
NeuroImage 124 (2016) 43–53

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Profiling neuronal ion channelopathies with non-invasive brain imaging
and dynamic causal models: Case studies of single gene mutations
Jessica R. Gilbert a,⁎, Mkael Symmonds b, Michael G. Hanna c, Raymond J. Dolan d,
Karl J. Friston e, Rosalyn J. Moran a,f

a Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
b Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford University, Oxford OX3 9DU, UK
c Institute of Neurology, University College London, 9 Queen Square, London WC1N 3BG, UK
d Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12 Russell Square, London WC1B 5EH, UK
e Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK
f Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
⁎ Corresponding author.
E-mail address: jessg@vtc.vt.edu (J.R. Gilbert).

http://dx.doi.org/10.1016/j.neuroimage.2015.08.057
1053-8119/© 2015 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 21 May 2015
Accepted 25 August 2015
Available online 3 September 2015

Keywords:
Channelopathies
Dynamic causal modeling
Magnetoencephalography
Ion channel signaling
Biophysical models
Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnor-
malities in tandem with functional magnetic resonance imaging. However, no current technology proffers
in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication.
Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct
monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying
synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both pa-
tients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-
gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel
application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these
findings indicate that biophysicalmodels of synaptic channels canbe estimatednon-invasively, having important
implications for advancing human neuroimaging to the level of non-invasive ion channel assays.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The balancedflowof ions through synapses is integral to the stability
and control of neuronalfiring and information transmission in thebrain.
Abnormalities of ion channels and synaptic function are thought to un-
derlie a range of neurological presentations including seizures, migraine
and movement disorders (Catterall et al., 2008), and inform pharmaco-
logical treatment strategies (Yogeeswari et al., 2004). Furthermore, a
growing body of evidence in psychiatry suggests alterations in simple
mechanistic principles, like the ratio of neocortical excitation to inhibi-
tion or long-range to local synaptic transmission, could underlie com-
plex disorders including social dysfunction (Yizhar et al., 2011),
autism (Rubenstein and Merzenich, 2003) and schizophrenia (Jardri
and Deneve, 2013). In animal models of these diseases, tools like
optogenetics provide a means to manipulate synaptic transmission,
providing a platform to test putative pathophysiological mechanisms
in neural circuits (Tye and Deisseroth, 2012). However, there are no
current technologies for non-invasively measuring brain function at
this level in humans. While limited assessments of neurotransmitter
. This is an open access article under
and synaptic receptor levels are feasible with magnetic resonance spec-
troscopy (Dager et al., 2008) and positron emission tomography (Lee
and Farde, 2006), these techniques do not directly measure neuronal
function and can be applied only to a limited set of molecules. Here
we describe how magnetic event-related fields (ERFs), measured at
superconducting sensors around the head, can be fit to a biophysical
model of neural circuits to recover potential probabilistic markers of
an individual's synaptic function.

In this work, we utilize the specificity imparted by single-gene mu-
tation neurological channelopathies (Catterall et al., 2008; Hanna,
2006; Kullmann, 2010) to assess the capability of our model-based
assay in the context of magnetoencephalography (MEG). These signals
are a close analogue of the electroencephalogram (EEG) and provide
proof-of-principle for use in clinical settings, where EEG is widely avail-
able. Channelopathies, by virtue of their diverse clinical presentations
(Catterall et al., 2008), illustrate how the functional consequence of
particular ligand or voltage-gated ion channel dysfunction are neither
easily predictable nor strictly amenable to diagnosis via clinical exami-
nation (Helbig et al., 2008). For example, patients with monogenic
causes of epilepsy, such as generalized epilepsy with febrile seizures
caused by mutations in neuronal sodium channels, can present with
seizures of variable phenotypes and severities at different ages (Singh
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et al., 1999). In addition, genetic channel mutations can be partially
penetrant, leading to differential interaction characteristics with
various genes or with the environment (Kullmann, 2010). Outside of
acquired (e.g., autoimmune) and single gene mutations, diagnosis of
polygenic channel dysfunction (e.g., associated with idiopathic epilepsy
(Cannon, 2006; Hanna, 2006)) using genome or exome sequencing
suffers from a complex landscape of allelic risk; where non-affected
individuals can harbor mutations in known or suspected epilepsy
genes (Klassen et al., 2011). Therefore, patients with primary effectors
from “mixed”, as well as classical single-gene channelopathies could
benefit diagnostically and prognostically from the in situ characteriza-
tion of pre and postsynaptic neuronal cell dynamics. Indeed, in silico
computational models of channel variation have been proposed as a
crucial bridge between genetics and disease risk or drug responsivity
(Klassen et al., 2011).

Our work – based on dynamic causal modeling (DCM) – goes a step
further by providing a biophysical model of currents produced by
interacting ion channelswhich are thenmatched tomeasurable electro-
magnetic signals. This means that empirical data can be used to test
competing models — and the winning model can be optimized for a
given individual. DCMwas originally designed as an analysis framework
Fig. 1. Properties of the dynamic causalmodel. A. For the DCM, three populations of neurons are
including spiny stellate cells, pyramidal cells and inhibitory interneurons, are associated with c
ward inputs, and supra and infragranular pyramidal cells and inhibitory interneurons are the t
field reduction, where average channel properties control the synaptic activity at each populat
voltage-gated ion channels with distinct dynamics. C. The channels include a glutamatergic AMP
nel, a GABAA mediated chloride channel, a leak potassium channel and an inward rectifying p
coupled differential equations where changes in postsynaptic depolarization (dV/dt) are gover
tential (Vion) determines the direction of current flow. Channel conductance (g) have time const
brane potential (Vpre) and the threshold potential (Vthresh). The inward rectifying potassium ch
for imaging network-level communication in functional magnetic reso-
nance imaging (Friston et al., 2003) and has been developed to infer the
synaptic basis of measured electrophysiological signals like those from
MEG, EEG and intracranial local field potentials (David et al., 2006). Pre-
viously, DCM has been applied in healthy human participants to assess
putative synaptic changes induced by pharmacological agents like
L-DOPA (Moran et al., 2011c) and propofol (Boly et al., 2012). It has
also been used in patients to test the contribution of long-range and
regionally-specific connections to the vegetative state (Boly et al., 2011).

