AN APPROACH TO THE SUBGRAPH HOMEOMORPHISM PROBLEM*

Takao ASANO**

Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Communicated by T. Ito
Received May 1984
Revised August 1984

Abstract. The subgraph homeomorphism problem for a fixed pattern graph H is stated as follows: given an input graph $G = (V, E)$, determine whether G has a subgraph homeomorphic to H. We show that the subgraph homeomorphism problem for the fixed graph $K_{3,3}$ is solvable in polynomial time, where $K_{3,3}$ is the Thomson graph, one of the Kuratowski graphs used to characterize planar graphs. Specifically, we present an $O(|V|)$-time algorithm for this problem. This problem was suspected to be NP-complete by Fortune, Hopcroft and Wyllie (1980). We also present several pattern graphs for each of which an $O(|V|)$-time algorithm exists.

1. Introduction

The subgraph homeomorphism problem for a fixed pattern graph H is stated as follows: given an input graph $G = (V, E)$, determine whether G has a subgraph homeomorphic to H, i.e., a subgraph isomorphic to a graph obtained from H by a sequence of subdivisions of edges. This problem was one of the most popular open problems in computational complexity [7]. This problem remains open, although some significant new subcases have been settled [12].

The 'fixed-vertex' version of the problem (the input specifies exactly which vertex of G is to correspond to each vertex of H) has been completely classified for directed graphs by Fortune, Hopcroft and Wyllie [6]: it is polynomial-time solvable if H is a fixed graph all of whose arcs share a common tail, or all of whose arcs share a common head; and it is NP-complete for all other fixed graphs H. With respect to the 'undirected and fixed-vertex' version of the problem, several complicated polynomial-time algorithms have been found for particular values of H, such as a triangle [15] and two independent edges [19, 21, 22, 23].

* A preliminary version of this paper was presented at the meeting of the Technical Group on Automata and Languages of the Institute of Electronics and Communication Engineers of Japan, Tokyo, 1983 [2].
** Present affiliation: Department of Mechanical Engineering, Sophia University, Chiyoda-ku, Tokyo 102, Japan. This research was supported by the Grant in Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan under Grant 59550239 (1984).
With respect to the 'non-fixed-vertex' versions of the problem, any polynomial-time maximum cardinality matching algorithms in [20] solve the problem for \(k \) independent edges, where \(k \) is any fixed integer. Fortune, Hopcroft and Wyllie [6] have classified a number of \(H \) (both polynomially solvable and NP-complete) in the directed case, and Liu and Geldmacher [16] have presented a polynomial-time algorithm for the complete graph with four vertices, i.e. for \(H = K_4 \) in the undirected case. However, much remains open [12]. For example, with respect to the 'undirected and non-fixed-vertex' version of the problem, it seems that a polynomial-time algorithm has not been presented explicitly for any 2-connected graph with four or more vertices except the graph \(K_4 \). Note that a polynomial-time fixed-vertex algorithm for \(H \) implies a polynomial-time non-fixed-vertex algorithm for \(H \), but not vice versa.

In this paper we attack the 'undirected and non-fixed-vertex' version of the subgraph homeomorphism problem for a fixed pattern graph \(H \). We first show that the subgraph homeomorphism problem for the fixed graph \(K_{3,3} \) is solvable in polynomial time, where \(K_{3,3} \) is the Thomsen graph, one of the Kuratowski graphs used to characterize planar graphs (Fig. 1). Specifically, we show that, for any input graph \(G = (V, E) \), there is an \(O(|V|) \)-time (decision) algorithm for this problem. Next, we present an \(O(|V|^2) \)-time algorithm for actually finding a subgraph of \(G \) homeomorphic to \(K_{3,3} \) if \(G \) has such a subgraph. These results might be interesting, because it was suspected by Fortune, Hopcroft and Wyllie [6] that, for a specific Kuratowski graph \(H \), the subgraph homeomorphism problem for \(H \) is NP-complete even though there is a polynomial planarity testing algorithm.

![Fig. 1. The Kuratowski graphs \(K_{3,3} \) and \(K_5 \).](image)

We use an efficient algorithm in [10, 26] for decomposing a graph into 3-connected components in order to obtain the above results. This approach will be useful in designing an efficient algorithm for the subgraph homeomorphism problem for a fixed 3-connected pattern graph, because we show that, for a 3-connected graph \(H \), a graph \(G \) has a subgraph homeomorphic to \(H \) if and only if some 3-connected component of \(G \) has a subgraph homeomorphic to \(H \). We may expect that 3-connected graphs have some specific properties.
As applications of this approach, we first present several pattern graphs \(H \) for each of which there is an \(O(|V|) \)-time algorithm to determine whether an input graph \(G = (V, E) \) has a subgraph homeomorphic to \(H \).

Included among them are the graphs \(K_4, G_6 \) and \(K_{2,3} \) shown in Fig. 2, two of which are used to characterize outerplanar graphs. Our \(O(|V|) \)-time algorithm for \(H = K_4 \), which also finds a subgraph homeomorphic to \(K_4 \) if an input graph \(G = (V, E) \) has such a subgraph, may compare favorably with the previous known \(O(|E|) \)-time algorithm in [16]. Then, we present a new characterization of outerplanar graphs together with an \(O(|V|) \)-time algorithm to determine whether an input simple graph \(G = (V, E) \) is outerplanar.

