
Science of
Computer

ELSEVIER Science of Computer Programming 29 (1997) 23-52
Programming

Verification of XTP context management closing
procedure in style of TLA1

Tatj ana Kapus* , Zmago BrezoEnik
Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ul. 17,

SI-2000 Maribor, Slovenia

Abstract

Modular specification and compositional verification of the context management closing proce-
dure of Xpress Transfer Protocol (XTP Protocol Definition, Revision 3.6) in style of Lamport’s
Temporal Logic of Actions is considered. It is assumed that a full-duplex association over a pair
of lossy channels between two contexts on different hosts is being closed, such that any data for
that connection have already been transmitted successfully to the hosts. Thus, the case of the
closing procedure is considered where both contexts are active and synchronized initially, and
only control messages have to be sent until the association is closed. @ 1997 Elsevier Science
B.V.

Keywords: Communication protocols; Connection management; Compositional verification;
Temporal logic of actions

1. Introduction

Xpress Transfer Protocol is a light-weight transport protocol for high-speed networks

[5]. It allows for reliable sequenced data delivery by establishing a full-duplex connec-

tion between end hosts. We show how the essential part of the context management

closing procedure of XTP, described in XTP Protocol Definition, Revision 3.6 [15],

can be specified and verified in style of Lamport’s Temporal Logic of Actions [lo].

Its basic idea is that the (logical) specification language contains unprimed and primed

variables. A specified system is looked upon as a (possibly infinite) state transition

system. Its possible transitions are not described e.g. by an event-state table (cf. [6]),

but rather by action formulae. An action formula is like a first-order predicate logic

formula, except that it may contain primed variables. An unprimed variable denotes

* Corresponding author. E-mail: kapus@uni-mb.si.

’ Work supported by the Ministry of Science and Technology, Republic of Slovenia.

0167~6423/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved.
PII SO167-6423196>00028-7

24 YlI Kapus, 2. Brezo&ikiScience of Computer Programming 29 (1991) 23-52

the value of the variable in the state just before the (atomic) action execution, and a

primed variable its value in a possible next state after execution. A design specification

of a protocol can thus actually be written by listing action formulae describing possible

actions. The operational style can also be used for writing a requirement specification.

Temporal operators can be used for specifying liveness and also for expressing re-

quirement specifications in a more declarative way. The idea is also employed e.g. in

[9, 13,7], and demonstrated in [12].

Assume that a non-multicast association, meaning a connection in XTP terminology,

between an instance of XTP at a host A and an instance of XTP at a host B has been

established over a pair of lossy channels, one for carrying messages in each direction.

The set of state variables for an instance of XTP at an end host is called a context.

One therefore also says that the association exists between a context at host A and

a context at host B. The association consists of a simplex data stream A-to-B and a

simplex data stream B-to-A. Host A is the sending host for stream A-to-B and the

receiving host for B-to-A, and symmetrically for host B. Likewise, the context at each

host is the sender for one of the data streams, and the receiver for the other one.

Each context manages both the outgoing and the incoming data stream as well as the

potential for sending and receiving control information. In [151, a context is looked

upon as consisting of a part for managing the outgoing data stream, called an output

data stream, and a part for managing the incoming data stream, called an input data

stream. When the output data stream is in active state, it can receive data from its

host (i.e., XTP user or application), and transmit them over a lossy channel to the

other context and host according to XTP specifications in order to achieve reliable

data transfer. Typically, an acknowledgement/retransmission scheme for error control

is used. When the input data stream of the context at the other host is in active state,

it takes the data from the channel, also acts according to the XTP rules, and puts

correctly received data into a data receive queue, wherefrom the data are read by the

receiving host. A simplex data stream thus consists of an active output data stream

at its sending context and of an active input data stream at its receiving context. If

the output data stream is inactive (we shall also say ‘closed’), no data can be sent

or retransmitted, and if the input data stream is inactive, no data from the incoming

channel can be received, no (negative) acknowledgements sent, and no data from the

receive queue delivered to the application. A simplex data stream is closed, when the

data streams at both ends are inactive. A context is active if at least its output or input

data stream is not inactive. If both are inactive, the context is closed, i.e., it passes to

null state.

