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Abstract

Let M be a compact, connected symplectic manifold with a Hamiltonian action of a

compact n-dimensional torus G ¼ Tn: Suppose that s is an anti-symplectic involution

compatible with the G-action. The real locus of M is X ; the fixed point set of s: Duistermaat
uses Morse theory to give a description of the ordinary cohomology of X in terms of the

cohomology of M: There is a residual GR ¼ ðZ=2ZÞn action on X ; and we can use

Duistermaat’s result, as well as some general facts about equivariant cohomology, to prove an

equivariant analogue to Duistermaat’s theorem. In some cases, we can also extend theorems of

Goresky–Kottwitz–MacPherson and Goldin–Holm to the real locus.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Atiyah observed in [A] that if M is a compact symplectic manifold and t a
Hamiltonian action of an n-dimensional torus G on M; then the cohomology groups

of M can be computed from the cohomology groups of the fixed point set MG of t:
Explicitly, if F : M-T� is the moment map for t; then a generic component Fx of F
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is a perfect Bott–Morse function. Using Fx; we may compute

H�ðM;RÞ ¼
XN

i¼1
H��diðFi;RÞ; ð1:1Þ

where the Fi are the connected components of MG and di is the Bott–Morse index of
Fi: This result is also true in equivariant cohomology [AB,BV]:

H�
GðM;RÞ ¼

XN

i¼1
H��di

G ðFi;RÞ ¼
XN

i¼1
H��diðFi � BG;RÞ: ð1:2Þ

This is a consequence of Atiyah’s result and Kirwan’s equivariant formality theorem
for Hamiltonian G-manifolds, as shown in [Ki].
In [Du], Duistermaat proved a ‘‘real form’’ version of (1.1). Let s : M-M be an

anti-symplectic involution with the property that

s3tg ¼ tg�13s ð1:3Þ

and let X ¼ Ms be the fixed point set of s: We call X the real locus of M: The
motivating example of this setup is a complex manifold M with a complex
conjugation s: Duistermaat proved that

H�ðX ;Z=2ZÞ ¼
X
iAI

H��di

2 ðFs
i ;Z=2ZÞ; ð1:4Þ

where IDf1;y;Ng is the set for which s preserves Fi: The Z=2Z coefficients are
essential here; the theorem does not hold with real coefficients. (See the comments at
the end of this section.)
The first of the four main theorems of this paper is an equivariant analogue of

(1.4) similar to the equivariant analogue (1.2) of Atiyah’s result (1.1). By (1.3), the
group

GR ¼ fgAG j g2 ¼ idgDðZ=2ZÞn ð1:5Þ

acts on X and we will prove the following theorem in Section 2.

Theorem A. Suppose M is a symplectic manifold with a Hamiltonian action t of a

torus Tn ¼ G and an anti-symplectic involution s: Let X ¼ Ms denote the real locus of

M: Then the group GR acts on X ; and the GR-equivariant cohomology of X with Z=2Z
coefficients is

H�
GR
ðX ;Z=2ZÞ ¼

X
iAI

H
��di

2
GR

ðFs
i ;Z=2ZÞ: ð1:6Þ

As above, the subset IDf1;y;Ng is the set for which s preserves Fi:
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The idea of the proof will be to derive (1.6) from (1.4) by a simple trick.
The second of the main theorems concerns the structure of

H�
GR

¼ ðX ;Z=2ZÞ

as a module over the ring

H�
GR

¼ H�
GR
ð ptÞ ¼ Z=2Z½x1;y; xn�: ð1:7Þ

Let BGR and EGR denote the classifying space and classifying bundle of GR: Then by
the Borel definition of equivariant cohomology

H�
GR
ðX ;Z=2ZÞ ¼ H�ðX �GR

EGR;Z=2ZÞ:

The cohomology on the right-hand side can be computed by the spectral sequence
associated with the fibration

X �GR
EGR-BGR;

and we will deduce from this computation the following theorem.

Theorem B. The equivariant cohomology H�
GR
ðX ;Z=2ZÞ is a free module over H�

GR

generated in dimension zero. Moreover, as an H�
GR

module, H�
GR
ðX ;Z=2ZÞ is

isomorphic to

H�
GR
#Z=2Z H�ðX ;Z=2ZÞ: ð1:8Þ

The idea of the proof is to show that this spectral sequence collapses at its E2 term,
i.e., X is equivariantly formal. In particular, this implies that H�

GR
ðX Þ is a free

module over Z=2Z½x1;y; xn�:
Isomorphisms (1.1), (1.2), (1.4), and (1.6) are all isomorphisms in additive

cohomology. The next two sections of this paper will be concerned with the ring

structure of H�
GR
ðX ;Z=2ZÞ:Henceforth, we will assume that the fixed point set MG is

finite and that the one-skeleton of t;

Mð1Þ ¼ fpAM j dimðG � pÞp1g;

is of dimension 2: It is not hard to see that these two assumptions imply that

Mð1Þ ¼
[N
i¼1

Ei; EiDCP1:

Moreover, Ei is point-wise fixed by an ðn � 1Þ-dimensional torus Hi; and the
diffeomorphism

Ei-CP1
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intertwines the action of G=Hi on Ei with the standard S1 action on CP1: In
particular, Ei contains exactly two G-fixed points. Thus, one can describe the
intersection properties of the Ei by a graph G with edges ei corresponding to the

spheres Ei and vertices VG ¼ MG: Two vertices p and q are joined by the edge ei if

EG
i ¼ fp; qg: Furthermore, each edge, ei is labeled by a weight *aei

of G; the weight
associated with the intertwining homomorphism

G=Hi-S1:

Let i :MG-M be the inclusion of the fixed points into the manifold, and consider
the induced map in equivariant cohomology,

i� : H�
GðM;CÞ-H�

GðMG;CÞ: ð1:9Þ

By a theorem of Kirwan [Ki], this map is injective. Moreover,

H�
GðMG;CÞ ¼

M
pAMG

H�
Gðfpg;CÞ; ð1:10Þ

and since

H�
Gðf pg;CÞDSðg�Þ;

one can regard an element of H�
GðMG;CÞ as a map

f : MG-Sðg�Þ: ð1:11Þ

Goresky et al. [GKM] computed the image of i�; thus determining not just the
additive equivariant cohomology of M; but in fact the ring structure of this
cohomology.

Theorem 1.1 (Goresky et al. [GKM]). A map f : MG-Sðg�Þ is in the image of i� if

and only if for each edge ei ¼ fp; qg of G

f ð pÞ � f ðqÞA*ae1 � Sðg�Þ: ð1:12Þ

The third of the four main theorems of this paper will be a Z=2Z version of this
result for the manifold X : We define the one-skeleton of the real locus to be the set

X ð1Þ ¼ fxAX j#ðGR � xÞp2g: ð1:13Þ

Assume in addition to the above that MG ¼ X GR and the real locus of the one-
skeleton is the same as the one-skeleton of the real locus. We will call a manifold with
these properties a mod 2 GKM manifold. The map

i� : H�
GR
ðX ;Z=2ZÞ-H�

GR
ðX GR ;Z=2ZÞ ð1:14Þ
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is injective, and by factoring (1.14) through the map

H�
GR
ðX ;Z=2ZÞ-H�

GR
ðEs

i ;Z=2ZÞ; ð1:15Þ

where Es
i ¼ Ei-XDRP1; we obtain the following theorem.

