TCTAP A-061

Factors Which Determine Compression of Surrounding Structures in Amplatzer Septal Occluder Following Transcatheter Closure of Atrial Septal Defects
Kazuto Fujimoto, Hiroaki Kise, Hisako Kiguchi, Takanari Fajji, Hideshi Tomita, Nobuo Oyama, Takashi Soga
Showa University, Northern Yokohama Hospital, Yokohama, Japan

Background: Cardiac erosion and perforation after ASD closure with device have been reported. Some reports suggest that cardiac erosion may have been associated with compression of surrounding structures following deployment. However, the risk factor of the compression of surrounding structures has not yet been clarified. The aim of this study is to evaluate factors which may determine compression of surrounding structures following deployment.

Methods: We conducted a retrospective review of all patients with isolated ASD treated using ASO in our center, until the end of 2013. Various factors in the patient profile and TEE findings were compared between the groups with and without change in compression of surrounding structures following deployment using ANOVA and logistic regression analysis. Linear regression analysis was performed to assess the correlation. All p values less than 0.05 were considered significant.

Results: Thirty-four patients with isolated ASD treated using ASO in our center. The average age at deployment was 38.1 ± 23.6 with an average long axis defect size of 15.5 ± 5.0 mm. There were no multiple and malaligned ASD, but one aneurysmal ASD. Shorter anterior rim length was associated with compression of aortic wall (P<0.05). Shorter atrial length and larger ratio of defect size and atrial length were associated with compression of atrial wall to by the RA disk in the superior side (P<0.05). All comparisons between the devise size, the existence of flimsy rim, and compression of surrounding structures following deployment showed no significant difference.

Conclusion: Compression of surrounding structures following deployment may have been affected not by devise size, but by the length of rim, the defect size, and the ratio between the defect size and the atrial length.

TCTAP A-066

Midterm Clinical and Angiographic Outcomes After Placement of Paclitaxel and Everolimus-eluting Stents For De Novo Native Coronary Stenosis
Tetsuya Ishikawa, Yosuke Nakano, Makoto Matoh
Saitama Cardiovascular Respiratory Center, Kamagaya, Japan

Background: We conducted a propensity score matched lesion-based comparison of mid-term clinical and angiographic outcomes after paclitaxel (PES: TAXUS Liberté) and everolimus (EES: XIENCE V / PROMUS and XIENCE Prime) eluting stent implantation for de novo native coronary stenosis.

Methods: During from February 2009 to August 2012, 1607 nonrandomized consecutive de novo native coronary lesions treated either with a PES (1028 lesions) or EES were enrolled in this study, and a retrospective examination was conducted in August 2013.

Results: The incidences of the clinical endpoint comprising of cardiac death, nonfatal myocardial infarction, and definite stent thrombosis after placement of PES (1.3%) and EES (0.7%) groups were very low. In the baseline-adjusted angiographic follow-up lesions (n = 471 in each arm), the incidence of binary restenosis (percent diameter stenosis [PDS] >50%) in the PES group (12.5%) was significantly higher than that in the EES group (3.4%, P<0.001). EES significantly related to binary restenosis TCTAP A-067 (Odds ratio, 2.0; 95% CI, 1.11-0.37; P<0.001).

Conclusion: The present propensity score matched lesion-based analysis firstly showed that EES showed the far better mid-term angiographic outcome compared to PES with statistical equivalent very low incidence of severe cardiac events for de novo native coronary lesion in Japanese daily practice environment.

TCTAP A-062

Preliminary Clinical Research of PCI Through Transulnar Approach in Selective Patients with Coronary Artery Disease
Xu Guang Qin, Wei Gao Xiong, Chun Peng Lu, Li Hua Shang
First Affiliated Hospital of Tsinghua University, Beijing, China

Background: This study was conducted to assess the safety and feasibility of PCI through transulnar approach in selective patients with coronary artery diseases.

Methods: 12 patients with stable angina pectoris (male 8, female 4; age 61±10.4 years) whose ulnar artery diameter was larger and Allen’s test was positive. We recorded the puncture time of ulnar artery, CAG time, the success rate of ulnar puncture and complication rate.

Results: 25 ulnar arteries were punctured successfully, the puncture time was 5±4.2 min, and CAG time was 20±3.6 min. Seventeen lesions segments of fifteen vessels in 12 patients were implanted stent successfully by 6F guiding catheter.

Conclusion: The ulnar artery might be selected as one access for PCI procedure. It is safe and effective approach for coronary intervention, and may be widely used in clinical practice.

TCTAP A-063

Inflammatory Effects and Clinical Outcomes of High-pressure Post-dilation with Non-compliant Balloon During Drug-eluting Stent Implantation
Shao-Ping Nie, Edmundo Patricio Lopes Lao, Xiao Wang, Yin Zhang, Chang-Sheng Ma
Beijing Anzheng Hospital, Capital Medical University, Beijing, China

Background: The acute inflammatory response of high-pressure post-dilation with non-compliant balloon (HPNC) after drug-eluting stent (DES) deployment remains still unknown. We sought to evaluate the inflammatory effects and clinical outcomes of HPNC after DES implantation.

