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1. INTRODUCTION 

We want to study the following problem: 

u, = (qxx - a(x in (0,oc) X R 

24 = ug in(O) XR; O-1) 

here m > 1, p 2 1, and m > p. We shall always consider u0 2 0 with 
compact support; as for a, the following properties will be assumed: 

(A,) c1 E C’(R) is even: 

(A,) a is increasing in R +; there exists cy > 0 such that (X - a@(x) 2 
0 for any x E ,Iw +; 

(A*) there exists A > (Y such that sup,.,(a-‘l*)‘(x) < cc. 
The problem (1.1) was proposed in [6] as a model of mathematical 

population dynamics (see also [4]). The existence of an equilibrium solution, 
which exhibits a free boundary, was proved in [lo]. The uniqueness of such 
solutions, whose support is connected, was proved in [ll]. Both the ex- 
istence and the uniqueness proofs hold in any space dimension. 

In this paper we give a complete description of the set of stationary 
solutions-as well as of their attractivity properties-both for the Cauchy 
problem (1.1) and for the Dirichlet or Neumann initial-boundary value 
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problems (see Sect. 4).’ For this purpose we investigate the problem 

Y” - u(x)yb = 0 in R + 

y(o)= Y,Y’(O) = 0, 0.2) 

where y > 0, p E (0,l) and a E C’ (KS +) satisfies (Ai)-( Only classi- 
cal nonnegative solutions of (1.2) will be considered. Problem (1.2) was 
investigated in [8] in the case a(x) 2 0 (x 2 0). 

Concerning the problem (1.2), the overall situation can be depicted as 
follows. Solutions of (1.2) are denoted by y = y(x) = y(x, y) (x > 0; y > 
0). 

THEOREM 1.1. Let a E C’(lR+) satisfy (Ai)-( Then there exists a 
unique y * z=- 0 with the following properties: 

(i) for any y E (0, y *) there exists 5 = t(y) such that y( 5) = 0, y’( 5) 
< 0; 

(ii) for y = y* there exists <* = <(y*) such that y(.$*) = y’(t*) = 0; 

(iii) for any y > y* there exists 5 = E(y) such that y(5) > 0, y’(5) = 0. 

In all cases y(x) > 0, y’(x) < 0 for any x E (0, 5). 

THEOREM 1.2. Let a E C’(R+) sutisfr (Ai)-( Then 0 < y1 < y2 
implies Y(X, YJ < Y(X, y2) for any x E [O, mWE(v,), E(Yd)l. 

We shall think of the graph of 6 = t(y) (y > 0) as a bifurcation diagram 
of solutions of (1.2). Define OL* > 0 as follows: 

L1* 

1 (1 
ax dx=O; (1.3) 

then the following holds. 

THEOREM 1.3. Let a E C’(R +) satisfv (Ai)-( Then 

(9 5 E C((O, Y*) U (Y*, 00)); 
(ii) [ is strictly increasing in (0, (y *) and 

s(y) = o(y(‘-fl)‘2) as y --f 0; 

(iii) E is strictly decreasing in (y*, CO) and 

((y) - a* = o(yfi-l) asy+co. 0.4) 

The above results are depicted in Fig. 1. It is interesting to remark that 6 
has a very singular behavior near y *; as a detailed analysis shows, its graph 
exhibits a cusp at y = y*, whose “width” depends on the ratio p/m (see 
Sect. 3). The results of Theorem 1.1 make the following definition sensible. 

’ Concerning the set of equilibrium solutions, a first result was recently given by Aronson [O], 
\vhn considered piecewise constant functions 0. 
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FIGURE 1 

DEFINITION 1.1. The solution y(., y*) of problem (1.2) is called a free 
boundary solution. By a Dirichlet (resp. Neumann) solution of (1.2) we 
mean any solution y( ., y) such that y E (0, y*) (y > y*, respectively). 