Theorem C. Suppose M is a mod 2 GKM manifold. An element

fAH�
GR
ðX GR ;Z=2ZÞ

can be thought of as a map f : VG-Z=2Z½x1;y; xn�; and such a map f is in the image

of i� if and only if, for each edge e ¼ fp; qg of G

fp � fqAae � Z=2Z½x1;y; xn�;

where aeAZ=2Z½x1;y; xn� is the image of the weight *ae:

This completely determines the ring structure of H�
GR
ðX ;Z=2ZÞ: This theorem is

proved independently by Schmid [S] using different techniques. The main examples
of mod 2 GKM manifolds include the real loci of non-singular projective toric
varieties and real loci of coadjoint orbits, including Grassmannian and flag varieties.
In the case of toric varieties, this equivariant cohomology ring was computed already
by Davis and Januszkiewicz [DJ], but our description is quite different from theirs.
In [GH], Goldin and Holm generalize the GKM result to the case where the one-

skeleton has dimension at most 4: Assume in addition to the dimension hypothesis

that MG ¼ X GR and the real locus of the one-skeleton is the same as the one-skeleton
of the real locus. We will call a manifold with these properties a mod 2 GH manifold.
The last of the main theorems is a Z=2Z version of the result of Goldin and Holm for
the real locus X : For a subgroup HR of GR; we will let p�HR

will denote the change of

coefficient map

p�HR
: H�

GR
-H�

HR

associated with the inclusion HR+GR: In Section 6, we will prove the following
theorem.

Theorem D. Suppose that M is a mod 2 GH manifold with G fixed points fixed points

MG ¼ f p1;y; pdg: Let fiAH�
GR

denote the restriction of fAH�
GR
ðX Þ to the fixed point

pi: The image of the injection i� : H�
GR
ðX Þ-H�

GR
ðX GRÞ is the subalgebra of functions

ð f1;y; fdÞA"d
i¼1 H�

GR
which satisfy

p�HR
ðfij Þ ¼ p�HR

ð fikÞ if f pi1 ;y; pilg ¼ ZGR

HR
;Pl

j¼1

fij

aij
1a

ij
2

AH�
GR

if f pi1 ;y; pilg ¼ ZGR

HR
and dim ZHR

¼ 2

8><
>:
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for all subgroups HR of GR of order jHRj ¼ 2n�1 and all connected components ZHR
of

X HR ; where aij
1 and aij

2 are the (linearly dependent) weights of the GR action on Tpij
ZHR

:

We re-emphasize that Duistermaat’s techniques only apply to additive cohomol-
ogy. Since we are able to obtain results concerning the ring structure of the
equivariant cohomology and its relationship to ordinary cohomology, we also obtain
statements about the ring structure of the ordinary cohomology as well. Indeed, in
many cases, Duistermaat’s isomorphism (1.4) turns out to give a ring isomorphism.
(See Corollaries 5.7 and 5.8 to Theorem C and Corollaries 6.7 and 6.8 to Theorem
D.) When describing these ring isomorphisms, we will make use of the following
notation. The symbol

H2�ðM;Z=2ZÞ

will denote the subring

M
i

H2iðM;Z=2ZÞDH�ðM;Z=2ZÞ;

endowed with a new grading wherein a class in H2iðM;Z=2ZÞ is given degree i (and
similarly for equivariant cohomology). Then under suitable hypotheses, the additive
isomorphism of Duistermaat becomes an isomorphism of graded rings.
In Section 7, we discuss an application of our main theorems to string theory. The

Z=2Z-equivariant cohomology ring of Tn with Z=2Z coefficients classifies all possible
orientifold configurations of Type II string theories, compactified on Tn: We explain
how to compute this cohomolgy ring.
The last section of the paper contains some applications of these results to

elementary problems in combinatorics. A typical such application is the following.
Let G be the permutahedron, the Cayley graph of the symmetric group Sn with edges
generated by transpositions. By definition, the vertices of G are elements of Sn and

two vertices s and t are joined by an edge if ts�1 is a transposition. Our goal is to
attach to each vertex s a subset Ss of f1;y; ng such that, for all pairs s and t of
adjacent vertices, either Ss ¼ St or the symmetric difference

ðSs � StÞ,ðSt � SsÞ

is fi; jg; where ts�1 ¼ ðijÞ:
Let Fnþ1 be the real flag variety in n þ 1 dimensions. We will prove that the set of

solutions to this problem can be identified with the set

H�
GR
ðFnþ1;Z=2ZÞ;

where GR ¼ Z=2Z�?� Z=2Z is the n-fold product of Z=2Z: The results in this
section were inspired by a remark of Ethan Bolker, who pointed out to us that Z=2Z
representation theory is simply Boolean algebra.
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We conclude these prefatory remarks with a few comments about the Z=2Z
coefficients. We recall Witten’s recipe for computing the homology of compact
manifolds by Morse theory. Let X be a compact manifold, f :X-R a Morse

function, and Ci
f the index i critical set of f : Let Ci be the vector space

Ci ¼
M

piACi
f

piR

with basis Ci
f :

Equip X with a Riemannian metric and let v be the gradient vector field of f : For
generic metrics, the stable and unstable manifolds of v intersect transversally. In

particular, for every critical point pACi
f ; there are a finite number of gradient curves

joining p to critical points

q1;y; qmACi�1
f : ð1:16Þ

Moreover, each of these points can be assigned an intrinsic orientation
eð p; qjÞAf71g: Now define a boundary operator

@ :Ci-Ci�1

by setting

@p ¼
X

eð p; qjÞ � qj :

Witten [W] was the first to explicitly formulate Morse theory in this way; he showed

that @ is a boundary operator, namely @2 ¼ 0; and that H�ðX ;RÞ is the homology of
the complex ðC; @Þ:
In particular, when all the critical points are of even index, @ is automatically zero.

Thus, one gets

dimðHiðX ;RÞÞ ¼
0; i odd;

#f pACi
f g; i even:

(
ð1:17Þ

This fact is key to Atiyah’s result (1.1). He observes that if #MGoN and if f is a
generic component of the moment map, then f is a Morse function with critical
points all of even index, so (1.1) is a special case of (1.17).
This recipe for computing homology also works in characteristic two; however,

when Z=2Z symmetries are present, the gradient curves joining the points pACi
f to

the points on list (1.16) often occur in pairs. For instance, for manifolds which satisfy
the GKM hypotheses, these pairs of curves correspond to the edges ei of the graph G:
That is, each Es

i DRP1 in (1.15) contains of a pair of gradient curves joining the two

vertices of ei: Hence, the mod 2 version of @ is identically zero.
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One can obtain Duistermaat’s result by exploiting this phenomenon. The goal of
this article is to push these ideas forward by systematically applying these techniques
to the equivariant setting.

2. The equivariant cohomology of the real locus

Recall M2d is a symplectic manifold with a Hamiltonian action t of a torus
G ¼ Tn: Suppose further that there is an anti-symplectic involution s : M-M with
the property that

s3tg ¼ tg�13s:

Let X ¼ Ms be the fixed point set of s: We call X the real locus of M: Recall that
Duistermaat proved the following equality, computing the ordinary cohomology of
the real locus.

