One-to-one disjoint path covers on k-ary n-cubes*

Yuan-Kang Shih ${ }^{\text {a }}$, Shin-Shin Kao ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
${ }^{\text {b }}$ Department of Applied Mathematics, Chung-Yuan Christian University, Chungli, 32023, Taiwan, ROC

A R T I CLE INFO

Article history:

Received 14 December 2010
Received in revised form 6 April 2011
Accepted 21 April 2011
Communicated by G. Ausiello

Keywords:

Hypercube
k-ary n-cube
Hamiltonian
Disjoint path cover

Abstract

The k-ary n-cube, Q_{n}^{k}, is one of the most popular interconnection networks. Let $n \geq 2$ and $k \geq 3$. It is known that Q_{n}^{k} is a nonbipartite (resp. bipartite) graph when k is odd (resp. even). In this paper, we prove that there exist r vertex disjoint paths $\left\{P_{i} \mid 0 \leq i \leq r-1\right\}$ between any two distinct vertices u and v of Q_{n}^{k} when k is odd, and there exist r vertex disjoint paths $\left\{R_{i} \mid 0 \leq i \leq r-1\right\}$ between any pair of vertices w and b from different partite sets of Q_{n}^{k} when k is even, such that $\bigcup_{i=0}^{r-1} P_{i}$ or $\bigcup_{i=0}^{r-1} R_{i}$ covers all vertices of Q_{n}^{k} for $1 \leq r \leq 2 n$. In other words, we construct the one-to-one r-disjoint path cover of Q_{n}^{k} for any r with $1 \leq r \leq 2 n$. The result is optimal since any vertex in Q_{n}^{k} has exactly $2 n$ neighbors.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In today's telecommunication networks, the construction of node-disjoint paths between a pair of distinct nodes in any network has been an important subject [9,21]. The node-disjoint paths are used to speed up the transfer of a large amount of data by splitting the data over several node-disjoint communication paths [6]. Additional benefits of adopting such a node-disjoint routing scheme are the enhanced robustness to node failures and congestion, and the enhanced capability of load balancing [21]. Recently, studies of disjoint paths in a variety of networks can be found in the literature $[8,32]$. In this article, we further request that the set of these node-disjoint paths between any given pair of distinct nodes is a cover of the network. Namely, the union of the node-disjoint paths must cover all nodes of the network, which we term as a "one-to-one disjoint path cover". One of the well-known applications of multiple disjoint path covers is software testing [23]. For example, if the graph G represents all possible execution sequences of a computer program, then a path cover is a set of test runs that covers each program statement at least once. In pipeline computation, an embedding of multiple disjoint path covers in a network implies that every node can participate. Studies about disjoint path covers of some networks or graphs can be found in the literature [$5,13,19,20,25$]. Among them, one-to-one disjoint path covers are also named spanning containers.

The k-ary n-cube, denoted by Q_{n}^{k}, has been proposed as an alternative to the hypercube Q_{n}, which is one of the most wellknown interconnection networks in parallel computers due to its many attractive properties such as vertex/edge symmetry, recursive structure, easy routing, high degree of fault tolerance, and so on. See [7,10,18,28-30], for example. It is known that the hypercube network has been used as the interconnection topology of many distributed memory multiprocessors such as the Cosmic Cube, the Ametek S/14, the iPSC, the Ncube, and the CM-200. Besides, the properties of hypercubes relevant

[^0]to parallel computing have been well studied. Readers can refer to [27] and its references. The k-ary n-cube, Q_{n}^{k}, shares many nice properties of Q_{n} such as regular degrees, vertex symmetry, edge symmetry, recursive structure etc. A number of distributed memory multiprocessors have been built with a k-ary n-cube forming the underlying topology, such as the Cray T3E, the iWARP, the Cray T3D and so on. Please see $[1,3,17,22]$. Many researchers have been working on k-ary n-cubes [4,6 , $11,12,14,26,27,31,33]$.

In this paper, we construct one-to-one node-disjoint path covers of k-ary n-cubes for any integer $k \geq 3$ and $n \geq 2$. More precisely, we show that given any two distinct vertices u, v of a k-ary n-cube Q_{n}^{k}, there exist(s) m vertex/node-disjoint path(s) between u and v whose union covers all vertices of Q_{n}^{k} for $1 \leq m \leq 2 n$ when k is odd, and given any pair of vertices w and b from the different partite sets of a k-ary n-cube Q_{n}^{k}, there exist(s) m internally disjoint path(s) between w, b whose union covers all vertices of Q_{n}^{k} for $1 \leq m \leq 2 n$ when k is even. The result is optimal since any vertex of Q_{n}^{k} has exactly $2 n$ neighbors. Note that a network is conveniently represented by a graph, in which vertices represent the nodes (processors) of the network and edges represent the communication links of the network. Therefore, throughout this paper, we use networks and graph, node and vertex and, link and edge interchangeably.

2. Preliminaries

In what follows, we follow [2] for the graph definitions and notations. The sets of vertices and edges of a graph G are denoted by $V(G)$ and $E(G)$, respectively. If u, v are vertices of a graph G such that there is an edge $e=(u, v) \in E(G)$ between u and v, then we say that the vertices u and v are adjacent in G. The degree of any vertex x is the number of distinct vertices adjacent to x. We use $N(x)$ to denote the set of vertices which are adjacent to x. A path P between two vertices v_{0} and v_{k} is represented by $P=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where each pair of consecutive vertices are connected by an edge. We use P^{-1} to denote the path $\left\langle v_{k}, v_{k-1}, v_{k-2}, \ldots, v_{0}\right\rangle$. We also write the path $P=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ as $\left\langle v_{0}, v_{1}, \ldots, v_{i}, Q, v_{j}, v_{j+1}, \ldots, v_{k}\right\rangle$, where Q denotes the path $\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$. The length of a path P is the number of edges in P. We use $d_{G}(u, v)$ to denote the length of the shortest path between the two vertices u and v in G. A hamiltonian path between u and v, where u and v are two distinct vertices of G, is a path joining u to v that visits every vertex of G exactly once. A cycle is a path of at least three vertices such that the first vertex is the same as the last vertex. A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. A graph G is connected if there is a path between any two distinct vertices in G and is hamiltonian connected if there is a hamiltonian path between any two distinct vertices in $G[24]$. A graph $H=(W \cup B, E)$ is bipartite if $V(H)=W \cup B$ and $E(H)$ is a subset of $\{(w, b) \mid w \in W, b \in B\}$. We will call any vertex $w \in W$ a "white" vertex, and any vertex $b \in B$ a "black" vertex, respectively. A bipartite graph H is balanced if $|W|=|B|$. It is easy to see that any bipartite graph with at least three vertices is not hamiltonian connected. For example, let $H=(W \cup B, E)$ be a bipartite graph with $|W| \geq|B|$. Obviously, there exists no hamiltonian path in H that joins two black vertices. On the other hand, a balanced bipartite graph is hamiltonian laceable if there exists a hamiltonian path between any two vertices w, b with $w \in W$ and $b \in B$.

Suppose that u and v are two vertices of a graph G. We say a set of m paths between u and v, denoted by $C(u, v)$, is an m-disjoint path cover in G if the m paths do not contain the same vertex besides u and v and their union covers all vertices of G. An m-disjoint path cover is abbreviated as an m - $D P C$ for simplicity. A nonbipartite graph G is one-to-one m-disjoint path coverable (m-DPC-able for short) if there is an m-DPC between any two vertices of G. Moreover, let H be a bipartite graph with $V(H)=W \cup B$. A bipartite graph H is one-to-one bi-m-disjoint path coverable (bi-m-DPC-able for short) if there is an m-DPC between any pair of vertices $\{u, v \mid u \in B$ and $v \in W\}$. Obviously, a nonbipartite (resp. bipartite) graph G is hamiltonian connected (resp. hamiltonian laceable) if and only if G is 1-DPC-able (resp. bi-1-DPC-able). Furthermore, a nonbipartite (resp. bipartite) graph is hamiltonian if and only if the graph is 2-DPC-able (resp. bi-2-DPC-able). It is worth mentioning that " G is r-DPC-able" and " G is $\left(r+1\right.$)-DPC-able" do not imply each other. For example, C_{n} (the cycle with n vertices) is 2-DPC-able (resp. bi-2-DPC-able) but not 1-DPC-able (resp. bi-1-DPC-able) for $n \geq 5$ being an odd integer (resp. an even integer). Besides, in [15] (resp. [16]), examples of 2-DPC-able nonbipartite graphs (resp. bi-2-DPC-able bipartite graphs) that are not 3-DPC-able (resp. bi-3-DPC-able) are given.

The k-ary n-cube, Q_{n}^{k}, is defined for all integers $k \geq 2$ and $n \geq 1$. The subclass Q_{n}^{2} is the well-studied hypercube family. The subclass Q_{1}^{k} with $k \geq 3$ is defined as the cycle of length k. The k-ary n-cube, Q_{n}^{k}, for $k \geq 3$ and $n \geq 2$ is defined as follows. Let $u \in V\left(Q_{n}^{k}\right)$ be represented by $(u(0), u(1), \ldots, u(n-1))$, where $0 \leq u(i) \leq k-1$. Two vertices u and v are adjacent if and only if $|u(i)-v(i)|=1$ or $k-1$ for some i and $u(j)=v(j)$ for any $0 \leq j \leq n-1$ with $j \neq i$. It is shown that Q_{n}^{k} is bipartite if k is even [14]. See Fig. 1 for an illustration. Here we mention some properties of Q_{n}^{k} that will be used in this paper.
Q_{n}^{k} is vertex-symmetric (and edge-symmetric) [14]. It means that given any two distinct vertices v and v^{\prime} of Q_{n}^{k}, there is an automorphism of Q_{n}^{k} mapping v to v^{\prime}. Note that each vertex of Q_{n}^{k} is represented by a n-bit tuple. We will call the d th-bit the dth dimension. We can partition Q_{n}^{k} over dimension d by fixing the d th element of any vertex tuple at some value a for every $a \in\{0,1, \ldots, k-1\}$. This results in k copies of Q_{n-1}^{k}, denoted by $Q_{n-1}^{k, 0}, Q_{n-1}^{k, 1}, \ldots, Q_{n-1}^{k, k-1}$, with corresponding vertices in $Q_{n-1}^{k, 0}, Q_{n-1}^{k, 1}, \ldots, Q_{n-1}^{k, k-1}$ joined in a cycle of length k (in dimension d) [27].

In this article, we always partition Q_{n}^{k} over the 0 -th dimension by letting $V\left(Q_{n-1}^{k, i}\right)=\{((i), v(1), v(2), \ldots, v(n-1)) \mid 0 \leq$ $v(j) \leq k-1, \forall 1 \leq j \leq n-1\}$ for $0 \leq i \leq k-1$. See Fig. 1(c) for an illustration. Given a vertex $x=(x(0), x(1), \ldots, x(n-1)) \in$ $V\left(Q_{n}^{k}\right)$, the symbol $x^{j}=((j), x(1), \bar{x}(2), \ldots, x(n-1))$, where $0 \leq j \leq k-1$, is defined to be the vertex corresponding to x

(a) Q_{2}^{3}.

(b) Q_{2}^{4}.
(c) Q_{3}^{3}.

Fig. 1. Three graphs, Q_{2}^{3}, Q_{2}^{4} and Q_{3}^{3}.
in $Q_{n-1}^{k, j}$ for simplicity. If $P=\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle, P^{j}$ is represented by $\left\langle x_{0}^{j}, x_{1}^{j}, \ldots, x_{n-1}^{j}\right\rangle$. Throughout this paper, let $n \geq 2$ be an integer and $k \geq 3$ an integer.
Theorem 1 ([31]). For any odd integer $k \geq 3, Q_{n}^{k}$ is hamiltonian connected for $n \geq 2$. In other words, Q_{n}^{k} is 1-DPC-able.
Theorem 2 ([14]). For any even integer $k \geq 4, Q_{n}^{k}$ is hamiltonian laceable for $n \geq 2$. In other words, Q_{n}^{k} is bi-1-DPC-able.
Theorem 3 ([4]). The graph Q_{n}^{k} is hamiltonian. In other words, Q_{n}^{k} is 2-DPC-able when k is odd and bi-2-DPC-able when k is even.

3. Main results

In this section, we will derive our main theorem, Theorems 4 and 5 , using mathematical induction on n. For this purpose, two lemmas are presented in Section 3.1 for the following construction schemes. In Section 3.2, the disjoint path covers of Q_{2}^{k} are specifically constructed for $k \in\{3,4,5,6\}$, and then a step-by-step algorithm is given to obtain the disjoint path covers of Q_{2}^{k} for any integer k with $k \geq 5$. In Section 3.3, with the induction base derived in Section 3.2, we prove the main theorems by mathematical induction on n.

3.1. Two lemmas

Lemma 1. Given Q_{n}^{k} and its k subcubes, $Q_{n-1}^{k, i}$, where $0 \leq i \leq k-1$. Let j and j^{\prime} be two integers satisfying $0 \leq j \leq j^{\prime} \leq k-1$. When k is odd, let $u \in V\left(Q_{n-1}^{k, j}\right)$ and $v \in V\left(Q_{n-1}^{k, j^{\prime}}\right)$ be arbitrary. Then there exists a path between u and v that visits each vertex in $Q_{n-1}^{k, j}, Q_{n-1}^{k, j+1}, \ldots$, and $Q_{n-1}^{k, j^{\prime}}$ exactly once. On the other hand, when k is even, let $w \in V\left(Q_{n-1}^{k, j}\right)$ be an arbitrary white vertex, and $b \in V\left(Q_{n-1}^{k, j^{\prime}}\right)$ an arbitrary black vertex. Then there exists a path between w and b that visits each vertex in $Q_{n-1}^{k, j}, Q_{n-1}^{k, j+1}, \ldots$, and $Q_{n-1}^{k, j^{\prime}}$ exactly once.
Proof. We have the following two cases.
Case 1. When k is odd, we construct the required path in the following three cases.
Case 1.1. $j=j^{\prime}$. W.L.O.G., let $j=j^{\prime}=0$. By Theorem 1, $Q_{n-1}^{k, 0}$ is hamiltonian connected. Thus there is a hamiltonian path between u and v that visits every vertex of $Q_{n-1}^{k, 0}$ exactly once.

