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Abstract

Neural network ensemble is a learning paradigm where many neural networks are jointly used
to solve a problem. In this paper, the relationship between the ensemble and its component neural
networks is analyzed from the context of both regression and classification, which reveals that it may
be better to ensemble many instead of all of the neural networks at hand. This result is interesting
because at present, most approaches ensemble all the available neural networks for prediction. Then,
in order to show that the appropriate neural networks for composing an ensemble can be effectively
selected from a set of available neural networks, an approach named GASEN is presented. GASEN
trains a number of neural networks at first. Then it assigns random weights to those networks and
employs genetic algorithm to evolve the weights so that they can characterize to some extent the
fitness of the neural networks in constituting an ensemble. Finally it selects some neural networks
based on the evolved weights to make up the ensemble. A large empirical study shows that, compared
with some popular ensemble approaches such as Bagging and Boosting, GASEN can generate neural
network ensembles with far smaller sizes but stronger generalization ability. Furthermore, in order
to understand the working mechanism of GASEN, the bias-variance decomposition of the error is
provided in this paper, which shows that the success of GASEN may lie in that it can significantly
reduce the bias as well as the variance.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Neural network ensemble is a learning paradigm where a collection of a finite number
of neural networks is trained for the same task [42]. It originates from Hansen and Salam-
on’s work [20], which shows that the generalization ability of a neural network system can
be significantly improved through ensembling a number of neural networks, i.e., training
many neural networks and then combining their predictions. Since this technology behaves
remarkably well, recently it has become a very hot topic in both neural networks and ma-
chine learning communities [40], and has already been successfully applied to diversified
areas such as face recognition [16,22], optical character recognition [9,19,30], scientific
image analysis [5], medical diagnosis [6,47], seismic signals classification [41], etc.

In general, a neural network ensemble is constructed in two steps, i.e., training a number
of component neural networks and then combining the component predictions.

As for training component neural networks, the most prevailing approaches are Bagging
and Boosting. Bagging is proposed by Breiman [3] based on bootstrap sampling [10].
It generates several training sets from the original training set and then trains a
component neural network from each of those training sets. Boosting is proposed by
Schapire [39] and improved by Freund et al. [11,12]. It generates a series of component
neural networks whose training sets are determined by the performance of former
ones. Training instances that are wrongly predicted by former networks will play more
important roles in the training of later networks. There are also many other approaches
for training the component neural networks. Examples are as follows. Hampshire and
Waibel [17] utilize different object functions to train distinct component neural networks.
Cherkauer [5] trains component networks with different number of hidden units. Maclin
and Shavlik [29] initialize component networks at different points in the weight space.
Krogh and Vedelsby [28] employ cross-validation to create component networks. Opitz
and Shavlik [34] exploit genetic algorithm to train diverse knowledge based component
networks. Yao and Liu [46] regard all the individuals in an evolved population of neural
networks as component networks.

As for combining the predictions of component neural networks, the most prevailing
approaches are plurality voting or majority voting [20] for classification tasks, and simple
averaging [33] or weighted averaging [35] for regression tasks. There are also many
other approaches for combining predictions. Examples are as follows. Wolpert [45]
utilizes learning systems to combine component predictions. Merz and Pazzani [31]
employs principal component regression to determine the appropriate constraint for the
weights of the component networks in combining their predictions. Jimenez [24] uses
dynamic weights determined by the confidence of the component networks to combine the
predictions. Ueda [43] exploits optimal linear weights to combine component predictions
based on statistical pattern recognition theory.

Note that there are some approaches using a number of neural networks to accomplish
a task in the style of divide-and-conquer [23,25]. However, in those approaches, the neural
networks are in fact trained for different subtasks instead of for the same task, which makes
those approaches usually be categorized into mixture of experts instead of ensembles, and
the discussion of them is beyond the scope of this paper.



Z.-H. Zhou et al. / Artificial Intelligence 137 (2002) 239–263 241

It is worth mentioning that when a number of neural networks are available, at present
most ensemble approaches employ all of those networks to constitute an ensemble. Yet the
goodness of such a process has not been formally proved. In this paper, from the viewpoint
of prediction, i.e., regression and classification, the relationship between the ensemble and
its component neural networks is analyzed, which reveals that ensembling many of the
available neural networks may be better than ensembling all of those networks. Then,
in order to show that those “many” neural networks can be effectively selected from a
number of available neural networks, an approach named GASEN (Genetic Algorithm
based Selective ENsemble) is presented. This approach selects some neural networks to
constitute an ensemble according to some evolved weights that could characterize the
fitness of including the networks in the ensemble. An empirical study on twenty big
data sets show that in most cases, the performance of the neural network ensembles
generated by GASEN outperform those generated by some popular ensemble approaches
such as Bagging and Boosting in that GASEN utilizes far less component neural networks
but achieves stronger generalization ability. Moreover, this paper employs the bias-
variance decomposition to analyze the empirical results, which shows that the success
of GASEN may owe to its ability of significantly reducing the bias along with the
variance.

The rest of this paper is organized as follows. In Section 2, the relationship between
the ensemble and its component neural networks is analyzed. In Section 3, GASEN is
presented. In Section 4, a large empirical study is reported. In Section 5, the bias-variance
decomposition of the error is provided. Finally in Section 6, contributions of this paper are
summarized and several issues for future works are indicated.

2. Should we ensemble all the neural networks?

In order to know whether it is a good choice to ensemble all the available neural
networks, this section analyzes the relationship between the ensemble and its component
neural networks. Note that since regression and classification have distinct characteristics,
the analyses are separated into two subsections.