It is now clear how solutions of (1.2) can be put in one-to-one correspon- 
dence with (even) stationary solutions of the Cauchy problem (l.l)-or, 
respectively, of the Dirichlet and Neumann initial-boundary value problems 
in ( - L, L) (see Sect. 4). In particular, only (even) stationary solutions of the 
Dirichlet problem exist, whose support has a measure less than 25*. 
Similarly, the measure of the support for (even) stationary solutions of the 
Neumann problem lies in the interval (2cz*, 25*). Concerning the attractiv- 
ity properties of stationary solutions, optimal results are proved in Sec- 
tion 4. 

The above results enable us to deal with the case where supp a- is 
disconnected (here a-: = min{ a, 0)); the positivity of stationary solutions, 
versus the appearance of a “dead core,” is discussed. 

The proofs make use of shooting techniques and similarity properties of 
the problem. We mention that analogous results may be worked out for a’s 
without symmetry properties, as well as for higher space dimension. 

2. STATIONARY SOLUTIONS 

In order to prove Theorem 1.1, some preliminary lemmas are needed. 

LEMMA 2.1. Let a E C’(W+) satisfy (A,). Then, for any x > 0 

Y(x),Y(+jz); (2-l) 

here k := J2lu(O)(/(p + 1). 
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Proof: Due to (A,), the quantity 

E(x) := (v’)‘(x) - &o(x)y~+l(X) 

is decreasing in (0, co). For any x E (0, a), the inequality 

E(x) < E(O) 
implies 

(J+(x) < k*yB+l, 

whence 

y’(x) 2 -ky’fl+l)/* (x E (094). (2.2) 

Since Y”(X) 2 0 for any x E [a, co), the inequality (2.2) holds for any 
x > 0; then the result follows. 

Denote by X(y) the maximal interval of existence of solutions to (1.2); 
moreover, set 

Y+(Y) := {x E JWlY(X, Y) ’ O> (Y ’ 0). 

LEMMA 2.2. Let a E C’(W +) satisfy (A,). Then the set 

S_ := {y > 01X$ > 0 such that&x, y) > 0 Vx E [0, 0, 

v(E, Y) = 0, r’(& Y) < O> 

is nonempty. 

Proof. It is clear from (2.1) that the intersection .9+(y) n [O,cu/2) 
(y > 0) is nonempty. For any x in this intersection and any y > 0, we get 
from (1.2), 

(v’)‘(x) = -2~X]~(t)l~s(r)y’(r) dt >_ -2ja(a/2)j(Yv’%?du, 

having used (A,). It follows that 

y’(x) I -\/21a((Y/2)1/@ + 1) {yp+l -yfl+l(x)}1’2 

(X E Y+(Y) f-7 (0, a/2)), 

which entails 

xsy (l-8)/2 ,/(/3 + 1)/2)a(a/2)/ /01du/6?= 

(X E Y+(Y) n (0, ~2)). (2.3) 
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Now define 

Yo := { &3 + 1)/2la(a/2)1 jbdu\ituBil)-2’n-p) 

For any y E (0, yo), it follows from (2.3) that Y+(y) c (0, (w/2). Due to 
the above estimates, E = E(y) E (0, (u/2) (y E (0, yo)) with the required 
properties is easily seen to exist. This completes the proof. 

LEMMA 2.3. Let a E C’(W +) satisfy (A,). Then the set 

S, := {y > 0135 3 0 such thaty(x, y) > 0 Vx E [0, E], 

y’(x, Y> < 0 vx E (0, 0, Y’(5, Y) = q 

is nonempty. 

Proof. Set x0 := a* + 1, yi := (kx,) 2/(1 -,a) (k being defined in Lemma 
2.1). Were S, empty, we would have y/(x, y) -C 0 for any x > 0, y > yi; in 
particular, this implies 

J 
x”u(x)yp(x) dx -c 0. 

0 
(2.4) 

From (2.4) we get easily 

yp~kx)ldx ’ ~xol~b)l~~b) dx. (2.5) 
a 

On the other hand, Lemma 2.1 implies the inequality 

r”la(x)lyp(x)dx > ys/Xola(x)l (1 - $& jB dx; (2.6) 
n a 

observe that the integrand in the right-hand side is positive for any 
x E (0, x0) and y > yi. 