![Fig. 2. Graphs \(K_4, G_6, \) and \(K_{2,3} \).](image)

2. Preliminaries

For terminology on graph theory, we follow [9]. A graph considered in this paper is a finite undirected graph. For a graph \(G \) we denote by \(V(G) \) and \(E(G) \) the vertex set and the edge set of \(G \), respectively. For \(U \subseteq V(G) \), we denote by \(G - U \) the subgraph of \(G \) obtained from \(G \) by deleting all vertices in \(U \) and all edges incident with vertices in \(U \). For \(S \subseteq E(G) \), we denote by \(G - S \) the subgraph of \(G \) obtained by deleting all edges in \(S \) and by \(G/S \) the contraction of \(G \) obtained by contracting all edges in \(S \). For two disjoint subsets \(S_c \) and \(S_d \) of \(E(G) \), \((G - S_d)/S_c \) is a subcontraction of \(G \). A graph \(G' \) is homeomorphic to a graph \(H \) if \(G' \) is obtained from \(H \) by a sequence of subdivisions of edges (Fig 3). Formally, the subgraph homeomorphism problem for a fixed pattern graph \(H \) is defined as follows:

Instance: A simple graph \(G \).

Question: Does \(G \) contain a subgraph homeomorphic to \(H \)?

A connected graph \(G \) is 2-connected if, for each two distinct edges \(e \) and \(e' \) of \(G \), there is a cycle of \(G \) containing \(e \) and \(e' \). A maximal connected (respectively 2-connected) subgraph of \(G \) is a connected (respectively 2-connected) component of \(G \). An unordered pair \(\{u, v\} \) of distinct vertices in \(G \) is a separation pair of \(G \) if there exist two subgraphs \(G'_1 \) and \(G'_2 \) satisfying the following:

(a) \(V(G) = V(G'_1) \cup V(G'_2), V(G'_1) \cap V(G'_2) = \{u, v\}; \)

(b) \(E(G) = E(G'_1) \cup E(G'_2), E(G'_1) \cap E(G'_2) = \emptyset, |E(G'_1)| \geq 2, |E(G'_2)| \geq 2; \)

(c) For some \(e_1 \in E(G'_1) \) and \(e_2 \in E(G'_2) \), there is a cycle of \(G \) containing \(e_1 \) and \(e_2 \).
Graphs G'_1 and G'_2 are called separation graphs with respect to the separation pair $\{u, v\}$. Define G_i $(i = 1, 2)$ as the graph obtained from G'_i by adding a new edge $e = (u, v)$. Graphs G_1 and G_2 are called split graphs of G with respect to $\{u, v\}$ and the common new edge is called a virtual edge (Fig. 4). Decomposing a graph G into two split graphs G_1 and G_2 is called splitting. For two split graphs G_1 and G_2 with the common virtual edge $e = (u, v)$, define a graph G as follows:

$$V(G) = V(G_1) \cup V(G_2) \quad \text{and} \quad E(G) = (E(G_1) \cup E(G_2)) - \{e\}.$$

Fig. 4. A separation pair $\{u, v\}$ of a graph G and split graphs G_1 and G_2, with a virtual edge e.

The graph G is called a merged graph of G_1 and G_2 obtained by merging the virtual edge e. Merging is the inverse of splitting. A 2-connected graph G is called 3-connected if G has no separation pair. A 3-connected graph with three or more vertices is a simple graph. Maximal 3-connected subcontractions of G are called 3-connected components of G. Each 3-connected component of a graph G is a simple graph or isomorphic to the multigraph K_3^* with three parallel edges (Fig. 5). A decomposition of a graph G into 3-connected components is obtained as follows:

(i) Divide G into 2-connected components $D = \{G_1, G_2, \ldots, G_k\}$.

(ii) For each G_i in D, if G_i is not 3-connected then decompose G_i into split graphs G_{i1} and G_{i2} with respect to a separation pair $\{u, v\}$ of G_i. $D := D - \{G_i\} + \{G_{i1}, G_{i2}\}$.

(iii) If all G_i in D are 3-connected then stop, otherwise go to (ii).
We denote by $\#_D(G)$ the cardinality of the decomposition $D(G)$ of a graph G into 3-connected components. If $D'(G)$ and $D''(G)$ are two decompositions of G into 3-connected components, then there is a bijection $f: D'(G) \rightarrow D''(G)$ such that G_i is isomorphic to $f(G_i)$ for any G_i in $D'(G)$ [17]. Thus, $\#_{D'(G)} = \#_{D''(G)}$. We denote it by $\#(G)$ and call it the number of 3-connected components of G. Note that there is an $O(|E(G)|)$ time algorithm for obtaining a decomposition $D(G)$ of a graph G into 3-connected components [10, 25, 26]. This implies that the total number of edges (including virtual edges) of graphs in $D(G)$ is $O(|E(G)|)$.

3. Subgraph homeomorphism problem for the fixed pattern graph $K_{3,3}$

The main object in this section is to show that, for an arbitrarily given input simple graph G, the subgraph homeomorphism problem for $K_{3,3}$ is solvable in $O(|V(G)|)$ time. We first give some preliminary lemmas. The following lemma is easy to obtain but it plays the most essential role throughout this paper.

Lemma 3.1. For a 3-connected graph H, a graph G has a subgraph homeomorphic to H if and only if there is a 3-connected component of G that has a subgraph homeomorphic to H.

Proof. We shall show the lemma by induction on $\#(G)$, i.e. on the number of 3-connected components of G. If G is 3-connected then the lemma is trivially true. Thus, we may assume that G is not 3-connected. Note that, since H is a 3-connected graph, G has a subgraph homeomorphic to H if and only if there is a 2-connected component of G that contains a subgraph homeomorphic to H. Thus, we can assume that G is 2-connected. Let $\{u, v\}$ be any separation pair of G. Let G'_1 and G'_2 be separation graphs of G with respect to the separation pair $\{u, v\}$.

![Fig. 5. Decomposition D of a graph G into 3-connected components. (a) Graph G. (b) Decomposition D.](image)
be the split graphs of \(G \) corresponding to the separation graphs \(G'_1 \) and \(G'_2 \), respectively. Then, we only have to prove the following (i), because each of \(G_i \) and \(G_2 \) has fewer 3-connected components than \(G \), i.e. \(\#(G_i) < \#(G) \) for each \(G_i \) \((i = 1, 2)\).