Here, we test sensitivity and specificity of the synaptic ion channel
inferences available through electrophysiological DCM, utilizing data
from two cases of single-gene mutation channelopathies. In order to
test these particular patients we augmented a conductance-based neu-
ral mass model (Moran et al., 2011c) of regionally specific sources
(Garrido et al., 2007) to include ligand-gated sodium, calcium, and chlo-
ride channels — as well as voltage-gated potassium and calcium chan-
nels (Fig. 1). This augmented model was used to explain auditory-
evoked ERFs produced by 94 healthy control participants and 2 patients
with knownmutations causing loss-of-function in the inward-rectifying
potassium channel gene KCNJ2 and in the voltage-gated presynaptic
calcium channel gene CACNA1A. Our hope was to show a selective
used tomodel the activity of a given source of electromagnetic signals. These populations,
ortical layers by virtue of their intrinsic connectivity—where layer IV stellates receive for-
argets of backward connections. B. The population dynamics are approximated by a mean
ion of cells (Marreiros et al., 2009). This synaptic activity represents neurotransmitter and
A-mediated sodium channel, a glutamatergic NMDA-mediated sodium and calcium chan-
otassium channel. C. The dynamics at each population are formally described by a set of
ned by the dynamics of these channels with weights α and time constants τ. Reversal po-
ants τ, and are dependent on presynapticfiringH, which is a function of presynapticmem-
annel (right, in red) is gated to produce maximal conductance at hyperpolarized states.
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abnormality in the inferred model parameters encoding channel func-
tion that was consistent with the known channelopathies.

Materials & methods

Participants

Healthy control cohort: Ninety-four healthy control subjects partic-
ipated in the experiment. Subjects ranged in age from 20 to 83
(Mean = 46.8 years), with 42 male participants. All patients were free
from neurological or psychiatric disorders. Patients were recruited
from the metropolitan London region.

Two patients were recruited through the National Hospital for Neu-
rology and Neurosurgery in London. Patient selection was based on a
previous diagnostic confirmation of single-gene mutations. Patient 1
(female, 54 years) had a mutation of gene KCNJ2. This gene encodes
subunit Kir2.1, which is a potassium inward-rectifying channel
(Kullmann, 2010). This patient presented with Andersen–Tawil syn-
drome, having a primary phenotype of periodic paralysis. Patient 2
(female, 45 years) had amutation of gene CACNA1A. This gene encodes
subunitα1A of Cav2.1, which impacts calciumneurotransmitter release
at synapses (Kullmann, 2010). This patient presented with episodic
ataxia (EA type 2). All participants were paid for their participation
and provided written and informed consent to all procedures, which
were conducted in accordance with the Declaration of Helsinki
(1991). Protocols were approved by the South-East Strategic Health
Authority Regional NHS Ethics Committee.

MEG acquisition & preprocessing

MEG recordings were collected using a 275-channel CTF system
with SQUID-based axial gradiometers (VSMMedTech Ltd., Couquitlam,
BC, Canada). For each participant, two recording sessions were obtain-
ed, with a small rest period between sessions. Head localization was
performed prior to each recording session using three energized electri-
cal coils attached to fiducial locations (left and right pre-auricular,
nasion). During each session, a passive listening auditory oddball para-
digm was administered in which standard (i.e., frequent; 88%) tones of
duration 70 msec (10 msec rise/fall times) and frequency 500 Hz were
pseudo-randomly interspersed with oddball (i.e., infrequent; 12%)
tones of frequency 800 Hz. A total of 400 trials were presented per ses-
sion with an inter-trial interval fixed at 1100 msec. Participants were
instructed to remain still while fixating to a central cross presented on
a screen in front of them during the sessions. This paradigm was
found to elicit a prominent mismatch negativity (MMN) response in
the healthy controls, computed as the difference between standard
and oddball evoked fields at around 150 msec peristimulus time
(Moran et al., 2014).

MEG data were first filtered off-line, band-passed from 0.5–30 Hz,
then down-sampled to 200 Hz. ERFs were computed for each partici-
pant by first epoching from −100 msec to 350 msec peristimulus
time. Epochs were baseline corrected against −100 msec to 0 msec
peristimulus time, and artifact corrected using a peak-to-peak threshold
of 5 pF. Finally, the datawere averaged to obtain ERFs. For preprocessing
we used the analysis routines available in the academic freeware SPM8
(Wellcome Trust Centre for Neuroimaging, London, UK, http://www.fil.
ion.ucl.ac.uk/spm/).