Fig. 2. An illustration for Case 1.3 of Lemma 1.
Case 1.2. $j^{\prime}-j=1$. W.L.O.G., let $j=0$ and $j^{\prime}=1$. We can find a vertex $x \in V\left(Q_{n-1}^{k, 0}\right)$ such that $x=x^{0} \neq u$ and $x^{1} \neq v$. By Theorem 1, there exists a hamiltonian path P_{0} of $Q_{n-1}^{k, 0}$ between u and x^{0}, and a hamiltonian path P_{1} of $Q_{n-1}^{k, 1}$ between x^{1} and v. Let $P=\left\langle u, P_{0}, x^{0}, x^{1}, P_{1}, v\right\rangle$. Hence P is the path between u and v that visits every vertex of $Q_{n-1}^{k, 0}$ and $Q_{n-1}^{k, 1}$ exactly once.
Case 1.3. For $j^{\prime}-j \geq 2$, there are $j^{\prime}-j+1 k$-ary $(n-1)$-cubes, $Q_{n-1}^{k, j}, Q_{n-1}^{k, j+1}, \ldots, Q_{n-1}^{k, j^{\prime}-1}$ and $Q_{n-1}^{k, j^{\prime}}$. There are $j^{\prime}-j$ pairs of adjacent vertices $x(r) \in Q_{n-1}^{k, r}$, and $y(r+1) \in Q_{n-1}^{k, r+1}$ for $j \leq r \leq j^{\prime}-1$ such that $x(j) \neq u$ and $y\left(j^{\prime}\right) \neq v$. By Theorem 1, there is a hamiltonian path R_{r} of $Q_{n-1}^{k, r}$ joining $y(r)$ to $x(r)$, where $j+1 \leq r \leq j^{\prime}-1$. Again, with Theorem 1, there exists a hamiltonian path T of $Q_{n-1}^{k, j}$ joining u to $x(j)$, and a hamiltonian path U of $Q_{n-1}^{k, j^{\prime}}$ joining $y\left(j^{\prime}\right)$ to v. Let $P=\left\langle u, T, x(j), y(j+1), R_{j+1}, x(j+1), y(j+2), R_{j+2}, x(j+2), \ldots, y\left(j^{\prime}-1\right), R_{j^{\prime}-1}, x\left(j^{\prime}-1\right), y\left(j^{\prime}\right), U, v\right\rangle$. Therefore, P is a path covering all the vertices of $Q_{n-1}^{k, j}, Q_{n-1}^{k, j+1}, \ldots, Q_{n-1}^{k, j^{\prime}}$ between u and v. Please see Fig. 2 for an illustration.

By Case 1.1, Case 1.2 and Case 1.3, this lemma is proved when k is odd.
Case 2. When k is even, the proof is similar to Case 1 and is omitted.
Lemma 2. Given Q_{n}^{k} and its k subcubes $Q_{n-1}^{k, i}$ for $0 \leq i \leq k-1$. Let j be an integer with $0 \leq i \leq j \leq k-1$. When k is odd, let u and v be any pair of vertices in $Q_{n-1}^{k, i}$. There exists a path between u and v that covers all the vertices of $Q_{n-1}^{k, i}, Q_{n-1}^{k, i+1}, \ldots$, and $Q_{n-1}^{k, j}$. On the other hand, when k is even, let w be a white vertex and b a black vertex in $Q_{n-1}^{k, i}$. There exists a path between w and b that covers all the vertices of $Q_{n-1}^{k, i}, Q_{n-1}^{k, i+1}, \ldots$, and $Q_{n-1}^{k, j}$.

Proof. We consider the following two cases.
Case 1 . When k is odd.
Case 1.1. If $j=i$, there is only one k-ary $(n-1)$-cube $Q_{n-1}^{k, i}$. By Theorem 1 , the lemma holds in this case.
Case 1.2. If $j \neq i$, there are $j-i+1 k$-ary $(n-1)$-cubes. According to Theorem 1 , there is a hamiltonian path P_{i} that covers all the vertices of $Q_{n-1}^{k, i}$ between u and v of the form $\left\langle u, S_{i}, x^{i}, y^{i}, T_{i}, v\right\rangle$, where $\left\{x^{i}, y^{i}\right\}$ is an edge of $Q_{n-1}^{k, i}$ with $\left\{x^{i}, y^{i}\right\} \cap\{u, v\}=\emptyset$. Notice that by Theorem 1, $Q_{n-1}^{k, r}$ is hamiltonian connected and hence there exists a hamiltonian path P_{r} between x^{r} and y^{r} of the form: $\left\langle x^{r}, S_{r}, z^{r}, w^{r}, T_{r}, y^{r}\right\rangle$ for $i+1 \leq r \leq j$. Let the required path between u and v be R.
Case 1.2.1. If $j-i+1$ is even, then $R=\left\langle u, S_{i}, x^{i}, x^{i+1}, S_{i+1}, z^{i+1}, z^{i+2},\left(S_{i+2}\right)^{-1}, x^{i+2}, x^{i+3}, S_{i+3}, z^{i+3}, z^{i+4},\left(S_{i+4}\right)^{-1}, x^{i+4}, \ldots, x^{j}\right.$, $\left.S_{j}, z^{j}, w^{j}, T_{j}, y^{j}, y^{j-1},\left(T_{j-1}\right)^{-1}, w^{j-1}, w^{j-2}, T_{j-2}, y^{j-2}, y^{j-3},\left(T_{j-3}\right)^{-1}, w^{j-3}, \ldots, y^{i+1}, y^{i}, T_{i}, v\right\rangle$. Please see Fig. 3(a) for an illustration.

Case 1.2.2. If $j-i+1$ is odd, then $R=\left\langle u, S_{i}, x^{i}, x^{i+1}, S_{i+1}, z^{i+1}, z^{i+2},\left(S_{i+2}\right)^{-1}, x^{i+2}, x^{i+3}, S_{i+3}, z^{i+3}, z^{i+4},\left(S_{i+4}\right)^{-1}, x^{i+4}, \ldots, z^{j}\right.$, $\left.\left(S_{j}\right)^{-1}, x^{j}, y^{j},\left(T_{j}\right)^{-1}, w^{j}, w^{j-1}, T_{j-1}, y^{j-1}, y^{j-2},\left(T_{j-2}\right)^{-1}, w^{j-2}, w^{j-3}, T_{j-3}, y^{j-3}, \ldots, y^{i+1}, y^{i}, T_{i}, v\right\rangle$. Please see Fig. 3(b) for an illustration.

By Case 1.1 and Case 1.2, the lemma holds when k is odd.
Case 2. When k is even, the required path can be derived by the same approach as in Case 1, so we skip it.

3.2. The disjoint path covers of Q_{2}^{k}

Lemma 3. The graph Q_{2}^{3} is 3-DPC-able and 4-DPC-able.
Proof. To prove that Q_{2}^{3} is m-DPC-able, where $m \in\{3,4\}$, we need to construct an m-DPC between u and v for any pair of vertices $\{u, v\} \in V\left(Q_{2}^{3}\right)$. Since Q_{2}^{3} is vertex-symmetric, W.L.O.G., let $u=(0,0)$. Then we must consider the cases when $v \in\{(0,1),(1,1)\}$.

Fig. 3. An illustration for Case 1.2 of Lemma 2.

Case 1. The 3-DPC $\left\{P_{1}, P_{2}, P_{3}\right\}$ (resp. $\left\{R_{1}, R_{2}, R_{3}\right\}$) from $(0,0)$ to $(0,1)$ (resp. (1,1)) whose union covers $V\left(Q_{2}^{3}\right)$ are constructed in the following table.

$v=(0,1)$	$P_{1}=\langle(0,0),(0,1)\rangle$
	$P_{2}=\langle(0,0),(1,0),(1,1),(0,1)\rangle$
	$P_{3}=\langle(0,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,1)\rangle$
	$R_{1}=\langle(0,0),(0,1),(1,1)\rangle$
$v=(1,1)$	$R_{2}=\langle(0,0),(1,0),(1,1)\rangle$
	$R_{3}=\langle(0,0),(2,0),(2,1),(2,2),(0,2),(1,2),(1,1)\rangle$

Case 2. The 4-DPC $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ (resp. $\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}$) from $(0,0)$ to $(0,1)$ (resp. (1, 1)) whose union covers $V\left(Q_{2}^{3}\right)$ are constructed in the following table.

$v=(0,1)$	$P_{1}=\langle(0,0),(0,1)\rangle$ $P_{2}=\langle(0,0),(0,2),(0,1)\rangle$ $P_{3}=\langle(0,0),(1,0),(1,2),(1,1),(0,1)\rangle$
	$R_{1}=\langle(0,0),(0,1),(1,1)\rangle$
	$R_{2}=\langle(0,0),(1,0),(1,1)\rangle$
	$R_{3}=\langle(0,0),(0,2),(1,2),(1,1)\rangle$
	$R_{4}=\langle(0,0),(2,0),(2,2),(2,1),(1,1)\rangle$

Lemma 4. The graph Q_{2}^{4} is bi-3-DPC-able and bi-4-DPC-able.
Proof. To prove that Q_{2}^{4} is bi-m-DPC-able, where $m \in\{3,4\}$, we need to construct an m-DPC between any pair of vertices w and b from different partite sets in $V\left(Q_{2}^{4}\right)$. Since Q_{2}^{4} is vertex-symmetric, W.L.O.G., let $w=(0,0)$. Then we must consider the cases when $b \in\{(1,0),(2,1)\}$.

Case 1. The 3-DPC $\left\{P_{1}, P_{2}, P_{3}\right\}$ (resp. $\left.\left\{R_{1}, R_{2}, R_{3}\right\}\right)$ from $(0,0)$ to $(1,0)$ (resp. $\left.(2,1)\right)$ whose union covers $V\left(Q_{2}^{4}\right)$ are constructed in the following table.

$b=(1,0)$	$P_{1}=\langle(0,0),(1,0)\rangle$
	$P_{2}=\langle(0,0),(0,1),(1,1),(1,0)\rangle$
	$P_{3}=\langle(0,0),(3,0),(3,1),(3,2),(3,3),(2,3),(1,3),(0,3),(0,2),(1,2),(2,2),(2,1),(2,0),(1,0)\rangle$
$b=(2,1)$	$R_{1}=\langle(0,0),(1,0),(2,0),(2,1)\rangle$
	$R_{2}=\langle(0,0),(0,1),(1,1),(2,1)\rangle$
	$R_{3}=\langle(0,0),(3,0),(3,1),(3,2),(3,3),(2,3),(1,3),(0,3),(0,2),(1,2),(2,2),(2,1)\rangle$

Case 2. The 4-DPC $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ (resp. $\left.\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}\right)$ from $(0,0)$ to (1,0) (resp. $\left.(2,1)\right)$ whose union covers $V\left(Q_{2}^{4}\right)$ are constructed in the following table.

$b=(1,0)$	$P_{1}=\langle(0,0),(1,0)\rangle$
	$P_{2}=\langle(0,0),(0,1),(1,1),(1,0)\rangle$
	$P_{3}=\langle(0,0),(0,3),(0,2),(1,2),(1,3),(1,0)\rangle$
	$P_{4}=\langle(0,0),(3,0),(3,1),(3,2),(3,3),(2,3),(2,2),(2,1),(2,0),(1,0)\rangle$
$b=(2,1)$	$R_{1}=\langle(0,0),(3,0),(3,1),(2,1)\rangle$
	$R_{2}=\langle(0,0),(1,0),(2,0),(2,1)\rangle$
	$R_{3}=\langle(0,0),(0,1),(1,1),(2,1)\rangle$
	$R_{4}=\langle(0,0),(0,3),(0,2),(1,2),(1,3),(2,3),(3,3),(3,2),(2,2),(2,1)\rangle$

Lemma 5. The graph Q_{2}^{5} is 3-DPC-able and 4-DPC-able.
Proof. To prove that Q_{2}^{5} is m-DPC-able, where $m \in\{3,4\}$, we need to construct an m-DPC between u and v for any pair of vertices $\{u, v\} \in V\left(Q_{2}^{5}\right)$. Since Q_{2}^{5} is vertex-symmetric, W.L.O.G., let $u=(0,0)$. We must consider the cases when $v \in\{(0,1),(1,1),(0,2),(1,2),(2,2)\}$.
Case 1. The 3-DPC $\left\{P_{1}, P_{2}, P_{3}\right\}$ (resp. $\left.\left\{R_{1}, R_{2}, R_{3}\right\},\left\{S_{1}, S_{2}, S_{3}\right\},\left\{T_{1}, T_{2}, T_{3}\right\},\left\{U_{1}, U_{2}, U_{3}\right\}\right)$ whose union covers $V\left(Q_{2}^{5}\right)$ between $(0,0)$ and $(0,1)$ (resp. $(1,1),(0,2),(1,2),(2,2))$ are listed below.