When all data for the association have been sent, or for other reasons, the association

is closed. In order for the association to be closed, both contexts must be closed by

the context management closing procedure, so as to be prepared to be activated for a

new association. A context can be closed in several ways. It may be released when its

output and input data stream have been closed. It may be aborted when information

exchange between the hosts becomes impossible. It may also be ended by a local

application whenever it decides so, but we shall not consider this possibility.

T Kapus, Z. BrezociiklScience of Computer Programming 29 (1997) 23-52 25

In other words, in order to close the association, both simplex data streams must be

closed. Graceful or ungraceful (forced) closure for a simplex data stream is possible.

A graceful closure means that a data stream was closed after all data for the data

stream had been correctly transmitted by its output data stream and acknowledged

by the receiving input data stream, and delivered from the data receive queue to the

receiving application. This means that the input data stream had been provided an

opportunity to ask for retransmissions. In this paper, we consider the correctness of

the closing procedure for the following possible situation. We assume that all data for

both simplex data streams have already been correctly transferred and acknowledged,

but there may still be some data in the data receive queue of each one, waiting to

be read by the receiving host, when the closing of the association starts. We assume

both contexts are active, and that both output and input data stream of each context

is active. We also assume that the contexts are synchonized with each other relating

data. The consequence of these assumptions is that no delay of releasing a context,

described in [151, and no aspects of XTP data transfer need be modelled, except for

the delivery of the receive data queues.

Information in XTP is transferred in packets. Each packet contains a header with

bitflags for controlling the operation of XTP and a field for packet-type identification.

For our purpose, only flags WCLOSE (i.e., “write-close”), RCLOSE (“read-close”),

END for the control of association closing, and SREQ (“status request”) flag for con-

trolling the acknowledgement policy have to be modelled. We only need packets with

CNTL or DIAG in their packet-type field. CNTL packets are control packets for ex-

changing state information between end hosts. DIAG packets are diagnostic packets.
A CNTL packet with SREQ set is called CNTL-request packet. Upon receiving such

a packet, a context must immediatelly send a response to the sender of the request.

If the context is active, a CNTL packet with information about its current status,

known as CNTL-response packet, is sent. In our case, the status information con-

sists of WCLOSE, RCLOSE, and END bits only. If the context is already closed, a

DIAG packet is sent, telling the sender that there is no active context at the other

side.

Each simplex data stream must be closed with a handshake consisting of two packets,

one from each host, involving the WCLOSE, RCLOSE, and/or END bits. Closure of

a data stream can be initiated by the sending or the receiving host for the stream.

Basically, the closing procedure in our case works as follows. With graceful close,
the sending context for a data stream sends a CNTL-request packet with WCLOSE

bit set telling the receiving context that the sending host wants to close its out-

put data stream (in fact, its outgoing simplex data stream), and starts a timer. It

continues to transmit CNTL-request packets with WCLOSE set at timeout intervals.

Upon receiving such a packet, the receiving context waits until its receive data queue

is empty. We consider the closing procedure for the CONFIRM mode of closing

[151. This means that the context must then still wait for a confirmation from the

application, before it can close the input data stream. After obtaining the confirmation,

it closes its input data stream, and sets RCLOSE in outgoing packets. The sending

26 T Kapus, Z. BrezoEnikIScience of Computer Programming 29 (1997) 23-52

context stops the retransmission and closes the output data stream when it gets a

CNTL packet with RCLOSE bit set. With ungraceful close, the receiving host decides

to close its input data stream (i.e., its incoming simplex data stream), the context

at the host discards any data left in its receive queue, sends a CNTL-request packet

with RCLOSE bit set to the sending context, starts a timer, and continues to send

CNTL-request packets with RCLOSE set at timeout intervals. Upon receiving such a

packet, the sending context closes its output data stream and sets WCLOSE in outgo-

ing packets. The receiving context stops the retransmission and closes its input data

stream upon receiving a control packet with WCLOSE bit set. A context sets END in

a CNTL response to a CNTL-request packet if it has been closed upon receiving the

request.