Model of ion channels

We used an augmented neural mass model (NMM) that forms part
of the DCM modeling options (listed as the NMM (Moran et al.,
2013a)). This is a Morris–Lecar like model (Morris and Lecar, 1981) de-
signed to generate neuronal populationdynamics from large cell assem-
blies (Marreiros et al., 2009). This model mimics the net synaptic
activity at an active neuronal population, which can be summarized as
an equivalent current dipole (Fig. 1A). In our previous work (Moran
et al., 2011c), we included active neurotransmitter-specific synaptic re-
sponses including ligand-gated excitatory (Na+) and inhibitory (Cl−)
ion flow mediated by fast glutamatergic (AMPA) and GABAergic
(GABAA) receptors respectively, as well as sodium (Na+) and calcium
(Ca2+) currents through voltage-gated NMDA receptors. For the pres-
ent study, our model included these channels as they have been
shown to accurately recapitulate the dynamics of the auditory evoked
response (Moran et al., 2014). We further included a passive inward-
rectifying potassium (K+) channelwith a nonlinearmembrane depolar-
ization dependency (Figs. 1B, C) in order to capture the potential chan-
nel dysfunction in Patient 1. This channel (KIR) was modeled after
Nisenbaum &Wilson (Nisenbaum andWilson, 1995), with a sigmoidal
switch function that scaled the conductance to be maximal at
hyperpolarized states, zero at depolarized membrane potentials and
50% at−75mV(Fig. 1C). Dynamicswere governed by ionic reversal po-
tentials Vion with prior values: VNA = 60 mV, VNA/CA = 60 mV,
VCl=−90mV and VK=−70mV. Channelswere consideredwith par-
ticular receptor or voltage-dependent time constants τchannel with prior
values τAMPA=4msec, τNMDA=100msec, τGABA= 16msec and τKIR=
18msec. Crucially each of these channels – as well as a leaky potassium
current (KL) – had scale parameters that controlled their relative influ-
ence on the polarization of the postsynaptic membrane: αNA, αCl, αCA/

NA,αKL, andαKIR (Fig. 1C). These scale valueswere our key (postsynaptic)
parameters of interest and were later tested for patient specific effects,
compared to controls. Presynaptically, dynamics were coupled to the
postsynaptic ensembles via a sigmoidal activation function, H
(Fig. 1C), which mimics mean afferent firing rates, and depends on the
membrane potential of the afferent cell population (Vpre), the threshold
firing potential (Vthresh, set to−40mV), and the distribution of presyn-
aptic firing rate. To capture the potential channel dysfunction in Patient
2; i.e., a presynaptic calciummutation, we used the inverse of this affer-
ent firing variance (denoted asω, Fig. 1C) as a proxy. For this parameter,
large values represented highly synchronized output, whichwe assume
scales linearly with the availability of presynaptic calcium (Fig. 1C). This
is consistent with calcium's role in the synchronization of release of
neurotransmitter across active zones (Sharma and Vijayaraghavan,
2003).

Each (equivalent current dipole) source of electromagnetic
signals comprised three distinct cell populations with canonical
intrinsic (within source) connectivity (Moran et al., 2011c). These
interacting neuronal populations represented pyramidal cells, inhib-
itory interneurons and granular-layer spiny-stellate cells (Fig. 1A).
Sources received extrinsic inputs from other sources according to
plausible anatomical criteria; with forward connections driving
spiny stellate cells and backward connections driving pyramidal
cells and inhibitory interneurons.
Source localization

SPM'smultiple sparse priors routinewas used to identify the sources
of activity in each patient's brain from their sensor-level data over the
entire post-stimulus event time (0–350 msec). Specifically, averaged
ERFs for standard and deviant trials were localized to 512 potential
mesh points using a variational Bayesian approach following co-
registration of fiducial points and sensor positions to a canonical tem-
plate brain. We used the group inversion option in SPM to localize
both sessions together, doing this for each patient individually (shown
in Fig. 3). This approach has previously been applied to the MMN re-
sponse (Moran et al., 2014). No prior constraints on source localization
were used and the percent variance of sensor-level datawas assessed to
ensure a localization solution that accurately recapitulated the topogra-
phy of sensor data (Fig. 3). Source reconstruction and subsequent DCM
analysis (below) was performed using SPM12 (Wellcome Trust Centre
for Neuroimaging, London, UK, www.fil.ion.ucl.ac.uk/spm).

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm
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DCM

The MMN paradigm has been extensively studied in the context of
DCM, and so sources and connectivity between regions have already
been established (Garrido et al., 2008). The healthy controls used here
were previously reported (Moran et al., 2014) to show responses in
sources commensurate with Garrido et al. (2008). These included pri-
mary and secondary auditory sources as well as a source in the bilateral
prefrontal cortex. Given that these sources were also activated in both
patients (Fig. 3), a six-source model of the auditory evoked responses
was specified, with the same prior locations in patients and controls
(Fig. 4A).

Thalamic (stimulus bound) input was modeled with a Gaussian
bump function that drove activity in bilateral Heschl's gyrus (HG; pri-
mary auditory cortex). The prior expectations of the parameters of
this input represented a mean onset of 64 msec and duration of
16 msec; these were free parameters that account for subject specific
differences in peripheral auditory processing. From HG, signals were
passed via forward connections to superior temporal gyrus (STG), and
fromhere to the inferior frontal gyrus (IFG) (Fig. 4A). Backward connec-
tions ensured recurrent extrinsic connections, with top-down inputs
from IFG to STG and STG to HG. The source location priors were based
on (Moran et al., 2014) as follows: left HG: x = −42, y = −22, z =
7; right HG: x = 46, y = −14, z = 8; left STG: x = −61, y = −32,
Fig. 2. Sensor level responses to auditory tones. A. Grand averaged event related fields from the
tials are recordedover temporal (inset) and frontal sites for infrequent deviant tones (ERF in gre
grand-averaged control data (defined as absolute deviationsN 0.1 pF)were identified for both pa
the maximum difference, illustrated in white) for the standard and deviant tones separately,
panels. For Patient 1, bilateral differences were observed over temporal and posterior sites aro
extended to frontal regions and were dispersed across the trial for both stimulation types. C. B
patients exhibit differences between standard and deviant event-related responses andwere he
were detrended using a first order discrete cosine transform.
z = 8; right STG: x = 59, y = −25, z = 8; left IFG: x = −46, y = 20,
z = 8; and right IFG: x = 46, y = 20, z = 8.