$v=(0,1)$	$\begin{aligned} P_{1}= & \langle(0,0),(0,1)\rangle \\ P_{2}= & \langle(0,0),(1,0),(2,0),(3,0),(3,1),(2,1),(1,1),(0,1)\rangle \\ P_{3}= & \langle(0,0),(4,0),(4,1),(4,2),(3,2),(2,2),(1,2),(1,3),(2,3),(3,3),(4,3),(4,4),(3,4),(2,4),(1,4),(0,4), \\ & (0,3),(0,2),(0,1)\rangle \end{aligned}$
$v=(1,1)$	$\begin{aligned} & R_{1}=\langle(0,0),(1,0),(1,1)\rangle \\ & R_{2}=\langle(0,0),(0,1),(0,2),(0,3),(0,4),(1,4),(1,3),(1,2),(1,1)\rangle \\ & R_{3}=\langle(0,0),(4,0),(3,0),(2,0),(2,4),(3,4),(4,4),(4,3),(3,3),(2,3),(2,2),(3,2),(4,2),(4,1),(3,1),(2,1),(1,1)\rangle \end{aligned}$
$v=(0,2)$	$\begin{aligned} & S_{1}=\langle(0,0),(0,1),(0,2)\rangle \\ & S_{2}=\langle(0,0),(0,4),(1,4),(2,4),(3,4),(4,4),(4,3),(3,3),(2,3),(1,3),(0,3),(0,2)\rangle \\ & S_{3}=\langle(0,0),(4,0),(3,0),(2,0),(1,0),(1,1),(2,1),(3,1),(4,1),(4,2),(3,2),(2,2),(1,2),(0,2)\rangle \end{aligned}$
$v=(1,2)$	$\begin{aligned} T_{1}= & \langle(0,0),(0,1),(0,2),(1,2)\rangle \\ T_{2} & =\langle(0,0),(1,0),(1,1),(1,2)\rangle \\ T_{3} & =\langle(0,0),(4,0),(4,1),(4,2),(4,3),(4,4),(3,4),(3,3),(3,2),(3,1),(3,0),(2,0),(2,1),(2,2),(2,3),(2,4), \\ & (1,4),(0,4),(0,3),(1,3),(1,2)\rangle \end{aligned}$
$v=(2,2)$	$\begin{aligned} & U_{1}=\langle(0,0),(1,0),(2,0),(2,1),(2,2)\rangle \\ & U_{2}=\langle(0,0),(0,4),(1,4),(2,4),(2,3),(1,3),(0,3),(0,2),(0,1),(1,1),(1,2),(2,2)\rangle \\ & U_{3}=\langle(0,0),(4,0),(3,0),(3,1),(4,1),(4,2),(4,3),(4,4),(3,4),(3,3),(3,2),(2,2)\rangle \end{aligned}$

Case 2. The 4-DPC $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ (resp. $\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\},\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\},\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\},\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$) whose union covers $V\left(Q_{2}^{5}\right)$ between $(0,0)$ and $(0,1)$ (resp. $\left.(1,1),(0,2),(1,2),(2,2)\right)$ are listed below.

$v=(0,1)$	$\begin{aligned} & P_{1}=\langle(0,0),(0,1)\rangle \\ & P_{2}=\langle(0,0),(1,0),(1,1),(0,1)\rangle \\ & P_{3}=\langle(0,0),(4,0),(3,0),(2,0),(2,1),(3,1),(4,1),(0,1)\rangle \\ & P_{4}=\langle(0,0),(0,4),(0,3),(1,3),(1,4),(2,4),(2,3),(3,3),(3,4),(4,4),(4,3),(4,2),(3,2),(2,2),(1,2),(0,2),(0,1)\rangle \end{aligned}$
$v=(1,1)$	$\begin{aligned} & R_{1}=\langle(0,0),(0,1),(1,1)\rangle \\ & R_{2}=\langle(0,0),(1,0),(1,1)\rangle \\ & R_{3}=\langle(0,0),(0,4),(1,4),(1,3),(0,3),(0,2),(1,2),(1,1)\rangle \\ & R_{4}=\langle(0,0),(4,0),(4,4),(4,3),(4,2),(4,1),(3,1),(3,2),(3,3),(3,4),(3,0),(2,0),(2,4),(2,3),(2,2),(2,1),(1,1)\rangle \end{aligned}$
$v=(0,2)$	$\begin{aligned} & S_{1}=\langle(0,0),(0,1),(0,2)\rangle \\ & S_{2}=\langle(0,0),(4,0),(4,1),(4,2),(0,2)\rangle \\ & S_{3}=\langle(0,0),(1,0),(1,1),(2,1),(2,0),(3,0),(3,1),(3,2),(2,2),(1,2),(0,2)\rangle \\ & S_{4}=\langle(0,0),(0,4),(1,4),(2,4),(3,4),(4,4),(4,3),(3,3),(2,3),(1,3),(0,3),(0,2)\rangle \end{aligned}$
$v=(1,2)$	$\begin{aligned} & T_{1}=\langle(0,0),(0,1),(0,2),(1,2)\rangle \\ & T_{2}=\langle(0,0),(1,0),(1,1),(1,2)\rangle \\ & T_{3}=\langle(0,0),(4,0),(4,1),(4,2),(3,2),(3,1),(3,0),(2,0),(2,1),(2,2),(1,2)\rangle \\ & T_{4}=\langle(0,0),(0,4),(0,3),(4,3),(4,4),(3,4),(3,3),(2,3),(2,4),(1,4),(1,3),(1,2)\rangle \end{aligned}$
$v=(2,2)$	$\begin{aligned} & U_{1}=\langle(0,0),(1,0),(1,1),(2,1),(2,2)\rangle \\ & U_{2}=\langle(0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)\rangle \\ & U_{3}=\langle(0,0),(0,4),(1,4),(2,4),(2,0),(3,0),(3,1),(3,2),(2,2)\rangle \\ & U_{4}=\langle(0,0),(4,0),(4,1),(4,2),(4,3),(4,4),(3,4),(3,3),(2,3),(2,2)\rangle \end{aligned}$

Lemma 6. The graph Q_{2}^{6} is bi-3-DPC-able and bi-4-DPC-able.
Proof. To prove that Q_{2}^{6} is bi-m-DPC-able, where $m \in\{3,4\}$, we need to construct an m-DPC between any pair of vertices w and b from different partite sets in $V\left(Q_{2}^{6}\right)$. Since Q_{2}^{6} is vertex-symmetric, W.L.O.G., let $w=(0,0)$. Then we must consider the cases when $b \in\{(1,0),(2,1),(3,0),(3,2)\}$.

Case 1. The 3-DPC $\left\{P_{1}, P_{2}, P_{3}\right\}$ (resp. $\left.\left\{R_{1}, R_{2}, R_{3}\right\},\left\{S_{1}, S_{2}, S_{3}\right\},\left\{T_{1}, T_{2}, T_{3}\right\}\right)$ whose union covers $V\left(Q_{2}^{6}\right)$ between $(0,0)$ and $(1,0)$ (resp. $(2,1),(3,0),(3,2))$ are constructed below.

$v=(1,0)$	$\begin{aligned} P_{1} & =\langle(0,0),(1,0)\rangle \\ P_{2} & =\langle(0,0),(0,1),(1,1),(1,0)\rangle \\ P_{3}= & \langle(0,0),(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),(4,5),(3,5),(2,5),(1,5),(0,5),(0,4),(1,4),(2,4),(3,4), \\ & (4,4),(4,3),(4,2),(4,1),(4,0),(3,0),(3,1),(3,2),(3,3),(2,3),(1,3),(0,3),(0,2),(1,2),(2,2),(2,1), \\ & (2,0),(1,0)\rangle \end{aligned}$
$v=(2,1)$	$\begin{aligned} R_{1}= & \langle(0,0),(1,0),(2,0),(2,1)\rangle \\ R_{2}= & \langle(0,0),(0,1),(1,1),(2,1)\rangle \\ R_{3}= & \langle(0,0),(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),(4,5),(3,5),(2,5),(1,5),(0,5),(0,4),(1,4),(2,4),(3,4), \\ & (4,4),(4,3),(4,2),(4,1),(4,0),(3,0),(3,1),(3,2),(3,3),(2,3),(1,3),(0,3),(0,2),(1,2),(2,2),(2,1)\rangle \end{aligned}$
$v=(3,0)$	$\begin{aligned} & S_{1}=\langle(0,0),(1,0),(2,0),(3,0)\rangle \\ & S_{2}=\langle(0,0),(5,0),(4,0),(3,0)\rangle \\ & S_{3}=\langle(0,0),(0,5),(1,5),(2,5),(3,5),(4,5),(5,5),(5,4),(4,4),(3,4),(2,4),(1,4),(0,4),(0,3),(1,3),(2,3), \\ &(3,3),(4,3),(5,3),(5,2),(5,1),(4,1),(4,2),(3,2),(2,2),(1,2),(0,2),(0,1),(1,1),(2,1),(3,1),(3,0)\rangle \end{aligned}$
$v=(3,2)$	$\begin{aligned} & T_{1}=\langle(0,0),(1,0),(2,0),(3,0),(3,1),(3,2)\rangle \\ & T_{2}=\langle(0,0),(0,1),(0,2),(1,2),(1,1),(2,1),(2,2),(3,2)\rangle \\ & T_{3}=\langle(0,0),(5,0),(4,0),(4,1),(5,1),(5,2),(5,3),(5,4),(5,5),(4,5),(3,5),(2,5),(1,5),(0,5),(0,4),(0,3), \\ &(1,3),(1,4),(2,4),(2,3),(3,3),(3,4),(4,4),(4,3),(4,2),(3,2)\rangle \end{aligned}$

Case 2. The 4-DPC $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ (resp. $\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\},\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\},\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$) whose union covers $V\left(Q_{2}^{6}\right)$ between $(0,0)$ and $(1,0)$ (resp. $(2,1),(3,0),(3,2))$ are constructed below.

$v=(1,0)$	$\begin{aligned} \hline P_{1} & =\langle(0,0),(1,0)\rangle \\ P_{2} & =\langle(0,0),(0,1),(1,1),(1,0)\rangle \\ P_{3} & =\langle(0,0),(0,5),(0,4),(0,3),(0,2),(1,2),(1,3),(1,4),(1,5),(1,0)\rangle \\ P_{4} & =\langle(0,0),(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),(4,5),(4,4),(4,3),(4,2),(4,1),(4,0),(3,0),(3,1),(3,2), \\ & (3,3),(3,4),(3,5),(2,5),(2,4),(2,3),(2,2),(2,1),(2,0),(1,0)\rangle \end{aligned}$
$v=(2,1)$	$\begin{aligned} R_{1} & =\langle(0,0),(1,0),(2,0),(2,1)\rangle \\ R_{2} & =\langle(0,0),(0,1),(1,1),(2,1)\rangle \\ R_{3} & =\langle(0,0),(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),(4,5),(4,4),(4,3),(4,2),(4,1),(4,0),(3,0),(3,1),(2,1)\rangle \\ R_{4}= & \langle(0,0),(0,5),(1,5),(2,5),(3,5),(3,4),(2,4),(1,4),(0,4),(0,3),(0,2),(1,2),(1,3),(2,3),(3,3),(3,2), \\ & (2,2),(2,1)\rangle \end{aligned}$
$v=(3,0)$	$\begin{aligned} S_{1} & =\langle(0,0),(1,0),(2,0),(3,0)\rangle \\ S_{2} & =\langle(0,0),(0,1),(1,1),(2,1),(3,1),(3,0)\rangle \\ S_{3} & =\langle(0,0),(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),(4,5),(4,4),(4,3),(4,2),(4,1),(4,0),(3,0)\rangle \\ S_{4} & =\langle(0,0),(0,5),(0,4),(0,3),(0,2),(1,2),(1,3),(1,4),(1,5),(2,5),(2,4),(2,3),(2,2),(3,2),(3,3),(3,4), \\ & (3,5),(3,0)\rangle \end{aligned}$
$v=(3,2)$	$\begin{aligned} & T_{1}=\langle(0,0),(1,0),(2,0),(3,0),(3,1),(3,2)\rangle \\ & T_{2}=\langle(0,0),(0,1),(0,2),(1,2),(1,1),(2,1),(2,2),(3,2)\rangle \\ & T_{3}=\langle(0,0),(5,0),(4,0),(4,1),(5,1),(5,2),(4,2),(3,2)\rangle \\ & T_{4}=\langle(0,0),(0,5),(1,5),(2,5),(3,5),(4,5),(5,5),(5,4),(5,3),(4,3),(4,4),(3,4),(2,4),(1,4),(0,4),(0,3), \\ &(1,3),(2,3),(3,3),(3,2)\rangle \end{aligned}$

\square
Lemma 7. For any odd integer $k \geq 5, Q_{2}^{k}$ is 3-DPC-able and 4-DPC-able.
Proof. With Lemma 5, we have shown that Q_{2}^{5} is 3-DPC-able and 4-DPC-able. Now we will present a recursive algorithm that uses a 3-DPC (resp. 4-DPC) of Q_{2}^{k} to construct a 3-DPC (resp. 4-DPC) of Q_{2}^{k+2}. Let R be a subset of $V\left(Q_{2}^{k}\right) \cup E\left(Q_{2}^{k}\right)$. We define a function, f, which maps R from Q_{2}^{k} into Q_{2}^{k+2} in the following way:
(1) If $(i, j) \in R \cap V\left(Q_{2}^{k}\right)$, where $0 \leq i, j \leq k-1$, then

$$
f((i, j))= \begin{cases}(i, j) & \text { if } 0 \leq i, j \leq k-2 \\ (i+2, j) & \text { if } i=k-1,0 \leq j \leq k-2 \\ (i, j+2) & \text { if } j=k-1,0 \leq i \leq k-2 \\ (i+2, j+2) & \text { if } i=k-1=j\end{cases}
$$

(2) If $\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right) \in R \cap E\left(Q_{2}^{k}\right)$, where $i \leq i^{\prime}, j \leq j^{\prime}$, then

$$
f\left(\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)\right)= \begin{cases}\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right) & \text { if } 0 \leq i, j \leq k-3,1 \leq i^{\prime}, j^{\prime} \leq k-2 ; \\ \left((i+2, j),\left(i^{\prime}+2, j\right)\right) & \text { if } i=i^{\prime}=k-1,0 \leq j \leq k-3,1 \leq j^{\prime} \leq k-2 \\ \left((i, j+2),\left(i^{\prime}, j^{\prime}+2\right)\right) & \text { if } j=j^{\prime}=k-1,0 \leq i \leq k-3,1 \leq i^{\prime} \leq k-2 \\ \left((i, j),\left(i^{\prime}, j^{\prime}+2\right)\right) & \text { if } 0 \leq i=i^{\prime} \leq k-2, j=0, j^{\prime}=k-1 ; \\ \left((i, j),\left(i^{\prime}+2, j^{\prime}\right)\right) & \text { if } 0 \leq j=j^{\prime} \leq k-2, i=0, i^{\prime}=k-1 ; \\ \left((i, j+2),\left(i^{\prime}+2, j^{\prime}+2\right)\right) & \text { if } i=0, i^{\prime}=k-1, j=j^{\prime}=k-1 \\ \left((i+2, j),\left(i^{\prime}+2, j^{\prime}+2\right)\right) & \text { if } j=0, j^{\prime}=k-1, i=i^{\prime}=k-1\end{cases}
$$