H�ðX ;Z=2ZÞ ¼
X
iAI

H��di

2 ðFs
i ;Z=2ZÞ; ð2:1Þ

where IDf1;y;Ng is the set for which s preserves Fi; and the di are the indices of
the fixed point sets Fi:
We will prove the equivariant analogue (1.6) to this equality, computing the

additive structure of the equivariant cohomology:

H�
GR
ðX ;Z=2ZÞ ¼

X
iAI

H
��di

2
GR

ðFs
i ;Z=2ZÞ:

Proof of Theorem A. Consider the product action of Tn on

M � ðCd �?� CdÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
n

in which each S1 factor acts by multiplication on the corresponding factor of Cd :
This is a Hamiltonian action. If ðf1;y;fnÞ ¼ F : M-Rn is the moment map
associated with t; then the moment map of this product action is C ¼ ðc1;y;cnÞ;
with

ciðm; z1;1;y; z1;d ;y; zd;dÞ ¼ fiðmÞ þ
Xd

j¼1
jzi;jj2:

Let a ¼ ða1;y; anÞARn: If ai 4 supðfiÞ for every i; then C�1ðaÞ and M � S2d�1 �
?� S2d�1 are equivariantly diffeomorphic, so the reduced space

Mred ¼ M==a Tn ¼ c�1ðaÞ=Tn
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is diffeomorphic to M �Tn ðS2d�1 �?� S2d�1Þ: Moreover, there is another action

of Tn on M � Cd �?� Cd ; namely t coupled with the trivial action on ðCdÞn: Since
this commutes with the product action, it induces a Hamiltonian action of Tn on
Mred: In addition, one gets from s an involution

ðm; z1;y; zdÞ/ðsðmÞ; z1;y; zdÞ

of M � Cd �?� Cd : This induces an anti-symplectic involution *s on Mred: Thus,
one can apply Duistermaat’s theorem to Mred to get a formula for the cohomology of
the space

M *s
red ¼ X �GR

ðSd�1 �?� Sd�1Þ

in terms of the cohomology of the spaces

Zd
i :¼ Fs

i �GR
ðSd�1 �?� Sd�1Þ ¼ Fs

i � ðRP d�1 �?� RP d�1Þ:

Now Fs
i � BGR is obtained from Zd

i by attaching cells of dimension d and higher.

So, for fixed k; the sequence HkðZd
i ;Z=2ZÞ stabilizes as d grows large, and moreover

is equal to the equivariant cohomology of X : Thus one obtains from (2.1) the
following real analogue:

H�
GR
ðX ;Z=2ZÞ ¼

X
H

��di

2
GR

ðFs
i ;Z=2ZÞ;

where GR ¼ Z=2Z�?� Z=2Z: &

3. A spectral sequence

The goal of this section is to determine the structure of H�
GR
ðX ;Z=2ZÞ as a module

over the ring H�
GR

¼ Z=2Z½x1;y; xn�: We do this by calculating the E2-term of the

Leray–Serre spectral sequence converging to H�
GR
ðX ;Z=2ZÞ and deducing, by

dimensional considerations obtained in the previous section, that the spectral
sequence must collapse. This then gives us the desired statement about the EN-term
and hence H�

GR
ðX ;Z=2ZÞ:

Recall that by definition, we have

H�
GR
ðX ;Z=2ZÞ ¼ H�ðX �GR

EGR;Z=2ZÞ;

where EGR is the total space of the universal GR-bundle. Denote this fiber product by
E: We then have a fibration p : E-BGR with fiber X : Let H�X denote the local
coefficient system on BGR associated to this fibration. The E2-term we would like to
compute is then

E2 ¼ H�ðBGR;H
�XÞ:
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The computation takes place in two steps. The first step, which is the technical heart
of the argument, consists of carrying out the computation in the one-dimensional
case. The remainder of the proof consists of a relatively straightforward exercise in
bookkeeping.

Lemma 3.1. Let GR ¼ Z=2Z; so that BGR ¼ KðZ=2Z; 1Þ ¼ RPN: Then

H�ðBGR;H
�X Þ is generated over H�

GR
¼ ðZ=2ZÞ½x� in degree zero by H�ðXÞGR :

Moreover, the only relation is given by x � ðaþ nðaÞÞ ¼ 0 for aAH�ðX Þ and nAGR:

Proof. By definition, the cohomology H�ðBGR;H
�XÞ that we would like to

compute is the group cohomology H�ðGR;H�ðX ÞÞ with respect to the natural
action of GR on H�ðXÞ; we will henceforth pass back and forth between these
two notations without comment. Our goal is to understand the cohomology
as a module over the cohomology ring H�ðGR;Z=2ZÞ corresponding to the trivial
action of GR on Z=2Z:
Denote the non-trivial element of Z=2Z by n: Consider the GR-module

H�ðXÞ"H�ðX Þ with GR-action defined by the equation nða; bÞ ¼ ðnðbÞ; nðaÞÞ for
all a; bAH�ðX Þ: We then get a short exact sequence of GR-modules

0-H�ðXÞ!f H�ðX Þ"H�ðXÞ!g H�ðXÞ-0; ð3:1Þ

where f ðaÞ ¼ ða; aÞ and gða; bÞ ¼ aþ b: Of course, it is completely essential to this
identification of the cokernel of f that we work over Z=2Z; in order for this sequence
to be exact, we must have gða; bÞ ¼ a� b; but this would not be a map of Z=2Z-
modules if we did not also have gða; bÞ ¼ aþ b:
We would like to consider the long exact cohomology sequence associated with

(3.1). Observe that we have isomorphisms

H�ðX Þ"H�ðXÞDZ=2Z½GR�#Z=2ZH�ðX Þ

DZ½GR�#ZH�ðX Þ

DHomZðZ½GR�;H�ðXÞÞ

of GR-modules. The first isomorphism is more or less the definition of the left-hand
side, the second follows from the fact that H�ðXÞ is 2-torsion, and the third follows
from the finiteness of GR: Thus, the module H�ðX Þ"H�ðXÞ is co-induced and its
higher cohomology vanishes. Moreover, the map a/ða; nðaÞÞ provides an

isomorphism of H�ðX Þ with ðH�ðX Þ"H�ðXÞÞGR ; so we have

H0ðGR;H�ðX Þ"H�ðXÞÞDH�ðXÞ
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and, of course, H0ðGR;H�ðXÞÞ ¼ H�ðXÞGR : The long exact sequence in question,
therefore, takes the following form:

The first map in this sequence is the natural inclusion, and the second sends a to

aþ nðaÞ: Therefore, H1ðBGR;H
�XÞ is the sought-after quotient of H�ðX ÞGR by the

subgroup of all elements of the form aþ nðaÞ; as a result, so is each HnðBGR;H
�XÞ

for nX1: Recall that H�ðBGRÞ ¼ ðZ=2ZÞ½x� where x is a class of degree 1. The
desired result then follows from the fact that the connecting homomorphisms are
multiplication by x: &

The remainder of the game consists in playing the results of Lemma 3.1 and
Theorem A off of one another.

Corollary 3.2. The action of GR on H�ðX Þ is trivial. Thus, in the case that GR ¼ Z=2Z;
Theorem B holds.

Proof. Lemma 3.1 computes the E2-term of the Leray–Serre spectral sequence
converging to H�

GR
ðX ;Z=2ZÞ in the case GR ¼ Z=2Z: Now, the dimensions of the

graded pieces of this E2-term are maximized precisely when GR acts trivially on
H�ðXÞ: Moreover, the results of the previous section tell us that the graded pieces of
H�

GR
ðX ;Z=2ZÞ have exactly these maximal dimensions. Since the EN-term of a

spectral sequence can only be as large as its E2-term, this tells us that the action must
be trivial and further that

H�
GR
ðX ;Z=2ZÞ ¼ EN ¼ E2:

In this case, H�ðXÞGR ¼ H�ðXÞ; and the relation x � ðaþ nðaÞÞ ¼ 0 is automatically
satisfied, so Lemma 3.1 tells us that H�ðBGR;H

�XÞ is a free module over Z=2Z½x�
generated in degree zero by H�ðX Þ: This completes the proof of Theorem B in the
case GR ¼ Z=2Z:
The triviality of the action of GR on H�ðXÞ for higher-dimensional GR follows by

restricting to arbitrary one-dimensional subtori. &

The fact that GR acts trivially on H�ðX Þ is not new; it can also be derived from
Duistermaat’s original argument. Indeed, Duistermaat’s isomorphism can be seen to
be GR-equivariant, and the result then follows from the connectedness of the torus.
Using this fact would have somewhat simplified our argument, but we chose to give
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the above proof so as to avoid appealing to unpublished modifications of the
literature.
We now have the technical input to handle the general case.