For our DCManalyses,MEG sensor datawere fitted over 1–250msec
peristimulus time. For computation efficiency, DCMs were computed
using each individual's sensor data projected using dimensionality re-
duction to the eight principal modes of a singular value decomposition
of the data covariance, to identify the patterns with the greatest prior
covariance given the leadfield and source locations. This dimensionality
reduction is standard in DCM for electrophysiology (cf (Litvak et al.,
2011; Moran et al., 2014)). DCM optimizes a posterior density over
free parameters (parameterized by its mean and covariance) via a stan-
dard variational Bayesian inversion procedure (Friston et al., 2007). In
this application, we were particularly interested in the posterior esti-
mates of channel-specific scale parameters and firing precision as
proxy for presynaptic calcium.

In order to accommodate both standard and deviant conditions,
we allowed for modulatory effects on all extrinsic connections
(i.e., forward connections and backward connections). This has pre-
viously been shown to characterize the differences in source re-
sponses between standard and deviant tones (Garrido et al., 2007).
These are often the parameters of interest in DCM studies, however
here we were interested in the common neural physiology underly-
ing both conditions (i.e., the weights of each channel on each
source).
control group illustrate themismatch negativity effect. Specifically, larger negative poten-
en) compared to responses to frequent standard tones (ERF in blue). B. Deviations from the
tients. Differences (greater than 0.1 pF) are plotted from0 to 1 in gray scale (normalized to
with topological effects illustrated in the bottom panel and temporal effects in the upper
und 100 msec with extended differences for deviant tones. For Patient 2 bilateral effects
utterfly plots – that show responses over all the sensors – demonstrate that controls and
ncemodeled as separate trials in the DCM, following (Moran et al., 2014). These responses
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To identify parameter starting estimates, an initial DCM optimiza-
tion was performed for 188 control recording sessions (94 control
subjects — with 2 recording sessions). These posterior values were
then used to compute the average conditional means across control
subjects. This average was then used to initialize a second set of
optimizations for the estimation of 192 subject-specific DCMs (188 ses-
sions for control subjects, 4 sessions for channelopathy patients). This
initialization ensured that the parameter estimate search began in the
same part of parameter space for both patients and controls, and gave
initial estimates appropriate to the MMN task.

We then examined the mean and variance of the estimated channel
parameters. In particular, we focused on six parameters: AMPA
receptor-mediated postsynaptic sodium connectivity (αNA), NMDA
receptor-mediated postsynaptic calcium and sodium (αCA/NA), GABAA

receptor-mediated postsynaptic chloride (αCl), postsynaptic potassium
leak (αKL), postsynaptic inward-rectifying potassium (αKIR), and presyn-
aptic calcium (ω). We hypothesized that Patient 1 (K+) would show a
decrease in themeanposterior estimates of the inward-rectifying potas-
sium channel and/or potassium leak, compared to the control cohort es-
timates and that Patient 2 (Ca2+) would show a decrease in the mean
posterior estimate of their presynaptic calcium channel.
Fig. 3. Source localized event related responses. An inverse solution constrained via a multiple s
sites for both trial types. Illustrated here are theMIPs (maximum intensity projection images fro
was explained for both trial types using a 512-dipole mesh. For Patient 2, 95% of the sensor da
Results

Mismatch negativity results

At the MEG sensor level, we examined evoked responses to MMN
standard and deviant tones to assess whether our DCM analysis was in-
formed by an appropriate amount of experimental variance (Fig. 2).
Grand-averaged data from the control cohort revealed typical differ-
ences between evoked responses to standard and deviant tones, with
larger negative responses to deviant tones, maximal from 100–
150 msec (Fig. 2A). Topographically, these effects were pronounced
around temporal and frontal sensors bilaterally (Fig. 2A). Differences
in these responses (defined as absolute deviations N 0.1 pF), between
patients and controls were investigated in terms of topographic and
temporal effects. Thesewere found bilaterally atmid-temporal and pos-
terior sensors for Patient 1 (K+) (Fig. 2B), with these effects centered on
100 msec and larger for deviant trials (Fig. 2B), with late effects ob-
served in the deviant condition (Fig. 2B). Patient 2 (Ca2+) exhibited
similar differences focused at mid-temporal and frontal sensors, having
more distributed differences temporally, with differential responses in
both standard and deviant trials from 200–250 msec (Fig. 2B). In
parse priors identified bilateral sources of activity in both patients at temporal and frontal
m each subject at 100msec). For Patient 1, 96% of the sensor data variance (jet-scale insert)
ta was explained for both trial types using a 512-dipole mesh.
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both patients and controls, differences were observed between stan-
dard and deviant tones (Fig. 2C), which were modeled as separate con-
ditions in the DCM. In Patient 1 (K+) these differences were seen early
(~50 msec), mid (~150 msec) and later (~250 msec) in the trial,
while in Patient 2 (Ca2+) pronounced differences were observed in
mid and later evoked components (Fig. 2C).
Source localization and source dynamics

To confirm that patient sources were commensurate with
neurotypical responses (Moran et al., 2014), we performed a source lo-
calization analysis on each patient and condition (i.e., standard/deviant)
individually (Fig. 3). This inverse solution produces probabilistic esti-
mates of activity on a cortical mesh. Consistent with responses in nor-
mal controls (Garrido et al., 2008), sources for both patients were
obtained in bilateral temporal and inferior frontal regions. Fig. 3 pre-
sents a maximum intensity projection (MIP) image for each patient
and each trial for activity at 100 msec. Here, for all 4 inverse solutions,
a forward mapping to sensor space explained N95% of variance in mea-
sured data. Given appropriate source activity, we then proceededwith a
Fig. 4. Fig. 4 optimized dynamic causal models. A. The event related fields were modeled in sou
bilateral superior temporal gyrus (STG), and bilateral inferior frontal gyrus (IFG). Sources were
ward connections from IFG to STG and STG to HGwithin-hemisphere. B. Two dimensional ima
(spm/toolbox/dcm_meeg/spm_dcm_erp_data.m), i.e., we removed the first component of a di
panels are the optimized DCM-based fits. The model recapitulated the topography and tempor
six-source DCM, comprising bilateral primary, secondary and inferior
frontal regions (Fig. 4A).