It is easy to see that for any E > 0 there exists p = V(E) > 0 such that 
y > p implies 

(2.7) 

Now (2.5)-(2.7) imply 

Ol ax dx<E; ( >I 

from this contradiction the result follows. 
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The subsequent result follows from [ll]; we give the proof in a form 
suitable for the present purposes. 

LEMMA 2.4. Let a E Cl@+) satisfy (A,)-(A,). Then there is at most 
one y * > 0 with the following property: there exists [* > 0 such that 
Y(5*) = Y’(c*) = 0. 

Proof: By contradiction, suppose there exist 0 < y: < y; with the 
above property; set u := y(*, y:), u := y(., y?), 5: := 5(yi*) (i = 1,2). 

(a) Let us first prove that 0 < 2: < 5: and u(x) < u(x) for any 
x E [0, [:I. Suppose to the contrary that x0 E (0, min{ ,$F, .$;}I exists, such 
that 

4-d < 44 for anyx E [0, x0), u(xO) = 0(x0). 

For any X > 0 define 

z+(x) := h-*‘(‘-Q4(XX) (x E [O? wq; (2.8) 
it is easily seen that uh satisfies the equation 

24; - a(Ax)uf = 0. (2.9 

Moreover, according to (2.8) we can choose X E (0,l) so small that 
ux(x) > u(x) for any x E [0, x0]. Define 

i := sup{ A > Olu,(x) > u(x) vx E [o, x0]}; 

then there exists X E [0, x0) such that 

z&) = u(x). (2.10) 

Actually, for any X E (0, l), the fact that u is decreasing and definition 
(2.8) imply 

UX(X) > u(Xx) > u(x) (x E P, t:1). (2.11) 

Due to (2.11) the equality 

ux(xo) = 4%) = ubo) 

would imply x = 1, which contradicts the definition of h. 
Since x E (0,l) and a is increasing, from (2.9)-(2.10) we get 

(uA - u)“(Z) = [a(k) - a(Z)]uS(Z) < 0; 

the contradiction proves the claim. 

(2.12) 
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(b) According to (a), there exists X E (0,l) such that supp ux 1 [0, [z] 
and ux(x) > u(x) for any x E [0, [:I. Define 

i; := sup{ x > O]u,(x) > u(x) Vx E [o, <:I}; 

then either 

(i) ux(Z) = u(Z) for some I E [0, [2*), or 

(ii> uxt52*) = $59. 

In case (i) a contradiction is reached as in (2.12). In case (ii) we get 

= -0 - PV\/2(1+/W 
’ -0 - PVmm#m 
= (“w3V2)‘(59, (2.13) 

since h > 1 and a is increasing (here use of Proposition 2.4 in [8] has been 
made). The inequality (2.13) contradicts again the definition of “x; this 
completes the proof. 

Let us now prove Theorems 1.1 and 1.2. 

Proof of Theorem 1.1. According to Lemmas 2.2 and 2.3, the sets 
S, S, are nonempty and relatively open. It is easily seen that the intersec- 
tion S n S, is empty. Then there exists y* > 0 such that either claim (ii) 
is true, or the corresponding solution y(. , y*) of (1.2) satisfies 

y(x, y*) > 0 for any x E [0, cc) 

,y’(x,y*) < 0 foranyx E (0,cc). 

Moreover, the second possibility is ruled out by assumption (A2) (see 
Theorem 2.5 in [S]). 

This proves the existence of y* > 0 such that (ii) holds; its uniqueness 
follows by Lemma 2.4. The other claims are an immediate consequence of 
Lemmas 2.2, 2.3. This completes the proof. 

Proof of Theorem 1.2. It follows from Theorem 1.1 that any solution of 
(1.2) is decreasing in (0, t(y)) (y > 0). Then the conclusion follows by the 
argument given in the proof of Lemma 2.4, part (a). 