2.1. Regression

Suppose the task is to use an ensemble comprising N component neural networks to
approximate a function f : Rm → R

n, and the predictions of the component networks are
combined through weighted averaging where a weight wi (i = 1,2, . . . ,N ) satisfying both
Eqs. (1) and (2) is assigned to the ith component network fi

0 �wi � 1, (1)

N∑
i=1

wi = 1. (2)
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The lth output variable of the ensemble is determined according to Eq. (3) where fi,l is
the lth output variable of the ith component network

f̂l =
N∑
i=1

wifi,l . (3)

For convenience of discussion, here we assume that each component neural network
has only one output variable, i.e., the function to be approximated is f : Rm → R. But note
that the following derivation can be easily generalized to situations where each component
neural network has more than one output variables.

Now suppose x ∈ R
m is sampled according to a distribution p(x), the expected output

of x is d(x), and the actual output of the ith component neural network is fi(x). Then the
output of the ensemble on x is:

f̂ (x)=
N∑
i=1

wifi(x). (4)

The generalization error Ei (x) of the ith component neural network on x and the
generalization error Ê(x) of the ensemble on x are respectively:

Ei(x)= (
fi(x)− d(x)

)2
, (5)

Ê(x)= (
f̂ (x)− d(x)

)2
. (6)

Then the generalization error of the ith component neural network and that of the
ensemble, i.e., Ei and Ê , on the distribution p(x) are respectively:

Ei =
∫

dx p(x)Ei(x), (7)

Ê =
∫

dx p(x)Ê(x). (8)

Now we define the correlation between the ith and the j th component neural networks
as:

Cij =
∫

dx p(x)
(
fi(x)− d(x)

)(
fj (x)− d(x)

)
. (9)

It is obvious that Cij satisfies both Eqs. (10) and (11):

Cii =Ei, (10)

Cij = Cji . (11)

Considering Eqs. (4) and (6) we get:

Ê(x)=
(

N∑
i=1

wifi(x)− d(x)

)(
N∑
j=1

wjfj (x)− d(x)

)
. (12)

Then considering Eqs. (8), (9), and (12) we get:

Ê =
N∑
i=1

N∑
j=1

wiwjCij . (13)
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For convenience of discussion, here we assume that all the component neural networks
have equal weights, i.e., wi = 1/N (i = 1, 2, . . . , N ). In other words, here we assume that
the component predictions are combined via simple averaging. Then Eq. (13) becomes:

Ê =
N∑
i=1

N∑
j=1

Cij /N
2. (14)

Now suppose that the kth component neural network is excluded from the ensemble.
Then the generalization error of the new ensemble is:

Ê′ =
N∑
i=1
i �=k

N∑
j=1
j �=k

Cij / (N − 1)2 . (15)

From Eqs. (14) and (15) we can derive that if Eq. (16) is satisfied then Ê is not smaller
than Ê′ , which means that the ensemble excluding the kth component neural network is
better than the one including the kth component neural network

Ê �
(

2
N∑
i=1
i �=k

Cik +Ek

)/
(2N − 1). (16)

Then considering Eq. (16) along with Eq. (14), we get the constraint on the kth
component neural network that should be excluded from the ensemble:

(2N − 1)
N∑
i=1

N∑
j=1

Cij � 2N2
N∑
i=1
i �=k

Cik +N2Ek. (17)

It is obvious that there are cases where Eq. (17) is satisfied. For an extreme example,
when all the component neural networks are the duplication of the same neural network,
Eq. (17) indicates that the size of the ensemble can be reduced without sacrificing the
generalization ability.

Now we reach the conclusion that in the context of regression, when a number of neural
networks are available, ensembling many of them may be better than ensembling all of
them, and the networks that should be excluded from the ensemble satisfy Eq. (17).

2.2. Classification

Suppose the task is to use an ensemble comprising N component neural networks to
approximate a function f : Rm → L where L is the set of class labels, and the predictions
of the component networks are combined through majority voting where each component
network votes for a class and the class label receiving the most number of votes is regarded
as the output of the ensemble. For convenience of discussion, here we assume that L
contains only two class labels, i.e., the function to be approximated is f : Rm → {−1,+1}.1

1 The set of two class labels are often denoted as {0,1}. However, using {−1,+1} here is more helpful for
following derivation.
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But note that the following derivation can also be generalized to situations where L
contains more than two class labels.

Now suppose there are m instances, the expected output, i.e., D, on those instances
is [d1, d2, . . . , dm]T where dj denotes the expected output on the j th instance, and
the actual output of the ith component neural network, i.e., fi , on those instances is
[fi1, fi2, . . . , fim]T where fij denotes the actual output of the ith component network on
the j th instance. D and fi satisfy that dj ∈ {−1,+1} (j = 1,2, . . . ,m) and fij ∈ {−1,+1}
(i = 1,2, . . . ,N; j = 1,2, . . . ,m) respectively. It is obvious that if the actual output of the
ith component network on the j th instance is correct according to the expected output then
fij dj = +1, otherwise fij dj = −1. Thus the generalization error of the ith component
neural network on those m instances is:

Ei = 1

m

m∑
j=1

Error(fij dj ), (18)

where Error(x) is a function defined as:

Error(x)=
 1 if x = −1,

0.5 if x = 0,
0 if x = 1.

(19)

Now we introduce a vector Sum as [Sum1,Sum2, . . . , Summ]T where Sumj denotes the
sum of the actual output of all the component neural networks on the j th instance,2 i.e.,

Sumj =
N∑
i=1

fij . (20)

Then the output of the neural network ensemble on the j th instance is:

f̂j = Sgn(Sumj ), (21)

where Sgn(x) is a function defined as:

Sgn(x)=
 1 if x > 0,

0 if x = 0,
−1 if x < 0.