From the optimized DCMs we examined the MMN response in each
source (not shown). Across cell populations (i.e., excitatory spiny stel-
late, inhibitory interneuron, and excitatory pyramidal cells), there
were no differences in the response properties to standard and oddball
tones in primary auditory cortex. Consistent with previous source anal-
yses of theMMN (Garrido et al., 2008; Moran et al., 2014), both left and
right A1 showed robust responses to auditory stimuli beginning at ap-
proximately 50 msec post onset, peaking at approximately 65 msec
post-onset. Within bilateral STG and IFG we found signature MMN re-
sponses (i.e., larger amplitude responses to oddball compared with
standard tones) across cell population types. Bilateral STG showed ro-
bust responses to both standard and deviant tones beginning at approx-
imately 70 msec post-onset, peaking at approximately 100 msec post-
onset. Bilateral IFG followed a pattern similar to STG, though with a
later onset of approximately 100 msec post-onset, peaking at approxi-
mately 150msec post-onset. This patternwas consistent across patients
and controls, suggesting that the DCMs captured the dynamic response
properties of neuronal populations for patients across sources in the au-
ditory hierarchy.
rce space using a DCM that comprised 6 sources. These were bilateral Heschl's gyrus (HG),
connected reciprocally with forward connections fromHG to STG and STG to IFG and back-
ges representing the sensor based data. Data are adjusted using SPM's standard confounds
screte cosine transform basis set, effectively mean correcting the sensor data. On the right
al features in each patient's trial-specific response.
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Optimized DCMs

The goodness of our model fits were assessed in terms of percent
variance explained. Specifically, we tested the variance explained of
our 8-mode, reduced data space. These model fits ranged from 25.5%
to 98.1% for control subjects, with an average of 83.2% of the variance
explained. Patient 1 hadfits of 94.9% and94.6%of the variance explained
for runs 1 and 2 respectively, while patient 2 had fits of 71.1% and 82.9%
respectively. In short, the DCMs, recapitulated both healthy and dis-
eased responses using themodel described above, with an average per-
cent variance explained amongst controls of 83.2% (SD = 0.1%) and
patients of 85.8% (SD=11.31%). In Fig. 4B we show the fits to empirical
sensor-level data for the patients. These data were corrected using
SPM's default detrend option, which applies a mean correction. Given
the poorer fit of session 1 for patient 2 (71.1%), we elected to remove
this session from further analysis. Thus, for patient 1 and controls we
used between-session mean and variance estimates for further analy-
ses, while for patient 2 we used single-session mean and variance esti-
mates for further analyses.

DCM estimates a multivariate (Gaussian) posterior density over free
parameters, fromwhichwe harvested both the posteriormean and var-
iance of those ion channel parameters of interest — from both patients
and from all control datasets. These included (log scale) parameters
that controlled the relative influence of each individual ion channel on
postsynaptic membrane depolarization, including an glutamatergic
(AMPA)-mediated sodium channel: αNA, a GABAergic (GABAA)-
mediated chloride channel: αCl, an NMDA-mediated sodium/calcium
channel: αCA/NA, a leaky potassium channel αKL, and an inward-
rectifying potassium channel αKIR (Fig. 1C). We also examined the pre-
synaptic calcium parameter, ω.

Using these parameters of interest, we quantified the within-subject
stability of controls' parameter estimates from session 1 to session 2
using the intraclass correlation coefficient (ICC). The ICC describes how
strongly two measurements in the same grouping (here, within-subject
parameter estimates) resemble each other. Therefore, we directly com-
pared session 1 and session 2 parameter estimates. To control for outliers,
we measured the maximum posterior covariances between our six pa-
rameters of interest and all of the remaining parameters individually.
We then removed control subjects whose DCM estimates showed high
covariance between the parameter of interest and all other parameters,
retaining 90% of control participants' data. Using this criterion, reliable pa-
rameter estimates from session 1 to session 2 were found for both the
presynaptic calcium (r = 0.29, F = 1.8, p b 0.01) and leaky potassium
(r = 0.31, F = 1.91, p b 0.01) parameters. In addition, the inward-
rectifying potassium parameter estimate was found to be reliable from
session 1 to 2 using a less stringent criterion (r = 0.18, F = 1.44, p =
0.05). The receptor-mediated parameters demonstrated lower between-
session stability measures (AMPA-mediated sodium parameter: r =
0.05, F = 1.11, p = 0.12; GABAA-mediated chloride parameter: r =
0.14, F = 1.33, p = 0.12; NMDA-mediated sodium/calcium parameter:
r = 0.144, F = 1.34, p = 0.11). These findings suggest moderate to high
levels of consistency between sessions for our control group.

Having established the accuracy of DCM estimates, we then ad-
dressed our hypotheses from two points of view. First, we askedwheth-
er there were any significant differences between the two patients and
the control group using classical inference at the between-subject level.
Second, we asked the more pragmatic question of whether the param-
eter estimates from DCM could be used to classify the patients based
upon their known pathophysiology (i.e., Patient 1: K+ postsynaptic
inward-rectifying ion channel mutation; Patient 2: presynaptic Ca2+

ion channel mutation).