3. THE FUNCTION 6 

Let y = y(. , y) denote the solution of problem (1.2) (y > 0). As it has 
been shown in the previous section, for one value y* > 0 there exists 



442 PELETIER AND TESEI 

5* E R+ such that 

(i) y > 0, y’ < 0 in (0, <*), 

(ii) y(x, y*) -+ 0, y’(x, y*) -+ 0 as x + E*. 

In addition, a function .&[O, cc) + [0, <*I was defined such that 

(i’> for Y E (0, Y*), 

4(Y) = sup{x E ~+lY(X,Y) ‘0); 

(ii’) for y > y*, 

t(Y) = sup{x E R+lY’(X,Y) < O}; 

moreover, ,$(y*) = t*. 

In this section we shall establish a number of qualitative properties of 
this function 4. To start with, let us prove Theorem 1.3. 

Proof of Theorem 1.3. (i) Let y E (0, y*). Integrating twice the differen- 
tial equation in (1.2) we obtain 

cp(Y, ‘5) := Y + gtt - ++)YS(XT Y) dx = 0. 

Observe that 

due to Theorem 1.1. Since y( . , y ) depends continuously on y, it follows 
from the implicit function theorem that .$ depends continuously on y near 
every y E (0, y*). 

Not let y > y*. Integrating over (0, 5) yields 

$(Y, 0 := ~~x)Y~(x, Y) dx = 0. (3.1) 

Therefore 5 > a* > a. In fact, because y is decreasing in (0, t), from 
(3.1) we obtain 

= /*u(x)yp(x) dx < f(a)/‘u(x) dx. 
a a 

Thus 

J 
6 
u(x) dx > 0, 

0 
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which proves the claim. It follows that 

#*(Y, 0 = 4>Yp(tY Y) ’ 0; (3.2) 

the implicit function theorem now implies 5 E C(y*, 00). 

(ii) is an immediate consequence of the monotonicity of y( ., y) with 
respect to y (see Theorem 1.2) and of inequality (2.3). 

(iii) Recall that E > 1y* for any y > y* (see (i) above). To show that 
5 4 (Y* as y + cc, it is convenient to write z := y/y. Then 

0 = - ~alu(x)Iz8(x) dx + j’ja(x)jz”(x) dx 
a 

> - iaja(x)ldx + j’[a(x)lzP(x) dx. 
n 

Due to inequality (2.1), for any E > 0 and y sufficiently large we have 

/‘]u(x)~z~(x) dx > /$z(x)jdx - E. 
a a 

This in turn implies 

i’u(x) dx = f/(x) dx < E, 

which proves the claim. 
Now fix any yt > y*. Suppose that t(y) > <(yt) for some y > yr. Since 

[ is continuous on (y*, cc) and 5 + OL* as y + 00, there would exist 
yz > yr such that <( y2) = .$‘(yt). The corresponding solutions y(. , yr) and 
y( . , yz) of (1.2) would satisfy the problem 

Y ” - a(x)yP = 0 in (0,5) 

Y’(O) =yG) = 0, 

there I; = E(vJ = 5(~~); moreover, Y(.T YJ -C Y(X, y2) for any x E 10, (1 
by Theorem 1.2. Due to the maximum principle proved in [ll, Theorem 
1.11, this situation cannot arise; hence 5 is strictly decreasing in (y*, cc). 

Let us now prove the estimate (1.4). Integrating the equation in z twice 
we obtain 

z(x) = 1 + yB-riX(x - t)a(t)zb(t) dr 2 1 - yB-r~*~‘*]n(t)] dt, 
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where we have used the fact that .$ < <*. Thus 
a* 

u(x)zB(x) dx = / ~/o.*u(x){‘B(x) - l}dx( 2 CyB-’ 

for some constant C > 0. On the other hand, as y + cc 

/ 
‘u(x)z~(x) dx --) l-u(x) dx 2 ~(a*)([ - a*), 

a* 

where ~(a*) > a(a) = 0. Thus the equality 

/“*u(x)z~(x) dx + fu(x)rP(x) dx = 0 
0 lx* 

implies 

&f(y) - a* < c*yfl-’ 

for some constant C* > 0. This completes the proof. 
Theorem 1.3 gives a description of the function t(y) away from the point 

y = y*. Numerical evidence suggests that the graph of 5 has a cusp there. 
In the remainder of this section we shall show that this is indeed so, and we 
shall give estimates for E(y) as y 2 y* and y L y*. For convenience we 
shall assume that for some 6 > 0, 

u(x) = a > 0 when .$* - 8 I x I [*. 

