion*

R. M. DESANTIS

Département de Génie Électrique, École Polytechnique de Montreal, Montreal, Quebec, Canada

AND

W. A. PORTER

Department of Electrical Engineering, The University of Michigan, Ann Arbor, Michigan

Submitted by C. L. Dolph

In this article a linear operator, K, defined on a Hilbert space equipped with a chain of orthoprojectors is considered. It is proved that if K enjoys a particular property with respect to the chain of orthoprojectors, then the series $\sum_{n=0}^{\infty} K^n$ converges in the uniform operator norm. The proof uses purely algebraic techniques and does *not* require compactness of K. As such, it is a significant generalization of the well-known Volterra principle of inversion.

1. INTRODUCTION

A bounded linear operator P on a Hilbert space H is called an *orthoprojector* if for all pairs $x, y \in H^2$ one has $\langle Px, y \rangle = \langle x, Py \rangle$, and $P^2x = Px$. If P_1 and P_2 are two orthoprojectors, the symbol $P_1 < P_2$ is used to indicate that P_1H (the range of P_1) is contained in P_2H . A set \mathfrak{P} of orthoprojectors is called a *chain* if for every pair P_1 , $P_2 \in \mathfrak{P}$ one has either $P_1 < P_2$ or $P_2 < P_1$; the chain \mathfrak{P} is called *bordered* if it contains the null operator 0, and the identity operator I; \mathfrak{P} is *closed* if it has the property that whenever a sequence of orthoprojectors $\{P_i\} \subset \mathfrak{P}$ has a limit, $\lim\{P_ix\} = Px$ for all $x \in H$, then $P \in \mathfrak{P}$. A chain z is a *partition* of \mathfrak{P} if z is composed of a finite number of orthoprojectors in \mathfrak{P} . If z_1 and z_2 are two partitions of \mathfrak{P} , the symbol $z_2 \supset z_1$ will indicate that if $P \in z_1$, then $P \in z_2$.

Suppose that $\Phi(\cdot)$ is an operator-valued function which associates to each partition z of \mathfrak{P} a bounded operator $\Phi(z): H \to H$. The operator T is said

^{*} This research was in part supported by the Canadian National Research Council, Grant No. A-8244, and by the US Air Force Office of Scientific Research, Grant No. 73-2427.

to be a uniform limit point of the function $\Phi(\cdot)$ if given any $\epsilon > 0$, there exists a partition z such that for any other partition z with the property $z \supset z_{\epsilon}$, one has $|\Phi(z) - T| < \epsilon$.

Suppose that Y is a bounded operator in H, where H is equipped with a bordered and closed chain \mathfrak{P} , and consider the operator valued function $S(\cdot)$ defined as follows; if $z = \{0 = P_0 < P_1 \cdots < P_{n-1} < P_n = I\}$ is a partition of the bordered and closed chain \mathfrak{P} , then $S(z) = \sum_{i=1}^n \Delta P_i Y P_{i-1}$, where $\Delta P_i = P_i - P_{i-1}$. If $S(\cdot)$ has a unique uniform limit point, T, then we shall denote this limit point by $(m) \int_{\mathfrak{P}} dP Y P$ which is said to converge to T. Similarly if P_{i-1} is replaced by ΔP_i in the definition of $S(\cdot)$ and a limit point exists, it is denoted by $\int_{\mathfrak{P}} dP Y dP \cdot 1$

The principal result of this paper is embodied in the theorem.

THEOREM 1. Suppose that a linear, bounded operator K on a Hilbert space H satisfies $K = m \int_{\mathfrak{P}} dPKP$, where \mathfrak{P} is a closed bordered chain in H. Then the series $\sum_{n=0}^{\infty} K^n$ converges in the uniform operator norm.

It is noted that less general forms of this theorem have been offered by other authors. In particular, an early version of Theorem 1 was established by Volterra [5] whose principle of inversion establishes the validity of Theorem 1 in the special case where H is given by the space of square integrable functions on the real line, L_2 , and K is a Hilbert-Schmidt operator on L_2 . More recently, this latter result has been extended to the case where H is any abstract Hilbert space [1]. Finally, Gohberg and Krein [4], have proved Theorem 1 in the case where K is a compact operator.

To illustrate the content of the theorem and associated notation, we consider the following simple example.