Every control packet sent by a context carries the status information about both

its output and input data stream. Closing of both data streams may also be initiated

simultaneously. Therefore, the procedure of closing the simplex data streams can be

highly concurrent. For example, it is possible to achieve the closure of both simplex

data streams, and thus of both contexts and of the association, by sending just one

CNTL packet in each direction, a CNTL-request packet with WCLOSE and RCLOSE

bits set in one direction, and a CNTL-response packet with WCLOSE, RCLOSE and

END bits set in the other one. In [151, the closing procedure for a context is described

by mutually dependent semi-formal state machines, one for the output and one for the

input data stream. We are interested in formally specifying and verifying concurrent

behaviour and cooperation of input and output data stream state machines at both hosts

in sending control packets for closing the association. We assume the only thing that

can go wrong is loss of packets in the channels, and not, for example, that a host can

go down. No real time aspects will be modelled.

We write the design specification of the procedure as a parallel composition of a

number of components. The components specifications are written in such a way that

the composition practically satisfies the conjunction of the specifications. A straight-

forward way to prove a requirement specification of the procedure is then by first

constructing the design specification of the complete system by the conjunction, and

prove that the latter implies the requirements. However, we avoid the intermediate

step by providing proof rules for proving typical required properties directly from the

components specifications. Since communication protocols procedures typically consist

of specifically constructed sender, receiver, and channel components, the compositional

verification could have been simplified by developing two proof rules for exactly this

type of systems.

The paper is organized as follows. Section 2 briefly describes the temporal logic

of actions (TLA) used. The system model, basic notions regarding specification, im-

portant system operations, and basic proof rules for them are presented in Section 3.

Section 4 contains a design specification of the simplified XTP closing procedure writ-

ten in style of Lamport’s TLA together with an explanation. Required properties of the

procedure are also specified there. In Section 5 we list necessary proof rules of TLA

and propose some property-specific and system-specific proof rules for compositional

T. Kaput, 2. BrezotniklScience of Computer Programming 29 (1997) 23-52 27

verification. Proofs of the required properties of the closing procedure applying these

rules are outlined in Section 6. A discussion of the results and future work concludes the

paper.

2. The temporal logic of actions

We use quite a usual linear-time temporal logic (cf. [12]). The alphabet of our

temporal logic language consists of denumerable sets of local individual variables

X, global individual variables Y, local proposition variables V, and global propo-

sition variables Y. Further, it consists of at most denumerable sets of function and

predicate symbols, the latter including equality. It contains Boolean connectives 1,

+ (implication), the quantifier 3, and temporal operators ‘, 0 (“next”), unless,

3, the latter being a “temporal” quantifier for quantification over local variables.

Local variables may change their value from state to state, global may not. Like

in [lo], local variables must not occur bound under temporal operators other

than 3.

Terms Term, temporally unquantified formulae UForm and formulae Form are de-

finedasfollows.LetxEX, ~EY,vE~,uE~,wEYUU,~~~~EXU~.L~~

t E Term, F,, G, E UForm, and F, G E Form. Then

t ::= x 1 y 1 x’ (f(Q,...,&)

F, ::= v 1 u 1 v’ 1 P(tl,. . . , tn) 1 TF, 1 F, -+ G, 1 0 F,) F, unless G,) 3wF,
F ::= F, I3lzF IlF 1 F + G j3wF

for any n-ary function symbol f or predicate symbol P from our sets. Propositional

constants (true, false), other Boolean connectives (A, V, -), and universal quantifiers

can be introduced as usual abbreviations. The same holds for common temporal op-

erators, for example, OF = F unless false (i.e., “always F”), OF E -JO-F (i.e.,

“eventually p’).

A variable is called primed, if followed by ‘, and unprimed otherwise. A state for-
mula is one that does not contain temporal operators including ‘. A formula containing

at most unprimed, primed variables, and Boolean operators, is called an action formula,
or sometimes simply an action.