(i) A graph \(G \) has a subgraph homeomorphic to \(H \) if and only if \(G_i \) or \(G_2 \) has a subgraph homeomorphic to \(H \).

(ii) can be obtained by the following observations:

(ii) If \(G \) has a subgraph homeomorphic to a graph \(G' \) and \(G' \) has a subgraph homeomorphic to a graph \(G'' \), then \(G \) has a subgraph homeomorphic to \(G'' \).

(iii) \(G \) has a subgraph homeomorphic to each \(G_i \) \((i = 1, 2)\).

(iv) If \(G \) has a subgraph homeomorphic to \(H \) then \(G_1 \) or \(G_2 \) has a subgraph homeomorphic to \(H \).

(ii) is trivial by definition. (iii) is almost evident because each of the separation graphs \(G'_1 \) and \(G'_2 \) has a path connecting the two vertices \(u \) and \(v \). (iv) is obtained as follows. Suppose that \(G \) has a subgraph \(F \) homeomorphic to \(H \) and that none of \(G_1 \) and \(G_2 \) has a subgraph homeomorphic to \(H \). Then \(F \) is divided into two separation graphs \(F'_1 \) and \(F'_2 \) with respect to \(\{u, v\} \) which are subgraphs of \(G'_1 \) and \(G'_2 \), respectively. Thus, \(H \) is also divided into two subgraphs \(H'_1 \) and \(H'_2 \) to which \(F'_1 \) and \(F'_2 \) are homeomorphic, respectively. If \(|E(H'_i)| = 1 \), then \(F'_i \) is a path and consequently, \(G_2 \) has a subgraph homeomorphic to \(H \), a contradiction. Thus, we have \(|E(H'_i)| \geq 2 \). Similarly, \(|E(H'_j)| \geq 2 \). However, this implies that \(H \) is not 3-connected, a contradiction. Thus, we have (i) and, consequently, the lemma by the induction.

Since the Thomsen graph \(K_{3,3} \) is 3-connected, we have the following.

Corollary 3.2. A graph \(G \) has a subgraph homeomorphic to \(K_{3,3} \) if and only if there is a 3-connected component of \(G \) that has a subgraph homeomorphic to \(K_{3,3} \).

Let \(K_n \) be the simple complete graph with \(n \) vertices. The following lemma is a famous characterization of planar graphs.

Lemma 3.3 ([14]). A graph \(G \) is nonplanar if and only if \(G \) has a subgraph homeomorphic to \(K_5 \) or \(K_{3,3} \). (The graphs \(K_5 \) and \(K_{3,3} \) are called the Kuratowski graphs)

Since 3-connected graphs are restricted graphs in some sense, they may have some specific properties. The following lemma, which is easy to derive, is an example of such properties and plays a crucial role in this paper. Hall [8] first obtained this but his proof seems to have a pinhole. We give a brief constructive proof of this lemma, because the algorithm described in the next section is based on the proof.

Lemma 3.4 ([8]). A 3-connected graph with six or more vertices is nonplanar if and only if \(G \) has a subgraph homeomorphic to \(K_{3,3} \).
Proof. Since the sufficiency is evident by Lemma 3.3, we consider only the necessity. Suppose that \(G \) is nonplanar and has a subgraph \(G' \) homeomorphic to \(K_5 \). If \(G' = K_5 \), then, for any vertex \(v \) of \(G \) which is not contained in \(G' \), there are three vertex-disjoint paths in \(G \) from the vertex \(v \) to three distinct vertices of \(G' \), because \(G \) is 3-connected (Fig. 6(a)). It is easily seen that \(G \) has a subgraph homeomorphic to \(K_{3,3} \) (Fig. 6(b)). Thus we may assume \(G' \neq K_5 \). Let \(u \) and \(v \) be two vertices of degree 4 in \(G' \) such that there is a path, say \(P(u, v) \), of length \(\geq 2 \) in \(G' \) which not only connects the two vertices \(u \) and \(v \) but also contains no other vertices of degree 4 in \(G' \). Since \(G \) is 3-connected, for some vertex \(w \) (\(w \neq u, v \)) on the path \(P(u, v) \) and some vertex \(x \) of \(G' \) which is not on the path \(P(u, v) \), there is a path \(P(w, x) \) in \(G \) connecting the two vertices \(w \) and \(x \) such that any internal vertex on the path \(P(w, x) \) is not contained in \(G' \). By symmetry, we have only to consider the cases shown in Fig. 7(a). Thus, by an easy inspection, one can see that \(G \) has a subgraph homeomorphic to \(K_{3,3} \) (Fig. 7(b)).

By Corollary 3.2 and Lemma 3.4 we have the following lemma.

Lemma 3.5. A graph \(G \) has no subgraph homeomorphic to \(K_{3,3} \) if and only if every 3-connected component of \(G \) is a planar graph or the graph \(K_5 \).

The following lemma gives an upper bound on the number of edges of a simple graph which has no subgraph homeomorphic to \(K_{3,3} \). It can be obtained by a simple calculation.

Lemma 3.6. If a simple graph \(G \) with two or more vertices has no subgraph homeomorphic to \(K_{3,3} \), then \(|E(G)| < 3|V(G)| - 5 \).
Proof. We shall prove the lemma by induction on the number of 3-connected components of such a graph G. Suppose that G is 3-connected. Then G is a planar graph or the graph K_5 by Lemma 3.4, because G has no subgraph homeomorphic to $K_{3,3}$. If G is planar, then
\[|E(G)| \leq 3|V(G)| - 6 \]
by Euler's formula for planar graphs [9], and if $G = K_5$, then
\[|E(G)| = 3|V(G)| - 5. \]
Thus the lemma is true for such 3-connected graphs. Suppose that the lemma is true for all such graphs with k or fewer 3-connected components. Let G be such a graph with $k+1$ 3-connected components. Assume that G has a separation pair \{u, v\}. Let G_1 and G_2 be split graphs of G with respect to the separation pair \{u, v\}. Clearly,
\[|E(G)| = |E(G_1)| + |E(G_2)| - 2 \quad \text{and} \quad |V(G)| = |V(G_1)| + |V(G_2)| - 2. \]
Approach to the subgraph homeomorphism problem