Please see Fig. 4 for an illustration.
Let u, v be a pair of distinct vertices of Q_{2}^{k}. We say that a 3-DPC (resp. 4-DPC) $C(u, v)$ of Q_{2}^{k} is regular if $C(u, v)$ contains some edges in $\{((\alpha, k-2),(\alpha, k-1)) \mid 0 \leq \alpha \leq k-1\}$ and $\{((k-2, \beta),(k-1, \beta)) \mid 0 \leq \beta \leq k-1\}$. For example,

Fig. 4. Using function f to map a subset of edges and vertices of Q_{2}^{5} into Q_{2}^{7}.
all 3-DPC and 4-DPC of Q_{2}^{5} constructed in Lemma 5 are regular. Assume that k is an odd integer and $k \geq 5$. Let $C(u, v)$ be a regular 3-DPC (resp. 4-DPC) of Q_{2}^{k} with the endvertex set $P=\{u=(0,0), v=(x, y)\}$. We construct a regular 3-DPC (resp. 4-DPC) of Q_{2}^{k+2} with the endvertex set $f(P)$ using the following algorithm.
Step 1. In Q_{2}^{k}, let $\left\{v_{0}, v_{1}, \ldots, v_{t-1}\right\}$ and $\left\{h_{0}, h_{1}, \ldots, h_{s-1}\right\}$ be finite sequences of indices satisfying the following requirements:
(1) $0 \leq v_{0}<v_{1}<\cdots<v_{t-1} \leq k-1$ and $k-1 \geq h_{0}>h_{1}>\cdots>h_{s-1} \geq 0$;
(2) for $0 \leq i \leq k-1,\left(\left(v_{i}, k-2\right),\left(v_{i}, k-1\right)\right)$ is an edge of $C(u, v)$, and for $0 \leq j \leq k-1,\left(\left(k-2, h_{j}\right),\left(k-1, h_{j}\right)\right)$ is an edge of $C(u, v)$.
Step 2. Let $\bar{C}(u, v)$ be the image in Q_{2}^{k+2} of $C(u, v)-\left(\left\{\left(\left(v_{i}, k-2\right),\left(v_{i}, k-1\right)\right) \mid 0 \leq i \leq k-1\right\} \cup\left\{\left(\left(k-2, h_{j}\right),\left(k-1, h_{j}\right)\right) \mid\right.\right.$ $0 \leq j \leq k-1\}$) under the function f.
Step 3. For any two positive integers r and d, we use $[r]_{d}$ to denote $r(\bmod d)$. In Q_{2}^{k+2}, define the following path patterns, where r_{1}, r_{2} are integers:

$$
\begin{aligned}
& I_{\alpha}\left(r_{1}, r_{2}\right)=\left\langle\left(r_{1}, \alpha\right),\left(\left[r_{1}+1\right]_{k+2}, \alpha\right),\left(\left[r_{1}+2\right]_{k+2}, \alpha\right), \ldots,\left(r_{2}, \alpha\right)\right\rangle \\
& I_{\alpha}^{-1}\left(r_{2}, r_{1}\right)=\left\langle\left(r_{2}, \alpha\right),\left(\left[r_{2}-1\right]_{k+2}, \alpha\right),\left(\left[r_{2}-2\right]_{k+2}, \alpha\right), \ldots,\left(r_{1}, \alpha\right)\right\rangle \\
& H_{\beta}\left(r_{1}, r_{2}\right)=\left\langle\left(\beta, r_{1}\right),\left(\beta,\left[r_{1}+1\right]_{k+2}\right),\left(\beta,\left[r_{1}+2\right]_{k+2}\right), \ldots,\left(\beta, r_{2}\right)\right\rangle \\
& H_{\beta}^{-1}\left(r_{2}, r_{1}\right)=\left\langle\left(\beta, r_{2}\right),\left(\beta,\left[r_{2}-1\right]_{k+2}\right),\left(\beta,\left[r_{2}-2\right]_{k+2}\right), \ldots,\left(\beta, r_{1}\right)\right\rangle .
\end{aligned}
$$

Let $\bar{v}_{i}=v_{i}+2$ if $v_{i}=k-1$ and $\bar{v}_{i}=v_{i}$ if $0 \leq v_{i} \leq k-2$, and $\bar{h}_{j}=h_{j}+2$ if $h_{j}=k-1$ and $\bar{h}_{j}=h_{j}$ if $0 \leq h_{j} \leq k-2$.
Case 1. $v_{0}=k-1$.
Let $P_{0}=\left\langle(k+1, k-2),(k+1, k-1),(0, k-1), I_{k-1}(0, k-2),(k-2, k-1),(k-2, k), I_{k}^{-1}(k-2,0),(0, k),(k+\right.$ $1, k),(k+1, k+1)\rangle$.
Case 1.1. $s=1$.
Let $\bar{P}_{0}=\left\langle\left(k-2, \bar{h}_{0}\right),\left(k-1, \bar{h}_{0}\right), H_{k-1}^{-1}\left(\bar{h}_{0},\left[\bar{h}_{0}+1\right]_{k+2}\right),\left(k-1,\left[\bar{h}_{0}+1\right]_{k+2}\right),\left(k,\left[\bar{h}_{0}+1\right]_{k+2}\right), H_{k}\left(\left[\bar{h}_{0}+1\right]_{k+2}, \bar{h}_{0}\right),\left(k, \bar{h}_{0}\right),(k+\right.$ $\left.\left.1, \bar{h}_{0}\right)\right\rangle$. Then $\bar{C}(u, v) \cup P_{0} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 1.2. $s \geq 2$.
Let $\bar{P}_{i}=\left\langle\left(\bar{k}-2, \bar{h}_{i}\right),\left(k-1, \bar{h}_{i}\right), H_{k-1}^{-1}\left(\bar{h}_{i}, \bar{h}_{i+1}+1\right),\left(k-1, \bar{h}_{i+1}+1\right),\left(k, \bar{h}_{i+1}+1\right), H_{k}\left(\bar{h}_{i+1}+1, \bar{h}_{i}\right),\left(k, \bar{h}_{i}\right),\left(k+1, \bar{h}_{i}\right)\right\rangle$ for $0 \leq i \leq s-2$, and $\bar{P}_{s-1}=\left\langle\left(k-2, \bar{h}_{s-1}\right),\left(k-1, \bar{h}_{s-1}\right), H_{k-1}^{-1}\left(\bar{h}_{s-1},\left[\bar{h}_{0}+1\right]_{k+2}\right),\left(k-1,\left[\bar{h}_{0}+1\right]_{k+2}\right),\left(k,\left[\bar{h}_{0}+1\right]_{k+2}\right), H_{k}\left(\left[\bar{h}_{0}+\right.\right.\right.$ $\left.\left.1]_{k+2}, \bar{h}_{s-1}\right),\left(k, \bar{h}_{s-1}\right),\left(k+1, \bar{h}_{s-1}\right)\right\rangle$. Then $\bar{C}(u, v) \cup P_{0} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}. Please see Fig. 5 for an illustration.
Case 2. $v_{t-1} \leq k-2$ and $((k-2, k-1),(k-1, k-1)) \in E(C(u, v))$ in Q_{2}^{k}.
Case 2.1. $t=1$.
Let $P_{0}=\left\langle\left(\bar{v}_{0}, k-2\right),\left(\bar{v}_{0}, k-1\right), I_{k-1}\left(\bar{v}_{0}, k-2\right),(k-2, k-1),(k-2, k), I_{k}^{-1}\left(k-2, \bar{v}_{0}\right),\left(\bar{v}_{0}, k\right),\left(\bar{v}_{0}, k+1\right)\right\rangle$.
Case 2.1.1. $s=1$.
Let $\bar{P}_{0}=\left\langle\left(k-2, \bar{h}_{0}\right),\left(k-1, \bar{h}_{0}\right), H_{k-1}^{-1}\left(\bar{h}_{0}, 0\right),(k-1,0),(k, 0), H_{k}(0, k-1),(k, k-1),(k+1, k-1), I_{k-1}\left(k+1,\left[\bar{v}_{0}-\right.\right.\right.$ $\left.\left.1]_{k+2}\right),\left(\left[\bar{v}_{0}-1\right]_{k+2}, k-1\right),\left(\left[\bar{v}_{0}-1\right]_{k+2}, k\right), I_{k}^{-1}\left(\left[\bar{v}_{0}-1\right]_{k+2}, k+1\right),(k+1, k),(k, k),\left(k, \bar{h}_{0}\right),\left(k+1, \bar{h}_{0}\right)\right\rangle$. Then $\bar{C}(u, v) \cup P_{0} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 2.1.2. $s=2$.
Let $\bar{P}_{0}=\left\langle\left(k-2, \bar{h}_{0}\right),\left(k-1, \bar{h}_{0}\right), H_{k-1}^{-1}\left(\bar{h}_{0}, \bar{h}_{1}+1\right),\left(k-1, \bar{h}_{1}+1\right),\left(k, \bar{h}_{1}+1\right), H_{k}\left(\bar{h}_{1}+1, k-1\right),(k, k-1),(k+1, k-\right.$ 1), $\left.I_{k-1}\left(k+1,\left[\bar{v}_{0}-1\right]_{k+2}\right),\left(\left[\bar{v}_{0}-1\right]_{k+2}, k-1\right),\left(\left[\bar{v}_{0}-1\right]_{k+2}, k\right), I_{k}^{-1}\left(\left[\bar{v}_{0}-1\right]_{k+2}, k+1\right),(k+1, k),(k, k),\left(k, \bar{h}_{0}\right),\left(k+1, \bar{h}_{0}\right)\right\rangle$, and $\bar{P}_{1}=\left\langle\left(k-2, \bar{h}_{1}\right),\left(k-1, \bar{h}_{1}\right), H_{k-1}^{-1}\left(\bar{h}_{1}, 0\right),(k-1,0),(k, 0), H_{k}\left(0, \bar{h}_{1}\right),\left(k, \bar{h}_{1}\right),\left(k+1, \bar{h}_{1}\right)\right\rangle$. Then $\bar{C}(u, v) \cup P_{0} \cup \bar{P}_{0} \cup \bar{P}_{1}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.

Fig. 5. An illustration for Case 1.2 of Lemma 7. Use the 3-DPC of Q_{2}^{7} to construct the 3-DPC of Q_{2}^{9}, where $s=3, t=1, h_{0}=6, h_{1}=1, h_{2}=0, v_{0}=6$.

Fig. 6. An illustration for Case 2.2.3 of Lemma 7. Use the 3-DPC of Q_{2}^{7} to construct the 3-DPC of Q_{2}^{9}, where $s=6, t=2, h_{0}=6, h_{1}=5, h_{2}=4, h_{3}=3$, $h_{4}=2, h_{5}=1, v_{0}=0, v_{1}=1$.

Case 2.1.3. $s \geq 3$.
Let $\bar{P}_{0}=\left\langle\left(k-2, \bar{h}_{0}\right),\left(k-1, \bar{h}_{0}\right), H_{k-1}^{-1}\left(\bar{h}_{0}, \bar{h}_{1}+1\right),\left(k-1, \bar{h}_{1}+1\right),\left(k, \bar{h}_{1}+1\right), H_{k}\left(\bar{h}_{1}+1, k-1\right),(k, k-1),(k+1, k-\right.$ 1), $\left.I_{k-1}\left(k+1,\left[\bar{v}_{0}-1\right]_{k+2}\right),\left(\left[\bar{v}_{0}-1\right]_{k+2}, k-1\right),\left(\left[\bar{v}_{0}-1\right]_{k+2}, k\right), I_{k}^{-1}\left(\left[\bar{v}_{0}-1\right]_{k+2}, k+1\right),(k+1, k),(k, k),\left(k, \bar{h}_{0}\right),\left(k+1, \bar{h}_{0}\right)\right\rangle$, $\bar{P}_{i}=\left\langle\left(k-2, \bar{h}_{i}\right),\left(k-1, \bar{h}_{i}\right), H_{k-1}^{-1}\left(\bar{h}_{i}, \bar{h}_{i+1}+1\right),\left(k-1, \bar{h}_{i+1}+1\right),\left(k, \bar{h}_{i+1}+1\right), H_{k}\left(\bar{h}_{i+1}+1, \bar{h}_{i}\right),\left(k, \bar{h}_{i}\right),\left(k+1, \bar{h}_{i}\right)\right\rangle$ for $1 \leq i \leq s-2$, and $\bar{P}_{s-1}=\left\langle\left(k-2, \bar{h}_{s-1}\right),\left(k-1, \bar{h}_{s-1}\right), H_{k-1}^{-1}\left(\bar{h}_{s-1}, 0\right),(k-1,0),(k, 0), H_{k}\left(0, \bar{h}_{s-1}\right),\left(k, \bar{h}_{s-1}\right),\left(k+1, \bar{h}_{s-1}\right)\right\rangle$. Then $\bar{C}(u, v) \cup P_{0} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 2.2. $t \geq 2$.
Let $P_{i}=\left\langle\left(\bar{v}_{i}, k-2\right),\left(\bar{v}_{i}, k-1\right), I_{k-1}\left(\bar{v}_{i}, \bar{v}_{i+1}-1\right),\left(\bar{v}_{i+1}-1, k-1\right),\left(\bar{v}_{i+1}-1, k\right), I_{k}^{-1}\left(\bar{v}_{i+1}-1, \bar{v}_{i}\right),\left(\bar{v}_{i}, k\right),\left(\bar{v}_{i}, k+1\right)\right\rangle$ for $0 \leq i \leq t-2$, and $P_{t-1}=\left\langle\left(\bar{v}_{t-1}, k-2\right),\left(\bar{v}_{t-1}, k-1\right), I_{k-1}\left(\bar{v}_{t-1}, k-2\right),(k-2, k-1),(k-2, k), I_{k}^{-1}(k-\right.$ $\left.\left.2, \bar{v}_{t-1}\right),\left(\bar{v}_{t-1}, k\right),\left(\bar{v}_{t-1}, k+1\right)\right\rangle$.
Case 2.2.1. $s=1$.
Using the same \bar{P}_{0} as in Case 2.1.1, then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 2.2.2. $s=2$.
Using the same $\overline{\bar{P}}_{0}$ and \bar{P}_{1} as in Case 2.1.2., then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup \bar{P}_{0} \cup \bar{P}_{1}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 2.2.3. $s \geq 3$.
Using the same $\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ as in Case 2.1.3., then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}. Please see Fig. 6 for an illustration.
Case 3. $v_{t-1} \leq k-2$ and $((k-2, k-1),(k-1, k-1)) \notin E(C(u, v))$ in Q_{2}^{k}.
Case 3.1. $t=1$.
Let $P_{0}=\left\langle\left(\bar{v}_{0}, k-2\right),\left(\bar{v}_{0}, k-1\right), I_{k-1}\left(\bar{v}_{0}, k-1\right),(k-1, k-1), H_{k-1}^{-1}\left(k-1, \bar{h}_{0}+1\right),\left(k-1, \bar{h}_{0}+1\right),\left(k, \bar{h}_{0}+1\right), H_{k}\left(\bar{h}_{0}+\right.\right.$ $1, k-1),(k, k-1),(k+1, k-1),(0, k-1), I_{k-1}\left(0, \bar{v}_{0}-1\right),\left(\bar{v}_{0}-1, k-1\right),\left(\bar{v}_{0}-1, k\right), I_{k}^{-1}\left(\bar{v}_{0}-1,0\right),(0, k),(k+$ $\left.1, k),(k, k),(k, k+1),(k-1, k+1),(k-1, k), I_{k}^{-1}\left(k-1, \bar{v}_{0}\right),\left(\bar{v}_{0}, k\right),\left(\bar{v}_{0}, k+1\right)\right\rangle$.