(22)

It is obvious that f̂j ∈ {−1,0,+1} (j = 1,2, . . . ,m). If the actual output of the ensemble
on the j th instance is correct according to the expected output then f̂j dj = +1; if it is
wrong then f̂j dj = −1; otherwise f̂j dj = 0, which means that there is a tie on the j th
instance, e.g., three component networks vote for +1 while other three networks vote for
−1. Thus the generalization error of the ensemble is:

Ê = 1

m

m∑
j=1

Error(f̂j dj ). (23)

2 Here the class labels, i.e., −1 and +1, are regarded as integers, which is the profit of using {−1,+1} instead
{0,1} in denoting the class labels.
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Now suppose that the kth component neural network is excluded from the ensemble.
Then the output of the new ensemble on the j th instance is:

f̂ ′
j = Sgn(Sumj − fkj ) (24)

and the generalization error of the new ensemble is:

Ê′ = 1

m

m∑
j=1

Error(f̂ ′
j dj ). (25)

From Eqs. (23) and (25) we can derive that if Eq. (26) is satisfied then Ê is not smaller
than Ê′ , which means that the ensemble excluding the kth component neural network is
better than the one including the kth component neural network.

m∑
j=1

{
Error

(
Sgn(Sumj )dj

)− Error
(
Sgn(Sumj − fkj )dj

)}
� 0. (26)

Then considering that the exclusion of the kth component neural network won’t impact
the output of the ensemble on the j th instance where |Sumj | > 1, and considering the
properties of the combination of the functions Error(x) and Sgn(x) when x ∈ {−1,0,+1}
and y ∈ {−1,+1}, i.e.,

Error
(
Sgn(x)

)− Error
(
Sgn(x − y)

)= −1

2
Sgn(x + y) (27)

we get the constraint on the kth component neural network that should be excluded from
the ensemble:

m∑
j=1

j∈{j ||Sumj |�1}

Sgn
(
(Sumj + fkj )dj

)
� 0. (28)

It is obvious that there are cases where Eq. (28) is satisfied. For an extreme example,
when all the component neural networks are the duplication of the same neural network,
Eq. (28) indicates that the size of the ensemble can be reduced without sacrificing the
generalization ability.

Now we reach the conclusion that in the context of classification, when a number of
neural networks are available, ensembling many of them may be better than ensembling all
of them, and the networks that should be excluded from the ensemble satisfy Eq. (28).

3. Selective ensemble of neural networks

In Section 2 we have proved that ensembling many of the available neural networks
may be better than ensembling all of those networks in both regression and classification,
and the networks that should not be included in the ensemble satisfy Eqs. (17) and (28)
respectively. However, excluding those “bad” neural networks from the ensembles is not
an easy task as we may have imagined.
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Let’s look around Eqs. (17) and (28) again. It is obvious that even with the assumptions
such as there is only one output variable in regression and there are only two class labels in
classification, the computational cost required by those equations for identifying the neural
networks that should not join the ensembles is still too extensive to be met in real-world
applications.

In this section we present a practical approach, i.e., GASEN, to find out the neural
networks that should be excluded from the ensemble. The basic idea of this approach
is a heuristics, i.e., assuming each neural network can be assigned a weight that could
characterize the fitness of including this network in the ensemble, then the networks whose
weight is bigger than a pre-set threshold λ could be selected to join the ensemble.

Here we explain the motivation of GASEN from the context of regression. Suppose the
weight of the ith component neural network is wi , which satisfies both Eqs. (1) and (2).
Then we get a weight vector w = (w1,w2, . . . ,wN). Since the optimum weights should
minimize the generalization error of the ensemble, considering Eq. (13), the optimum
weight vector wopt can be expressed as:

wopt = arg min
w

(
N∑
i=1

N∑
j=1

wiwjCij

)
. (29)

wopt.k , i.e., the kth (k = 1,2, . . . ,N ) variable of wopt, can be solved by Lagrange
multiplier, which satisfies:

∂(
∑N

i=1
∑N

j=1wiwjCij − 2λ(
∑N

i=1 wi − 1))

∂wopt.k
= 0. (30)

Eq. (30) can be simplified to:

N∑
j=1
j �=k

wopt.kCkj = λ. (31)

Considering that wopt.k satisfies Eq. (2), we get:

wopt.k =
∑N

j=1C
−1
kj∑N

i=1
∑N

j=1C
−1
ij

. (32)

It seems that we can solve wopt from Eq. (32). But in fact, this equation rarely works
well in real-world applications. This is because when a number of neural networks are
available, there are often some networks that are quite similar in performance, which makes
the correlation matrix (Cij )N×N be an irreversible or ill-conditioned matrix so that Eq. (32)
cannot be solved.

However, although we cannot solve the optimum weights of the neural networks
directly, we can try to approximate them in some way. Look at Eq. (29) again, we may
find that it could be viewed as defining an optimization problem. Considering that genetic
algorithm has been shown as a powerful optimization tool [15], GASEN is developed.
GASEN assigns a random weight to each of the available neural networks at first. Then it
employs genetic algorithm to evolve those weights so that they can characterize to some
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extent the fitness of the neural networks in joining the ensemble. Finally it selects the
networks whose weight is bigger than a pre-set threshold λ to make up the ensemble. It
is worth noting that if every evolved weight is bigger than λ, then all the available neural
networks will join the ensemble. We believe that this corresponds to the situation where all
the component networks satisfy neither Eq. (17) in regression nor Eq. (28) in classification.