By the proof of Lemma 3.1, none of G_1 and G_2 has a subgraph homeomorphic to $K_{3,3}$. Thus, if both G_1 and G_2 are simple then by the inductive hypothesis we have

$$|E(G_i)| \leq 3|V(G_i)| - 5$$

for each G_i ($i = 1, 2$) since G_i has fewer 3-connected components than G, and consequently, we have

$$|E(G)| = |E(G_1)| + |E(G_2)| - 2 \leq 3|V(G_1)| + 3|V(G_2)| - 12 = 3|V(G)| - 6.$$

If G_1 or G_2, say G_1, is not simple, then $G_1 - \{(u, v)\}$ and G_2 are both simple. By the inductive hypothesis, we have

$$|E(G_1)| \leq 3|V(G_1)| - 4 \quad \text{and} \quad |E(G_2)| \leq 3|V(G_2)| - 5$$

and consequently, we have

$$|E(G)| \leq 3|V(G)| - 5.$$

If G is not 3-connected and G has not a separation pair, then each 2-connected component is a 3-connected graph. In this case let G' be a 2-connected component. Let G'' be the graph obtained from $G - E(G')$ by deleting all isolated vertices. We can always choose G' in such a way that G' and G'' have at most one vertex in common. Thus,

$$|E(G)| = |E(G')| + |E(G'')| \quad \text{and} \quad |V(G)| \geq |V(G')| + |V(G'')| - 1.$$

By the same argument as described above, we have

$$|E(G)| \leq 3|V(G)| - 7.$$

Thus we obtain the lemma. \qed

Now we can design an $O(|V(G)|)$-time algorithm to determine whether a given input simple graph G has a subgraph homeomorphic to $K_{3,3}$ as follows.

Algorithm A

Step 0. For a given input simple graph G, if $|V(G)| \geq 2$ and $|E(G)| \geq 3|V(G)| - 4$, then return "yes" (G has a subgraph homeomorphic to $K_{3,3}$ by Lemma 3.6).

Step 1. Decompose G into 3-connected components $D(G) = \{G_1, G_2, \ldots, G_k\}$ by using a linear-time decomposition algorithm [10, 26].

Step 2. For each G_i in $D(G)$, determine whether G_i is nonplanar or not, by using a linear-time planarity testing algorithm [11].

Step 3. If some G_i is nonplanar and distinct from K_5, then return "yes" (G has a subgraph homeomorphic to $K_{3,3}$ by Lemma 3.5). Otherwise, return "no".

The correctness of Algorithm A is evident from Lemmas 3.5 and 3.6. As for the time complexity, the graph G in Step 1 has no more edges than $3|V(G)| - 5$. Thus Step 1 requires only $O(|V(G)|)$ time. This implies that the total number of edges
of graphs in \(D(G) \) is \(O(|V(G)|) \). Similarly, Steps 2 and 3 require only \(O(|V(G)|) \) time. Thus we have the following theorem.

Theorem 3.7. Algorithm A correctly determines whether an input simple graph \(G \) has a subgraph homeomorphic to \(K_{3,3} \) in \(O(|V(G)|) \) time.

4. Algorithm for finding a subgraph homeomorphic to \(K_{3,3} \)

Algorithm A can be modified in such a way that it actually finds a subgraph of a graph \(G \) homeomorphic to \(K_{3,3} \), if \(G \) has such a subgraph. To describe an algorithm, we need only one lemma.

Lemma 4.1. Let \(D \) be a decomposition of a graph \(G \) into 3-connected components. Let \(\{e_1, e_2, \ldots, e_r\} \) be the set of all virtual edges of a 3-connected component \(G' \) in \(D \). Then there is a set of vertex-disjoint paths in \(G \), say \(\{P_1, P_2, \ldots, P_r\} \), such that each \(P_j \) \((j = 1, 2, \ldots, r)\) connects the two end-vertices of \(e_j \) and contains no edge of \(G' \).

Proof. By the definition of split graphs, each virtual edge is contained in exactly two 3-connected components in the decomposition \(D \). Furthermore, two 3-connected components have one or zero virtual edge in common. Let \(D' = \{F_1, F_2, \ldots, F_h\} \) be the set of graphs obtained from the set of 3-connected components in \(D \) by merging all virtual edges except the edges \(e_1, e_2, \ldots, e_r \). Then \(G' \) is clearly contained in \(D' \) and each graph \(F_j \) in \(D' \) distinct from \(G' \) has one or zero virtual edge. Thus, \(r < h - 1 \) in general, and \(r = h - 1 \) if \(G \) is 2-connected. We can assume, without loss of generality, that \(F_h = G' \) and, for each \(e_j \) \((j = 1, 2, \ldots, r)\), the graph \(F_j \) contains \(e_j \). By the definition of a separation pair, the subgraph \(F_j - \{e_j\} \) of \(F_j \) contains a path \(P_j \) connecting the two end-vertices of \(e_j \). Clearly, the paths \(P_1, P_2, \ldots, P_r \) are vertex-disjoint paths of \(G \) and contain no edge of \(G' \). □

Now, we can obtain the following algorithm.

Algorithm MAF

Step 0. For a given input simple graph \(G \), if \(|V(G)| \geq 2 \) and \(|E(G)| > 3|V(G)| - 4 \) then let \(G' \) be any subgraph of \(G \) consisting of \(|3|V(G)| - 4\) edges and set \(G := G' \). (\(G' \) has a subgraph homeomorphic to \(K_{3,3} \) by Lemma 3.6.)

Step 1. Decompose \(G \) into 3-connected components \(D = \{G_1, G_2, \ldots, G_k\} \) by using a linear-time decomposition algorithm \([10, 26]\).

