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1. INTRODUCTION 

The purpose of this note is to show that by combining some previous work of 
the author [5, 61 with a recent theorem of Allegretto [2] a problem posed by 
Glazman may be solved. 

In [3, pp. IS&--1591, Glazman outlined a connection between the oscillation of 
solutions of the differential equation 

-Au + q(x) u = 0 (1.1) 

and the finiteness of the negative spectrum of the associated selfadjoint operator 
-A + 4 in L2(lFP). He showed that if the negative spectrum of -A + q is 
finite, then (1.1) is nonoscillatory. 

In [S] the author strengthened the idea of nonoscillation for (1 .I). The main 
result was that if (1.1) is strongly nonoscillatory it follows that the negative 
spectrum of -A + CJ is finite. This idea was used in [6] to sharpen specific 
criteria due to F. Brownell and M. Birman for the finiteness of the negative 
spectrum of -A + q. 

The theorem of Allegretto [2] shows that the two definitions for nonoscillation 
are equivalent provided q(x) is sufficiently smooth near infinity. The question 
of their equivalence had been posed but not answered by the author in [5]. 

With certain restrictions on the degree of local singularity of 4 it follows that 
the finiteness of the negative spectrum of -A + Q to the left of the first point of 
its essential spectrum depends solely on the behavior of q near infinity. 

This in turn solves a problem posed by Glasman [3, pp. 69-701. Let r be a 
smooth closed hypersurface in 5P and let Q denote its exterior. Let L = L(B, r) 
be a selfadjoint realization of -A + p in L2(Q) with the boundary condition 

Bu = g + p(x) u = 0 (1.4 

on r. Here (au)/(%) is the outward (from 52) directed normal derivative of u and 
0 < p(x) < +co. The problem was to show that the finiteness of the spectrum 
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of L to the left of the essential spectrum is invariant under certain distortions of 
r, perturbations of p, and perturbations of q over compact subsets of Q u r. 

But if the finiteness of the lower discrete spectrum only depends on the behavior, 
fq for large 1 x /, th e conjectured invariance is obvious. 

The results of [5,6] are easily extended to the case where a boundary condition 
(1.2) is present. Allegretto’s theorem need be applied only in a neighborhood of 
infinity. To simplify matters, and without fear of a loss of generality, we will 
only discuss the case where B = Iw” and m 3 3. 

We will consider the more general symmetric differential operator 

where q(x) is real and {aij(x)} is real symmetric with positive eigenvalues. In 
Theorem 2.1 local degeneracy of ellipticity is permitted for the sake of com- 
pleteness. But for the final result of the paper we assume that {a&)} is uniformly 
positive definite as x varies over any compact subset of UP. 

2. THE SELFADJOINT REALIZATION OF L AND CRITERION FOR 

FINITE NEGATIVE SPECTRUM 

In this section we will give a precise definition of the selfadjoint realization of 
the differential operator L. No proofs will be given since they are straightforward 
extensions of the proofs of the analogous results in [q for L = --A + q(x). 

First let A(X) be a nonnegative function so that 

for each x and each vector ( t1 ,..., 5,) in C”. Also ql(x) will be a nonnegative 
function in Leo, and q2(x) is defined by setting 

44 = 4&) + n2w 

We denote by L2(Rm) the usual Hilbert space of square-integrable functions. 
W will be the closure of C,,m(Rm), the space of infinitely differentiable functions 
with compact supports, relative to the norm I/$ jJw , 

II 9 1% = J [,& %h$, + (!71 + 1) l-4 I;J A4 

where & = (@)/(a,.), l = I,..., m. We finally define the quadratic form b by 
setting 
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Now suppose that inequalities of the following form hold: 

I w, $4 G 44 Ilw II 4 IIW 9 (2.2) 

w, 4) 3 cz II 9 l/w2 - c3 II $ 112, (2.3) 

where cj are positive constants, and 4 and 4 are arbitrary in W. Then it is well 
known, see, e.g., [7J, that the form b defines a selfadjoint operator /l which is 
bounded from below. A is characterized by specifying that u be in the domain 
of/l and w = /lu if and only if 

b(w, 4 = (WY v> for each w in W. 