Lemma 3.3. Let GRDðZ=2ZÞn; for any positive integer n: Then H�ðBGR;H
�XÞ is a

free module over H�
GR

¼ ðZ=2ZÞ½x1;y; xn� generated by H0ðBGR;H�
GR
ÞDH�ðX Þ:

Proof. This is now completely classical. By Corollary 3.2, the action of GR on H�ðXÞ
is trivial, so that H�X is actually the constant sheaf H�ðX Þ: Therefore, we have

H�ðBGR;H
�XÞ ¼ H�ðBGR;Z=2ZÞ#Z=2Z H�ðXÞ ¼ Z=2Z½x1;y; xn�#Z=2ZH�ðXÞ:

This completes the proof. &

Our goal is now entirely within reach; we need only combine the results we have
proven so far as in the proof of Corollary 3.2 to establish the H�

GR
-module

isomorphism

H�
GR
ðX ;Z=2ZÞDH�

GR
#Z=2ZH�ðX ;Z=2ZÞ: ð3:2Þ

Proof of Theorem B. Lemma 3.3 tells us that the E2-term of the Leray–Serre spectral
sequence converging to H�

GR
ðX ;Z=2ZÞ takes precisely the form that H�

GR
ðX ;Z=2ZÞ

itself is asserted to have. However, the results of the previous section tell us that the
graded pieces of H�

GR
ðX ;Z=2ZÞ have the same dimension as those of this E2-term,

and hence that the spectral sequence collapses. Therefore,

H�
GR
ðX ;Z=2ZÞ ¼ EN ¼ E2;

so H�
GR
ðX ;Z=2ZÞ is a free module over H�

GR
generated in dimension zero. Thus, its

additive structure is as given by (3.2). &

4. Chang–Skjelbred in Z=2Z

As a result of the collapse of the spectral sequence proved in the previous section,
the map

i� : H�
GR
ðX ;Z=2ZÞ-H�

GR
ðX GR ;Z=2ZÞ

is an injection. In the case of the original manifold M; the Chang–Skjelbred
theorem [CS] identifies the image of this map. We prove a Z=2Z version of that
theorem here.

As usual, let GR ¼ ðZ=2ZÞn be the n-dimensional ‘‘real torus,’’ M a GR-

manifold, and MGR the fixed point set of the action; we let i : MGR+M denote
the inclusion.
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Theorem 4.1. Suppose that H�
GR
ðM;Z=2ZÞ is a free H�

GR
-module. For a subgroup

HRoG�
R; let iHR

: MGR+MHR denote the inclusion. Then we have

i�H�
GR
ðM;Z=2ZÞ ¼

\
HRoG�

R

jHRj¼2n�1

i�HR
H�

GR
ðMHR ;Z=2ZÞ:

Our proof closely models the argument given in [GS], with appropriate
modifications.
First of all, recall that

H�
GR

¼ H�ððRPNÞn;Z=2ZÞ ¼ Z=2Z½x1;y; xn�;

with degðxiÞ ¼ 1: Moreover, we may view each xi as a linear functional
xi : GR-Z=2Z; that is, an element of G�

R: This allows us to identify H�
GR

with the

symmetric algebra SðG�
RÞ; a fact analogous to the ordinary identification H�

GDSðg�Þ
when G is a torus with Lie algebra g: This allows us to view elements of H�

GR
as

polynomial functions on GR:

Lemma 4.2. Let KRoGR be a subgroup and f :M-GR=KR a GR-equivariant map. If

rASðG�
RÞ annihilates KR; then it must also kill H�

GR
ðM;Z=2ZÞ:

Proof. We have a sequence of GR-equivariant maps

M-GR=KR-pt: ð4:1Þ

Note that

H�
GR
ðGR=KRÞ ¼H�ðGR=KR �GR

EGR;Z=2ZÞ

¼H�ðBKR;Z=2ZÞ

¼SðK�
RÞ:

Sequence (4.1) of GR-spaces therefore gives rise to the following diagram of algebras:

Therefore, the map SðG�
RÞ-H�

GR
ðM;Z=2ZÞ defining the module structure factors as

SðG�
RÞ-SðK�

RÞ-H�
GR
ðM;Z=2ZÞ;

and the proof is complete. &
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This observation furnishes us with the fundamental tool in proving localization
theorems for equivariant cohomology.

Proposition 4.3. Let X be a closed GR-invariant submanifold of M: For some positive

integer L; there exist subgroups ðKRÞ1;y; ðKRÞL of G; each of which is an isotropy

subgroup of some point pAM \X ; such that for any a1;y; aLAG�
R with aijðKRÞi

¼ 0; the

product a1a22?a2LAH�
GR

kills H�
GR
ðM \XÞ:

Proof. Let U be a GR-invariant tubular neighborhood of X ; it suffices to prove the
desired result for the module H�

GR
ðM \U ;Z=2ZÞ: Now, given any orbit Xi in M \U

with isotropy subgroup ðKRÞi; we may find a GR-invariant open neighborhood Ui of

Xi admitting a GR-equivariant map Ui-GR=ðKRÞi: By compactness, we may cover

M \U by finitely many such sets U1;y;UL: We now show by induction that for all

rpL; if a1;y; ar are elements of G�
R with aijðKRÞi

¼ 0; then a1a22?a2r annihilates

H�
GR
ðU1,?,Ur;Z=2ZÞ:

The case r ¼ 1 is simply a restatement of Lemma 4.2. For the inductive step,
consider the Meyer–Vietoris sequence associated to the cover U1,?,Ur ¼
ðU1,?,Ur�1Þ,Ur: Denoting U1,?,Ur�1 by V ; we find an exact sequence

Hk
GR
ðV-UrÞ-Hkþ1ðV,UrÞ-Hkþ1

GR
ðVÞ"Hkþ1

GR
ðUrÞ:

Now, since V-UrCUr; we have a GR-equivariant map V-Ur-Xr; and so the left-
hand term of the sequence is killed by ar: Meanwhile, by induction, the right-hand

term is annihilated by a1a22?a2r�1ar; and so the product a1a22?a2r kills the middle

term. &

We will also need a relative version of the same result.

Proposition 4.4. Under the hypotheses of Proposition 4.3, the module H�
GR
ðM;X Þ is

annihilated by the element a21a
4
2?a4LAH�

GR
:

Proof. Of course, the map of pairs ðM;XÞ-ðM=X ;XÞ is an equivalence, so it
suffices to compute H�

GR
ðM=X ;X Þ: Once again, let U be a GR-equivariant tubular

neighborhood of X : We cover M=X by two open sets U=X and M \X ; since, the
projection map U=X-X=X is an equivalence, so we may identify H�

GR
ðM;XÞ with

the kernel of the map H�
GR
ðMÞ-H�

GR
ðUÞ: Now, let us write the Meyer–Vietoris

sequence for this cover:

Hk�1
GR

ðU\XÞ-Hk
GR
ðM=XÞ-Hk

GR
ðU=XÞ"Hk

GR
ðM \X Þ:

But by the above discussion, this gives rise to the following exact sequence:

Hk�1
GR

ðU\XÞ-Hk
GR
ðM;X Þ-Hk

GR
ðM \XÞ:
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Now, Proposition 4.3 applies to both ends of this sequence, so the middle term is

killed by ða1a22?a2LÞ
2 ¼ a21a

4
2?a4L: &

Proposition 4.4 gives us the basic localization results we will need.