Note that GASEN can be applied to not only regression but also classification because
the aim of the evolving of the weights is only to select the component neural networks.
In particular, the component predictions for regression are combined via simple averaging
instead of weighted averaging. This is because we believe that using the weights both in
the selection of the component neural networks and in the combination of the component
predictions is easy to suffer overfitting, which is supported by experiments described in
Section 4.

Here GASEN is realized by utilizing the standard genetic algorithm [15] and a floating
coding scheme that represents each weight in 64 bits. Thus each individual in the evolving
population is coded in 8N bytes where N is the number of the available neural networks.
Note that GASEN can also be realized by employing other kinds of genetic algorithms
and coding schemes. In each generation of the evolution, the weights are normalized so
that they can compare with the pre-set threshold λ. Currently GASEN uses a quite simple
normalization scheme, i.e.,

w′
i =wi/

N∑
i=1

wi. (33)

In order to evaluate the goodness of the individuals in the evolving population, a
validation data set bootstrap sampled from the training set is used. Let ÊV

w denote the
estimated generalization error of the ensemble corresponding to the individual w on the
validation set V . It is obvious that ÊV

w can express the goodness of w, i.e., the smaller ÊV
w

is, the better w is. So, GASEN uses f (w)= 1/ÊV
w as the fitness function.

It is worth mentioning that with the help of Eq. (14), ÊV
w can be evaluated efficiently for

regression tasks. But since we have not such kind of intermediate result in the derivation
presented in Section 2.2, the evaluation of ÊV

w for classification tasks is relatively time-
consuming.

The GASEN approach is summarized in Fig. 1, where T bootstrap samples S1, S2, . . . ,

ST are generated from the original training set and a component neural network Nt is
trained from each St , an ensemble N∗ is built from N1,N2, . . . ,NT whose output is the
average output of the component networks in regression, or the class label received the
most number of votes in classification.

4. Empirical study

In order to know how well GASEN works, a large empirical study is performed. This
section briefly introduces the approaches used to compare with GASEN, then presents
the information on the data sets, then describes the experimental methodology, and finally
reports on the experimental results.
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Input: training set S, learner L, trials T , threshold λ

Procedure:
1. for t = 1 to T {
2. St = bootstrap sample from S

3. Nt = L(St)

4. }
5. generate a population of weight vectors
6. evolve the population where the fitness of a weight vector w is measured as f (w)= 1/EV

w
7. w∗ = the evolved best weight vector

Output: ensemble N∗
N∗(x)= Ave

∑
w∗
t >λ

Nt (x) for regression

N∗(x)= arg max
y∈Y

∑
w∗
t >λ: Nt (x)=y

1 for classification

Fig. 1. The GASEN approach.

4.1. Bagging and Boosting

In our experiments, GASEN is compared with two prevailing ensemble approaches, i.e.,
Bagging and Boosting.

The Bagging algorithm [3] employs bootstrap sampling [10] to generate many training
sets from the original training set, and then trains a neural network from each of those
training sets. The component predictions are combined via simple averaging for regression
tasks and majority voting for classification tasks. In classification tasks, ties are broken
arbitrarily.

The Boosting algorithms used for classification and regression are AdaBoost [12] and
AdaBoost.R2 [8] respectively. Both algorithms sequentially generate a series of neural
networks, where the training instances that are wrongly predicted by the previous neural
networks will play more important role in the training of later networks. The component
predictions are combined via weighted averaging for regression tasks and weighted voting
for classification tasks, where the weights are determined by the algorithms themselves.
Note that there are two ways, i.e., resampling [13] and reweighting [36], in determining the
training sets used in Boosting. In our experiments resampling is employed because neural
networks cannot explicitly support weighted instances. Moreover, it is worth mention that
Boosting requires that a weak learning algorithm whose error is bounded by a constant
strictly less than 0.5. In practice, this requirement cannot be guaranteed especially when
dealing with multiclass tasks. In our experiments, instead of aborting the learning process
when the error bound is breached, we generate a bootstrap sample from the original training
set and continue up to a limit of 20 such samples at a given trial. Such an option has been
adopted by Bauer and Kohavi [1] before.

4.2. Data sets

Twenty big data sets are used in our experiments, each of which contains at least 1000
instances. Among those data sets, ten are used for regression while the remains are used
for classification.
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Table 1
Data sets used for regression

Data set Function Variable Size

2-d Mexican Hat y = sinc|x| = sin |x|
|x| x ∼ U [−2π,2π ] 5000

3-d Mexican Hat y = sinc
√
x2

1 + x2
2 = sin

√
x2

1 +x2
2√

x2
1 +x2

2

x ∼ U [−4π,4π ] 3000

Friedman #1 y = 10 sin(πx1x2)+ 20(x3 − 0.5)2 + 10x4 + 5x5 xi ∼ U [0,1] 5000

Friedman #2 y =
√
x2

1 + (x2x3 − ( 1
x2x4

))2

x1 ∼ U [0,100]
x2 ∼ U [40π,560π ]
x3 ∼ U [0,1]
x4 ∼ U [1,11]

5000

Friedman #3 y = tan−1
x2x3− 1

x2x4
x1

x1 ∼ U [0,100]
x2 ∼ U [40π,560π ]
x3 ∼ U [0,1]
x4 ∼ U [1,11]

3000

Gabor y = 1
2π exp[−2(x2

1 + x2
2 )] cos[2π(x1 + x2)] xi ∼ U [0,1] 3000

Multi y = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5 xi ∼ U [0,1] 4000

Plane y = 0.6x1 + 0.3x2 xi ∼ U [0,1] 1000

Polynomial y = 1 + 2x + 3x2 + 4x3 + 5x4 xi ∼ U [0,1] 3000

SinC y = sin(x)
x x ∼ U [0,2π ] 3000

The information on the data sets used for regression is tabulated in Table 1. 2-d Mexican
Hat and 3-d Mexican Hat have been used by Weston et al. [44] in investigating the
performance of support vector machines. Friedman #1, Friedman #2, and Friedman #3
have been used by Breiman [3] in testing the performance of Bagging. Gabor, Multi, and
SinC have been used by Hansen [18] in comparing several ensemble approaches. Plane has
been used by Ridgeway et al. [37] in exploring the performance of boosted naive Bayesian
regressors.