Formulae are interpreted in infinite sequences of states. We assume a fixed first-order

interpretation that assigns functions and relations on some domain of values to the

function and predicate symbols. A global valuation q assigns values from the domain

to the global individual variables, and a Boolean value to every global proposition

variable. Each state si of an infinite state sequence c = (ss,si, . . .) does the same for

the local individual and proposition variables, respectively. Let cr, 11 k F indicate that

F is true in CJ under q. The meaning of the operators is as usual, except for existential

quantification of local variables, which is like in [lo]:

cr, q k 3zF iff there exist cr’, cr”such that 0 pv G’, o’ M, CJ”, and 8, v b F,

28 T Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52

where ~7 N CJ’ means that the infinite sequences differ at most in how many times each

state is repeated consecutively, and CJ M, rr’ means that the sequences differ at most in

values they assign to z. Informally, 3zF says that we do not care about the value of

z, but F must hold. x’ means the value of the variable x in the next state. u’ means

that u is true in the next state. Let a[i..] denote the suffix of (T starting at si. We use

the reflexive unless operator:

a,~ k F unless G iff a[i..],r] k F, for all i>O, or

there exists j20, such that o[j..],q + G and a[/~..], y b F

for all k,Odk < j.

Notice that we have an initial semantics. A formula F is valid if it is true in any

CJ under any 9. A formula is closed iff all occurrences of global variables in it are

bound. A model of a closed formula F is any infinite state sequence in which F is

true. Let [F] denote the set of all models of F.

An action formula can be interpreted in a pair of states. For example, x’ = x + 1

is true at any pair of states (s,s’) such that S’(X) = s(x) + 1. It may be treated as an

analogon of a programming language assignment x := x + 1.

We call our logic a temporal logic of actions because it contains ’ and the following

abbreviations relating actions (cf. [lo]). Let xi , . . . ,x, be local (individual or propo-

sition) variables, let X denote a finite set of local variables, and let A be an action

formula containing at most the variables from X as free local variables. Then2

unch(q ,..., x,) -xi =x1 A . . . AXA = x,,,

[A]j E A v A x’ = x (interpreted as “either action A
XE?

is executed or nothing happens”),

(A)2 = A A V x’ # x (“action A is executed”),
XElZ

En(A) z 3~1,. . , y,J(yi/x{, . . . , y,JxA) (“action A is enabled”),

where xi , . . .,x, are local variables occurring free in A, and ~1,. . . , yn corresponding

global variables, substituted for primed versions of the local variables.

The following abbreviations will also be needed:

WF&4) = OOEn((A),) + no(A),,

SF,-(A) = q OEn((A),) --) 00 (A),.

‘Strictly speaking, we should write t* in place of = for every x that is a proposition variable in the
definitions.

T. Kapus, Z. BrezoEnikIScience of Computer Programming 29 (1997) 23-52 29

3. The system model and specification

A complete program or algorithm can be looked upon as a closed system. A closed

system I7 is similar to the fair state transition system that lies implicitly behind

Lamport’s TLA (also, cf. [121): IT = (V,St, F-,0, W,F) with

l V - the variables of II, a finite subset of the set of local variables of the logic that

Xl may access.

V = OUI - the union of observable variables 0 and internal variables I, such that

OflI=0.

l St - the set of all possible states, valuations of all local variables of the logic.

l JC - a finite set of possible actions including an idling action ~1. An action z E Y

is a binary relation on states St, defined by an action formula pr that contains at

most local variables from V as free local variables.

(s,s’) E r iff p7 is true at (s,s’).