EXAMPLE 1. Let H be given by $L_2[0, \infty)$, the Hilbert space of real-valued Lebesgue square integrable functions defined on the interval $[0, \infty)$. Consider the bounded, linear operator K defined as follows. If $x, y \in L_2[0, \infty)$ and y = Kx, then

$$y(t) = \int_0^t h(t, s) \, x(s) \, ds + \mu(t) \sum_{n=0}^\infty g_n(t - \tau_n) \, x(\tau_n),$$

where: $h(\cdot, \cdot)$ is a Lebesgue square integrable Kernel; $\{g_n\}$ is an ℓ_1 sequence, i.e. $\sum_{n=0}^{\infty} |g_n| < \infty$, and the sequence $\{\tau_n\}$ is such that $\tau_0 > 0$ and $\tau_{n+1} > \tau_n$;

$$\mu(\cdot) \in L_{\infty}[0, \infty)$$
 and $\limsup_{t \to \infty} [\sup_{s \in [t,\infty)} |\mu(s)|] = 0.$

¹ All the concepts presented up to this point are taken directly from the book of Gohberg and Krein [4, Sections 1.3 and 1.4] and are included for completeness.

This operator K satisfies the condition $K = (m) \int_{\mathfrak{P}} dPKP$, where \mathfrak{P} is the bordered and closed chain of orthoprojectors indexed by $t \in [0, \infty)$ and defined as follows. If $x, y \in L_2[0, \infty)$ and $x = P^t y$, then x(s) = y(s) for $s \in [0, t)$, and x(s) = 0 for $s \in [t, \infty)$; when $t = \infty$, then $P^{\infty}x = x$. In short, K satisfies the hypotheses of the theorem, and we conclude that the series $\sum_{n=0}^{\infty} K^n$ converges in the uniform operator norm. This conclusion could not have been obtained from earlier versions of Theorem 1, because K is not necessarily Hilbert-Schmidt nor compact.

2. PRELIMINARY RESULTS

The proof of Theorem 1 will be developed in steps using a sequence of four lemmas. Throughout the following, H is a Hilbert space equipped with the bordered and closed chain of orthoprojectors \mathfrak{P} , and K is a bounded linear operator on H. Moreover, P and Q are orthoprojectors in \mathfrak{P} with Q > P; the difference Q - P will be represented by the symbol Δ .

LEMMA 1. If $K = (m) \int_{\mathfrak{P}} dPKP$, then K is such that PK = PKP for every $P \in \mathfrak{P}$, and $\int_{\mathfrak{P}} dPKdP = 0$.

LEMMA 2. If |K| < 1, then I - K is invertible and $(I - K)^{-1} = \sum_{j=0}^{\infty} K^n$, where the series converges in the uniform operator topology; moreover, this series is absolutely convergent in the sense that

$$\sum\limits_{n=0}^\infty \, K^n \leqslant \sum\limits_{n=0}^\infty \mid K \mid^n < \infty.$$

LEMMA 3. If (I - PKP) and $(I - \Delta K\Delta)$ are invertible and if PK = PKP, then I - QKQ, is invertible and

$$Q(I-QKQ)^{-1} = P(I-PKP)^{-1} + (I-\Delta K\Delta)^{-1} \left[\Delta + \Delta KP(I-PKP)^{-1}\right].$$

LEMMA 4. Suppose I - PKP is invertible and its inverse is computed by the convergent series

$$(I - PKP)^{-1} = \sum_{j=0}^{\infty} (PKP)^{j}.$$
 (1)

Suppose that $|| \Delta K\Delta || < 1$ and that PK = PKP. Then, I - QKQ is invertible; moreover, the inverse is computed by the convergent series

$$(I - QKQ)^{-1} = \sum_{j=0}^{\infty} (QKQ)^{j}.$$

Lemma 1 is a consequence of the definition of $(m) \int_{\mathfrak{P}} dPKP$. The proof Gohberg and Krein [4, Theorem 6.1, p. 27] carries over to the new setting without change and will not be repeated here. Lemma 2 is a familiar consequence of the Banach contraction principle [2, p. 131].

Lemma 3 can be established by manipulation. Note first that $P\Delta = \Delta P = 0$ and $PK\Delta = 0$ and hence

$$Q(I - QKQ) = \{(P - PKP) + (\Delta - \Delta K\Delta) - \Delta KP\}.$$

It is then easy to verify that

$$\{P(I - PKP)^{-1} + (I - \Delta K\Delta)^{-1} \Delta [I + KP(I - PKP)^{-1}]\} Q(I - QKQ) = Q, Q(I - QKQ) \{P(I - PKP)^{-1} + (I - \Delta K\Delta)^{-1} \Delta [I + KP(I - PKP)^{-1}]\} = Q.$$

Recognizing this as the right and left inverse, Lemma 3 follows.