Detecting pathology

Our first analysis used the standard summary statistic approach to
summarize each participant with the posterior expectations of the
parameters of interest (coefficients scaling channel-specific dynamics:αNA, αCl, αCA/NA, αKL, αKIR, ω, Fig. 1C). To do this, we averaged the pa-
rameter estimates over both sessions (to remove within-subject vari-
ance) and used canonical variates analysis (CVA) to test the null
hypothesis that the parameter estimates from the patients and control
group were drawn from the same distribution. CVA can be thought of
as a simple extension of ANOVA that accommodates multivariate re-
sponse variables; here, the six parameters of interest. Our explanatory
variables (or design matrix) included the patient effect relative to the
controls, and an average control effect. The significance of differences
between patient and control group were assessed for each patient sep-
arately using the appropriate transform of Wilks Lambda. Differences
between the patient and group were tested with an F contrast. This
analysis identified two significant canonical variates, confirming a
multi-dimensional independence between the control group and pa-
tients (Patient 1: r = 0.96, p b 0.01; Patient 2: r = 0.96, p b 0.01),
i.e., they were not drawn from the same distribution. As a first pass,
these findings suggest that the DCMparameter estimates vary between
patients and control participants, suggesting unusual signaling dynam-
ics for our two patients.

Having determined that the six estimated parameters of interest
varied between patients and controls,we then tested specificity for con-
trol data across channels using a leave-one-out cross-validation, where
a control parameter was removed from the average density and com-
pared to the average density from the remaining participants. This anal-
ysis allowed us to determinewhether specific channels within our large
control sample could be classified as exhibiting unusual ion channel pa-
rameter estimates. At a threshold of P N 0.90 probable difference level,
this procedure yielded a true negative rate of 95.7% for rectifying potas-
sium and 93.6% for our assay of presynaptic calcium. In addition, speci-
ficity was tested for the receptor systems of non-assayed channels, and
returned a true negative rate of 89.3% for leaky potassium, 96.8% for the
NMDA receptor-mediated sodium/calcium channel, 94.6% for the AMPA
receptor-mediated sodium channel, and 94.6% for the GABAA receptor-
mediated chloride channel. Thus, this analysis suggests high specificity
rates for detecting negative results in our control group using the poste-
rior estimates from our parameters of interest.

Detecting specific channel mutations

We then asked how sensitive the patient estimates from the param-
eters of interest were in detecting aberrant dynamics. Specifically we
computed the average control probability density and compared this
to the conditional density from each patient separately. We used the
non-overlapping probability density to quantify the difference in pa-
rameter estimates. Here, we successfully identified a mutated potassi-
um channel – the leak potassium channel (αKL) – as abnormal in
Patient 1 with a sensitivity of 100%. In addition to this channel, the
test also showed abnormality in the AMPA receptor-mediated sodium
channel (αNA) and the presynaptic calcium channel (ω). No other chan-
nels showed sensitivity differences for Patient 1. For Patient 2, this same
analysis did not identify abnormal parameter estimates in the mutated
presynaptic calcium channel, however the GABAA receptor-mediated
channel parameter estimates (αCl) were identified as abnormal. No
other channels showed sensitivity differences for Patient 2. These find-
ings suggest that the DCMparameter estimates alone point to abnormal
ion channel signaling dynamics in both patients. Though there is a
stronger case for identification of the pathological channel in Patient 1
than Patient 2, Patient 2 exhibited enhanced hyperpolarizing currents,
consistent with reduced synaptic transmission characteristic of this
mutation's physiological effect (Pietrobon, 2005). Importantly, Patient
1 had a mutation in their postsynaptic channel, and these dynamics
are modeled to a much greater extent than presynaptic dynamics
(Fig. 1C). For our analysis, we used a measure of afferent firing variance
as a proxy for presynaptic calcium. However, we did not add a specific
ion channel denoting presynaptic calcium to our model. This might
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account for the lack of identification of presynaptic calcium signaling
difficulties for Patient 2, though the test did identify differences in at
least one ion channel.

Diagnostic implementation

As a further analysis strategy, we addressed the utility of the param-
eter estimates in classifying patients. Although we only had one patient
diagnosed with mutations in each ion channel, it was possible to con-
struct receiver–operator curves characterizing the sensitivity and spec-
ificity of classification. For this we constructed a control average
Gaussian probability density function using the overall subject mean
and between-subject variability as themean and variance of the control
group respectively. For the patients we used the average within-subject
variability from the controls (i.e., variance between the two sessions) as
a measure of patient variance, along with the estimated patient mean.
These are illustrated for controls versus Patient 1 in Fig. 5A and for con-
trols versus Patient 2 in Fig. 6A.We then computed a receiver operating
characteristic (ROC) for the postsynaptic potassium leak parameter,αKL, as well as for the presynaptic calcium parameter, ω. In other
words, we examined sensitivity and specificity for mutated parameter
estimates using a decision threshold from the midpoint of controls ver-
sus patients and scaled the decision threshold from one tenth to twice
Fig. 5. Patient 1 (K+) vs. Controls, DCM conditional parameter estimates. A. DCM channel estim
computed using the overall subject mean and between-subject variability as the mean and va
the average estimate of Patient 1, where the patient PDF used the averagewithin-subject variab
demonstrating the sensitivity and specificity of the test on the potassium leak parameter. By alte
twice this value), the area under the curve (AUC) was found to be 0.94. C. Ellipsoids (Bayesian
sodium,NMDAmediated sodium/calcium and leak potassium) from eachDCMwith Patient 1 (K
the negative side of the potassium channel axis (red).
this value (Johnson, 2004). The resulting ROC curves were summarized
with their area under the curve (AUC). A value of 1 means perfect sen-
sitivity for all levels of specificity, while a value of a half represents a
poor test where sensitivity is equal to specificity. The ability of eachmu-
tated ion channel parameter to discriminate between patients and con-
trols was assessed separately. For Patient 1 compared to controls, the
leaky potassium parameter αKL, produced an AUC of 0.94 (Fig. 5B) and
for Patient 2 compared to controls, the presynaptic calcium parameter
estimate ω produced an AUC = 0.76 (Fig. 6B). Clearly, these analyses
do not represent a true cross-validation (because we only had one pa-
tient for each patient group); however they represent a quantitative as-
sessment of the classification performance that could, in principle, be
obtained given the within and between-subject variances in parameter
estimates.