Step 2. For each \(G_i \) in \(D \), determine whether \(G_i \) is nonplanar by using a linear-time planarity testing algorithm \([11]\).

Step 3. If there is no nonplanar graph different from \(K_5 \), then return 'no' (\(G \) has no subgraph homeomorphic to \(K_{3,3} \) by Lemma 3.5). Otherwise, let \(G_i \) be a nonplanar graph different from \(K_5 \).
Step 4. Find a minimal nonplanar subgraph \(G'_i \) of \(G_i \) (\(G'_i \) is homeomorphic to \(K_5 \) or \(K_{3,3} \) by Lemma 3.3.)

Step 5. If \(G'_i \) is homeomorphic to \(K_5 \) then find a subgraph \(G' \) of \(G_i \) homeomorphic to \(K_{3,3} \) by the same technique as used in the proof of Lemma 3.4. Otherwise, set \(G' := G'_i \). (\(G' \) is homeomorphic to \(K_{3,3} \).)

Step 6. For all the virtual edges \(e_1 = (u_1, v_1), e_2 = (u_2, v_2), \ldots, e_q = (u_q, v_q) \) in \(E(G') \), find \(q \) vertex-disjoint paths \(P_1, P_2, \ldots, P_q \) in \(G \) such that each \(P_j \) (\(j = 1, 2, \ldots, q \)) connects the two end-vertices \(u_j \) and \(v_j \) of the edge \(e_j \) and contains no edges of \(G' \).

Step 7. Return "the graph \(H' \)" obtained from \(G' \) by replacing each virtual edge \(e_j = (u_j, v_j) \) (\(j = 1, 2, \ldots, q \)) of \(G' \) with the corresponding path \(P_j \).

The correctness of the algorithm immediately follows from Lemmas 3.3-3.6, and 4.1. Therefore, we concentrate on the time complexity of the algorithm. Steps 0-3 require only \(O(|V(G)|) \) time, because the graph \(G \) after Step 0 contains at most \(3|V(G)| - 4 \) edges. By Lemma 4.1, Step 6 can be implemented by the so-called path finding algorithm which requires only linear time [1]. Thus, Steps 6 and 7 require only \(O(|V(G)|) \) time.

As for Step 5, we can obtain a subgraph \(G' \) of \(G_i \) homeomorphic to \(K_{3,3} \) in \(O(|V(G)|) \) time by using a network flow algorithm as follows [5]. Suppose that \(G'_i \) is homeomorphic to \(K_5 \). Let \(s \) and \(t \) be two new vertices.

Now assume that \(G'_i = K_5 \). We first identify the vertex \(s \) with an arbitrarily chosen vertex \(v \) of \(G_i \) which is not in \(G'_i \), and next add to \(G_i \) five new edges each connecting a distinct vertex of \(G'_i \) and the vertex \(t \). Let \(G_a \) be the resulting graph. Then it is clear that \(G_i \) has three vertex-disjoint paths from the vertex \(v \) to three distinct vertices of \(G'_i \) if and only if \(G_a \) has three vertex-disjoint paths connecting the vertices \(s \) and \(t \). For \(G_a \), consider the following directed graph \(G_{ad} \) obtained by first splitting each vertex \(u \) into \(u^- \) and \(u^+ \) with making an arc \((u^+, u^-)\), and then making arcs \((u^-, v^-)\) and \((v^-, u^+)\) if and only if there is an edge \((u, v)\) in \(G_a \). Then it is easy to see that \(G_a \) has three vertex-disjoint paths connecting the two vertices \(s \) and \(t \) if and only if \(G_{ad} \) has three edge-disjoint paths from \(s^- \) to \(t^+ \). Now consider the network \(N_{ad} \) with the entrance \(s^- \) and the exit \(t^+ \), which is obtained from \(G_{ad} \) by associating all arcs unit capacities. Then, \(G_{ad} \) has three edge-disjoint paths from \(s^- \) to \(t^+ \) if and only if \(N_{ad} \) has a flow of value three from \(s^- \) to \(t^+ \). Thus, \(G_i \) has three vertex-disjoint paths from \(v \) to three distinct vertices of \(G'_i \) if and only if \(G_{ad} \) has a flow \(F \) of value three from \(s^- \) to \(t^+ \). Since \(G_i \) is 3-connected, \(G_i \) always has such three vertex-disjoint paths. Thus, we can find such a flow \(F \) in \(O(|E(G_i)|) \) time by using a network flow algorithm in [20], since \(N_{ad} \) has \(O(|E(G_i)|) \) edges and \(F \) is of value three. It is trivial to obtain such three vertex-disjoint paths from the flow \(F \). Thus, we can obtain the subgraph \(G' \) of \(G_i \) homeomorphic to \(K_{3,3} \) in \(O(|E(G_i)|) \) time if \(G'_i = K_5 \) (see Fig. 6).

Next assume that \(G'_i \neq K_5 \). Let \(u \) and \(v \) be two vertices of degree 4 in \(G'_i \) such that there is a path \(P(u, v) \) of length \(\geq 2 \) of \(G'_i \) which not only connects the vertices
u and v but also contains no other vertices of degree 4 in G'_i. For each vertex y of G'_i, if v is on the path $P(u, v)$ then we add a new edge (s, y), otherwise we add a new edge (t, y). Then we delete two vertices u and v. Let G_a be the resulting graph obtained from G_i. From a shortest path P in G_a connecting s and t, we can easily find a path of G_i such that it not only connects a vertex w ($\neq u, v$) on the path $P(u, v)$ and a vertex x of G_i which is not on the path $P(u, v)$ but also contains no vertex of G_i except w and x. Such a shortest path of G_a can be obtained in $\mathcal{O}(|E(G_i)|)$-time by the so-called breadth-first search algorithm [1]. Thus, a subgraph G' of G_i homeomorphic to $K_{3,3}$ is obtained in $\mathcal{O}(|E(G_i)|)$-time even if $G'_i \neq K_5$.