We shall proceed in two steps. In the next lemma we shall translate 
changes in y at x = 0 to changes in y and y’ at x = c* - S. Thereafter we 
translate these changes into changes in E. 

LEMMA 3.1. There exist positive constants k, and k, such that 

ly(E* - S,Y* + 4 -At* - 6, v*>l 5 k,lel. 

ly’(t* - 8, y* + E) - v’(5* - 6, v*>l 5 kzlel, 

Proof. Write y, = y( ., y* + E) and y, = y( ., y*). Then, since ye(x) is 
bounded away from zero on [0, [* - 61, h = ay/lJy exists at y = y*: 

U,(X) =.x,(x> + &h(x) + w(x, E>, 

where ([hII is bounded and llw(., &)I1 = O(E) as E -+ 0 (11 * 11 denotes the 
supremum norm on (0, 5 * - 6)). This yields the first estimate. 
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If we integrate the equation for y, and for y0 over (0, [* - 6) and 
subtract, we obtain 

which yields the second estimate. This completes the proof. 
To study y(x, y) for x > .$ * - S we transform to the variable u = 

y2/(’ -fl). This yields the equation 

u”” + 
1+P 
I-p” 

,2-l-P - --+4 (x > t* - 6). 

We write this as a first-order system 

u’ = u 

1+P 
uu’ = - 1 _ p u2 + 

1-P 
--a(x), 2 

or, when we introduce the new independent variable t by means of the 
transformation dr/dx = l/u, as 

u’ = uu 

u’ z l+P 1-P -- 
I-pu2+ 2 -4x) 

x’ = u, (3.3) 

where the primes now denote differentiation with respect to t (see also [7]). 
The set of critical points of (3.3) near x = 5* consists of the line 

segments 

I, = {(OA u*, x)15* - 6 I x I <*}, 

where 

u* = (1 - /3)/J?(EjF)6i. 

The orbit entering the point 

P* = (0, -u*, [*) 

is given by the line 

I* = {(u*((* - x), -u*,x)l[* - 6 I x I (*}. 
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It passes through the plane {x = <* - S} at the point 

PO = (u*a, -u*, #$* - 6). 

Let (u(t), u(t), x(t)) be an orbit which starts near the point 
((Y*)*/“~~), 0,O). By Lemma 3.1 it passes through the plane {x = [* - S} 
at a point P, near P,, which we write as 

P, = (u*6(1 + pe), -u*(1 - q&), .$* - 6); 

here E = y - y * and p and q are constants. Taking P, as initial value, the 
equation for u in (3.3) yields 

1 - keht 
u(r) = -u* 

1 + ke”’ 

where 

k := d!? 
2 - qE’ 

x := pu*, 

It follows that 

(i) if q& > 0, then u(t) + 0 as t + T, where 

1 - keAT = 0 or 

(ii) if q& < 0, then u(t) -+ - cc as t + T, where 

1 - lkleXT = 0 or T = ; log 

Recall that if E > 0, u(t) vanishes after finite time, whence q must be a 
positive constant. 

Next we use the first equation of (3.3) to deduce u(t). We obtain 

u(t) 
/ 

2 
log - = 

40) 0 
h(s) ds = -u*t + - log 

P 

whence 

u(t) = u(O)(l - fqE)2’pem”*t(l + keAr)2’p. 



BIFURCATION 447 

Finally, we use the equation x’ = u to obtain x(T): 

where 

I(k) := v(k)d”“(‘)(l + (k/(kl), t-‘)2’“dt, v(k) := (kl”Y 

Observe that 

I, = v(l/v - 1) + ~~~‘“((1 & t-“)“” - 1) dt 

= 1 - v + v m 
J {( 1 

1 f t-‘)2” - 1) dr + O(v”) 

as v + 0 because p > 2. Writing 

I&):= /Im{(l k t-“)2’P - 1) dt, (3.4) 

we then obtain 

x(T) = x(0) + (u(0)/u*) (1 - :qE)2’P 

x(1 - [1 - ~,(d]lkl”‘+ O(lkl)}. 