Fig. 7. An illustration for Case 3.2.1 of Lemma 7. Use the 3-DPC of Q_{2}^{7} to construct the 3-DPC of Q_{2}^{9}, where $s=1, t=2, h_{0}=5, v_{0}=4, v_{1}=5$.

Case 3.1.1. $s=1$.
Let $\bar{P}_{0}=\left\langle\left(k-2, \bar{h}_{0}\right),\left(k-1, \bar{h}_{0}\right), H_{k-1}^{-1}\left(\bar{h}_{0}, 0\right),(k-1,0),(k, 0), H_{k}\left(0, \bar{h}_{0}\right),\left(k, \bar{h}_{0}\right),\left(k+1, \bar{h}_{0}\right)\right\rangle$. Then $\bar{C}(u, v) \cup P_{0} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.

Case 3.1.2. $s \geq 2$.
Let $\bar{P}_{i}=\left\langle\left(k-2, \bar{h}_{i}\right),\left(k-1, \bar{h}_{i}\right), H_{k-1}^{-1}\left(\bar{h}_{i}, \bar{h}_{i+1}+1\right),\left(k-1, \bar{h}_{i+1}+1\right),\left(k, \bar{h}_{i+1}+1\right), H_{k}\left(\bar{h}_{i+1}+1, \bar{h}_{i}\right),\left(k, \bar{h}_{i}\right),\left(k+1, \bar{h}_{i}\right)\right\rangle$ for $0 \leq i \leq s-2$, and $\bar{P}_{s-1}=\left\langle\left(k-2, \bar{h}_{s-1}\right),\left(k-1, \bar{h}_{s-1}\right), H_{k-1}^{-1}\left(\bar{h}_{s-1}, 0\right),(k-1,0),(k, 0), H_{k}\left(0, \bar{h}_{s-1}\right),\left(k, \bar{h}_{s-1}\right),\left(k+1, \bar{h}_{s-1}\right)\right\rangle$. Then $\bar{C}(u, v) \cup P_{0} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 3.2. $t \geq 2$.
Let $P_{i}=\left\langle\left(\bar{v}_{i}, k-2\right),\left(\bar{v}_{i}, k-1\right), I_{k-1}\left(\bar{v}_{i}, \bar{v}_{i+1}-1\right),\left(\bar{v}_{i+1}-1, k-1\right),\left(\bar{v}_{i+1}-1, k\right), I_{k}^{-1}\left(\bar{v}_{i+1}-1, \bar{v}_{i}\right),\left(\bar{v}_{i}, k\right),\left(\bar{v}_{i}, k+1\right)\right\rangle$ for $0 \leq i \leq t-2$, and $P_{t-1}=\left\langle\left(\bar{v}_{t-1}, k-2\right),\left(\bar{v}_{t-1}, k-1\right), I_{k-1}\left(\bar{v}_{t-1}, k-1\right),(k-1, k-1), H_{k-1}^{-1}\left(k-1, \bar{h}_{0}+1\right),\left(k-1, \bar{h}_{0}+\right.\right.$ $1),\left(k, \bar{h}_{0}+1\right), H_{k}\left(\bar{h}_{0}+1, k-1\right),(k, k-1),(k+1, k-1),(0, k-1), I_{k-1}\left(0, \bar{v}_{0}-1\right),\left(\bar{v}_{0}-1, k-1\right),\left(\bar{v}_{0}-1, k\right), I_{k}^{-1}\left(\bar{v}_{0}-\right.$ $\left.1,0),(0, k),(k+1, k),(k, k),(k, k+1),(k-1, k+1),(k-1, k), I_{k}^{-1}\left(k-1, \bar{v}_{t-1}\right),\left(\bar{v}_{t-1}, k\right),\left(\bar{v}_{t-1}, k+1\right)\right\rangle$.

Case 3.2.1. $s=1$.
Using the same \bar{P}_{0} as in Case 3.1.1, then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}. Please see Fig. 7 for an illustration.

Case 3.2.2. $s \geq 2$.
Using the same $\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ as in Case 3.1.2., then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.

Case 4. $v_{t-1}=k-1$ for some $t \geq 2$ and $v_{0}=0$.
Case 4.1. $t=2$.
Let $P_{0}=\left\langle\left(\bar{v}_{0}, k-2\right),\left(\bar{v}_{0}, k-1\right), I_{k-1}\left(\bar{v}_{0}, k-2\right),(k-2, k-1),(k-2, k), I_{k}^{-1}\left(k-2, \bar{v}_{0}\right),\left(\bar{v}_{0}, k\right),\left(\bar{v}_{0}, k+1\right)\right\rangle$, and $P_{1}=\langle(k+1, k-2),(k+1, k-1),(k+1, k),(k+1, k+1)\rangle$.

Case 4.1.1. $s=1$.
Using the same $\overline{\bar{P}}_{0}$ as in Case 1.1., then $\bar{C}(u, v) \cup P_{0} \cup P_{1} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 4.1.2. $s \geq 2$.
Using the same $\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ as in Case 1.2., then $\bar{C}(u, v) \cup P_{0} \cup P_{1} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}. Please see Fig. 8 for an illustration.
Case 4.2. $t \geq 3$.
Let $P_{i}=\left\langle\left(\bar{v}_{i}, k-2\right),\left(\bar{v}_{i}, k-1\right), I_{k-1}\left(\bar{v}_{i}, \bar{v}_{i+1}-1\right),\left(\bar{v}_{i+1}-1, k-1\right),\left(\bar{v}_{i+1}-1, k\right), I_{k}^{-1}\left(\bar{v}_{i+1}-1, \bar{v}_{i}\right),\left(\bar{v}_{i}, k\right),\left(\bar{v}_{i}, k+1\right)\right\rangle$ for $0 \leq$ $i \leq t-3, P_{t-2}=\left\langle\left(\bar{v}_{t-2}, k-2\right),\left(\bar{v}_{t-2}, k-1\right), I_{k-1}\left(\bar{v}_{t-2}, k-2\right),(k-2, k-1),(k-2, k), I_{k}^{-1}\left(k-2, \bar{v}_{t-2}\right),\left(\bar{v}_{t-2}, k\right),\left(\bar{v}_{t-2}, k+\right.\right.$ 1) \rangle, and $P_{t-1}=\langle(k+1, k-2),(k+1, k-1),(k+1, k),(k+1, k+1)\rangle$.

Case 4.2.1. $s=1$.
Using the same \bar{P}_{0} as in Case 1.1., then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 4.2.2. $s \geq 2$.
Using the same $\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ as in Case 1.2., then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.

Fig. 8. An illustration for Case 4.1.2 of Lemma 7. Use the 3-DPC of Q_{2}^{7} to construct the 3-DPC of Q_{2}^{9}, where $s=7, t=2, h_{0}=6, h_{1}=5, h_{2}=4, h_{3}=3$, $h_{4}=2, h_{5}=1, h_{6}=0, v_{0}=0, v_{1}=6$.

Case 5. $v_{t-1}=k-1$ for some $t \geq 2$ and $v_{0} \neq 0$.
Case 5.1. $t=2$.
Let $P_{0}=\left\langle\left(\bar{v}_{0}, k-2\right),\left(\bar{v}_{0}, k-1\right), I_{k-1}\left(\bar{v}_{0}, k-2\right),(k-2, k-1),(k-2, k), I_{k}^{-1}\left(k-2, \bar{v}_{0}\right),\left(\bar{v}_{0}, k\right),\left(\bar{v}_{0}, k+1\right)\right\rangle$, and $P_{1}=\langle(k+1, k-2),(k+1, k-1),(k+1, k),(k+1, k+1)\rangle$, and $P_{1}=\left\langle(k+1, k-2),(k+1, k-1),(0, k-1), I_{k-1}\left(0, \bar{v}_{0}-\right.\right.$ 1), $\left.\left(\bar{v}_{0}-1, k-1\right),\left(\bar{v}_{0}-1, k\right), I_{k}^{-1}\left(\bar{v}_{0}-1,0\right),(0, k),(k+1, k),(k+1, k+1)\right\rangle$.

Case 5.1.1. $s=1$.
Using the same $\dot{\bar{P}}_{0}$ as in Case 1.1., then $\bar{C}(u, v) \cup P_{0} \cup P_{1} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 5.1.2. $s \geq 2$.
Using the same $\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ as in Case 1.2., then $\bar{C}(u, v) \cup P_{0} \cup P_{1} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 5.2. $t \geq 3$.
Let $P_{i}=\left\langle\left(\bar{v}_{i}, k-2\right),\left(\bar{v}_{i}, k-1\right), I_{k-1}\left(\bar{v}_{i}, \bar{v}_{i+1}-1\right),\left(\bar{v}_{i+1}-1, k-1\right),\left(\bar{v}_{i+1}-1, k\right), I_{k}^{-1}\left(\bar{v}_{i+1}-1, \bar{v}_{i}\right),\left(\bar{v}_{i}, k\right),\left(\bar{v}_{i}, k+1\right)\right\rangle$ for $0 \leq$ $i \leq t-3, P_{t-2}=\left\langle\left(\bar{v}_{t-2}, k-2\right),\left(\bar{v}_{t-2}, k-1\right), I_{k-1}\left(\bar{v}_{t-2}, k-2\right),(k-2, k-1),(k-2, k), I_{k}^{-1}\left(k-2, \bar{v}_{t-2}\right),\left(\bar{v}_{t-2}, k\right),\left(\bar{v}_{t-2}, k+\right.\right.$ $1)\rangle$, and $P_{t-1}=\left\langle(k+1, k-2),(k+1, k-1),(0, k-1), I_{k-1}\left(0, \bar{v}_{0}-1\right),\left(\bar{v}_{0}-1, k-1\right),\left(\bar{v}_{0}-1, k\right), I_{k}^{-1}\left(\bar{v}_{0}-1,0\right),(0, k),(k+\right.$ $1, k),(k+1, k+1)\rangle$.
Case 5.2.1. $s=1$.
Using the same \bar{P}_{0} as in Case 1.1., then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup \bar{P}_{0}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.
Case 5.2.2. $s \geq 2$.
Using the same $\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ as in Case 1.2., then $\bar{C}(u, v) \cup\left\{P_{i} \mid 0 \leq i \leq t-1\right\} \cup\left\{\bar{P}_{i} \mid 0 \leq i \leq s-1\right\}$ is the 3-DPC (or 4-DPC) of Q_{2}^{k+2}.

The following lemma for Q_{2}^{k} for any even integer $k \geq 6$ can be derived similarly.
Lemma 8. For any even integer $k \geq 6, Q_{2}^{k}$ is bi-3-DPC-able and bi-4-DPC-able.

3.3. The disjoint path covers of Q_{n}^{k} with $n \geq 2$

Theorem 4. Let $n \geq 2$ be an integer and $k \geq 3$ be an odd integer. Then Q_{n}^{k} is m-DPC-able, where $1 \leq m \leq 2 n$.
Proof. By Theorems 1 and $3, Q_{n}^{k}$ is 1-DPC-able and 2-DPC-able. Thus, it suffices to prove that Q_{n}^{k} is m-DPC-able for $3 \leq m \leq$ $2 n$. With Lemmas 3, 5 and $7, Q_{2}^{k}$ is m-DPC-able for $3 \leq m \leq 4$. Thus the theorem holds for $n=2$. We shall prove the theorem by mathematical induction on n. Using the induction hypothesis, we assume that $Q_{n-1}^{k, i}$ is m-DPC-able for $1 \leq m \leq 2 n-2$, where $0 \leq i \leq k-1$. Given two distinct vertices $u, v \in V\left(Q_{n}^{k}\right)$, with $u \in Q_{n-1}^{k, j}$ and $v \in Q_{n-1}^{k, j^{\prime}}$, we want to show that we can use the m-DPC in $Q_{n-1}^{k, i}$ to construct an $(m+2)$-DPC between u and v in Q_{n}^{k}.
Case 1. $j=j^{\prime}$. W.L.O.G., let $j=j^{\prime}=0$.
Now, $u=u^{0}$ and $v=v^{0}$ are in $Q_{n-1}^{k, 0}$. By the induction hypothesis, $Q_{n-1}^{k, 0}$ is m-DPC-able, so there are m vertex disjoint paths between u and v, denoted by $\left\{P_{i}\right\}_{i=0}^{m-1}$, whose union covers all the vertices of $Q_{n-1}^{k, 0}$ for all $1 \leq m \leq 2 n-2$. According to Theorem 1, there is a path R between u^{k-1} and v^{k-1} covering all the vertices of $Q_{n-1}^{k, k-1}$. Let $P_{m}=\left\langle u, u^{k-1}, R, v^{k-1}, v\right\rangle$. By Lemma 2 , there is a path S between u^{1} and v^{1} covering all the vertices of $Q_{n-1}^{k, i}$ for $1 \leq i \leq k-2$. Let $P_{m+1}=\left\langle u, u^{1}, S, v^{1}, v\right\rangle$. Hence, there exist $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ between u and v, whose union covers all the vertices of Q_{n}^{k}. Please see Fig. 9 for an illustration.