Therefore, Step 5 requires only $\mathcal{O}(|V(G)|)$-time by the fact that the total number of edges of graphs in $D(G)$ is $\mathcal{O}(|V(G)|)$. These observations imply that if Step 4 requires $g(|V(G)|)$-time then the Algorithm MAF requires only $\mathcal{O}(\max\{g(|V(G)|), |V(G)|\})$-time. The following simple method achieves $g(|V(G)|) = \mathcal{O}(|V(G)|)$.

begin
 if G_i has more than $3|V(G_i)| - 5$ edges
 then let G'_i be any subgraph of G_i consisting of $3|V(G_i)| - 5$ edges
 else $G'_i := G_i$;
 \{G'_i is nonplanar\}
 $G''_i := G'_i$;
 for each edge e of G''_i do
 if $G'_i - \{e\}$ is nonplanar then $G'_i := G'_i - \{e\}$
 end;

In this method we are trying to delete edges of G_i one by one without violating the nonplanarity. If an edge cannot be deleted without violating, then it is called a critical edge. Critical edges are not deleted and they do not lose their criticality when other edges are deleted. Therefore, we end up with a nonplanar subgraph of G_i which consists entirely of critical edges, that is, a minimal nonplanar subgraph of G_i is obtained. By Kuratowski’s theorem (Lemma 3.3), it is homeomorphic to K_5 or $K_{3,3}$. Each edge is treated once in this method, and each such treatment calls a linear-time planarity testing [11]. Hence, this method requires only $\mathcal{O}(|V(G_i)|^2)$ time.

Thus we have the following theorem.

Theorem 4.2. For a given input simple graph G, Algorithm MAF not only correctly determines whether G has a subgraph homeomorphic to $K_{3,3}$ but also finds a subgraph of G homeomorphic to $K_{3,3}$ in $\mathcal{O}(|V(G)|^3)$ time if G has such a subgraph. Furthermore, the time complexity of the algorithm depends only on that of Step 4, that is, if Step 4 requires $g(|V(G)|)$ time, then the whole algorithm also requires only $\mathcal{O}(\max\{g(|V(G)|), |V(G)|\})$ time.
5. Applications

The technique used in the previous section can be applied to many graph problems including the subgraph homeomorphism problems for other fixed pattern graphs. Recall that we could obtain an efficient algorithm for the subgraph homeomorphism problem for the graph $K_{3,3}$ by the following facts.

(i) A graph G has a subgraph homeomorphic to a 3-connected graph H if and only if there is a 3-connected component of G that has a subgraph homeomorphic to H.

(ii) There is an efficient algorithm for decomposing a graph into 3-connected components [10, 26].

(iii) There is an efficient algorithm to determine whether a 3-connected graph has a subgraph homeomorphic to $K_{3,3}$.

These suggest that, for a fixed 3-connected pattern graph H, if there is an efficient algorithm for 3-connected graphs then we can obtain an efficient algorithm for any input graphs. In this section we present this type of applications.

5.1. Subgraph homeomorphism problems for other fixed pattern graphs

We present several pattern graphs H for each of which there is an $O(|V(G)|)$ time algorithm not only to determine whether an input simple graph G has a subgraph homeomorphic to H but also to find a subgraph homeomorphic to H if G has such a subgraph. Included among them are the graphs K_4, G_6 and $K_{2,3}$ (Fig. 2). We first consider the graph K_4 as a fixed pattern graph H. By an argument similar to the one described before we have the following lemmas.

Lemma 5.1. A 3-connected graph G with four or more vertices has a subgraph homeomorphic to K_4.

Proof. Let v be any vertex of a 3-connected graph G with four or more vertices. Since the subgraph $G - \{v\}$ of G is 2-connected, $G - \{v\}$ has a cycle C of length ≥ 3. Since G is 3-connected, there are three vertex-disjoint paths from v to three distinct vertices on the cycle C. The graph obtained from the cycle C and the three vertex-disjoint paths is homeomorphic to K_4. □

Since the graph K_4 is 3-connected, we have the following lemma by Lemmas 3.1 and 5.1.

Lemma 5.2. A graph G has a subgraph homeomorphic to K_4 if and only if there is a 3-connected component of G with four or more vertices.

Thus, we have the following lemma by a calculation similar to the one in the proof of Lemma 3.6.
Lemma 5.3. If a simple graph G with two or more vertices has no subgraph homeomorphic to K_4, then $|E(G)| \leq 2|V(G)| - 3$.

By Lemmas 5.1–5.3, we can obtain the following algorithm, in the same way as before, which not only determines whether any input simple graph G has a subgraph homeomorphic to K_4 but also finds a subgraph homeomorphic to K_4 if G has such a subgraph.

Algorithm BF

Step 0. For a given input simple graph G, if $|V(G)| \geq 2$ and $|E(G)| \geq 2|V(G)| - 2$, then let G' be any subgraph of G consisting of $2|V(G)| - 2$ edges and set $G := G'$. (G' has a subgraph homeomorphic to K_4 by Lemma 5.3.)

Step 1. Decompose G into 3-connected components $D(G) = \{G_1, G_2, \ldots, G_k\}$ by using a linear-time decomposition algorithm.

Step 2. If there is no 3-connected component with four or more vertices, then return “no” (G has no subgraph homeomorphic to K_4 by Lemma 5.2). Otherwise let G_i be a graph in $D(G)$ with four or more vertices. (G_i has a subgraph homeomorphic to K_4 by Lemma 5.1.)

Step 3. Find a subgraph G' of G_i homeomorphic to K_4 by the method described in the proof of Lemma 5.1.

Step 4. For all the virtual edges $e_1 = (u_1, v_1), e_2 = (u_2, v_2), \ldots, e_q = (u_q, v_q)$ in $E(G')$, find q vertex-disjoint paths P_1, P_2, \ldots, P_q in G such that each P_j ($j = 1, 2, \ldots, q$) connects the two end-vertices u_j and v_j of the edge e_j and contains no edges of G'. Return “the graph H” obtained from G' by replacing each virtual edge $e_i = (u_i, v_i)$ of G' with the corresponding path P_r.