Substituting x(0) and u(0) gives 

[* - X(T) = 6q”‘[l - I&i)]l&l”” + O(E) as E -+ 0, 

where the + sign applies if E > 0 and the - sign if E < 0. 
Finally, in the following proposition we list a number of properties of the 

integrals I, and I- defined in (3.4). 

PROPOSITION 3.1. (i) I+ E C’ ([2, co)); 

(ii) 1: < 0 and IL > 0 on [2,00); 

(iii) Z,(2) = *l; Z+(co) = 0. 

The proofs of (i)-(iii) are all elementary, and we shall omit them. Thus, 
in summary we have proved the behavior of 5(y) near y* with the 
following result: 

THEOREM 3.1. Let (A,)-(A,) be satisfied. Then there exists a constant k 
such that 

#$* - ((y) = KA,(/?)(y - y*(“-p)‘2(1+fl) + O(lY - Y*l) 
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us y + y *. Here the + sign applies when y > y * and the - sign when 
Y < y*; the constants A +( j3) have the properties 

O<A+(j?)<l<A-(/3)-d; 

A,(P) + 1 ifp + 1; 

and 

A+(P) +O 
A-(P) + 2 ifp --)O’ 

Proof The expression for t* - t(y) follows from the derivation given 
above. The properties of the constants A _+(p) follow from the expression 

A,(P) = 1 - ~&(Ph 

due to Proposition 3.1. 
The expression for t* - c(y) given in Theorem 3.1 indeed implies that 

the graph of 4(y) has a cusp at y = y*. 
Notice that, because l/A+ varies from 1 to co and l/A- from 1 to 4 as 

p goes from 0 to 1, the top of the cusp is much more sensitive to changes of 
p than the bottom (see Fig. 2). 

4. ATTRACTIVITY RESULTS 

Let us investigate the set of stationary solutions, both for (1.1) and for 
the Dirichlet or Neumann initial-boundary value problems. By a solution of 
(1.1) we mean any function ~(0, ao) x R + i + such that: 

(i) u is bounded and continuous in [0, T] X Iw for any T > 0; 

FIG. 2. Bifurcation diagram: u(x) = 25[ - 1 + 2 H( x - i)] 
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(ii) for any t E (0, T] and any interval (-L, L) c R the following 
holds: 

for any n E C’,‘(Q,) such that n 2 0, n = 0 on CT (here Qr := (0, T] x 
(-L, L), C, := (0, T] X {-L, L}, L > 0). Supersolutions and subsolu- 
tions of (1.1) are defined replacing in (4.1) equality by I (resp. 2). 

A similar definition holds for stationary solutions of (1.1) namely for 
solutions of the problem 

(um)” - u(x)up = 0 (x E R). (4.4 

We shall prove the following result. 

THEOREM 4.1. Let (A,)-(A,) be satisjed. Then there exists a unique 
nontrivial stationary solution u* 2 0 of problem (1.1). 

Proof: According to Theorem 1.1, there exists a unique free boundary 
solution y(., y*) of problem (1.2) with B = p/m. Define 

u*(x) := 
i 
Y1’m(lxl> v*> 1x1 2 5* o 

1x1 ’ E*’ 
(4.3) 

Then, since a is even, u* is a stationary solution and it is unique among the 
even ones. But any stationary solution must necessarily be even in the 
present case; therefore u* is the only stationary solution of (1.1). 

Concerning the attractivity of u*, the following result holds. 

THEOREM 4.2. Let (A,)-(A,) be satisjied. Then the stationary solution 
u* attracts in the supremum norm any solution of (1.1) such that supp u. n 
(-a, a) is nonempty. 