Fig. 9. An illustration for Case 1 of Theorem 4.

Fig. 10. An illustration for Case 2.1.2 of Theorem 4 when $k=5$.

Case 2. $\left|j-j^{\prime}\right|=1$. W.L.O.G., let $j=0$ and $j^{\prime}=k-1$.
Let $u=u^{0}$ be in $Q_{n-1}^{k, 0}$ and $v=v^{k-1}$ in $Q_{n-1}^{k, k-1}$. We have the following three subcases.
Case 2.1. If $d_{Q_{n}^{k}}(u, v)=1$.
Case 2.1.1. $m=1$.
We let $P_{0}=\left\langle u=u^{0}, v^{k-1}=v\right\rangle$. Given any vertex x^{0} in $Q_{n-1}^{k, 0}-\left\{u^{0}\right\}$. By Theorem 1 , there is a path S between u^{0} and x^{0} covering all the vertices of $Q_{n-1}^{k, 0}$, and a path T between x^{k-1} and v^{k-1} covering all the vertices of $Q_{n-1}^{k, k-1}$. Then, we set $P_{1}=\left\langle u=u^{0}, S, x^{0}, x^{k-1}, T, v^{k-1}=v\right\rangle$. According to Lemma 1 , there is a path U between u^{1} and v^{k-2} covering all the vertices of $Q_{n-1}^{k, i}$ for $1 \leq i \leq k-2$. Let $P_{2}=\left\langle u=u^{0}, u^{1}, U, v^{k-2}, v^{k-1}=v\right\rangle$. Hence, there are three vertex disjoint paths $\left\{P_{0}, P_{1}, P_{2}\right\}$ between u and v, whose union covers all the vertices of Q_{n}^{k}.

Case 2.1.2. $m \geq 2$.
By the induction hypothesis, $Q_{n-1}^{k, 0}$ is m-DPC-able, so there are m vertex disjoint paths between u^{0} and x^{0}, denoted by $\left\{R_{i}\right\}_{i=0}^{m-1}$, whose union covers all the vertices of $Q_{n-1}^{k, 0}$. Besides, there are m vertex disjoint paths between x^{k-1} and v^{k-1}, denoted by $\left\{S_{i}\right\}_{i=0}^{m-1}$, whose union covers all the vertices of $Q_{n-1}^{k, k-1}$. Set $R_{i}=\left\langle u^{0}, T_{i}, y_{i}^{0}, x^{0}\right\rangle$, and $S_{i}=\left\langle x^{k-1}, y_{i}^{k-1}, U_{i}, v^{k-1}\right\rangle$. We let $P_{0}=\left\langle u=u^{0}, R_{0}, x^{0}, x^{k-1}, S_{0}, v^{k-1}=v\right\rangle$ and $P_{i}=\left\langle u=u^{0}, T_{i}, y_{i}^{0}, y_{i}^{k-1}, U_{i}, v^{k-1}=v\right\rangle$ for $1 \leq i \leq m-1$. By Lemma 1 , there is a path W between u^{1} and v^{k-2} covering all the vertices of $Q_{n-1}^{k, i}$ for $1 \leq i \leq k-2$. Set $P_{m}=\left\langle u=u^{0}, u^{1}, W, v^{k-2}, v^{k-1}=v\right\rangle$. Finally, let $P_{m+1}=\left\langle u=u^{0}, v^{k-1}=v\right\rangle$. Therefore, we construct $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ between u and v, whose union covers all the vertices of Q_{n}^{k}. Please see Fig. 10 for an illustration.

Case 2.2. If $d_{\mathrm{Q}_{n}^{k}}(u, v)=2$.
Case 2.2.1. $m=1$.
By Theorem 1, there is a path R between u^{0} and v^{0} covering all the vertices of $Q_{n-1}^{k, 0}$, and a path S between u^{k-1} and v^{k-1} covering all the vertices of $Q_{n-1}^{k, k-1}$. W.L.O.G., we let $R=\left\langle u^{0}, T, x^{0}, v^{0}\right\rangle$ and $S=\left\langle u^{k-1}, y^{k-1}, U, v^{k-1}\right\rangle$. Let $P_{0}=\langle u=$ $\left.u^{0}, u^{k-1}, v^{k-1}=v\right\rangle$ and $P_{1}=\left\langle u=u^{0}, v^{0}, v^{k-1}=v\right\rangle$. According to Lemma 1, there exists a path W between x^{1} and y^{k-2} covering all the vertices of $Q_{n-1}^{k, i}$ for $1 \leq i \leq k-2$. So, we set $P_{2}=\left\langle u=u^{0}, T, x^{0}, x^{1}, W, y^{k-2}, y^{k-1}, U, v^{k-1}=v\right\rangle$. Therefore, there exist three vertex disjoint paths $\left\{P_{0}, P_{1}, P_{2}\right\}$ between u and v, whose union covers all the vertices of Q_{n}^{k}.
Case 2.2.2. $m \geq 2$.
By the induction hypothesis, $Q_{n-1}^{k, r}$ is m-DPC-able, so there are m vertex disjoint paths between u^{r} and v^{r}, denoted by $\left\{R_{i}^{r}\right\}_{i=0}^{m-1}$, whose union covers all the vertices of $Q_{n-1}^{k, r}$ where $0 \leq r \leq k-1$. W.L.O.G., we let $R_{0}^{r}=\left\langle u^{r}, v^{r}\right\rangle$ and $R_{i}^{r}=\left\langle u^{r}, x_{i}^{r}, S_{i}^{r}, y_{i}^{r}, v^{r}\right\rangle$ for $1 \leq i \leq m-1$. Let $P_{0}=\left\langle u=u^{0}, v^{0}, v^{k-1}\right\rangle$. We set $P_{i}=\left\langle u=u^{0}, x_{i}^{0}, S_{i}^{0}, y_{i}^{0}, y_{i}^{1},\left(S_{i}^{1}\right)^{-1}, x_{i}^{1}, \ldots, x_{i}^{k-1}, S_{i}^{k-1}, y_{i}^{k-1}, v^{k-1}=v\right\rangle$ for $1 \leq i \leq m-1$. We let $P_{m}=\left\langle u=u^{0}, u^{1}, v^{1}, v^{2}, u^{2}, \ldots, u^{k-2}, v^{k-2}, v^{k-1}=v\right\rangle$, and $P_{m+1}=\left\langle u=u^{0}, u^{k-1}, v^{k-1}\right\rangle$.

Fig. 11. An illustration for Case 2.2 .2 of Theorem 4 when $k=5$.

Fig. 12. An illustration for Case 2.3 .2 of Theorem 4 when $k=5$.
Therefore, we construct $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ between u and v, whose union covers all the vertices of Q_{n}^{k}. Please see Fig. 11 for an illustration.
Case 2.3. If $d_{Q_{n}^{k}}(u, v) \geq 3$.
Case 2.3.1. $m=1$.
By Theorem 1, there exists a path R between u^{0} and v^{0} covering all the vertices of $Q_{n-1}^{k, 0}$, and a path S between u^{k-1} and v^{k-1} covering all the vertices of $Q_{n-1}^{k, k-1}$. According to Lemma 1 , there is a path W between u^{1} and v^{k-2} covering all the vertices of $Q_{n-1}^{k, i}$ for $1 \leq i \leq k-2$. We let $P_{0}=\left\langle u=u^{0}, R, v^{0}, v^{k-1}=v\right\rangle, P_{1}=\left\langle u=u^{0}, u^{k-1}, S, v^{k-1}=v\right\rangle$, and $P_{2}=\left\langle u=u^{0}, u^{1}, W, v^{k-2}, v^{k-1}=v\right\rangle$. There are three vertex disjoint paths $\left\{P_{0}, P_{1}, P_{2}\right\}$ between u and v, whose union covers all the vertices of Q_{n}^{k}.
Case 2.3.2. $m \geq 2$.
By the induction hypothesis, $Q_{n-1}^{k, r}$ is m-DPC-able, so there are m vertex disjoint paths between u^{r} and v^{r}, denoted by $\left\{R_{i}^{r}\right\}_{i=0}^{m-1}$, whose union covers all the vertices of $Q_{n-1}^{k, r}$ where $0 \leq r \leq k-1$. W.L.O.G., we let $R_{i}^{r}=\left\langle u^{r}, x_{i}^{r}, S_{i}^{r}, y_{i}^{r}, v^{r}\right\rangle$ for $0 \leq i \leq m-1$. Let $P_{0}=\left\langle u=u^{0}, R_{0}^{0}, v^{0}, v^{k-1}=v\right\rangle$, and $P_{i}=\left\langle u=u^{0}, x_{i}^{0}, S_{i}^{0}, y_{i}^{0}, y_{i}^{1},\left(S_{i}^{1}\right)^{-1}, x_{i}^{1}, \ldots, x_{i}^{k-1}, S_{i}^{k-1}, y_{i}^{k-1}, v^{k-1}=v\right\rangle$ for $1 \leq i \leq m-1$. Then, we set $P_{m}=\left\langle u=u^{0}, u^{1}, R_{0}^{1}, v^{1}, v^{2},\left(R_{0}^{2}\right)^{-1}, u^{2}, \ldots, u^{k-2}, R_{0}^{k-2}, v^{k-2}, v^{k-1}=v\right\rangle$, and $P_{m+1}=\left\langle u=u^{0}, u^{k-1}, R_{0}^{k-1}, v^{k-1}=v\right\rangle$. Hence, we construct $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ between u and v, whose union covers all the vertices of Q_{n}^{k}. Please see Fig. 12 for an illustration.
Case 3. $\left|j-j^{\prime}\right| \geq 2$. W.L.O.G., let $j=0$ and j^{\prime} be even.
Now, $u=u^{0} \in Q_{n-1}^{k, 0}$ and $v=v^{j^{\prime}} \in Q_{n-1}^{k, j^{\prime}}$. Assume that $0 \leq h \leq j^{\prime}$. By the induction hypothesis, $Q_{n-1}^{k, h}$ is m-DPC-able, so there are m vertex disjoint paths between u^{h} and v^{h}, denoted by $\left\{R_{i}^{h}\right\}_{i=0}^{m-1}$, whose union covers all the vertices of $Q_{n-1}^{k, h}$.
We set $R_{i}^{h}=\left\langle u^{h}, x_{i}^{h}, S_{i}^{h}, y_{i}^{h}, v^{h}\right\rangle$. Let $P_{i}=\left\langle u=u^{0}, x_{i}^{0}, S_{i}^{0}, y_{i}^{0}, y_{i}^{1},\left(S_{i}^{1}\right)^{-1}, x_{i}^{1}, \ldots, x_{i}^{j^{\prime}}, S_{i}^{j^{\prime}}, y_{i}^{j^{\prime}}, v^{j^{\prime}}=v\right\rangle$ for $0 \leq i \leq m-1$. By Lemma 2, there is a path T between $u^{j^{\prime}+1}$ and $v^{j^{\prime}+1}$ covering all the vertices of $Q_{n-1}^{k, i}$, for $j^{\prime}+1 \leq i \leq k-2$. Set $P_{m}=\left\langle u=u^{0}, u^{1}, \ldots, u^{j^{\prime}}, u^{j^{\prime}+1}, T, v^{j^{\prime}+1}, v^{j^{\prime}}=v\right\rangle$. Finally, according to Theorem 1 , there is a path U between u^{k-1} and v^{k-1} covering all the vertices of $Q_{k-1}^{k, k-1}$. We let $P_{m+1}=\left\langle u=u^{0}, u^{k-1}, U, v^{k-1}, v^{0}, v^{1}, \ldots, v^{j^{\prime}-1}, v^{j^{\prime}}=v\right\rangle$. Therefore, we construct the $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ between u and v, whose union covers all the vertices of Q_{n}^{k}. Please see Fig. 13 for an illustration.

With Theorem 4, we have shown that Q_{n}^{k} is m-DPC-able for $1 \leq m \leq 2 n$, where $k \geq 3$ is an odd integer and $n \geq 2$ is an integer. The result is optimal since each vertex of Q_{n}^{k} has exactly $2 n$ neighbors. The construction scheme in Theorem 4 cannot be applied to Q_{n}^{k} for $k \geq 4$ being an even integer. In fact, it is much more difficult to prove that Q_{n}^{k} is bi-m-DPC-able for $1 \leq m \leq 2 n$ when $k \geq 2$ is even. Thus the detailed derivation is given below.
Theorem 5. Let $n \geq 2$ be an integer and $k \geq 4$ be an even integer. Then Q_{n}^{k} is bi-m-DPC-able, where $1 \leq m \leq 2 n$.
Proof. According to Theorems 2, 3 and Lemmas 4, 6 and 8, the theorem holds for any even integer $k \geq 4$ when $n=2$. We will give the proof of the theorem by mathematical induction on n. By the induction hypothesis, assume that $Q_{n-1}^{k, i}$ is

Fig. 13. An illustration for Case 3 of Theorem 4.