This (1 will be used throughout the rest of the paper. 
A fairly simple sufficient condition for the above construction is provided 

by the following theorem. Here 11 f IJB,K denotes the L”-norm off over the set K. 

THEOREM 2.1. Let t be fixed in the interval m/2 < t < +co. Let B7(y) 
denote the open ball of radius Y and with center at y. 

Suppose the following conditions hold: 

sup II Qz Ilmt/(2t--mL4h/) ( +a 
Y 

(2.4) 

1 lim sup h 
III II II 42 llmtl(2t-n).B,(?/) = 0. I (2.5) 

9-0 Y tJ3Jv) 

Then inequalities (2.2) and (2.3) hold. 

The special case of 

aij(x) = 1 if i=j 

=o if i#j 

is proved in detail in [6J The same method yields the above theorem when 
proper account is taken of the variable modulus of ellipticity I\(X). The conclusion 
still holds when the limit in (2.5) is less than a specific Positive constant de- 
pending on t and m. 

For simplicity we will assume from here on that a j(x) E cl(lP) and X(x) > 0 
for each x. Local degeneracy could still be permitted at the expense of more 
complicated definitions of strong nonoscillation. 

DEFINITION. We say that the equation, 

Lu = 0, 
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is strongly nonoscillatory at infinity if there is a function w(x) defined for j x 1 > R 
and satisfying the following conditions 

(i) v is in the local Sobolev space Hf;ga(] x 1 > R); 

(ii) u(x) > 0 and l/w is in L&(1 x 1 > R); 

(iii) Lv(x) > 0 for, a.e., x with 1 x 1 > R. 

The relevant result is 

THEOREM 2.2. If the equation Lu = 0 is strongly nonoscillatory at injinity, it 
follows that the negative spectrum of A is$nite. 

Some results in [4] are necessary for the proof of Theorem 2.2. 

3. ALLEGRETTO'S THEOREM 

In this section and Section 4 we will require considerably more smoothness 
on the coefficients near infinity. Let [a] denote the greatest integer not exceeding 
a. We assume that 

and 
ati is in C2n+1(j x ( > R) 

q(x) is in C”“(j x 1 > RR), 
(3-l) 

where 

n = [; [qq]. 

We should point out that Allegretto proves the theorem under the stronger 
conditions that aij E Csn+l and q E C 3n. A slight change in his proof and an 
application of local regularity results for solutions of elli+tic equations contained 
in [I] yield the more general conditions (3. I). 

First we need another definition. 

DEFINITION. The equation Lu = 0 is nonoscillatory at infinity if for some 
R > 0 and any bounded smooth domain B in (x 1 1 x 1 > R}, the Dirichlet 
problem 

Lu = 0 in B 

U=O on 8B 
(3.2) 

has no nontrivial solution. 
Then in our terminology Allegretto’s theorem is as follows. 
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THEOREM 3.1. If the smoothness conditions (3.1) are satisJied, and L is uni- 
formly elliptic over compact sets, then Lu = 0 is strongly nonoscillatory whenever 
it is oscillatory. 

4. THE MAIN RESULT 

We assume in this concluding section that the operators L(“), 

L(“)u = -C & (aji’(x) z) + J”(x) u, a = 1,2, (4.1) 

satisfy the conditions of both Sections 2 and 3. Let Aca) denote their respective 
selfadjoint realizations. 

THEOREM 4.1. Suppose for the operators L(O) in (4.1) that 

a$(*) = a$(x) and Q(1)(x) = n’“‘(x) 

for all su$iciently large ] x I. The-n it follows that A c2) has Jinite negative spectrum 
if A(l) has. 

The proof is clear since the finiteness of the negative spectrum of /l(r) implies 
that LW = 0 is nonoscillatory at infinity, see [3, p. 1591 or [5] Now Theorem 3.1 
tells us that L% = 0, and hence Lc2)u = 0, is strongly nonoscillatory at infinity. 
Finally by Theorem 2.2 the negative spectrum of At2) is finite. 
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