Corollary 4.5. In the setting of Proposition 4.3, the kernel and cokernel of the map

i� : H�
GR
ðM;Z=2ZÞ-H�

GR
ðX ;Z=2ZÞ

are annihilated by the same element a21a
4
2ya4LAH�

GR
:

Proof. Simply apply Proposition 4.4 to the exact sequence

Hk
GR
ðM;XÞ-Hk

GR
ðMÞ-Hk

GR
ðXÞ-Hkþ1

GR
ðM;X Þ: &

Corollary 4.6. The kernel of the map i� : H�
GR
ðMÞ-H�

GR
ðMGRÞ is torsion, and hence

trivial when H�
GR
ðM;Z=2ZÞ is a free module.

Corollary 4.7. For every subgroup KRoGR; there exists a monomial p ¼ a1yaN

annihilating the cokernel of the map i� : H�
GR
ðMÞ-H�

GR
ðMKRÞ such that no ai vanishes

on KR:

Proof. Let qAM \MKR ; and let K 0
R be its isotropy subgroup. Since obviously

K 0
RNKR; there is an a0 :GR-Z=2Z with a0jK 0

R
¼ 0 and a0jKR

a0: But by Corollary 4.5,

we can find a monomial which is a product of elements of the form a0 and annihilates
coker i�: &

Finally, we are ready to prove our main result.

Proof of Theorem 4.1. First of all, since the map i factors as

MGR +
iHR

MHR+M;

we know that for all HR; the inclusion imði�ÞCimði�HR
Þ holds.

For the other direction, recall first that H�
GR
ðM;Z=2ZÞ is free; therefore, by

Corollary 4.6 the map i� is injective and we may consequently view H�
GR
ðM;Z=2ZÞ as

a submodule of H�
GR
ðMGR ;Z=2ZÞ: Suppose fe1;y; ekg is an SðG�

RÞ-basis for

H�
GR
ðM;Z=2ZÞ: By Corollary 4.7, there is a monomial p ¼ a1?aN with

peAH�
GR
ðM;Z=2ZÞ for every eAH�

GR
ðMGR ;Z=2ZÞ: Thus, we may write

pe ¼ f1e1 þ?þ fkek
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for unique fiASðG�
RÞ: Now, since SðG�

RÞ is a unique factorization domain, we may

divide both sides of this identity by p and cancel common factors to obtain the
formula

e ¼ g1

p1
e1 þ?þ gk

pk

ek; ð4:2Þ

where the gi are uniquely determined elements of SðG�
RÞ and the pi are uniquely

determined divisors of p such that gi and pi are relatively prime.
Suppose now that e were actually in imði�HR

Þ: We may find a subset

f j1;y; jRgCf1;y;Ng such that no aji kills HR; and q ¼ aj1?ajR annihilates the

cokernel of the map

H�
GR
ðM;Z=2ZÞ-H�

GR
ðMHR ;Z=2ZÞ:

Therefore, multiplying both sides of (4.2) by q; we find that

aj1?ajR e ¼ h1e1 þ?þ hkek

with hiASðG�
RÞ: Thus, in (4.2), none of the weights a : G-Z=2Z that divide the

denominators pi vanish on HR: Hence, if eAimði�HR
Þ for all HR; then pi ¼ 1 for all i;

and so (4.2) tells us that

e ¼ g1e1 þ?þ gkekAH�
GR
ðM;Z=2ZÞ

and the proof is complete. &

Now suppose that ZHR
is a connected component of MHR for some subgroup HR

of GR of order jHRj ¼ 2n�1: Let iZHR
be the inclusion

iZHR
: ZGR

HR
-ZHR

of the fixed points of ZHR
into ZHR

: Let rZHR
be the inclusion

rZHR
: ZGR

HR
-MGR

of the fixed points of ZHR
into all of the fixed points. Then, we have the following

corollary of Theorem 4.1.

Corollary 4.8. Suppose that H�
GR
ðM;Z=2ZÞ is a free H�

GR
-module. A class

fAH�
GR
ðMGR ;Z=2ZÞ

is in the image of i� if and only if

r�ZHR
ð f ÞAi�ZHR

ðH�
GR
ðZHR

;Z=2ZÞÞ
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for every subgroup HR of GR of order jHRj ¼ 2n�1 and every connected component ZHR

of MHR :

Proof. The proof is analogous to the proof of Theorem 1 in [GH]. It follows directly
from Theorem 4.1. &

5. Real GKM

The goal of this section is to prove an analogue of Theorem 1.1 for the real locus
X of M: The proof will require two hypotheses on X ; namely

X GR ¼ MG ð5:1Þ

and

X ð1Þ ¼ X-Mð1Þ; ð5:2Þ

where Mð1Þ is the one-skeleton of M and X ð1Þ the one-skeleton of X : We will begin
by analyzing these conditions and their implications. We first note that the analogues
for M of the conditions (5.1) and (5.2), namely

#MGoN ð5:3Þ

and

dimðMð1ÞÞp2; ð5:4Þ

have a very simple and elegant interpretation in terms of the isotropy representations
of G at fixed points of M:

Theorem 5.1. The conditions #MGoN and dimðMð1ÞÞp2 are satisfied if and only if,

for every pAMG; the weights *ai;p; i ¼ 1;y; d of the isotropy representation of G on

TpM are pair-wise linearly independent, that is for iaj; *ai;p is not a multiple of *aj;p:

For the proof of this, see [GZ]. When M satisfies the two conditions (5.1) and
(5.2), we say that M is a GKM manifold. Let Z�

G be the weight lattice of G: By the

mod 2 reduction of a weight *aAZ�
G; we mean its image a in Z�

G=2Z
�
G: We will prove a

real analogue of Theorem 5.1.

Theorem 5.2. Suppose M satisfies the hypotheses of Theorem 5.1. Then the conditions

X GR ¼ MG and X ð1Þ ¼ X-Mð1Þ are satisfied if and only if, for every pAMG; the

mod 2 reduced weights, ai;p; are all distinct and non-zero.

Proof. Let Y be a connected component of MGR : Then Y is a G-invariant symplectic
submanifold of M; and the action of G on it is Hamiltonian, so it contains at least
one G-fixed point p: However, the hypotheses above imply that the linear isotropy
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action of GR on TpM has no fixed points other than the origin. Hence, dimðYÞ ¼ 0

and Y ¼ fpg: This argument applies to all the connected components of MGR ; hence

the connected components are just the fixed points of G; and thus X GR ¼ MG:

The proof that X ð1Þ ¼ X-Mð1Þ is similar. Let HR be a subgroup of GR of index 2;

and let Y be a connected component of MHR : Then Y is a G-invariant submanifold
of M; and because s3tg ¼ tg�13s; it is also s-invariant. Let pAY be a G-fixed point,

and let

TpM ¼ V1"?"Vd

be the decomposition of TpM into the two-dimensional weight spaces corresponding

to the *ai;p: By the hypotheses on the reduced weights ai;p; either

ðTpMÞHR ¼ f0g;

in which case Y ¼ fpg or

ðTpMÞHR ¼ Vi ¼ TpY ð5:5Þ

for some i: Let wi be the character of G associated with the representation of G on Vi

and let H ¼ kerðwiÞ: Then HRCH and

ðTpMÞH ¼ Vi:

Thus, by (5.5), Y is the connected component of MH containing p; and in particular,

Y is contained in Mð1Þ: Thus,

YsDX-Mð1Þ:

Applying this argument to all index 2 subgroups HR of GR and all connected
components of the fixed point sets of these groups, one obtains the inclusion

X ð1ÞDX-Mð1Þ:

The reverse inclusion is obvious. This completes the proof. &

The hypotheses of Theorem 5.2 impose some rather severe restrictions on the
manifold M: For instance, the cardinality of the set of mod 2 reduced weights,
Z�

G=2Z
�
G; is 2

n: Therefore, since the reduced weights ai;p are distinct and non-zero for

i ¼ 1;y; d; we must have that dr2n � 1: Hence,

dimðMÞ ¼ 2dp2nþ1 � 2: ð5:6Þ

For example, if n ¼ 2; then dimðMÞp6: This leads us to make the following
definition.
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Definition 5.3. If M is a GKM manifold, and if for every pAMG; the mod 2 reduced
weights, ai;p; are all distinct and non-zero, we will say that M is a mod 2 GKM

manifold.