By the same argument as in Section 4, we have the following theorem.

Theorem 5.4. For a given input simple graph G, Algorithm BF not only correctly determines whether G has a subgraph homeomorphic to K_4 but also finds a subgraph homeomorphic to K_4 if G has such a subgraph in $O(|V(G)|)$ time.

Similarly, for the graph G_6 shown in Fig. 2, we can obtain an $O(|V(G)|)$ time algorithm which not only determines whether an input simple graph G has a subgraph homeomorphic to G_6 but also finds a subgraph homeomorphic to G_6 if G has such a subgraph. The algorithm is based on the following lemma. Let W_n be the graph obtained from a cycle C_n of length n by adjoining one new vertex v and n new links joining v and the n vertices of C_n. W_n is called a wheel of order n. Let $K_{3,n}$ be the complete bipartite graph with three left vertices and n right vertices. Let $(P_2 \cup K_1) + \overline{K_n}, P_3 + \overline{K_n}$ and $K_3 + \overline{K_n}$ be the graphs obtained from $K_{3,n}$ by adding one, two and three edges among the left vertices, respectively (see Fig. 8).

Lemma 5.5. For a 3-connected graph G with n ($n \geq 6$) vertices, G has a subgraph
Approach to the subgraph homeomorphism problem

homeomorphic to G_6 if and only if G is none of the following graphs:

$$W_{n-1}, \ K_{3,n-3}, \ (P_2 \cup K_1) + \overline{K_{n-3}}, \ P_3 + \overline{K_{n-3}}, \ \text{and} \ K_3 + \overline{K_{n-3}}.$$

Note that every 3-connected graph G with $n \geq 6$ vertices has a subgraph homeomorphic to G_6, W_n or $K_{3,3}$, which can be obtained by an argument similar to the one in the proof of Lemma 3.4 because G has a subgraph homeomorphic to K_4 by Lemma 5.1. Similarly, G has a subgraph homeomorphic to G_6, W_n or $K_{3,3}$. It is an easy observation that if G has a subgraph homeomorphic to W_n and G is not a wheel then G has a subgraph homeomorphic to G_6. Similarly, it is easy to see that if G has a subgraph homeomorphic to $K_{3,3}$ and G is none of $K_{3,n-3}$, $(P_2 \cup C_1) + \overline{K_{n-3}}, \ P_3 + \overline{K_{n-3}}, \ \text{and} \ K_3 + \overline{K_{n-3}}$, then G has a subgraph homeomorphic to G_6. Thus the lemma can be obtained. We leave details of the proof and the algorithm based on this lemma to the readers.

Although we have considered only 3-connected graphs as a pattern graph, the technique can be applied to some 2-connected graphs. Now we consider the graph $K_{2,3}$ (Fig. 2) as a fixed pattern graph H. Clearly, $K_{2,3}$ is not 3-connected.

Lemma 5.6. A 3-connected graph G with five or more vertices has a subgraph homeomorphic to $K_{2,3}$.

Proof. By Lemma 5.1, such a graph G has a subgraph homeomorphic to K_4. By an argument similar to the one in the proof of Lemma 3.4, one can easily prove that G has a subgraph homeomorphic to $K_{2,3}$.

In the proof of Lemma 4.1, if G is a simple graph then we can always obtain, for any r distinct virtual edges $e_1 = (u_1, v_1), e_2 = (u_2, v_2), \ldots, e_r = (u_r, v_r)$ of the same 3-connected component G', r vertex-disjoint paths P_1, P_2, \ldots, P_r in G such that each P_j (i) is of length ≥ 2, (ii) connects the two end-vertices u_j and v_j of the edge e_j, and (iii) contains no edge of G'. By this observation, we can obtain the following lemma.

Lemma 5.7. A simple graph G has a subgraph homeomorphic to $K_{2,3}$ if and only if there is a 3-connected component satisfying one of the following:

(i) It has five or more vertices.

(ii) It is the graph K_4 with one or more virtual edges.

(iii) It is the graph K_5^* with three virtual edges.

Proof. (*Sufficiency*) Since we can consider virtual edges of the same 3-connected component as vertex-disjoint paths of length ≥ 2, it is easily seen that if G has a 3-connected component satisfying (ii) or (iii), then G has a subgraph homeomorphic to $K_{2,3}$. If G has a 3-connected component satisfying (i), then the 3-connected component has a subgraph homeomorphic to $K_{2,3}$ by Lemma 5.6, and consequently, G has a subgraph homeomorphic to $K_{2,3}$.

(*Necessity*) If any 3-connected component of G satisfies none of (i), (ii), and (iii), then every 3-connected component of G satisfies one of the following.

(a) It is K_4 with no virtual edge.

(b) It is K_3.

(c) It has two or fewer vertices with two or fewer virtual edges.

If a 3-connected component of G satisfies (a), then it is a 2-connected component whose edges are not contained in any subgraph of G homeomorphic to $K_{2,3}$. Therefore, we can assume that no 3-connected component of G satisfies (a). Suppose that every 3-connected component of G satisfies (b) or (c). Then it can be easily seen that G has no subgraph homeomorphic to $K_{2,3}$.

By the same calculation as before, we have the following lemma.

Lemma 5.8. If a simple graph G with two or more vertices has no subgraph homeomorphic to $K_{2,3}$, then $|E(G)| \leq 2|V(G)| - 2$.

By Lemmas 5.6–5.8, we can obtain the following algorithm.

Algorithm CF

Step 0. For a given input simple graph G, if $|V(G)| \geq 2$ and $|E(G)| \geq 2|V(G)| - 1$ then let G' be any subgraph of G consisting of $2|V(G)| - 1$ edges and set $G := G'$. (G' has a subgraph homeomorphic to $K_{2,3}$ by Lemma 5.8.)

