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Recent important generalizations by G. Adomian (“Stochastic Systems,” 
Academic Press, 1983) have extended the scope of his decomposition method for 
nonlinear stochastic operator equations (see also iterative method, inverse operator 
method, symmetrized method, or stochastic Green’s function method) very 
considerably so that they are now applicable to differential, partial differential, 
delay, and coupled equations which may be strongly nonlinear and/or strongly 
stochastic (or linear or deterministic as subcases). Thus, for equations modeling 
physical problems, solutions are obtained rapidly, easily, and accurately. The 
methodology involves an analytic parametrization in which certain polynomials A,, , 
dependent on the nonlinearity, are derived. This paper establishes simple symmetry 
rules which yield Adomian’s polynomials quickly to high orders. 

INTRODUCTION 

A series of publications since 1976 by Adomian (a few are given in Refs. 
[2-61) have focussed on the approximate solution of nonlinear (deterministic 
or stochastic) differential equations for physical problems. These equations 
may be ordinary or partial differential equations or systems of equations and 
can even include delays. Solutions are obtained in series form for deter- 
ministic equations, and in the case of stochastic equations for statistical 
measures (mean, correlation, etc.) of the solution process. 

A very important advantage of Adomian’s basic method is the elimination 
of a number of restrictive and generally unsatisfactory assumptions on the 
nature of stochastic processes, the magnitude of fluctuations, or on the 
nonlinearities which are inherent in other methods. No linearization or 
closure approximations are necessary. One doesn’t require “weak” 
nonlinearities or “small” fluctuations, stationarity, gaussian or white noise 
behavior, etc. Thus, the physical system is not forced into a nice 

* Dedicated to Dr. George Adomian on his birthday, March 21, at the end of two decades 
of accomplishment since his 1963 dissertation. 

’ Present address: Microwave and Power Tube Division, Raytheon Company, Waltham, 
Massachusetts 02254. 

415 
0022-247X/84 $3.00 

409/102/2-9 
Copyright ‘?I 1984 by Academic Press, Inc. 

All rights of repraducflon in any form reserved. 



416 RANDOLPH RACH 

mathematical mold for which solutions are readily available. As a conse- 
quence it appears certain that solutions will conform far more closely to 
physical problems. The objective throughout Adomian’s work has been the 
solution of real dynamical systems which are almost invariably nonlinear 
and stochastic. Linear stochastic, nonlinear deterministic, linear deterministic 
subcases are readily obtained from the method as special simple cases. 

One might quite well have surmised that methodology developed for 
stochastic cases was unnecessary and cumbersome for deterministic cases or 
for linear deterministic partial differential equations. However, this is not 
true. Whether the equations are deterministic or stochastic, solutions are 
obtained very easily and with surprising accuracy, often with only a few 
terms. 

The work has been generalized rapidly by Adomian since his first solution 
of (deterministic or stochastic) differential equations with polynomial 
nonlinearities [2,31 to now include exponential or trigonometric 
nonlinearities, products of derivatives of the dependent variable, radicals, 
negative powers, or even decimal powers. In addition to increasing the 
classes of now tractable nonlinearities, he has extended the methodology to 
include nonlinear delay equations, coupled nonlinear differential and partial 
differential equations, and other general systems. The method allows 
inclusion of randomness in the differential operators as well as in the initial 
or boundary conditions and can even handle coupled boundary conditions. 

The procedure is called the decomposition method* by Adomian ] 1 ] 
because it involves an assumed decomposition of the solution into 
components to be determined. The nonlinear terms are dealt with by an 
analytic parametrization in which certain polynomials A, dependent on the 
nonlinearity and order of the components are derived. These represent 
expansion coefftcients for the nonlinear terms. (We will henceforth refer to 
the A, as Adomian polynomials.) 

The objective in this paper is the establishment of simple symmetry rules 
which yield the Adomian polynomials quickly to high orders. This symmetry 
rule adds to the convenience of the computations and is easier to remember 
and derive. It, in turn, was inspired by the basic method, of course, and also 
by the elegant “symmetrized method” of Adomian and Sibul (also discussed 
in [ 11) which is an alternative version of the decomposition method 
convenient for polynomial nonlinearities. Hopefully, this method of 
calculating the A, will be useful in applications of this powerful method 
which has provided a new and very significant potential for the solution of 
numerous frontier applications involving dynamical systems [ 7, 81. 

* Adomian’s book refers extensively to “Decomposition Method.” While the name is very 
appropriate, it is also used in other fields such as Galois theory. It is therefore preferable to 
call it Adomian’s method as it is uniquely his creation. 
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DISCUSSION 

For convenience, we summarize briefly our understanding of the 
methodology (although the reader is strongly recommended to read the 
referenced book and the papers referenced there). Consider an operator 
equation of the form Sru = g which Adomian uses consistently and we can 
refer to it conveniently as Adomian’s equation in this paper as necessary. 
Here g represents a stochastic process (e.g., g(t, w) or g(x, y, z, t, w)) 
appropriately defined on a probability space, and STU is assumed in the form 
Lu + 9~ + NU +Jc where L is a linear deterministic operator, 9 is a 
linear stochastic operator [ 11, N is a nonlinear deterministic operator, and J 
is a nonlinear stochastic operator. We will concern ourselves here with 
differential operators. By letting any one, two, or three of the operators L, 
9, N, J be zero, one considers the possible linear, nonlinear, deterministic, 
or stochastic subcases. The solution is formally u = Y-‘g which is assumed 
decomposed into a sum of components u,,, U, ,... or Z+?-;‘g, R;rg,... to be 
determined. Let’s assume L # 0 for simplicity of discussion here (if it is, and 
we have nonzero initial conditions, the method still works-see [ 11) and 
further that L is invertible. (Again, if finding the Green’s function is difficult 
a procedure exists to decompose L into L, + L, where L, is easily or 
trivially invertible and L, is included with the other operators.) 