In our experiments, the instances contained in those data sets are generated from the
functions listed in Table 1. The constraints on the variables are also shown in Table 1,
where “U [x, y]” means a uniform distribution over the interval determined by x and y .
Note that in our experiments some noise terms have been added to the functions, but we
have not shown them in Table 1 because the focus of our experiments is on the relative
performance instead of the absolute performance of the compared approaches.

All the data sets used for classification are from UCI machine learning repository [2],
which has been extensively used in testing the performance of diversified kinds of
classifiers. Here the data sets are selected according to the criterion that after the removal
of instances with missing values, each data set should contain at least 1,000 instances.

The Credit (German) we used is the numerical version donated by Strathclyde
University. In Image segmentation, a constant attribute is removed. In Allbp and Sick, seven
useless nominal attributes are removed. In Hypothyroid and Sick-euthyroid, six useless
nominal attributes are removed. Besides, in Allbp, Sick, Hypothyroid, and Sick-euthyroid, a
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Table 2
Data sets used for classification

Data set Class Attribute Size

Nominal Continuous

Allbp 3 15 6 2643
Chess 2 36 0 3196
Credit (German) 2 0 24 1000
Hypothyroid 2 12 6 2000
Image segmentation 7 0 18 2310
LED-7 10 7 0 2000
LED-24 10 24 0 1000
Sick 2 15 6 2643
Sick-euthyroid 2 12 6 2000
Waveform-40 3 0 40 5000

continuous attribute that has a great number of missing values is removed. The information
on the data sets used in our experiments is tabulated in Table 2.

4.3. Experimental methodology

In our experiments, 10-fold cross validation is performed on each data set, where
ten neural network ensembles are trained by each compared approach in each fold. For
Bagging and Boosting, each ensemble contains twenty neural networks. But for GASEN,
the component networks are selected from twenty neural networks, that is, the number of
networks in an ensemble generated by GASEN is far less than twenty.

The training sets of the ensembles are bootstrap sampled from the training set of the
fold. In order to increase the diversity of those ensembles, the size of their training sets is
roughly half of that of the fold. For example, for a data set with 1,000 instances, the training
set of each fold comprises 900 instances, and each of the training sets of the ensembles
contains 450 instances that are bootstrap sampled from those 900 instances. The training
sets of the neural networks used to constitute the ensembles are bootstrap sampled from
the training set of the ensembles. Such a methodology is helpful in estimating the bias and
variance [14] of the ensemble approaches, which will be described in Section 5.

Here the genetic algorithm employed by GASEN is realized by the GAOT toolbox
developed by Houck et al. [21]. The genetic operators, including select, crossover, and
mutation, and the system parameters, including the crossover probability, the mutation
probability, and the stopping criterion, are all set to the default values of GAOT. The pre-set
threshold λ used by GASEN is set to 0.05. The validation set used by GASEN is bootstrap
sampled from its training set.

The neural networks in the ensembles are trained by the implementation of Backpropa-
gation algorithm [38] in MATLAB [7]. Each network has one hidden layer that comprises
five hidden units. The parameters such as the learning rate are set to the default values of
MATLAB. Here we do not optimize the architecture and the parameters of those networks
because we care the relative performance of the compared ensemble approaches instead of
their absolute performance. During the training process, the generalization error of each
network is estimated in each epoch on a validation set. If the error does not change in five
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consecutive epochs, the training of the network is terminated in order to avoid overfitting.
The validation set used by a neural network is bootstrap sampled from its training set.

In order to know how well the compared ensemble approaches work, i.e., how
significant the generalization ability is improved by utilizing those ensemble approaches,
in our experiments we also test the performance of single neural networks. For each data
set, in each fold, ten single neural networks are trained. The training sets, the architecture,
the parameters, and the training process of those neural networks are all crafted in the same
way as that of the networks used in ensembles.

4.4. Results

The result of an approach in each fold is the average result of ten learning systems
(ensembles or single neural networks) generated by the approach in the fold, and the
reported result is the average result of ten folds, i.e., the 10-fold cross validation results.
For regression tasks, the error is measured as mean squared error on test instances. For
classification tasks, the error is measured as the number of the test instances correctly
predicted divided by the number of the test instances.

The comparison results on regression and classification are shown in Figs. 2 and 3
respectively. Note that since we care relative performance instead of absolute performance,
the error of Bagging, Boosting, and GASEN has been normalized according to that of the
single neural networks. In other words, the error of single neural networks is regarded as
1.0, and the reported error of Bagging, Boosting, and GASEN is in fact the ratio against
the error of the single neural networks. Moreover, in each of those two figures there
is a subfigure titled “average” which shows the average relative error of the compared
approaches on all those regression/classification tasks.