Fig. 14. The illustration for Case 2.1.2 of Theorem 5.
bi- m-DPC-able for $1 \leq m \leq 2 n-2$, where $0 \leq i \leq k-1$. Given a white vertex $w \in V\left(Q_{n-1}^{k, j}\right)$ and a black vertex $b \in V\left(Q_{n-1}^{k, j^{\prime}}\right)$. We will show that we can use the m-DPC of $Q_{n-1}^{k, j}$ to construct an $(m+2)$-DPC of Q_{n}^{k} between w and b.
Case 1. For $j=j^{\prime}$. W.L.O.G., we let $j=j^{\prime}=0$.
In this case, we have $\{w, b\} \in Q_{n-1}^{k, 0}$. By the induction hypothesis, there are m vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m-1}$ whose union covers all vertices of $Q_{n-1}^{k, 0}$ between w and b for $1 \leq m \leq 2 n-2$. By Lemma 2, the exists a path S covering all vertices of $Q_{n-1}^{k, i}$ for $1 \leq i \leq k-2$ between w^{1} and b^{1}. We can let $P_{m}=\left\langle w, w^{1}, S, b^{1}, b\right\rangle$. In $Q_{n-1}^{k, k-1}$, there exist a hamiltonian path R joining from w^{k-1} to b^{k-1} by Theorem 2. Also, we can let $P_{m+1}=\left\langle w, w^{k-1}, R, b^{k-1}, b\right\rangle$. Therefore, there are $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ whose union covers all vertices of Q_{n}^{k} between w and b.
Case 2. For $\left|j-j^{\prime}\right|=1$. W.L.O.G., we let $j=0$ and $j^{\prime}=1$.
We have the following two cases.
Case 2.1. Suppose that $d_{Q_{n}^{k}}(w, b)=1$. It is easy to see that we can let $P_{m+1}=\langle w, b\rangle$.
Case 2.1.1. If $m=1$.
Let z be any black vertex of $Q_{n-1}^{k, 0}$. By Theorem 2, there exist a hamiltonian path S of $Q_{n-1}^{k, 0}$ from w to z, and a hamiltonian path T of $Q_{n-1}^{k, 1}$ from z^{1} to b. So we set $P_{0}=\left\langle w, S, z, z^{1}, T, b\right\rangle$. According to Lemma 1, a hamiltonian path R between $w^{k-1} \in Q_{n-1}^{k, k-1}$ and $b^{2} \in Q_{n-1}^{k, 2}$ covers all vertices of $Q_{n-1}^{k, i}$ for $2 \leq i \leq k-1$. We can write P_{1} as $\left\langle w, w^{k-1}, R, b^{2}, b\right\rangle$. Hence, there are three vertex disjoint paths $\left\{P_{0}, P_{1}, P_{2}\right\}$ whose union covers all vertices of Q_{n}^{k} between w and b.
Case 2.1.2. If $m \geq 2$.
According to the induction hypothesis, given any black vertex $z \in V\left(Q_{n-1}^{k, 0}-N(w)\right)$, there exist m vertex disjoint paths $\left\{R_{i}\right\}_{i=0}^{m-1}$ whose union covers all vertices of $Q_{n-1}^{k, 0}$ between w and z for $2 \leq m \leq 2 n-2$. Let $R_{i}=\left\langle w, S_{i}, y_{i}, z\right\rangle$ for $0 \leq i \leq m-1$. We set $P_{0}=\left\langle w, S_{0}, y_{0}, z, z^{1}, y_{0}^{1},\left(S_{0}^{1}\right)^{-1}, b\right\rangle$ and $P_{i}=\left\langle w, S_{i}, y_{i}, y_{i}^{1},\left(S_{i}^{1}\right)^{-1}, b\right\rangle$ for $1 \leq i \leq m-1$. By Lemma 1 , there is a hamiltonian path T between $w^{k-1} \in Q_{n-1}^{k, k-1}$ and $b^{2} \in Q_{n-1}^{k, 2}$ covering all vertices of $Q_{n-1}^{k, i}$ for $2 \leq i \leq k-1$. Set $P_{m}=\left\langle w, w^{k-1}, T, b^{2}, b\right\rangle$. Consequently, there are $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ whose union covers all vertices of Q_{n}^{k} between w and b. Please see Fig. 14 for an illustration.
Case 2.2. Suppose that $d_{Q_{n}^{k}}(w, b) \geq 3$.
Case 2.2.1. If $m=1$.
Given any black vertex z in $Q_{n-1}^{k, 0}$, by Theorem 2, there is a hamiltonian path R of $Q_{n-1}^{k, 0}$ joining from w to z. So there is also a hamiltonian path S of $Q_{n-1}^{k, 1}$ between w^{1} to z^{1}. We can set $S=\left\langle w^{1}, S_{1}^{\prime}, b, S_{2}^{\prime}, z^{1}\right\rangle$. By Lemma 1, there exists a hamiltonian path

Fig. 15. The illustration for Case 2.2.2 of Theorem 5 when $b^{0} \notin V\left(S_{0}\right)$.
T between $w^{k-1} \in Q_{n-1}^{k, k-1}$ and $b^{2} \in Q_{n-1}^{k, 2}$ covering all vertices of $Q_{n-1}^{k, i}$ for $2 \leq i \leq k-1$. We let $P_{0}=\left\langle w, R, z, z^{1},\left(S_{2}^{\prime}\right)^{-1}, b\right\rangle$, $P_{1}=\left\langle w, w^{1}, S_{1}^{\prime}, b\right\rangle$, and $P_{2}=\left\langle w, w^{k-1}, T, b^{2}, b\right\rangle$. Therefore, there are three vertex disjoint paths $\left\{P_{0}, P_{1}, P_{2}\right\}$ whose union covers all vertices of Q_{n}^{k} between w and b.

Case 2.2.2. If $m \geq 2$.
Let z be a black vertex of $V\left(Q_{n-1}^{k, 0}-N(w)\right)$. In $Q_{n-1}^{k, 0}$, according to the induction hypothesis, there exist m vertex disjoint paths $\left\{S_{i}\right\}_{i=0}^{m-1}$ whose union covers all vertices of $Q_{n-1}^{k, 0}$ between w and z for $2 \leq m \leq 2 n-2$. So as in $Q_{n-1}^{k, 1}$, there exist m vertex disjoint paths $\left\{T_{i}\right\}_{i=0}^{m-1}$ whose union covers all vertices of $Q_{n-1}^{k, 1}$ between z^{1} and b for $2 \leq m \leq 2 n-2$. Let $T_{0}=\left\langle z^{1}, y_{0}, T_{0}^{\prime}, x_{0}, w^{1}, T_{0}^{\prime \prime}, b\right\rangle$ and $T_{i}=\left\langle z^{1}, y_{i}, T_{i}^{\prime}, b\right\rangle$ for $1 \leq i \leq m-1$ in $Q_{n-1}^{k, 1}$.

If $b^{0} \notin V\left(S_{0}\right)$, W.L.O.G., let $b^{0} \in V\left(S_{m-1}\right)$. In $Q_{n-1}^{k, 0}$, we also let $S_{0}=\left\langle w, x_{0}^{0}, e, S_{0}^{\prime}, y_{0}^{0}, z\right\rangle, S_{i}=\left\langle w, S_{i}^{\prime}, y_{i}^{0}, z\right\rangle$ for $1 \leq i \leq m-2$, and $S_{m-1}=\left\langle w, S_{m-1}^{\prime}, b^{0}, f, S_{m-1}^{\prime \prime}, y_{m-1}^{0}, z\right\rangle$. A hamiltonian path R is embedded in $Q_{n-1}^{k, k-1}$ between w^{k-1} and f^{k-1} by Theorem 2. Write R as $\left\langle w^{k-1}, R^{\prime}, e^{k-1}, g, R^{\prime \prime}, f^{k-1}\right\rangle$. Notice that g^{k-2} is a black vertex and b^{2} is a white vertex. According to Lemma 1, there is a hamiltonian path U between g^{k-2} and b^{2} covering all vertices of $Q_{n-1}^{k, i}$ for $2 \leq i \leq$ $k-2$. We can set $P_{0}=\left\langle w, x_{0}^{0}, x_{0},\left(T_{0}^{\prime}\right)^{-1}, y_{0}, z^{1}, y_{m-1}, T_{m-1}, b\right\rangle, P_{1}=\left\langle w, w^{1}, T_{0}^{\prime \prime}, b\right\rangle, P_{2}=\left\langle w, w^{k-1}, R^{\prime}, e^{k-1}, e, S_{0}^{\prime}, y_{0}^{0}, z\right.$, $\left.y_{m-1}^{0},\left(S_{m-1}^{\prime \prime}\right)^{-1}, f, f^{k-1},\left(R^{\prime \prime}\right)^{-1}, g, g^{k-2}, U, b^{2}, b\right\rangle, P_{3}=\left\langle w, S_{m-1}^{\prime}, b^{0}, b\right\rangle$, and $P_{i}=\left\langle w, S_{i-3}^{\prime}, y_{i-3}^{0}, y_{i-3}, T_{i-3}^{\prime}, b\right\rangle$ for $4 \leq i \leq$ $m+1$. So, there are $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ whose union covers all vertices of Q_{n}^{k} between w and b. Please see Fig. 15 for an illustration.

If $b^{0} \in V\left(S_{0}\right)$, let $S_{0}=\left\langle w, x_{0}^{0}, e, S_{0}^{\prime}, b^{0}, f, S_{0}^{\prime \prime}, y_{0}^{0}, z\right\rangle$, and $S_{i}=\left\langle w, S_{i}^{\prime}, y_{i}^{0}, z\right\rangle$ for $1 \leq i \leq m-1$. A hamiltonian path R is embedded in $Q_{n-1}^{k, k-1}$ between w^{k-1} and f^{k-1} by Theorem 2. R is written as $\left\langle w^{k-1}, R^{\prime}, e^{k-1}, g, R^{\prime \prime}, f^{k-1}\right\rangle$. Notice that g^{k-2} is a black vertex and b^{2} is a white vertex. According to Lemma 1 , there is a hamiltonian path U between g^{k-2} and b^{2} covering all vertices of $Q_{n-1}^{k, i}$ for $2 \leq i \leq k-2$. We let $P_{0}=\left\langle w, x_{0}^{0}, x_{0},\left(T_{0}^{\prime}\right)^{-1}, y_{0}, z^{1}, y_{m-1}, T_{m-1}^{\prime}, b\right\rangle, P_{1}=$ $\left\langle w, w^{1}, T_{0}^{\prime \prime}, b\right\rangle, P_{2}=\left\langle w, w^{k-1}, R^{\prime}, e^{k-1}, e, S_{0}^{\prime}, b^{0}, b\right\rangle, P_{3}=\left\langle w, S_{m-1}^{\prime}, y_{m-1}^{0}, z, y_{0}^{0},\left(S_{0}^{\prime \prime}\right)^{-1}, f, f^{k-1},\left(R^{\prime \prime}\right)^{-1}, g, g^{k-2}, U, b^{2}, b\right\rangle$, and $P_{i}=\left\langle w, S_{i-3}^{\prime}, y_{i-3}^{0}, y_{i-3}, T_{i-3}^{\prime}, b\right\rangle$ for $4 \leq i \leq m+1$. Hence, there are $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ whose union covers all vertices of Q_{n}^{k} between w and b. Please see Fig. 16 for an illustration.

Case 3. For $\left|j-j^{\prime}\right| \geq 2$. W.L.O.G., we let $j=0$ and $2 \leq j^{\prime} \leq \frac{k}{2}$ be even.
Because $b \in Q_{n-1}^{k, j^{\prime}}$ where j^{\prime} is even, b^{i} is a white (resp. black) vertex in $Q_{n-1}^{k, i}$ for $0 \leq i \leq k-1$ when i is odd (resp. even). It is easy to see that w^{i} is a black (resp. white) vertex in $Q_{n-1}^{k, i}$ for $0 \leq i \leq k-1$ when i is odd (resp. even). By the induction hypothesis, there exist m vertex disjoint paths $\left\{R_{p}^{i}\right\}_{p=0}^{m-1}$ of $Q_{n-1}^{k, i}$ between w^{i} and b^{i} for $0 \leq i \leq j^{\prime}$. Let $R_{p}^{i}=\left\langle w^{i}, x_{p}^{i}, U_{p}^{i}, y_{p}^{i}, b^{i}\right\rangle$ for $0 \leq p \leq m-1$ and $0 \leq i \leq j^{\prime}$. According to Lemma 2, a hamiltonian path S covers all vertices of $Q_{n-1}^{k, i}$ for $j^{\prime}+1 \leq i \leq k-2$ joining from $w^{j^{\prime}+1}$ to $b^{j^{\prime}+1}$. There is a hamiltonian path T of $Q_{n-1}^{k, k-1}$ from w^{k-1} to b^{k-1} by Theorem 2 . Hence, we can write $P_{p}=\left\langle w=w^{0}, x_{p}^{0}, U_{p}^{0}, y_{p}^{0}, y_{p}^{1},\left(U_{p}^{1}\right)^{-1}, x_{p}^{1}, x_{p}^{2}, U_{p}^{2}, \ldots,\left(U_{p}^{j^{\prime}-1}\right)^{-1}, x_{p}^{j^{\prime}-1}, x_{p}^{j^{\prime}}, U_{p}^{j^{\prime}}, y_{p}^{j^{\prime}}, b^{j^{\prime}}=b\right\rangle$ for $0 \leq p \leq m-1$, $P_{m}=\left\langle w=w^{0}, w^{1}, w^{2}, \ldots, w^{j^{\prime}}, w^{j^{\prime}+1}, S, b^{j^{\prime}+1}, b^{i^{\prime}}=b\right\rangle$, and $P_{m+1}=\left\langle w=w^{0}, w^{k-1}, T, b^{k-1}, b^{0}, b^{1}, \ldots, b^{j^{\prime}-1}, b^{j^{\prime}}=b\right\rangle$. Therefore, there are $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ whose union covers all vertices of Q_{n}^{k} between w and b. Please see Fig. 17 for an illustration.

Fig. 16. The illustration for Case 2.2 .2 of Theorem 5 when $b^{0} \in V\left(S_{0}\right)$.