In order to illustrate the selective nature of these parameter differ-
ences, we plotted the Bayesian confidence interval (posterior mean
plus and minus one standard deviation) as an ellipsoid for three ion
channel parameters for every control session set and for each patient
(Figs. 5C, 6C). As shown in Figs. 5C and 6C, the patients can be seen as
outliers along the potassium dimension for Patient 1 (αKL) (red ellip-
soid, Fig. 5C) and along the chloride/presynaptic calcium dimensions
for Patient 2 (αCl/ω) (green ellipsoid, Fig. 6C). The ellipsoid plot for Pa-
tient 1 clearly demonstrates that their leaky potassium parameter
ates: illustrated are the controls' average Gaussian probability density function (PDF) —
riance of the control group respectively. Individual channel estimates are plotted against
ility from the controls as ameasure of patient variance. B. Receiver operating characteristic
ring the decision threshold from themidpoint of the populationmeans (from one-tenth to
confidence regions) drawn to represent three posterior channel weights (AMPAmediated
+) in red. Consistent with the average probability statistic in A, the patient is an outlier on



Fig. 6. Patient 2 (Ca2+) vs. Controls, DCM conditional parameter estimates. A. As in Fig. 5, we compared the average probability density across channel parameters from the control cohort
(dashed lines) to the second calcium channelopathy patient with a presynaptic calciummutation (full lines). B. Receiver operating characteristic demonstrating the sensitivity and spec-
ificity of the test on the presynaptic calcium channel parameter with an AUC = 0.76. C. Ellipsoids (Bayesian confidence intervals) drawn to represent three posterior channel weights
(AMPA-mediated sodium, GABA-mediated chloride and presynaptic calcium) from each DCM with Patient 2 (Ca2+) identified in green. This patient was classified as abnormal along
the chloride channel dimension.
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estimate represents anoutlier from controls. The ellipsoid plot of Patient
2 also demonstrates that their GABAA-mediated chloride parameter es-
timate is an outlier, while their presynaptic calcium parameter estimate
lies in the negative quartile.

Discussion

These results demonstrate that biophysicalmodels of synaptic chan-
nels can be estimated using non-invasivemagnetoencephalographic re-
sponses to simple auditory stimuli. Moreover these DCM results
highlight that the model of synaptic activity has validity in relation to
underlying neurobiological processes, with abnormal posterior ranges
identified for ion channels concordant with genetic mutations in two
patients with distinct channelopathies.

At present, the diagnosis, prognosis and treatment of ion channelop-
athies is impeded by the phenotypic heterogeneity of disease
manifestation, the necessity of a high degree of clinical suspicion,
and significant time delays associated with confirming test results
(Cannon, 2006; Hanna, 2006; Kullmann, 2010). In addition, mounting
evidence points to the likelihood that polygenic channel dysfunction
underlies disorders considered until now idiopathic (Cannon, 2006;
Hanna, 2006). Finally, autoimmune channelopathies, a special case
of acquired channelopathies, can present with diverse clinical symp-
toms, including encephalitis accompanied by psychiatric symptoms
(Gable et al., 2009), sleep disturbances (Tsutsui et al., 2012), and even
memory impairments (Shimazaki et al., 2007). These diverse clinical
presentations render it desirable for clinicians to have an inexpensive
tool — offering a first-pass means of narrowing the range of diagnoses
or directing genetic sequencing efforts. The developments presented
here offer promise for such an assay, given that mismatch auditory
responses are easily observed in EEG data, collected routinely in
clinical settings. Importantly, DCMswith similar ion channel parameter-
ization and regional distribution have previously been applied and
tested using EEG-generated auditory evoked responses (Boly et al.,
2011). Such an in vivo strategy would also aid in clinical diagnosis
by providing a functional assay which incorporates putative compensa-
tory and environmental interactions with the underlying channel
dysfunction.

DCM is a modeling framework that provides a mechanistic estima-
tion of how measured signals (here, cortical electrophysiological) are
generated. To date, clinical assessments of channelopathies in vivo
have focused on peripheral electrophysiological abnormalities
measured using electromyography and nerve conduction analysis
(Tomlinson et al., 2009). Motivated by epilepsy coincidence, the EEG
has also been characterized as abnormal in patients similar to our Pa-
tient 2, with mutations in CACNA1A gene, where mixed patterns of
slowing and spike andwave activity have been observed in scalp poten-
tials (Chan et al., 2008). Our approach differs from these analyses by
eschewing examination of morphological characteristics of patient
data directly. Indeed, our findings demonstrate that sensor and
source-level evoked responses show a characteristic MMN response to
standard and deviant tones in patients as well as controls. However
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DCMmodels thewaveform in its entirety, and does not rest on topolog-
ical or trial differences. Rather a full generativemodel – designed to cap-
ture contributions from different ion channels with distinct time
constants and voltage or neurotransmitter gating— is applied to explain
multichannel responses over all peristimulus time.