Next, we show that relatively few compact homogeneous symplectic manifolds (e.g.
coadjoint orbits) are mod 2 GKM manifolds. Consider coadjoint orbits of the
classical compact simple Lie groups associated with the Dynkin diagrams An; Bn; Cn

and Dn: Let ei; for i ¼ 1;y; n; be the standard basis vectors of Rn: The positive roots
associated to the Dynkin diagram An consist of

ei � ej; ioj;

so their mod 2 reductions are distinct and non-zero. However, for Bn; Cn; and Dn;
this list of positive roots contains

ei � ej and ei þ ej ; ioj;

so we conclude

Theorem 5.4. Each coadjoint orbit of SUðnÞ is a mod 2 GKM space. However, for

other compact simple Lie groups, no maximal coadjoint orbit can be a mod 2 GKM

space.

On the other hand, on a more positive note, one has

Theorem 5.5. If M is a non-singular projective toric variety, then it is a mod 2 GKM

space.

Proof. If M is a non-singular toric variety, the weights *ai;p; i ¼ 1;y; n; are a Z-basis

for Z�
G; so their images in Z�

G=2Z
�
G are a Z=2Z basis of Z�

G=2Z
�
G: &

This theorem, combined with Theorem C, gives us a new description
of the equivariant cohomology of a real toric variety. The ordinary and
GR-equivariant cohomology of these real loci has been computed by Davis
and Januszkiewicz [DJ]. Their description of these rings is analogous to
Danilov’s description of the ordinary and G-equivariant cohomology of the original
toric varieties [Da].
We will now prove a real locus version of the GKM theorem with Z=2Z

coefficients. Recall from Section 1 that Theorem 1.1 of GKM characterizes the image

of i� : H�
GðM;CÞ-H�

GðMG;CÞ in terms of the weights of the isotropy representations
of G on the tangent spaces at the fixed points.
To prove an analogue of this for the real locus of a symplectic manifold, we

must first compute the Z=2Z-equivariant cohomology with Z=2Z coefficients

of RP1: Recall that S1 acts on CP1 by y � ½z0 : z1� ¼ ½z0 : eiyz1�: This is a Hamiltonian
action, with respect to the Fubini-Study symplectic form on CP1: Furthermore,
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complex conjugation is an anti-symplectic involution on CP1; with fixed point set

RP1: There is a residual action of Z=2Z on RP1DS1 which reflects S1 about
the y-axis.

Lemma 5.6. Let N and S denote the fixed points of the Z=2Z action on RP1: Then the

image of the map

i� : H�
Z=2ZðRP1;Z=2ZÞ-H�

Z=2ZðN;Z=2ZÞ"H�
Z=2ZðS;Z=2ZÞ

is the set of pairs ð fN ; fSÞ such that

fN þ fSAx � Z=2Z½x�:

Proof. It is clear that the constant functions are equivariant classes in

H0
Z=2ZðRP1;Z=2ZÞ:

Furthermore, we know that dim H0
Z=2ZðRP1;Z=2ZÞ ¼ 1; and so these are the only

equivariant classes. Finally, dim Hi
Z=2ZðRP1;Z=2ZÞ ¼ 2 for i40; and so indeed, the

condition stated is the only condition of pairs ð fN ; fSÞAH�
Z=2ZðN;Z=2ZÞ"

H�
Z=2ZðS;Z=2ZÞ: &

Theorem C identifies the image of the map

i� : H�
GR
ðX ;Z=2ZÞ-H�

GR
ðX GR ;Z=2ZÞ

in terms of weights of isotropy representations of GR on the tangent spaces at the
fixed points.

Proof of Theorem C. The result follows immediately from Corollary 4.8 and
Lemma 5.6. &

The results of this section and the previous section have been proved
independently by Schmid [S]. Schmid uses an equivariant Morse theoretic approach,
and consequently the proofs are quite different.
As a result of equivariant formality, we get two corollaries of Theorem C

concerning the relation between the ring structure of the cohomology of M and the
cohomology of X :

Corollary 5.7. Suppose that M is a GKM manifold and a mod 2 GKM manifold. Then

there is a graded ring isomorphism

H2�
G ðM;Z=2ZÞDH�

GR
ðX ;Z=2ZÞ:
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Corollary 5.8. Suppose that M is a GKM manifold and a mod 2 GKM manifold. Then

there is a graded ring isomorphism

H2�ðM;Z=2ZÞDH�ðX ;Z=2ZÞ:

Note that this last corollary strengthens Duistermaat’s original result from an
isomorphism of vector spaces to an isomorphism of rings.

Remark 5.9. Some of the results of this section, most importantly Theorem C, are
valid not only for the real locus X of a Hamiltonian G-manifold, but more generally
for any compact GR-manifold X which satisfies the following properties:

(1) X is equivariantly formal;
(2) X GR is finite; and
(3) the weights of X satisfy the properties of a mod 2 GKM manifold.

In this situation, we may still characterize the structure of the one-skeleton.
Theorem C still follows from injectivity and the Chang–Skjelbred theorem.

6. Real GH

Goldin and Holm generalize Theorem 1.1 to the case where the one-skeleton has
dimension at most 4: The goal of this section is to prove a real version of the Goldin–
Holm theorem with Z=2Z coefficients. Again, we require the hypotheses that the

ðZ=2ZÞn-fixed points of the real locus are the same as the G-fixed points of M as in
(5.1); and that the real locus of the one-skeleton is the same as the one-skeleton of the
real locus, as in (5.2). Finally, we require

#MGoN

and
dimðMð1ÞÞp4:

If a manifold satisfies these last two hypotheses, we will say that it is a GH manifold.
These hypotheses have a nice interpretation in terms of the isotropy representations
of G at the fixed points of M:

Theorem 6.1. The conditions #MGoN and dimðMð1ÞÞp4 are satisfied if and only if

the weights ai;p of the isotropy representation of G on TpM have the property that every

three span a vector subspace of dimension at least two.

These hypotheses on M have real analogues, namely that #XoN and the one-

skeleton X ð1Þ of X is at most two-dimensional. We will state without proof the
following real analogue of Theorem 6.1.
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Theorem 6.2. Suppose that M satisfies the hypotheses of Theorem 6.1. If the

conditions X GR ¼ MG and X ð1Þ ¼ Mð1Þ-X are satisfied, then for every pAMG; the

mod 2 reduced weights a#i;p are all non-zero, and each element of SððGRÞ�Þ ¼
Z=2Z½x1;y;xn� appears no more than twice.

The proof of this theorem is nearly identical to that of Theorem 5.2. The
hypotheses of this theorem, although weaker than those of Theorem 5.2, still impose
restrictions on the manifold M: The cardinality of the set of mod 2 reduced weights is
2n: Since the weights are non-zero, and each weight can appear at most twice,

dp2 � ð2n � 1Þ;

and so

dimðMÞ ¼ 2dp2 � ð2 � ð2n � 1ÞÞ ¼ 2nþ2 � 4:

For instance, if n ¼ 2; dimðMÞp12: We will now show an example where the
condition that the reduced weights be non-zero is not satisfied.