Proof. For any A E (0,l) define 

u,*(x) := x- V(w44*( Xx) (x E q; 

observe that 

supp ux* = (l/X) supp u*. 
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Due to the properties of U* and a, u$ is easily seen to be a supersolution 
of (1.1) (X E (0,l)). Now choose X so small that 

ug I uh*; 

it follows from the comparison principle that 

u(t, u()) I uh* forany120. 

Consider the Cauchy-Dirichlet problem 

2.4, = (ldyxx - auk in (0, co) x fi 

u=o in (0, ~0) x as-2 
24 = #() in (0) X 0, (4.4) 

where Q = Q(A) = ( - c*/A, (*/A). Due to the above remarks, the solu- 
tion u(t, ~a) of the Cauchy problem (1.1) is also a solution of (4.4). Clearly, 
ux* is a supersolution of (4.4) for any X E (0,l); since supp ua n (-a, a) is 
nonempty, there exists a subsolution u of the same problem such that 

supp g E supp ug n ( - a, a), _ul uo. 

It follows that 

u(t, 24) I u(t, uo) I u(t, #x*) foranyt20. 

Since 

u(t, u) + u*, u(t, u,*) + u* 

in the supremum norm as c + cc [2], the claim follows. 
The above argument carries over to higher space dimensions. Essentially 

the same result may be proved by well-known techniques, which involve the 
concept of w-limit set [l] (see also [5]). The result is optimal, as the 
following proposition proves. 

PROPOSITION 4.1. Let (A,)-(A,) be sotisjied. Then there exist u. such 
that: (i) supp u. f~ (-LX, a) is empty, (ii) the corresponding solution of (1.1) 
tends to zero uniformly as t --) 00. 

Proof Let X be any number greater than (Y. Then, according to [8], 
there exists a unique nontrivial solution z 2 0 of the problem 

Z ” - a(X)zP/m = 0 in (XF, co) 

z(X)=z’(X) = 0, 

moreover, z(x) + cc as x --) 00. Plainly, for A E (0,l) small enough, the 
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function 

Q(X) := 
i 

min{ .z1/nr(x), U:(X)} x E [X, CQ), 

0 xE(-co,X), 

is a (nontrivial) supersolution of (1.1). Hence u0 ZG vx implies u(t, uO) I vx 
for any t 2 0. 

Since u,, is a supersolution of (4.4) in Q = (X, .$*/A), the conclusion 
follows as in the proof of Theorem 4.2. The case of general (compact) 
supp u,, can be dealt with similarly. This completes the proof. 

Observe that if supp u0 n (-a, cy) is empty, yet u0 is “large” in a 
suitable neighborhood of ( -LY, (Y), u(t, uO) may converge to U* as t + W. 

Finally, let us consider the Cauchy-Neumann problem 

u, = (u~)*~ - u(x)up in (0,ce) X Q 

u, = 0 in(O,cc) X ati (4.5) 
u = ug in(O} X D 

where 52 = (-L, L) (L > 0). For stationary solutions of (4.4) or (4.5) the 
following holds. 

THEOREM 4.3. Let (Aa)- be satisjed. Then 

(i) for any L > 0 there exists a unique even (nontrivial) stationary 
solution of (4.4) in (-L, L); 

(ii) for any L :, a* there exists a unique even (nontrivial) stationary 
solution of (4.5) in (-L, L). 

In either case the support of the above solutions is [ - L, L] n [ - 5 *, [*I. 

Proof. (i) Due to Theorem 1.3, for any L E (0, <*I there is a unique 
7 E (0, y*] (7 = y(L)) such that ((7) = L. Then define 

3(x, 7) := yl’“(Jxl, 7) (I4 5 0; 

the claim follows in this case by Theorem 1.1, part (i), due to assumption 
(A,). If L z <*, the function 6(x, y*) can be defined on the all of [-L, L] 
by setting u‘ = 0 for 1x1 > t*. This proves (i); the proof of (iii) is similar. 

Let us mention that the attractivity of the above stationary solutions of 
(4.4), (4.5) can be investigated as we did before for the Cauchy problem. 