The models we apply have been motivated by in vitro characteriza-
tions of neuronal channel dynamics. As proof-of-principle that DCM can
identify abnormal dynamicswith some channel specificity, we have ap-
plied an augmented neural mass model to patients with known ion
channel signaling dysfunction. Previous in vitro characterizations of
cells with mutated channels have demonstrated a net loss of function
associatedwith presynaptic calcium and potassium channel genemuta-
tions, leading to impaired high-frequency spiking (Plomp et al., 2009)
and impaired repolarization respectively (Jongsma and Wilders,
2001). Importantly, given just ERFs collected fromnon-invasive electro-
physiological recordings ourmodels identify probabilistic abnormalities
in estimated parameters encoding these types of cellular mechanisms.
While demonstrating exact specificity of the DCM channel estimates
will require larger samples, our results demonstrate that different syn-
aptic parameters are associated with distinct mutations in a direction
commensuratewithphysiological effectsmeasured in vitro. Interesting-
ly in Patient 1, our model identified abnormality in the leak potassium
(KL) rather than the rectifying potassium channel (KIR). However, func-
tionally both channels operate with the same basic I–V characteristic
and with identical reversal potentials but with KIR exhibiting higher
conductance than KL at highly hyperpolarized states (Shen et al.,
2007). Our choice of dynamic parameterization — which gated this
KIR channel to operate only at hyperpolarized states (Fig. 1C), may ac-
count for this apparent discrepancy since ourmodel weighted contribu-
tions from only leak potassium at depolarization above −75 mV. Put
another way, it is likely that both channels have highly similar dynamic
characteristics in the voltage range excited by our task, and perhaps
cannot be dissociated by the DCM (Shen et al., 2007).

While our model of rectifying potassium may be slightly over-
constrained, our model's parameterization of presynaptic calcium
is most likely under-constrained. This is reflected in its poor perfor-
mance in terms of diagnostic sensitivity and specificity. Previous
work has shown that this parameter can produce profound effects
on the characteristics of an evoked response (Moran et al., 2011a)
and is also likely to reflect activity of other ‘gain control’mechanisms
like classical neuromodulatory effects at cholinergic receptors
(Moran et al., 2013b). We used the afferent firing variance in our
DCM model as a proxy for a measure of presynaptic calcium, and
we assumed that highly synchronized values presynaptically would
scale linearly with the amount of presynaptic calcium. However,
our results indicate that this measure did not show sensitivity in Pa-
tient 2. Thus, our model would benefit from more constraints pre-
synaptically, in order to accurately reflect specific ion channel
signaling dynamics of the presynaptic membrane. However the
physiological loss-of-function seen in genetic CACNA1A knock-out
animals is commensurate with the postsynaptic channel effect we
observed in this patient (Pietrobon, 2005).

In terms of a clinically pragmatic diagnostic test, we tested two
6-minute sessions from each patient. This was important given that
one session in Patient 2 produced poor model fits (~70% variance ex-
plained). However, considering an either/or approach, at least one ses-
sion was optimized to levels consistent with those of control DCMs,
suggesting there was no bias in model fits due to ion channel signaling
differences between groups. Overall, these findings indicate DCM offers
an effective tool for determining specific postsynaptic ion channel sig-
naling deficits in vivo, and that more constraints on presynaptic ion
channel signaling could lead to a similarly precise measurement. It is
important to note that we have modeled pathological ion channel sig-
naling using patients with known genetic defects in specified ion chan-
nels. It remains to be seen whether our assay could be applied to
patients with potentially unknown ion channel signaling pathology
and whether the type of DCMs presented here could be used to identify
the underlying abnormalities. For example, heterogeneous channel dys-
function is hypothesized to underlie a range of psychiatric and neuro-
logical disorders as diverse as schizophrenia (Jardri and Deneve, 2013)
and migraine (Chan et al., 2008). Recent research has applied DCM to
measure the role of systemic excitatory and inhibitory intrinsic connec-
tivity in seizures related to NMDA-receptor encephalitis (Cooray et al.,
2015). In this autoimmune disorder, symptoms of psychosis often pre-
cede seizure activity. However, diagnosis via EEG using traditional met-
rics does not provide the specificity of a DCM-type investigation. It is
conceivable that the type of analysis we demonstrate here could be ap-
plied in an ambulatory setting, to test for a pathological antibody cause.
In this vein, research using DCM for electrophysiology has begun to ex-
plore the role of NMDA and cholinergic channel dysfunction in the de-
velopment of schizophrenia using a ketamine model in both animal
(Moran et al., 2015) and human (Moran et al., 2015; Schmidt et al.,
2012; Schmidt et al., 2013) studies. These studies converge on altered
plasticity mechanisms related to NMDA receptor activity, and further
suggest an aberrancy (hyperexcitability) of fast synaptic responses
that may impede learning. Together these studies demonstrate two ad-
vantages of DCM. First, they hold promise for uncovering unknown
channel pathology in complex diseases. Second, they provide a platform
where animal studies can be complementedwith human investigations
using identical analysis and parametric frameworks. Given the high sen-
sitivity and specificity found here, we are optimistic that the models of
synaptic function can be combined with more developed model com-
parisons to quantify subtle differences in the synaptic effectors of a par-
ticular clinical patient presentation. For example, we envision that the
parameter setting identified in our control population could serve as a
new set of prior parameters for DCM and that single or multiple param-
eter differences from normal could be tested using Bayesian model
comparison and reduced model space.

We have illustrated how a biophysically informed analysis like DCM
allows for the characterization of recorded signals, in terms of clinically
meaningful model parameters, with representations of specific ion
channels that mediate neuronal dynamics (Moran et al., 2011c). While
we know that ‘ground truth’ in EEG andMEGare those data recorded di-
rectly from electrodes and sensors, a neural mass model analysis like
DCM allows a richer characterization of the recorded signal, with repre-
sentations of specific ion species and the channels by which they sub-
serve neural communication (Moran et al., 2011b). Interrogating data
with highly constrained models thus allows an efficient estimation of
key model parameters that are potentially very useful in a clinical
setting — i.e., parameters that can be linked mechanistically to known
pathophysiological mechanisms. In conclusion, the refinement of
model parameters of ion channel dynamics in DCM for electrophysiolo-
gy could ultimately lead to the use of EEG or MEG measurements as a
novel adjunct in the treatment of patients with suspected ion channel
dysfunction.
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