Example. Consider CP2 with homogeneous coordinates ½z0 : z1 : z2�: Let T ¼ S1 act

on CP2 by

eiy � ½z0 : z1 : z2� ¼ ½e�iyz0 : z1 : eiyz2�:

This action has three fixed points: ½1 : 0 : 0�; ½0 : 1 : 0� and ½0 : 0 : 1�:
The weights at these fixed points are as follows:

where we have identified t� with degree one polynomials in C½x�: As cohomology
elements, these are assigned degree two. Using Theorem 6.5 below, we can compute

the S1 equivariant cohomology of CP2 as follows. The image of the equivariant

cohomology H�
S1ðCP2Þ in

H�
S1ðf p1; p2; p3gÞD

M3
i¼1

C½x�

is the subalgebra generated by the triples of functions ð f1; f2; f3Þ such that

fi � fjAx � C½x� for every i and j

and
f1

2x2
� f2

x2
þ f3

2x2
AC½x�:
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However, when we try to compute the Z=2Z equivariant cohomology of RP2; the

real locus of CP2; we run into a problem. The mod 2 reduced weights are as follows:

The problem with this Z=2Z action on RP2 is that it no longer has isolated fixed

points. There is an entire RP1 which is fixed by this Z=2Z action. Thus, we cannot

compute the Z=2Z equivariant cohomology of RP2 using these methods.

We make the following definition, analogous to the definition of mod 2 GKM
manifolds given in Section 5.

Definition 6.3. Suppose that M is a GH manifold, and furthermore that X GR ¼ MG

and X ð1Þ ¼ Mð1Þ-X : In this case, we will say that M is a mod 2 GH space.

Recall the following properties about the G-equivariant cohomology of manifolds
with one-skeleta of dimension at most 4: These are proved in [GH], although the

reader is cautioned to the different notation used there. First, we compute the S1

equivariant cohomology of a 4-manifold, and then we use this computation to
determine the equivariant cohomology of any manifold with one skeleton of
dimension at most 4.

Lemma 6.4. Let X be a compact, connected symplectic 4-manifold with an effective

Hamiltonian S1 action with isolated fixed points X S1 ¼ fp1;y; pdg: The map

i� : H�
S1ðXÞ-H�

S1ðX S1Þ induced by inclusion is an injection with image

ð f1;y; fdÞA
Md

i¼1
Sðs�Þ fi � fjAx � C½x�;

Xd

i¼1

fi

ai
1a

i
2

ASðs�Þ
�����

( )
;

where ai
1 and ai

2 are the (linearly dependent) weights of the S ¼ S1 isotropy action on

Tpi
X :

Theorem 6.5. Let M be a compact, connected symplectic manifold with an effective

Hamiltonian G-action. Suppose further that the G-action has only isolated fixed

points MG ¼ f p1;y; pdg and that the one skeleton has dimension at most 4:
Let fiAH�

G denote the restriction of fAH�
GðMÞ to the fixed point pi: The image

of the injection i� : H�
GðMÞ-H�

GðMGÞ is the subalgebra of functions
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ð f1;y; fdÞA"d
i¼1 Sðg�Þ which satisfy

p�Hð fij Þ ¼ p�Hð fikÞ if f pi1 ;y; picg ¼ ZG
H ;Pl

j¼1

fij

aij
1a

ij
2

ASðg�Þ if f pi1 ;y; picg ¼ ZG
H and dim ZH ¼ 4

8><
>:

for all HCG codimension-1 tori and all connected components ZH of MH ; where aij
1 ; a

ij
2

are the (linearly dependent) weights of the G action on Tpij
ZH ; and pH : h+g is

inclusion.

We can use these computations to compute the ðZ=2ZÞn equivariant cohomology
of a mod 2 GH manifold.

Lemma 6.6. Let M be a compact, connected symplectic 4-manifold with an effective

Hamiltonian S1 action with isolated fixed points MS1 ¼ fp1;y; pdg: Suppose further

that M is a mod 2 GH manifold with real locus X : The map

i� : H�
Z=2ZðX ;Z=2ZÞ-H�

Z=2ZðXZ=2Z;Z=2ZÞ

induced by inclusion is an injection with image

ð f1;y; fdÞA
Md

i¼1
Z=2Z½x�

fi � fjAx � Z=2Z½x�;Pd
i¼1

fi

ai
1a

i
2

AZ=2Z½x�;

�������
8><
>:

9>=
>;; ð6:1Þ

where ai
1 and ai

2 are the linearly dependent weights of the Z=2Z isotropy representation

on Tpi
X : (In this case, ai

1 ¼ ai
2 ¼ x:)

Proof. The map i� is injective because X is equivariantly formal. We know that the fi

must satisfy the first condition because the functions constant on all the vertices are

the only equivariant classes in degree 0; as dim H0
Z=2ZðX ;Z=2ZÞ ¼ 1: The second

condition is necessary as a direct result of the Z=2Z version of the localization
theorem proved in Section 4. Note that this condition gives us one relation in degree 1
cohomology. A dimension count shows us that these conditions are sufficient. As an

SððZ=2ZÞ�Þ-module, H�
Z=2ZðX ;Z=2ZÞDH�ðX ;Z=2ZÞ#H�

Z=2Zð pt;Z=2ZÞ: Thus, the
equivariant Poincaré polynomial is

P
Z=2Z
t ðXÞ ¼ ð1þ ðd � 2Þt þ t2Þ � ð1þ t þ t2 þ?Þ

¼ 1þ ðd � 1Þt þ dt2 þ?þ dtn þ?:
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As H�
Z=2ZðX ;Z=2ZÞ is generated in degree 1, the d � 1 degree 1 classes given by the

ð f1;y; fdÞ subject to the localization condition generate the entire cohomology ring.
Thus, we have found all the conditions. &

We now prove Theorem D, computing the cohomology of any mod 2 GH

manifold. We will show that the image of i� : H�
GR
ðX Þ-H�

GR
ðX GRÞ is the subalgebra

of functions ð f1;y; fdÞA"d
i¼1 SðG�

RÞ which satisfy

p�HR
ð fij Þ ¼ p�HR

ð fikÞ if f pi1 ;y; pilg ¼ ZGR

HR
;Pl

j¼1

fij

aij
1a

ij
2

ASðG�
RÞ if f pi1 ;y; pilg ¼ ZGR

HR
and dim ZHR

¼ 2

8><
>:

for all subgroups HR of GR of order jHRj ¼ 2n�1 and all connected components ZHR

of X HR :

Proof of Theorem D. This follows immediately from Corollary 4.8 and Lemma
6.6. &

There are two immediate corollaries in this setting, analogous to Corollaries 5.7
and 5.8.

Corollary 6.7. Suppose that M is a GH manifold, and that MG ¼ X GR and Mð1Þ-X ¼
X ð1Þ: Then there is a graded ring isomorphism

H2�
G ðM;Z=2ZÞDH�

GR
ðX ;Z=2ZÞ:

Corollary 6.8. Suppose that M is a GH manifold, and that MG ¼ X GR and Mð1Þ-X ¼
X ð1Þ: Then there is a graded ring isomorphism

H2�ðM;Z=2ZÞDH�ðX ;Z=2ZÞ:

7. Applications to string theory

Consider the Z=2Z action on Tn; which reflects each copy of S1: Then the
equivariant cohomology ring

H�
Z=2ZðTn;Z=2ZÞ

classifies all possible orientifold configurations of Type II string theories,
compactified on Tn: See Section 3 and Appendix C of [dB] for more details.
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Yang-Hui He pointed out this example to us. Using the results of Section 5, we can
now compute this equivariant cohomology.