Pr, = Ax& = xl.

l 0 - a state formula containing at most the variables from V as free local variables,

an initial condition for V.

l YY = {WI,. . , Wm} - weak fairness requirements, Wi = (Ei, Ti) E -klr, Ei C Ti 2 F-

{?I}.
0 9 = {Fl , . . . ,F,} - strong fairness requirements, I$ = (Ei, Ti) E 9, Ei c Ti 2 F -

{TI).
A part of a complete program that communicates with other parts of it can be

looked upon as an open system. It is almost like a closed one, except that set 0

contains a special local proposition variable p, It is introduced for asserting whether

an action is controlled by the program part represented by the system, i.e., whether

it is an action of that program part, or is controlled, i.e., executed, by its environ-

ment. Thus, an open system is a fair state transition system II = (V, St, F, 0, %““, F)

with

l V - like in closed system, except that p E 0, and 0 - {,u} = 0, U 0, - the union

of changeable observable variables 0, and unchangeable observable variables O,,

such that 0, n 0, = 0.

l St - like in closed system.

0 5 - like in closed system, except that it includes beside zt also an environment

action 7~ defined by

PTE = & (x’ = x) A 4.
”

For z # ra, ,u’ appears as a conjunct of the action formula pr describing z, e.g.,

0 0 - a state formula over V - {p}.

30 T Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52

l YY and % - like in closed system, except that for each pair (Ei, 7’;:) in the require-

ments, Ei, 7;: C_ % - (71, za}.

Actions % - {zt,zs} are called diligent.
Internal variables are those that are neither of interest to the system user nor can be

accessed by the environment. They are only needed to achieve desired behaviour of

observable variables. In a closed system, observable variables are those that are required

to have specific values during computation by the user. In open systems, we distinguish

between two kinds of observable variables. Unchangeable variables are those for which

a specifier of the system knows in advance, possibly without knowing the environment

of the system, that they cannot be changed by the environment, whereas their values

are important for the user. Changeable variables are those that the environment may

possibly change. Variable p cannot be changed by the environment, but is treated as an

observable one because its value is important when the system is executed concurrently

with another open system.

A computation of (open or closed) system II is any infinite sequence CJ of states

such that for every pair of states (si,si+i), (Si,Si+i) E t, r E %-, initial condition is

true at SO, and such that it satisfies all the fairness requirements.

We know that p 9 V and ZE $! % in a closed system. Then we can define the

following for open and closed systems. We say that an action r E % - {rr, ~a} is

enabled at si iff there exists a state s E St such that (P~)~_~ is true at (si,s), i.e., iff

En((P~)~_,) is true at si. It is executed at state si of cr iff (P~)~_, is true at (si,si+i).

A set of actions T is enabled at si iff some action r E T is enabled at si. A set of

actions T C Y - {q, ZE} is executed at St iff some action r E T is executed at si. Notice

that only an action that changes some variables at a state is treated as executed at the

state.

The meaning of weak fairness requirements is equal for closed and open systems.

A state sequence o is weakly fair with respect to every (Ei, Ti) E W iE if Ei is enabled

continuously from some state on in G, then Ti is executed infinitely often in CT. For

closed systems, a state sequence rr is strongly fair with respect to every (Ei, 7;:) E %
il7 if Ei is enabled infinitely often in (T, then Ti is executed infinitely often in o.

The meaning of strong fairness requirements of an open system is a bit different in

order that they be realizable (e.g., see [l]).

Let g(ZI) denote the set of computations of open or closed system n. Let p MI r

mean that infinite state sequences p and r differ at most in values they assign to the

variables from I. Let [ZI] denote the set of behauiours of II. We define: [n] = (0 E

St”I3p, z E SP(o N p A p =:I z A z E %7(D))}. Thus, as usual, the values of internal

variables are abstracted away, and it is the behaviours that will be described by our

TLA. Also, the set of behaviours is stuttering closed, i.e., closed under finite repetition

of states. Stuttering-closedness of sets of behaviours allows for hierarchical verification

and refinement (e.g., [l]).

A closed formula F of our TLA is stuttering insensitive iff [F] is stuttering closed.