Methods: We enrolled consecutive patients with stable angina pectoris, who were treated with single drug-eluting stent deployed by nominal pressure in de novo ischemia-related coronary artery. In this per-proto study, patients were divided into HPNC group (14atm) or non-HPNC group. The development of inflammatory markers (C-reactive protein and interleukin-6) was used to evaluate the acute inflammatory response of HPNC (baseline, 1, 6, 24 and 72 hours after procedure). The baseline reference vessel diameter, minimal stent diameter soon after DES deployment, and final minimal stent diameter after HPNC were measured by quantitative coronary analysis. All patients were followed up for 1 year.

Results: There was no significant difference between the HPNC group (n = 42) and non-HPNC group (n = 11) with regard to the changes of inflammatory markers (CRP, p = 0.739; IL-6, p = 0.936) within 72 hours after procedure. The minimal stent diameter after HPNC was larger compared with soon after stent deployment (2.71 ± 0.43 mm vs. 2.47 ± 0.41 mm, P < 0.001). The percentage to reference vessel diameter after HPNC was also larger compared with soon after stent deployment (03.5 ± 12.1% vs. 77.9 ± 11.1%, P < 0.001). There was no adverse coronary event in the two groups at 1 year.

Conclusion: The acute systemic inflammatory response induced by HPNC appeared to be similar to that induced only by stent deployment. HPNC achieved larger stent diameter, which was associated with similar in-hospital and long-term outcomes compared with stent deployment only.

TCTAP A-065

To Evaluate Clinical Results of Repeat Drug-eluting Stent (DES) Implantation for DES Restenosis at Coronary Artery Lesions with High Degree Hinge Motion
Masatsugu Nakano, Toshiya Marumatsu, Reiko Takahara, Yoshiaki Itou, Hiroki Ishii, Keisuke Hirano
Saiseikai Yokohama City Eastern Hospital, Yokohama, Japan

Background: There was no report that evaluated clinical results after repeat drug-eluting stent (DES) implantation for DES restenosis at coronary artery lesions with high degree hinge motion.

Methods: From April 2007 to December 2009, subjects were serial 133 patients who underwent repeat DES implantation for DES restenosis. Hinge motion by the difference in the angle between diastole and systole: δ angle more than 20 degree was defined high degree hinge motion in the target lesion. From the base-line CAG finding, Patients with DES restenosis at target lesions with high degree hinge motion were defined as the H group (41 patients,46 stents) and those whose were not confined high degree hinge motion were defined the Non-H group (92 patients,108 stents). The two groups were compared for 12-month outcomes.

Results: There was no significant difference in the percentage of diabetic patients (H: 52.2 vs. Non-H: 56.5%) or target lesions in LAD (H: 50.0 vs. Non-H: 50.9%). The H group had high rates of stent fracture in stent restenosis site (H: 65.0 vs. Non-H: 50.9%) or target lesions in LAD (H: 50.0 vs. Non-H: 56.5%). The H group showed high degree hinge motion in the target lesion. From the base-line CAG finding, Patients with DES restenosis at target lesions with high degree hinge motion were defined as the H group (41 patients,46 stents) and those whose were not confined high degree hinge motion were defined the Non-H group (92 patients,108 stents). The two groups were compared for 12-month outcomes.

Conclusion: There was no difference in the rate of stent re-restenosis (H: 38.1 vs. Non-H: 27.0%) or second target lesion revascularization (TLR) (H: 23.9 vs. Non-H: 20.4%).

TCTAP A-067

Neo-Atherosclerosis in Drug-eluting Stents Is the Risk of Recurrent Restenosis
Kozi Matsuo, Yasunori Ueda, Ryuta Suigihara
Osaka Police Hospital, Osaka, Japan

Background: Drug-eluting stents (DES) reduced target lesion revascularization compared with bare metal stent (BMS); however, the restenosis after DES implantation still occurs especially in the late phase. DES restenosis is usually treated by balloon angioplasty, cutting balloon angioplasty, debulking techniques, and/or DES-in-DES stenting. Unfortunately, the recurrence of in-stent restenosis (ISR) sometimes occurs and its mechanisms is unclear. We examined the influence of in-stent neoatherosclerosis as shown by the presence of yellow plaque on ISR recurrence.