First, we recognize Tn as the real locus of M ¼ CP1 �?� CP1 ¼ ðCP1Þn: This

space M has a natural Tn action, where the ith copy of S1 acts in the standard

fashion on the ith copy of CP1: We can compute the ðZ=2ZÞn-equivariant

cohomology of this space quite easily. The GKM graph associated to ðCP1Þn with
the Tn action described above is the n-dimensional hypercube. The vertices
correspond to the binary words of length n: Two binary words are connected by
an edge if they differ in exactly one bit. Suppose v and w differ in exactly the ith bit.
Then the weight associated to the edge ðv;wÞ is xi: Thus, when n ¼ 3; the GKM
graph and weights are shown in the figure above (Fig. 1).
Note that the reduced weights are all non-zero and are distinct in ZG=2ZG: Thus,

we can apply Theorem C to compute

HðZ=2ZÞnðTn;Z=2ZÞ:

That is, the equivariant cohomology is the set of functions f : V-Z=2Z½x1;y; xn�
such that for every edge ðv;wÞAE; we have

f ðvÞ þ f ðwÞAxi � Z=2Z½x1;y; xn�:

We can now consider the copy of Z=2Z sitting diagonally inside ðZ=2ZÞn:
This copy of Z=2Z acts on Tn; and this is the action that originally interested
physicists. We can now compute the Z=2Z-equivariant cohomology simply by
projecting

p : SðððZ=2ZÞnÞ�Þ ¼ Z=2Z½x1;y; xn�-Z=2Z½x� ¼ SððZ=2ZÞ�Þ

where xi gets sent to x: Then

H�
Z=2ZðTn;Z=2ZÞ ¼ pðHðZ=2ZÞnðTn;Z=2ZÞÞ:
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8. Recreational applications

We will describe below a (somewhat idealized) real world application of the results
of Section 5. Let S ¼ f1;y; ng be a list of companies whose stocks are being traded
in the stock market. Let Ai for i ¼ 1;y; d be investors, and let SiDS be the portfolio
of Ai: Suppose that for certain pairs of investors Ai and Aj; the symmetric difference

ðSi � SjÞ,ðSj � SiÞ ¼ Se; e ¼ ði; jÞ; ð8:1Þ

i.e. the relative status of the portfolios of Ai and Aj ; is given. To what extent does this

information determine the portfolios Si? It is easy to see that it cannot uniquely

determine the Si’s. If S1;y;Sn is one solution to (8.1), one gets another solution by
taking a fixed subset S0 of S and replacing the Si’s by the symmetric difference

S0
i ¼ ðSi � S0Þ,ðS0 � SiÞ: ð8:2Þ

Therefore, we will slightly rephrase this question. Let E be a collection of two-
element subsets of S; and suppose that for every eAE; one is given a subset Se of S:
List all solutions S1;y;Sn of the Boolean identities (8.1). We will say two solutions
are identical if they satisfy (8.2). Note, by the way, that (8.2) can be rewritten as

Si ¼ ððS0
i � S0Þ,S0Þ � S0

i :

Hence, we have defined an equivalence relation.
One can inject an element of randomness into this problem by positing that, for

e ¼ ði; jÞAE;

ðSi � SjÞ,ðSj � SiÞAfSe; |g: ð8:3Þ

In other words, either the symmetric difference is given by (8.1) or Si ¼ Sj: Again,

the problem is to list all possibilities for the Si’s. Clearly, the solutions of (8.3)
contain the solutions to (8.1); so by solving (8.3), one gets an upper bound on the
number of solutions to (8.1). Moreover, there are a lot of trivial solutions of (8.3),
namely,

Si ¼ S0; i ¼ 1;y; n; ð8:4Þ

where S0 is, as above, a fixed subset of S: These can immediately be discarded as
potential solutions of (8.1).
There is an elegant way of reformulating (8.1) and (8.3) in the language of mod 2

arithmetic. Let G be the graph whose vertices are the Ai’s and whose edges are the
members of E: For every edge eAE; let ae be the element of Z=2Zn whose kth
coordinate is 1 if and only if kASe and ai the element of Z=2Z

n whose kth coordinate
is 1 if and only if kASi: Then (8.1) is equivalent to

ai þ aj ¼ ae ð8:5Þ
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and (8.3) is equivalent to

ai þ aj ¼ lae; lAZ=2Z: ð8:6Þ

In particular, (8.3) becomes an identity of the type described in Theorem C, the
multiple of ae on the right being in the degree zero component of Z=2Z½x1;y; xn�:
Now let M be a GKM manifold acted on by an n-torus T ; and let G be its

associated graph. If the ae’s in (8.6) are the weights of GR which were defined in
Theorem C the results of Section 5 tell us that solutions of (8.6) can be identified with
elements of

H1
GR
ðMs;Z=2ZÞ:

We will use this observation to determine the solutions of (8.6) in a couple simple,
but interesting, examples.

Example (The complete graph on n vertices). Consider M ¼ CPn�1 as a Tn

manifold (ignoring the fact that the diagonal subgroup of Tn acts trivially). The
corresponding graph is the complete graph on n vertices: its vertices are A1;y;An

and every pair of vertices is joined by an edge. The weights aði;jÞ from Theorem C are

just xi þ xj; so conditions (8.1) become

ðSi � SjÞ,ðSj � SiÞ ¼ fi; jg: ð8:7Þ

The solutions of (8.7) are in one-to-one correspondence with the elements of

H1
GR
ðRPn�1;Z=2ZÞ

or, alternatively, of

ðH0ðRPn�1;Z=2ZÞ#Z=2ZnÞ"H1ðRPn�1;Z=2ZÞ: ð8:8Þ

The elements of the first summand correspond to the trivial solutions of (8.7). So if
we identify solutions which are equivalent in the sense of (8.2), the non-trivial

solutions of (8.7) correspond to non-zero elements of H1ðRPn�1;Z=2ZÞ: However,
H1ðRPn�1;Z=2ZÞ ¼ Z=2Z; so there is just one non-trivial solution up to equivalence,
and it is given by

Si ¼ fig;

this is also the unique solution of (8.1) up to equivalence.

Example (The permutahedron). Let M be the complex flag variety UðnÞ=Tn; and
consider the Tn action on M by left multiplication. The graph associated with M is
the permutahedron. Its vertices are the elements of the symmetric group, Sn; and two

vertices s and t are joined by and edge if ts�1 is a transposition. If e is the edge

joining s to t and ts�1 is the transposition switching i and j; then as in the previous
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example, ae ¼ xi þ xj; so condition (8.1) becomes

ðSs � StÞ,ðSt � SsÞ ¼ fi; jg:

As in the previous example, the non-trivial solutions to (8.3) can be identified with

the non-zero elements of H1ðMs;Z=2ZÞ; and since Ms is the real flag variety,

H1ðMs;Z=2ZÞDZ=2Zn�1:

If one thinks of Z=2Zn�1 as the quotient of Z=2Zn by the diagonal subgroup
ðl;y; lÞ; with lAZ=2Z; the solutions corresponding to aAZ=2Zn modðl;y; lÞ is
given by

Ss ¼ sðS0Þ; ð8:9Þ

where kAS0 if and only if the kth coordinate of a is 1:Note, by the way, if we replace
a by aþ ð1;y; 1Þ; (8.9) becomes

Sc
s ¼ sðSc

0Þ; ð8:10Þ

where Sc
s and Sc

0 are the complements of Ss and S0 in S; so (8.9) and (8.10) are

equivalent. It is easy to see by inspection that none of the solutions (8.9) of (8.3) are
also solutions of (8.1).
An interesting special case of this example is the complete bipartite graph K3;3: In

this case, the vertices of G are A1; A2; A3 and B1; B2; and B3; the edges are all pairs
ðAi;BjÞ; and the sets Se are

SAi ;Bj
¼

fi; jg; iaj;

f1; 2; 3g � fig; i ¼ j:

(

In this example, (8.3) has one non-trivial solution, up to equivalence, namely SAi
¼

SBi
¼ fig:
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