The term L -‘g and terms which we need not discuss here-see 
[II-including given initial or boundary conditions are taken as u0 in the 
decomposition. The nonlinear terms are essentially sums of Adomian 
polynomials C A,, . 

More precisely the polynomials A,, symbolize expansion coefficients for 
analytic expansions in a parameter 1 for nonlinear terms of the form N(u). 
The k is not in any sense a perturbation parameter but a convenient device 
for collecting terms and is dropped at the end of the calculation. We will 
assume in this paper that N is a nondifferential operator and only u appears 
in the operand rather than cases such as N(u, u’,...). These more complex 
cases are discussed elsewhere. In the earlier work, the polynomials were 
found by implicit differentiations, 

An = (lln!)(d”ld~“)f(u(~))l,=, (1) 

for N(u) =f(u) and we parametrize u as u(1) = CFEO u,,1” and f(u) as 
f(u(n)) = C,“=. A,1”. Later, direct procedures resulted in 

A, = 5 C(v, n) H,(q,) (2) 
“=l 

where the C(V, n) were specified by a recurrence rule. Our procedure now 
can be viewed as a convenient symmetry rule for generation of the Adomian 
polynomials which we present heuristically. 



418 RANDOLPH RACH 

For any n in A,, compute H,(u,) for v = 1, 2,..., n by differentiatingf(u) v 
times with respect to u and evaluating at L = 0. 

Thus A,, for example, involves H,(u,), H,(u,), and H,(u,). Since A, = 
C( 1, 3) H,(u,) + C(2,3) H,(u,) + C(3, 3) H,(u,) from Eq. (2), we must 
calculate C(v, 3) for v = 1, 2,3. Consider the case of v = 2, n = 3 or C(2, 3). 
We ask how many ways can the sum of v integers = IZ, i.e., zr=, pi = n. We 
consider only combinations, not permutations. Since in this case v = 2, we 
are asking how many combinations of two integers will equal 3, i.e., 
hi + a2 = 3. Consequently, we take hi = 1, +* = 2. Then C(2, 3) is written 
uIIu,, = uluz. In other words we simply take a product of the components of 
u with v factors in the product with subscripts adding to n. 

Similarly, C(l, 3), the coefftcient of H,(u,), requires a single component 
whose subscript must be 3, i.e., C(l, 3) = u3. For the coefficient C(3,3) of 
H,(u,) we need three subscripts adding to 3 thus hi + h2 + hj = 3. Hence we 
get ui U, u i or u i and we state the rule that whenever we have such a 
repetition of factors, we must divide by the factorial of the number of 
repetitions. Thus C(3, 3) = (l/3!) u:. Now we can write 

A3 = H,(u,) u3 + H*(%) UlUZ + ~3odW39 4. 

In general then we have c&i nr= i ~4,~ = & u,) ue2 . . . u,~, with Cy=, zi = n and 
if we have a subscript repeated k times, we divide by k!. 

By application of the above easy symmetry rule for writing the Adomian 
polynomials, general solutions can be written by the decomposition method 
for nonlinear operator equations (Adomian’s equation). We now generalize 
the preceding heuristic definition to include the case of a multiplicity of 
repeated factors within any product of solution components. 

Symmetry Rule for Adomian Polynomials 

The Adomian polynomials A, are generated by 

A,, = i H,(u,) C(v, n) 
“=I 

where 

C(v, n) = 2 f1 (l/k,!) u:; 
ei i=l 

where C;=i ki%i = n and ki is the number of repetitions in the u+, n > 0, 
0 < i < n, the values of the indices z1 are greater or equal to 1 and less than 
or equal to (n - v + l), the numerical values of 4i are selected from this 
specified range by combinations without repetition, and H,(u,) is obtained 
by differentiating f(u), the nonlinear term, v times with respect to u and 
evaluating at 1 = 0. 
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Specific examples of the polynomials A, are listed in Ref. [ 1 ] and in many 
papers for various NU such as u2, u3, sin U, e’, l/u*, etc., e.g., [8]. 
Computational experience has shown that one can obtain remarkably 
accurate results usually with something on the order of a half dozen terms 
quite painlessly. When sufficiently high precision is not obtained by using a 
few of the A,, we have two alternatives. One is to compute additional terms 
by any of the available procedures. The second approach is to use the 
Adomian-Malakian “convergence acceleration” procedure ] lo]. This unique 
approach conveniently yields the error-damping effect of calculating many 
more terms of the A, to determine whether further calculation is justified. 
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