Fig. 2 shows that all the three ensemble approaches are consistently better than
single neural networks in regression. Pairwise two-tailed t-tests indicate that GASEN is
significantly better than both Bagging and Boosting in most regression tasks, i.e., 2-d
Mexican Hat, Friedman #1, Friedman #2, Gabor, Multi, Polynomial, and SinC. As for
the remaining three tasks, in Friedman #3 and Plane all the three ensemble approaches
obtain similar performance, in 3-d Mexican Hat GASEN is better than Bagging but worse
than Boosting. Note that in half of those ten tasks, i.e., 2-d Mexican Hat, Friedman #2,
Gabor, Polynomial, and SinC, the performance of GASEN is so good that the relative error
is reduced to the degree close to zero. So, we believe that GASEN is better than both
Bagging and Boosting when utilized in regression, which is supported by the subfigure
titled “average” in Fig. 2.

Fig. 3 shows that GASEN is consistently better than single neural networks in
classification. Moreover, pairwise two-tailed t-tests indicate that GASEN is significantly
better than both Bagging and Boosting in half tasks, i.e., Chess, Credit (German),
Hypothyroid, Sick, and Sick-euthyroid. As for the remaining tasks, in LED-7 all the three
ensemble approaches obtain similar performance, in Image segmentation and Waveform-
40, GASEN is far better than Boosting but comparable to Bagging, in LED-24 GASEN is
far better than Boosting but slightly worse than Bagging, and in Allbp GASEN is worse
than Boosting but comparable to Bagging. So, we believe that GASEN is better than both
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Fig. 2. Comparison of the relative error of Bagging, Boosting, and GASEN on regression tasks.

Bagging and Boosting when utilized in classification, which is supported by the subfigure
titled “average” in Fig. 3.

In summary, Figs. 2 and 3 show that GASEN is superior to both Bagging and Boosting
in both regression and classification, which strongly supports our theory formally proved
in Section 2 that it may be a better choice to ensemble many instead of all neural networks
at hand.

Figs. 2 and 3 also show that Bagging is consistently better than a single neural network
in both regression and classification, but the performance of Boosting is not so stable.
There are tasks such as 3-d Mexican Hat and Allbp where Boosting obtains the best
performance, but there are also tasks such as Credit (German), LED-24, and Waveform-
40 where the performance of Boosting is even worse than that of single neural networks.
Such observation is accordant with those reported in previous works [1,32].
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Fig. 3. Comparison of the relative error of Bagging, Boosting, and GASEN on classification tasks.

We also compare GASEN with its two variants on those twenty data sets with 10-fold
cross validation. The first variant is GASEN-w that uses the evolved weights to select the
component neural networks but combines the predictions of the selected networks with
the normalized version of their evolved weights. In other words, weighted averaging or
weighted voting is used instead of simple averaging or majority voting for combining
the predictions of the selected networks. The second variant is GASEN-wa that also
uses genetic algorithm to evolve the weights but does not select the component neural
networks according to the evolved weights. In other words, all the available neural
networks are kept in the ensembles and their predictions are combined via weighted
averaging or weighted voting with the normalized version of their evolved weights.
Note that the computational cost of GASEN-w and GASEN-wa is similar to that of
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Table 3
Comparison of the relative error of GASEN, GASEN-w, and GASEN-wa on regression tasks

Data set GASEN GASEN-w GASEN-wa Num. of networks
used by GASEN

2-d Mexican Hat 0.038 0.038 0.035 3.82
3-d Mexican Hat 0.809 0.808 0.804 5.20
Friedman #1 0.390 0.392 0.387 3.42
Friedman #2 0.005 0.005 0.005 2.07
Friedman #3 0.974 0.973 0.973 4.82
Gabor 0.025 0.027 0.028 4.10
Multi 0.131 0.127 0.129 4.50
Plane 0.982 0.982 0.981 4.32
Polynomial 0.016 0.013 0.014 2.57
SinC 0.001 0.001 0.001 2.29

Average 0.337 0.337 0.336 3.71

Table 4
Comparison of the relative error of GASEN, GASEN-w, and GASEN-wa on classification tasks

Data set GASEN GASEN-w GASEN-wa Num. of networks
used by GASEN

Allbp 0.186 0.418 0.210 4.76
Chess 0.607 0.705 0.597 5.83
Credit (German) 0.878 0.949 0.876 7.78
Hypothyroid 0.741 0.886 0.759 6.08
Image segmentation 0.676 0.764 0.665 7.55
LED-7 0.947 0.984 0.943 8.27
LED-24 0.745 0.771 0.739 10.66
Sick 0.751 0.877 0.755 5.92
Sick-euthyroid 0.659 0.781 0.652 5.36
Waveform-40 0.871 0.927 0.870 8.76

Average 0.706 0.806 0.707 7.10

GASEN because the main difference of those approaches only lies in the utilization of
the evolved weights. The comparison results on regression and classification are shown
in Tables 3 and 4 respectively. Note that since we care relative performance instead
of absolute performance, the error of GASEN, GASEN-w, and GASEN-wa has been
normalized according to that of the single neural networks. It is also worth mention that
each ensemble generated by GASEN-wa contains twenty component neural networks, but
each ensemble generated GASEN-w contains the same number of component networks as
that generated by GASEN, which is far less than twenty. The average number of component
neural networks used by GASEN in constituting an ensemble is also shown in Tables 3
and 4.

Pairwise two-tailed t-tests indicate that GASEN is significantly better than GASEN-w
on almost all the classification data sets. We believe that this is because using the evolved
weights both in the selection of the component neural networks and the combination of
the component predictions is easy to suffer overfitting. There is no significant difference



Z.-H. Zhou et al. / Artificial Intelligence 137 (2002) 239–263 255

between GASEN and GASEN-w in regression. We believe that this is because the
regression data sets we used are artificially generated while most of the classification data
sets we used are from real-world tasks, which leads to that the noise in the regression data
sets is far less than that in the classification data sets. So, overfitting is easier to happen to
the classification data sets than the regression data sets in our experiments.