Methods: Consecutive 20 patients who received angioplasty for ISR in DES were prospectively enrolled. Their culprit lesions were examined by angioscopy.
TCTAP A-067

The Impact of Angiographic Peri-contrast Staining After Second the Impact of Angiographic Peri-contrast Staining After Second Generation DES Implantation

Tomoyuki Fukuzawa, Toshiya Muramatsu, Reiko Tsukahara, Yoshiaki Ito, Hiroshi Ishimori, Keisuke Hirano, Masatsugu Nakano, Motoharu Araki, Taimon Kato, Norihiro Kobayashi, Yasunari Sakamoto, Hideyuki Takimura, Shinsuke Mori, Hirotsu Takafuki, Makino Kenji
Saiteiki Yokohama City Eastern Hospital, Yokohama, Japan

Background: Several studies showed peri-contrast staining (PSS) was be associated with TLR and very late stent thrombosis. However, the incidence and clinical sequela of PSS after second generation DES implantation are unclear, so we retrospectively evaluate the clinical outcomes.

Methods: This study consisted of de novo 1622 lesions in 1150 patients that were treated with second generation DES (ZES, EES, and BES) in a single center. They were evaluated by follow-up angiography within 12 months after stent implantation, from April 2009 to August 2012. We divided into PSS group and non-PSS group and compared the two groups in clinical and angiographical outcomes.

Results: There were no significant differences between the two groups in patient background and lesion characteristics. Late acquired PSS was observed in 12 lesions (0.74%) in 11 patients (0.96%). In these lesions, 2 lesions (0.63%) were observed in DES, 4 lesions (0.4%) were EES and 6 lesions (1.9%) were ZES. (N.S.) Stent fracture was more frequently observed in lesions with PSS than in lesions without PSS (29.4% versus 1.1%, P<0.0001). Cumulative incidence of TLR and MACE in the PSS group was higher than that in the non-PSS group (33.3% versus 5.5%, and 41.7% versus 9.6%, P<0.005).

Conclusion: In this study, PSS after second generation DES seemed to be associated with TLR and MACE.

TCTAP A-068

The Timing of Occurrence of Stent Fracture After Sirolimus-eluting Stent Implantation

Tomoyuki Fukuzawa, Takahiro Watanabe, Yuichi Hanaki, Seigen I, Hajime Aoki, Kenichi Kato
Yokohama Rosai Hospital, Yokohama, Japan

Background: SF was more commonly reported in sirolimus-eluting stent (SES), right coronary artery (RCA), longer duration of implant and longer stent length. However the timing of stent fracture of each coronary is unknown. The purpose of this study is to assess the time point at which SF of each coronary occurs by the multidetector computed tomography.

Methods: We performed 4-slice MDCT on asymptomatic and event-free 114 patients (156 lesions) who received SES implantation. These lesions are all RCA and left anterior descending artery (LAD) to compare two coronary arteries. We investigated the rate of SF, in-stent restenosis (ISRI) and peri-stent aneurysms caused by SF. MDCT definition of SF is complete separation or partial separation of stent struts. The average first CT follow-up period was 24±18 months (3-75 months). Then we conducted the second MDCT 42.8 months (12-71 months) later at the first MDCT for non-SF 45 patients (48 lesions).

Results: SF was identified in 32 lesions of 156 lesions (20.5%) at the first MDCT. In RCA, 14 stent fractures of 39 lesions were observed. Fracture rate was 35.8%. In LAD, 18 stent fraternites of 117 lesions were observed. Fracture rate was 15.3%. SF was more observed in RCA than LAD at the first MDCT (P=0.006). ISRI induced by SF was 1 lesion (3.1%), peri-stent aneurysms was 2 lesions (6.2%). At the second MDCT, new SF occurred in 3 lesions of non-SF 48 lesions. The rate of new SF was 6.2%. The coronal of new SF was all LAD and new SF didn’t occur at RCA. About these 3 lesions, ISRI and peri-stent aneurysm induced by SF were not detected.

Conclusion: SF was more observed in RCA than LAD at the first MDCT, however the new SF was identified in only LAD. About LAD, it is possibility to increase the rate of SF in chronic phase. We continue to follow up the patients who received SES implantation.

TCTAP A-069

Clinical and Angiographic Results in Patients with Very Small Coronary Vessel After Biolimus A9-eluting Stent Implantation

Soichiro Enomoto, Takenori Domei, Shoichi Kuramitsu, Yoshio Kacuno, Makoto Hyodo, Toru Mazaki, Shinichi Shira, Kenji Ando
Kokura Memorial Hospital, Kitakyushu, Japan

Background: Percutaneous coronary interventions (PCI) to small-diameter vessels remain an important challenge because of increased complications.

Methods: Between May 2011 and January 2012, 83 patients with very small coronary vessels (reference vessel diameter <2.5 mm) were included to PCI. Biolimus-eluting stent (BES) was deployed at a low pressure with low inflation time.

Results: Two cases of distal edge dissection were observed and one of them needed additional stent implantation. Postprocedural TIMI grade 3 flows were achieved in all patients. There were no death, myocardial infarction (MI) and target lesion revascularization (TLR) during the initial hospitalization.

Conclusion: Percutaneous intervention using a low pressure with low inflation time for BES was safe and feasible.