5. MORE GENERAL FUNCTIONS a 

In this section we briefly discuss stationary solutions of (1.1) under more 
general assumptions on a. For simplicity, we consider the case when a is a 
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a,lx) a,lx) 
\ I : 

FIGURE 3 

smooth approximation to min{ bX1, bX,}, where 

b,,(x) := b(x - xi) (xi E R fixed; x E R, i = 1,2) 

and b satisfies (Aa)-( Similar results hold in more general cases. 
More precisely, let a E C’(W) satisfy the following conditions (see Fig. 

3): 

($) There exist x1 < x2 and vi, nz > 0 such that vi + q2 < x2 - xi, 

a(xi - x) = a(xi + x) foranyxE [-qi,qi](i=1,2). 

Moreover, 

a(x) 5 min,=l.2{ a(2xi - x)} for anyx E [xi + nl, x2 - q2]. 

(B,) There exist q E (0, n,) such that a(x) -c 0 for any x E [xi - 
(Y,, x, + cyi] (i = 1,2). In addition, a is decreasing in (- 00, xi), increasing 
in (x2, cc). 

(B,)j”I;*la(x) dx = /z+u,a(x) dx = co. 

(B3) There exist A, < x1 - q, A, > x2 + a2 such that 

supx5A,(a-1/2)‘(x) < cc, supXzA2(a-‘j*)‘(x) < cc. 

Define a:, at > 0 as follows: 

/xl+a’a(x) dx = [la;(x) dx = 0; 
x1 2 

then the following holds. 

THEOREM 5.1. Let a E C’(R) satisfy (B,)-(B,); moreooer, assume 

cq + a; 2 x2 - x1. (5-l) 
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Then there exists a stationary solution u* 2 0 of 
positiue in [x1 + q, x2 - q]. 

Proof. Define two functions a,, a2 as follows: 

453 

(l.l), which is strictly 

al(x) := 
i 

44 x E (-,xJ, 
a(2x, - x) x E (x1, 00); 

a*(x) := 
1 

44 x E [x+4, 

a(2x, - x) x E (-co, x2); 

thus a,(x) 2 a(x) for any x E 08 (i = 1,2). In addition, let a3 denote any 
function such that (i) aj(x) I a(x) for any x E W, (ii) a3 satisfies 
(A,)-(A,) with a suitable choice of the origin. Such an a3 is easily seen to 
exist under the present assumptions. 

Then the free boundary solution y: = y( . , y:) of the problem 

y:’ - ai(x) = 0 in W + 

Yi(O) = Yi, Y:(o) = 0 

(i = 1,2,3; p = / ) p m is a subsolution of (1.2) for i = 1,2, respectively, a 
supersolution for i = 3. Define u: (i = 1,2,3) on W as in (4.3); then 
g:=max{u T, uz} is a subsolution, UT a supersolution of (1.1). In view of 
(5.1), it follows from Theorem 1.3 that u is strictly positive in [xi + q, x2 
- q], from which the conclusion follows easily. 

Observe that in particular (5.1) is satisfied if 
x2 

J ) 
a(x dx < 0. 

Xl 

Let us discuss a specific example. Set m = 2, p = 1; let 6 be any 
function on IR such that 

(i) Z(x) = cos (3rx/2d) in [ - 4d/3,4d/3] (d > 0); 

(ii) ii is decreasing in (- cc, -4d/3), increasing in (4d/3, ~0) and 
satisfies (B2)-(B3). Define 

a(x) := 
i 

pa(x) x E (-d/X d/3), 

44 x E (--co, -d/3] u [d/3,m), 

where p > 0. It is easily seen that 

3mlq . 3lN.q P-l 
sin - = sin - = - * 

2d 2d P ' 

hence Theorem 5.1 applies for any p E (0,l). 
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It can be observed that Theorem 5.1 ensures that no dead core of U* 
exists, using an estimate “from below” of the support for the free boundary 
solution of (1.2). Sufficient conditions for the existence of a dead core, 
involving estimates “from above,” can be derived as in [3]. Results of this 
kind were proved in [9], to which we also refer for the attractivity problem. 
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