Pairwise two-tailed t-tests also indicate that there is no significant difference between
the generalization ability of the ensembles generated by GASEN and those generated by
GASEN-wa. We believe that this is because GASEN-wa does not use the evolved weights
to select component neural networks, overfitting may not be so serious as in GASEN-w.
But since the size of the ensembles generated by GASEN is about only 19% (3.71/20.0)
in classification and 36% (7.10/20.0) in regression of the size of the ensembles generated
by GASEN-wa, and those two approaches are with similar computational cost, we believe
that GASEN is better than GASEN-wa.

5. Bias-variance decomposition

In order to explore the reason of the success of GASEN, the bias-variance decomposi-
tion is employed to analyze the empirical results of Bagging, Boosting, and GASEN. This
section briefly introduces the bias-variance decomposition and then presents the decompo-
sition results.

5.1. Bias and variance

The bias-variance decomposition [14] is a powerful tool for investigating the working
mechanism of learning approaches. Given a learning target and the size of training set,
it breaks the expected error of a learning approach into the sum of three non-negative
quantities, i.e., the intrinsic noise, the bias, and the variance. The intrinsic noise is a lower
bound on the expected error of any learning approach on the target. The bias measures
how closely the average estimate of the learning approach is able to approximate the target.
The variance measures how much the estimate of the learning approach fluctuates for the
different training sets of the same size.

At present there are several kinds of bias-variance decomposition schemes [4,26,27].
Here we adopt the one proposed by Kohavi and Wolpert [26]. Let YH be the random
variable representing the label of an instance in the hypothesis space, and YF be the random
variable representing the label of an instance in the target. Then the bias and the variance
are expressed as Eqs. (34) and (35) respectively

bias2
x = 1

2

∑
y∈Y

[
P(YF = y | x)− P(YH = y | x)]2, (34)

variancex = 1

2

(
1 −

∑
y∈Y

P (YH = y | x)2
)
. (35)

According to Kohavi and Wolpert [26], for estimating the bias and variance of a learning
approach, the original data set is split into two parts, that is, D and E. Then, N training
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sets are sampled from D, whose size is roughly half of that of D to guarantee that there
are not many duplicate training sets in those N training sets even for small D. After that,
the learning approach is ran on each of those training sets and the bias and variance are
estimated with Eqs. (34) and (35). The whole process can be repeated several times to
improve the estimates.

Since it is difficult to estimate the intrinsic noise in practice, the actual bias-variance
decomposition scheme of Kohavi and Wolpert [26] generates a bias term that includes
the intrinsic noise. Therefore the bias plus the variance should be equal to the average
error. However, if an ensemble approach employs majority voting in classification, then
the sum of the bias and the variance generated by such a decomposition scheme may not
be strictly equal to the average error. Nevertheless, this is no a serious problem in our
scenarios because such a problem also occurs in some other bias-variance decomposition
schemes [4] and the generated bias and variance are still useful in exploring the reason of
the success of GASEN.

5.2. Results

With the experimental methodology described in Section 4.3, it is easy for us to estimate
the bias and variance of the compared approaches according to Kohavi and Wolpert [26]’s
decomposition scheme. In detail, in our experiments, 90% data of the original data set is
used as the original training set while the remaining 10% data is used as the test set. From
the original training set, ten training sets whose size is roughly half of the original training
set are sampled. Then, the ensemble approaches are ran on each of those ten training sets
and their bias and variance are estimated with Eqs. (34) and (35). Such a process is repeated
for ten times to improve the estimates.

The bias of the compared ensemble approaches on regression and classification are
shown in Figs. 4 and 5 respectively, and the variance of them are shown in Figs. 6
and 7. Note that since we care relative performance instead of absolute performance, the
bias/variance of Bagging, Boosting, and GASEN has been normalized according to that
of single neural networks. In other words, the bias/variance of single neural networks is
regarded as 1.0, and the reported bias/variance of Bagging, Boosting, and GASEN is in fact
the ratio against the bias/variance of the single neural networks. Moreover, in each of those
figures there is a subfigure titled “average” which shows the average relative bias/variance
of the compared approaches on all those regression/classification tasks.

Fig. 4 shows that in most regression tasks, i.e., 2-d Mexican Hat, 3-d Mexican Hat,
Friedman #2, Gabor, Multi, Polynomial, and SinC, Boosting can significantly reduce the
bias, and the degree of its reduction is bigger than that of Bagging except in Multi. As for
the remaining three tasks, in Friedman #3 both Boosting and Bagging cannot reduce the
bias, in Friedman #1 and Plane Boosting even increases the bias. Therefore it seems that
Boosting is better than Bagging in reducing the bias but its performance is not very stable,
which is accordant with the observations reported in previous works [1,4].

Pairwise two-tailed t-tests indicate that in almost all the regression tasks except 3-d
Mexican Hat, Friedman #3, and Plane, GASEN is significantly better than Boosting in
reducing the bias. In particular, GASEN’s ability of reducing the bias is so good that
in Friedman #2, Polynomial, and SinC, the relative bias is even reduced to the degree



Z.-H. Zhou et al. / Artificial Intelligence 137 (2002) 239–263 257

Fig. 4. Comparison of the relative bias of Bagging, Boosting, and GASEN on regression tasks.

close to zero. Therefore we believe that in regression tasks, GASEN is the best among the
compared ensemble approaches in reducing the bias, which is supported by the subfigure
titled “average” in Fig. 4.