Step 1. Decompose G into 3-connected components $D(G) = \{G_1, G_2, \ldots, G_k\}$ by using a linear-time decomposition algorithm.
Step 2. If there is no 3-connected component satisfying (i), (ii), or (iii) of Lemma 5.7, then return "no" (\(G\) has no subgraph homeomorphic to \(K_{2,3}\) by Lemma 5.7). Otherwise let \(G_i\) be a graph satisfying (i), (ii), or (iii) of Lemma 5.7. (\(G\) has a subgraph homeomorphic to \(K_{2,3}\) by Lemma 5.7.)

Step 3. Find a subgraph of \(G\) homeomorphic to \(K_{2,3}\) by the method described in the proof of Lemma 5.6.

By the same argument as before, we have the following theorem.

Theorem 5.9. For a given input simple graph \(G\), Algorithm CF not only correctly determines whether \(G\) has a subgraph homeomorphic to \(K_{2,3}\) but also finds a subgraph homeomorphic to \(K_{2,3}\) if \(G\) has such a subgraph in \(O(|V(G)|)\) time.

Similarly, for each pattern graph \(H\) of graphs \(C_4\), \(C_5\), \(C_6\) and \(C_7\) (Fig. 9), we can obtain an \(O(|V(G)|)\) time algorithm. Details are left to the reader. Note that, for the complete bipartite graphs \(K_{2,p}\) with two left vertices and \(p\) right vertices, one can easily design a polynomial-time (e.g. \(O(p|V(G)|^4)\) time) algorithm using a network flow algorithm (see [5]).

![Fig. 9. Graphs \(C_4\), \(C_5\), \(C_6\), and \(C_7\).](image)

5.2. Testing graph properties

Some graph properties \(\pi\) are characterized in terms of excluded homeomorphic subgraphs: a graph \(G\) satisfies \(\pi\) if and only if there is a set \(S(\pi)\) of graphs such that \(G\) has no subgraph homeomorphic to a graph in \(S(\pi)\). 'Planarity', 'outerplanarity', etc. are examples of such properties. In this section we show that the previous arguments can be applied to testing such properties. First consider the 'outerplanarity'. Since \(G\) is outerplanar if and only if \(G\) has no subgraph homeomorphic to \(K_{2,3}\) or \(K_4\) [9], we can easily design an \(O(|V(G)|)\) time algorithm to determine whether an input simple graph \(G\) is outerplanar by Theorems 5.4 and 5.9. However, by Lemmas 5.2 and 5.7, we can also design a more simple \(O(|V(G)|)\) time algorithm based on the following lemma which is a new characterization of outerplanar graphs.

Lemma 5.10. A simple graph \(G\) is outerplanar if and only if every 3-connected component of \(G\) is the graph \(K_3\) or has two or fewer vertices with two or fewer virtual edges.
Similarly, since a graph G is series-parallel if and only if G has no subgraph homeomorphic to K_4 [4], we can obtain $O(|V(G)|)$ time algorithm to determine whether a simple graph G is series-parallel. However, there have already been $O(|V(G)|)$ time algorithms for testing these properties [18, 24].

6. Concluding remarks

In this paper, we have shown that the subgraph homeomorphism problem for the fixed graph $K_{3,3}$ is solvable in polynomial time. To obtain the result, we have first observed that, for any 3-connected graph H, a graph G has a subgraph homeomorphic to H if and only if there is a 3-connected component of G that has a subgraph homeomorphic to H, and then employed an efficient algorithm for decomposing a graph into 3-connected components and an efficient planarity testing algorithm. As applications of this technique, we have first presented several pattern graphs, such as K_4, G_6, $K_{2,3}$, C_4, C_5, C_6 and C_7 (Figs. 2 and 9), for each H of which, there is an $O(|V(G)|)$ time algorithm to find a subgraph homeomorphic to H. Then we have presented an $O(|V(G)|)$ time algorithm to determine whether a graph G satisfies a property π, such as $\pi = \text{‘outerplanar graph’}$ and ‘series-parallel graph’.

As for finding a minimal nonplanar subgraph of a nonplanar graph G, P. A. Kaschube informed us recently that Williamson [27] has found an $O(|V(G)|)$ time algorithm. Thus, the time complexity of our algorithm MAF for finding a subgraph of G homeomorphic to $K_{3,3}$ becomes $O(|V(G)|)$ (see Theorem 4.2 and Step 4 of Algorithm MAF in Section 4). Kaschube also informed us that he independently obtained the similar result for the subgraph homeomorphism problem for $K_{3,3}$ [13]. It remains open whether the subgraph homeomorphism problem for the fixed graph K_3 is polynomial-time solvable.

Even if the subgraph homeomorphism problem for a fixed 3-connected graph H were solvable in polynomial time, the problem of finding a maximum subgraph that has no subgraph homeomorphic to H is NP-complete [3]. Thus, the problem of finding a maximum subgraph that has no subgraph homeomorphic to H is NP-complete for each H, $H = K_{3,3}$, K_4, G_6. Similarly, the problem of finding a maximum subgraph that has no subgraph homeomorphic to H is NP-complete for each H, $H = K_{2,3}$, K_4 and G_6, even if it is restricted to planar graphs [2].

Acknowledgment

I would like to express my gratitude to Professor Masao Iri and Mr. Hiroshi Imai of the University of Tokyo and Dr. Tomio Hirata of Toyohashi University of Technology for valuable discussions and suggestions on this paper. I am also grateful to Dr. Robert E. Tarjan of AT&T Bell Laboratories and Mr. Paul A. Kaschube of
the University of California at San Diego for kindly giving me information on the subgraph homeomorphism problem for $K_{3,3}$. Finally, I wish to thank Professors Takayasu Ito and Takao Nishizeki of Tohoku University for kindly encouraging me to write this paper.

References