As for Lemma 4, a more formal proof is appropriate. First note that the condition $|| \Delta K \Delta || < 1$ implies the existence of $(I - \Delta K \Delta)^{-1}$; moreover, the series expansion of Lemma 2 holds and this series is absolutely convergent. Using Eq. (1) and the series expansion of $(I - \Delta K \Delta)^{-1}$ in the result of Lemma 3, we have

$$Q(I - QKQ)^{-1} = P \sum_{j=0}^{\infty} (PKP)^{j} + \Delta \sum_{j=0}^{\infty} (\Delta K\Delta)^{j} + \Delta \sum_{j=0}^{\infty} (\Delta K\Delta)^{j} KP \sum_{i=0}^{\infty} (PKP)^{i}.$$
(2)

Because the series in $\Delta K\Delta$ is absolutely convergent, a natural generalization of the Cauchy product of two series theorem can be invoked, (see [6, p. 65]). The rearrangement we need is embodied in the indentity

$$\sum_{j=0}^{\infty} (\Delta K \Delta)^j KP \sum_{i=0}^{\infty} (PKP)^i = \sum_{j=1}^{\infty} \sum_{q=0}^{j-1} (\Delta K \Delta)^q KP (PKP)^{j-1-q}$$

Using this, Eq. (2) becomes

$$egin{aligned} Q(I-QKQ)^{-1} \ &= P+\varDelta+\sum_{j=1}^{\infty}\left[P(PKP)^{j}+\varDelta(\varDelta K\varDelta)^{j}+\varDelta\sum_{q=0}^{j-1}(\varDelta K\varDelta)^{q}\ KP(PKP)^{j-1-q}
ight] \end{aligned}$$

The desired result is now a consequence of the operator equality

$$(QKQ)^{j} = (PKP)^{j} + (\Delta K\Delta)^{j} + \Delta \sum_{q=0}^{j-1} (\Delta K\Delta)^{q} KP(PKP)^{j-1-q}, \quad (3)$$

where j = 1, 2, ...

The validity of Eq. (3) can be easily verified by an inductive process. It is true for j = 1, that is, $PKP + \Delta K\Delta + \Delta KP = QKQ$. Now, using this latter equality, we see that

$$\begin{bmatrix} (PKP)^{j} + (\Delta K\Delta)^{j} + \Delta \sum_{q=0}^{j-1} (\Delta K\Delta)^{q} KP (PKP)^{j-1-q} \end{bmatrix} QKQ$$
$$= \begin{bmatrix} (PKP)^{j+1} + (\Delta K\Delta)^{j+1} + \Delta \sum_{q=0}^{j} (\Delta K\Delta)^{q} KP (PKP)^{j-q} \end{bmatrix},$$
for $j = 1, 2,$

3. PROOF OF MAIN RESULT

From the hypothesis that $K = (m) \int_{\mathfrak{P}} dPKP$, it follows that $\int dPKdP = 0$ (Lemma 1). This implies that there exists a partition

$$z = \{P_0 = 0, P_1, ..., P_N = I\} \in \mathfrak{P}$$

such that

$$\Big|\sum_{i=1}^N \varDelta_i K \varDelta_i\Big| < 1,$$

where $\Delta_i = P_i - P_{i-1}$. This, in turn, implies that

$$|\Delta_i K \Delta_i| < 1, \qquad i = 1, 2, \dots, N.$$

Applying Lemma 2, $I - P_1 K P_1$, and $I - \Delta_i K \Delta_i$, i = 1, 2, ..., N, are invertible. Moreover, from Lemma 3, one has

$$(I - P_1 K P_1)^{-1} = \sum_{n=0}^{\infty} (P_1 K P_1)^n$$
(4)

and

$$(I - \Delta_i K \Delta_i)^{-1} = \sum_{n=0}^{\infty} (\Delta_i K \Delta_i)^n.$$
(5)

From Eqs. (4) and (5), we can apply iteratively, Lemma 4 and obtain that the series $\sum_{n=0}^{\infty} (P_i K P_i)^n$ is uniformly convergent for each i = 2, 3, ..., N. For i = N, this implies the convergence of $\sum_{n=0}^{\infty} K^n$.

References

- 1. M. S. BRODSKII, On the triangular representations of completely continuous operators with one-point spectra, Amer. Math. Soc. Transl. 47 (1965), 59-65.
- 2. R. M. DESANTIS, Causality structure of engineering systems, Ph.D. Thesis, The University of Michigan, Ann Arbor, Michigan, September 1971.
- 3. R. M. DESANTIS, On the generalized Volterra equation in Hilbert space, Amer. Math. Soc. Proceedings 38 (1973), 563-570.
- I. Z. GOHBERG AND M. G. KREIN, "Theory of Volterra Operators in Hilbert Space and Applications," Vol. 24, (Translation), Amer. Math. Soc., Providence, RI, 1970.
- 5. V. VOLTERRA, "Theory of Functionals and of Integral and Integro-Differential Equations," Dover, New York, 1958.
- 6. W. RUDIN, "Principle of Mathematical Analysis," 2nd ed., McGraw-Hill, New York, 1964.