Fig. 5 shows that in majority classification tasks, i.e., Allbp, Chess, Hypothyroid, Image
segmentation, Sick, and Sick-euthyroid, Boosting can reduce the bias, but Bagging can
only reduce the bias in Allbp and Chess. Moreover, when Boosting cannot reduce the
bias, such as in Credit (German), LED-7, LED-24, and Waveform-40, neither can Bagging.
Therefore it seems that Boosting is more effective than Bagging in reducing the bias, which
is accordant with the observations reported in previous works [1,4].

Pairwise two-tailed t-tests indicate that when Boosting can significantly reduce the bias
in the classification tasks, GASEN can also do so although the degree of its reduction
may not be so large as that of Boosting. Therefore we believe that in classification tasks,
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Fig. 5. Comparison of the relative bias of Bagging, Boosting, and GASEN on classification tasks.

although GASEN’s ability of reducing the bias is not so good as that of Boosting, it is still
better than that of Bagging, which is supported by the subfigure titled “average” in Fig. 5.

So, from Figs. 4 and 5, we believe that the success of GASEN may partially owe to its
ability of significantly reducing the bias.

Fig. 6 shows that Bagging can significantly reduce the variance in all regression tasks,
but the performance of Boosting is not so stable. There are tasks such as 2-d Mexican Hat,
Gabor, and SinC where Boosting reduces the variance more significantly than Bagging,
but there are also tasks such as Plane where Boosting greatly increases the variance.

Pairwise two-tailed t-tests indicate that GASEN can also significantly reduce the
variance in all the regression tasks. Moreover, GASEN’s ability in reducing the variance is
even significantly better than that of Bagging in almost half of those tasks, i.e., Friedman
#2, Gabor, Polynomial, and SinC. Therefore we believe that in regression tasks, GASEN
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Fig. 6. Comparison of the relative variance of Bagging, Boosting, and GASEN on regression tasks.

is the best among the compared ensemble approaches in reducing the variance, which is
supported by the subfigure titled “average” in Fig. 6.

Fig. 7 shows that Bagging can significantly reduce the variance in all classification tasks,
but the performance of Boosting is not so stable. There are tasks such as Allbp, Chess,
LED-7, and Sick where Boosting greatly reduces the variance, but there are also tasks
such as Credit (German), LED-24, and Waveform-40 where Boosting greatly increases the
variance.

Pairwise two-tailed t-tests indicate that when Bagging can significantly reduce the
variance in the classification tasks, GASEN can also do so although the degree of its
reduction may not be so large as that of Bagging. Therefore we believe that in classification
tasks, although GASEN’s ability of reducing the variance is not so good as that of Bagging,
it is still better than that of Boosting, which is supported by the subfigure titled “average”
in Fig. 7.
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Fig. 7. Comparison of the relative variance of Bagging, Boosting, and GASEN on classification tasks.

So, from Figs. 6 and 7, we believe that the success of GASEN may partially owe to its
ability of significantly reducing the variance.

In summary, from Figs. 4–7 we find that in regression tasks GASEN can do better than
both Bagging and Boosting in reducing both the bias and the variance, and in classification
tasks GASEN is better than Bagging in reducing the bias and is better than Boosting in
reducing the variance. So, we believe that the success of GASEN may lie in that it has the
ability of significantly reducing both the bias and the variance simultaneously.

We guess that GASEN can reduce the bias because it efficiently utilizes the training data
in that it employs a validation set that is bootstrap sampled from the training set, and it can
reduce the variance because it combines multiple versions of the same learning approach.
However, those guesses should be justified by rigorous theoretical analysis.
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6. Conclusions

At present, most neural network ensemble approaches utilize all the available neural
networks to constitute an ensemble. However, the goodness of such a process has not
yet been formally proved. In this paper, the relationship between the ensemble and its
component neural networks is analyzed, which reveals that it may be a better choice to
ensemble many instead of all the available neural networks. This theory may be useful
in designing powerful ensemble approaches. Then, in order to show the feasibility of the
theory, an ensemble approach named GASEN is presented. A large empirical study shows
that GASEN is superior to both Bagging and Boosting in both regression and classification
because it utilizes far less component neural networks but achieves stronger generalization
ability.

Note that although GASEN has obtained impressive performance in our empirical study,
we believe that there are approaches that could do better than GASEN along the way
that GASEN goes, i.e., ensembling many instead of all available neural networks under
certain circumstances. The reason is that GASEN has not been finely tuned because its
aim is only to show the feasibility of our theory. In other words, the aim of GASEN
is just to show that the networks appropriate for constituting the ensemble could be
effectively selected from a collection of available neural networks. So, its performance
might at least be improved through utilizing better fitness functions, coding schemes,
or genetic operators. In the future we hope to use some other large-scale data sets
such as NIST to test GASEN and tune its performance, and then apply it to real-world
applications. Moreover, it is worth mention that finding stronger ensemble approaches
based on the recognition that many could be better than all is an interesting issue for
future works.

In order to explore the reason of the success of GASEN, the bias-variance decompo-
sition is employed in this paper to analyze the empirical results. It seems that the success
of GASEN mainly lies in that GASEN could reduce the bias as well as the variance. We
guess that GASEN can reduce the bias because it efficiently utilizes the training data in
that it employs a validation set bootstrap sampled from the training set, and it can reduce
the variance because it combines multiple version of the same learning approach. Rigorous
theoretical analysis may be necessary to justify those guesses, which is another interesting
issue for future works.
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