Fig. 17. The illustration for Case 3 of Theorem 5.
Case 4. For $\left|j-j^{\prime}\right| \geq 2$. W.L.O.G., we let $j=0$ and $3 \leq j^{\prime} \leq \frac{k}{2}+1$ be odd.
Case 4.1. If $m=1$.
Choosing a black vertex z of $Q_{n-1}^{k, 0}$, by Theorem 2, there is a hamiltonian path R of $Q_{n-1}^{k, 0}$ joining from w to z. In $Q_{n-1}^{k, k-1}$, there exists a hamiltonian path S of $Q_{n-1}^{k, k-1}$ between w^{k-1} and z^{k-1}. We can let $S=\left\langle w^{k-1}, S^{\prime}, e, b^{k-1}, S^{\prime \prime}, z^{k-1}\right\rangle$, where b^{k-1} is a black vertex of $Q_{n-1}^{k, k-1}$, so e is a white vertex of $Q_{n-1}^{k, k-1}$. By Theorem 2, there is a hamiltonian path T of $Q_{n-1}^{k, k-2}$ joining from e^{k-2} to b^{k-2}. Let $T=\left\langle e^{k-2}, W, f^{k-2}, b^{k-2}\right\rangle$. In $Q_{n-1}^{k, i}$, we also have a hamiltonian path T^{i} between e^{i} and b^{i} for $j^{\prime} \leq i \leq k-3$, so we let $T^{i}=\left\langle e^{i}, W^{i}, f^{i}, b^{i}\right\rangle$. According to Lemma 1 , there is a hamiltonian path U between a black vertex $w^{1} \in Q_{n-1}^{k, 1}$ and a white vertex $b^{j^{\prime}-1} \in Q_{n-1}^{k, j^{\prime}-1}$ covering all vertices of $Q_{n-1}^{k, i}$ for $2 \leq i \leq j^{\prime}-1$. We set $P_{0}=\left\langle w, w^{1}, U, b^{i^{\prime}-1}, b\right\rangle, P_{1}=\left\langle w, R, z, z^{k-1},\left(S^{\prime \prime}\right)^{-1}, b^{k-1}, b^{k-2}, \ldots, b^{\prime+1}, b^{j^{\prime}}=b\right\rangle$, and $P_{2}=\left\langle w, w^{k-1}, S^{\prime}, e, e^{k-2}, W, f^{k-2}, f^{k-3},\left(W^{k-3}\right)^{-1}, e^{k-3}, e^{k-4}, W^{k-4}, f^{k-4}, \ldots, e^{j^{\prime}+1}, W^{j^{\prime}+1}, f^{j^{\prime}+1}, f^{j^{\prime}}, W^{j^{\prime}}, b^{j^{\prime}}=b\right\rangle$. Hence, there are three vertex disjoint paths $\left\{P_{0}, P_{1}, P_{2}\right\}$ whose union covers all vertices of Q_{n}^{k} between w and b. Please see Fig. 18 for an illustration.
Case 4.2. If $m \geq 2$.
Given a white vertex z in $Q_{n-1}^{k, j^{\prime}}$ such that z is adjacent to b. So z^{i} is a black (resp. white) vertex and w^{i} is a white (reps. black) vertex of $Q_{n-1}^{k, i}$ if $0 \leq i \leq j^{\prime}-1$ when i is even (resp. odd). By the induction hypothesis, there exist m vertex disjoint paths $\left\{R_{i}\right\}_{i=0}^{m-1}$ of $Q_{n-1}^{k, 0}$ between w and z^{0}. We write $R_{0}=\left\langle w, x_{0}(1), x_{0}(2), \ldots, x_{0}(\alpha), z^{0}\right\rangle$, and $R_{p}=\left\langle w, x_{p}, S_{p}, y_{p}, z^{0}\right\rangle$ for $1 \leq p \leq m-1$. Again, by the induction hypothesis, there exist m vertex disjoint paths $\left\{T_{p}^{i}\right\}_{p=0}^{m-1}$ of $Q_{n-1}^{k, i}$ between w^{i} and z^{i} for $2 \leq i \leq j^{\prime}-1$. We let $T_{p}^{i}=\left\langle w^{i}, x_{p}^{i}, U_{p}^{i}, t_{p}^{i}, z^{i}\right\rangle$ for $0 \leq p \leq m-1$ and $2 \leq i \leq j^{\prime}-1$. Notice that $b^{j^{\prime}-1}$ is adjacent to $z^{j^{\prime}-1}$, W.L.O.G., we let $t_{m-1}^{j^{\prime}-1}=b^{j^{\prime}-1}$. In $Q_{n-1}^{k, j^{\prime}}$, there are m vertex disjoint paths $\left\{W_{i}\right\}_{i=0}^{m-1}$ from b to z by the induction

Fig. 18. The illustration for Case 4.1 of Theorem 5.

Fig. 19. The illustration for Case 4.2 of Theorem 5.
hypothesis. We can write $W_{p}=\left\langle z, t_{p}^{j^{\prime}}, Y_{p}, b\right\rangle$ for $0 \leq p \leq m-2$ and $W_{m-1}=\langle z, b\rangle$. According to Lemma 1, there is a hamiltonian path V between $w^{k-1} \in Q_{n-1}^{k, k-1}$ and $b^{j^{\prime}+1} \in Q_{n-1}^{k, j^{\prime}+1}$ covering all vertices of $Q_{n-1}^{k, i}$ for $j^{\prime}+1 \leq i \leq k-1$. Set $P_{0}=\left\langle w, w^{k-1}, V, b^{j^{\prime}+1}, b\right\rangle, P_{1}=\left\langle w, w^{1}, w^{2}, x_{0}^{2}, U_{0}^{2}, t_{0}^{2}, t_{0}^{3},\left(U_{0}^{3}\right)^{-1}, x_{0}^{3}, w^{3}, w^{4}, \ldots, w^{j^{\prime}-1}, x_{0}^{j^{\prime}-1}, U_{0}^{j^{\prime}-1}, t_{0}^{j^{\prime}-1}, t_{0}^{j^{\prime}}, Y_{0}, b\right\rangle$, $P_{2}=\left\langle w, x_{0}(1), x_{0}^{1}(1), x_{0}^{1}(2), x_{0}(2), \ldots, x_{0}(\alpha-1), x_{0}^{1}(\alpha-1), x_{0}^{1}(\alpha), x_{0}(\alpha), z^{0}, z^{1}, \ldots, z^{j^{\prime}}, b\right\rangle, P_{3}=\left\langle w, x_{m-1}, S_{m-1}, y_{m-1}\right.$, $\left.y_{m-1}^{1},\left(S_{m-1}^{1}\right)^{-1}, x_{m-1}^{1}, x_{m-1}^{2}, U_{m-1}^{2}, t_{m-1}^{2}, t_{m-1}^{3},\left(U_{m-1}^{3}\right)^{-1}, x_{m-1}^{3}, \ldots, x_{m-1}^{j^{\prime}-1}, U_{m-1}^{j^{\prime}-1}, t_{m-1}^{j^{\prime}-1}=b^{j^{\prime}-1}, b\right\rangle$, and $P_{i}=\left\langle w, x_{i-3}, S_{i-3}\right.$, $\left.y_{i-3}, y_{i-3}^{1},\left(S_{i-3}^{1}\right)^{-1}, x_{i-3}^{1}, x_{i-3}^{2}, U_{i-3}^{2}, t_{i-3}^{2}, t_{i-3}^{3},\left(U_{i-3}^{3}\right)^{-1}, x_{i-3}^{3}, \ldots, x_{i-3}^{j^{\prime}-1}, U_{i-3}^{j^{\prime}-1}, t_{i-3}^{j^{\prime}-1}, t_{i-3}^{j^{\prime}}, Y_{i-3}, b\right\rangle$ for $4 \leq i \leq m+1$. So, there are $m+2$ vertex disjoint paths $\left\{P_{i}\right\}_{i=0}^{m+1}$ whose union covers all vertices of Q_{n}^{k} between w and b. Please see Fig. 19 for an illustration.

With Theorem 5, we have shown that Q_{n}^{k} is bi-m-DPC-able for $1 \leq m \leq 2 n$, where $k \geq 4$ is an even integer and $n \geq 2$ is an integer. The result is optimal since each vertex of Q_{n}^{k} has exactly $2 n$ neighbors.

References

[1] E. Anderson, J. Brooks, C. Grassl, S. Scott, Performance of the Cray T3E Multiprocessor, in: Proceedings of the 1997 ACM/IEEE Conference on Supercomputing, SC'97, 1997, pp. 1-17.
[2] J.A. Bondy, U.S.R. Murty, Graph Theoery with Applications, North-Holland, New York, 1980.
[3] S. Borkar, et al. iWarp: an integrated solution to high-speed parallel computing, in: Proceedings of the 1988 ACM/IEEE Conference on Supercomputing, SC'88, 1988, pp. 330-339.
[4] B. Bose, B. Broeg, Y. Kwon, Y. Ashir, Lee distance and topological properties of k-ary n-cubes, IEEE Transactions on Computers 44 (1995) 1021 -1030.
[5] X.-B. Chen, Unpaired many-to-many vertex-disjoint path covers of a class of bipartite graphs, Information Processing Letters 110 (2010) $203-205$.
[6] K. Day, A.E. Al-Ayyoub, Fault diameter of k-ary n-cube networks, IEEE Transactions on Parallel and Distributed Systems 8 (1997) 903-907.
[7] J. Fink, Perfect matchings extend to hamilton cycles in hypercubes, Journal of Combinatorial Theory, Series B 97 (2007) 1074-1076.
[8] J.-S. Fu, G.-H. Chen, D.-R. Duh, Node-disjoint paths and related problems on hierarchical cubic networks, Networks 40 (2002) 142-154.
[9] T. Gomes, J. Craveirinha, L. Jorge, An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs, Computers \& Operations Research 36 (2009) 1670-1682.
[10] F. Harary, J.P. Hayes, H.-J. Wu, A survey of the theory of the hypercube graphs, Computer Mathematics with Applications 15 (1988) $277-289$.
[11] S.-H. Hsieh, T.-L. Lin, Panconnectivity and edge-pancyclicity of k-ary n-cubes, Networks 54 (2009) 1-11.
[12] S.-H. Hsieh, T.-L. Lin, H.-L. Huang, Panconnectivity and edge-pancyclicity of 3-ary n-cubes, The Journal of Supercomputing 42 (2007) $225-233$.
[13] H.-C. Hsu, C.-K. Lin, H.-M. Huang, L.-H. Hsu, The spanning connectivity of the (n, k)-star graphs, International Journal of Foundations of Computer Science 17 (2006) 415-434.
[14] C.-H. Huang, Strongly hamiltonian laceability of the even k-ary n-cube, Computers and Electrical Engineering 35 (2009) $659-663$.
[15] S.-S. Kao, K.-M. Hsu, L.-H. Hsu, Cubic planar hamiltonian graphs of various types, Discrete Mathematics 306 (2006) 1364-1389.
[16] S.-S. Kao, H.-C. Hsu, L.-H. Hsu, Globally bi-3*-connected graphs, Discrete Mathematics 309 (2009) 1931-1946.
[17] R.E. Kessler, J.L. Schwarzmeier, CRAY T3D: a new dimension for cray research, in: Proceedings of 38th Internationl Computer Conference, COMPCON'93, 1993, pp. 176-182.
[18] M. Kobeissi, M. Mollard, Disjoint cycles and spanning graphs of hypercubes, Discrete Mathematics 288 (2004) 73-87.
[19] C.-K. Lin, H.-M. Huang, Jimmy J.M. Tan, L.-H. Hsu, On Spanning Connected Graphs, Discrete Mathematics 308 (2008) 1330-1333.
[20] C.-K. Lin, Jimmy J.M. Tan, L.-H. Hsu, On the spanning connectively and spanning laceability of hypercube-like networks, Theoretical Computer Science 381 (2007) 218-229.
[21] C. Liu, M. Yarvis, W.S. Conner, X. Guo, Guaranteed on-demand discovery of node-disjoint paths in Ad Hoc networks, Computer Communications 30 (2007) 2917-2930.
[22] M.D. Noakes, D.A. Wallach, W.J. Dally, The J-machine multicomputer: an architectural evaluation, in: Proceedings of the 20th Annual International Symposium on Computer Architecture, ISCA'93, 1993, pp. 224-235.
[23] S.C. Ntafos, S.L. Hakimi, On path cover problems in digraphs and applications to program testing, IEEE Transactions on Software Engineering 5 (1979) 520-529.
[24] O. Ore, Hamiltonian connected graphs, Journal de Mathématiques Pures et Appliquées 42 (1963)21-27.
[25] J.-H. Park, H.-C. Kim, H.-S. Lim, Many-to-many path covers in the presence of faulty elements, IEEE Transactions on Computers 58 (2009) $528-540$.
[26] I.A. Stewart, Y. Xiang, Bipanconnectivity and bipancyclicity in k-ary n-cubes, IEEE Transactions on Parallel and Distributed Systems 20 (2009) 25-33.
[27] I.A. Stewart, Y. Xiang, Embedding long Paths in k-ary n-cubes with faulty nodes and links, IEEE Transactions on Parallel and Distributed Systems 19 (2008) 1071-1085.
[28] C.-M. Sun, C.-K. Lin, H.-M. Huang, L.-H. Hsu, Mutually independent hamiltonian paths and cycles in hypercubes, Journal of Interconnection Networks 7 (2006) 235-255.
[29] C.-H. Tsai, Cycles embedding in hypercubes with node failures, Information Processing Letters 102 (2007) 242-246.
[30] C.-H. Tsai, Linear array and ring embeddings in conditional faulty hypercubes, Theoretical Computer Science 314 (2004) 431-443.
[31] D. Wang, T. An, M. Pan, K. Wang, S. Qu, Hamiltonian-like properies of k-ary n-cubes, in: Proceedings of Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT05, 2005, pp. 1002-1007.
[32] R.-Y. Wu, G.-H. Chen, Y.-L. Kuo, G.J. Chang, Node-disjoint paths in hierarchical hypercube networks, Information Sciences 177 (2007) $4200-4207$.
[33] M.-C. Yang, Jimmy J.M. Tan, L.-H. Hsu, Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes, Journal of Parallel and Distributed Computing 67 (2007) 362-368.

[^0]: तर This research was partially supported by the National Science Council of the Republic of China under contract NSC 98-2115-M-033-003-MY2.

 * Corresponding author. Tel.: +886 3 2653100; fax: +886 32653199.

 E-mail addresses: shin2kao@gmail.com, skao@math.cycu.edu.tw (S.-S. Kao).