The basic rule for a formula of our TLA to be stuttering insensitive is that it must not

contain the operator 0 (cf. [161). It is only retained for axiomatisation. A specijcation

T. Kapus, Z. BrezohiklScience of Computer Programming 29 (1997) 23-52 31

is any closed formula of our TLA that is stuttering insensitive. A specification S is a

specijication of a (closed or open) system I7 with observable variables 0 iff its only

free variables are from 0 and [ZI] & [S]. We then say that l7 satisjies S, or that S is

valid in II, and denote it by I7 + S. If [II] = [S], then S is a precise spec$cation

of Il.
A straightforward way to write a precise specification of a closed or open system is

to directly describe its meaning with a TLA formula. Let Il = (V, St, Y-, 0, w, F) be

an open system not containing any internal variables, such that for each (Ei, Ti) E ?Y,
Ei = z, and likewise for 9. Then the TLA formula is as follows:

A A s%{p)(z~ PT>.
(&,T,)E9

Alternatively, if we have a TLA formula I A 0 [N]f A FVF A SF, where I is a state

formula, N a disjunction of action formulae, and WF (SF) a conjunction of formulae

WFf(N;) (SFi(Ni), respectively) for some disjuncts Ni of N, then, if the disjuncts of N

are properly formed, the formula can be thought of as a precise specification of such

an open system with I taken for 0, X for V - {,a}, with nonidling actions described

by the disjuncts of N, and with weak and strong fairness requirements consisting of

pairs of the sets of actions described by action formulae Ni occurring in WF and SF,
respectively. We shall write our precise specifications in this “canonical” way.

Different operations can be performed on systems. Let the result of renaming a

variable in an open or closed system be the system with all occurrences of the variable

substituted by a new variable. Let the result of hiding an observable variable in an

open or closed system be the system with the variable moved from the set 0 to I

(internal variables are already hidden).

Two open systems are compatible iff the conjunction of their initial conditions does

not imply false and no unchangeable variable of one system can be changed by the

other.

Let Iii = (Vn,, St,, , Fn,, On,, W_i,, Fn,), i = 1,2, be compatible open systems. Parallel
composition of IIt and II2, denoted Iii I(Ilz, is the closed system, obtained by first

renaming internal variables and .u in such a way that for the newly obtained sets of

internal variables, In, n In, = 8, 1~~ fl On, = 0, for i = 1,2, j = 1,2, i # j, and pCln, #

pn,, and then hiding ,un, and pnz in the fair transition system Il = (V, St, ~7, 0, YY, Y)
with the renamed variables, where

l V=Vn,UVn,,I=Zn,UI~n,,andO=On,UOn,.

l St - the set of all possible valuations of local variables of TLA.

l 9 - the set of actions, obtained from Fn, and Fir,. r E F iff it is described by:

Pz = Pm, A PQ”, A A (n’ =x),
xH%n, -&I,

for i, j = 1,2, i # j, where zn, E Fni - {zrn, }.

32 T. Kapus, Z. Brezo&iklScience of Computer Programming 29 (1997) 23-52

l o=on, AOn,.

. w = {W,,..., Wm} - weak fairness requirements.

Every JVi = (Ei, I;:) E W consists of sets Ei, Ti C F. Wi = (Ei, Ti) is in W” iff there

exists (En,, Tn,) E %I%, for j = 1 or j = 2 such that for all r E 9:
_ r E Ei @ 3zn, E EII,(P~ s pm, A p’) where p’ is the rest of the description of z,

and
_ r E 7; @ 3zn, E Tn,(pT 3 pm, A p’), where p’ is the rest of the description of r.

l 9 = {F, , . . . , F,,} - strong fairness requirements.

Every Fi = (Ei, Ti) E F consists of sets Ei, I;: s F. They are obtained from Fn,,

j = 1,2, like the weak fairness requirements.

In parallel composition, diligent actions of a component execute interleaved with the

actions of the other one. Parallel composition of more than two open systems could

be defined analogously.

Using semantic arguments, it can be proved that possible behaviours of the results

of the operations are such that the following proof rules are valid (e.g., [S]).

Let II:=, ZIi denote parallel composition of compatible open systems ni,. . .,Zi’,,

n 22, each Iii containing the set of observable variables 0,. Then the parallel compo-

sition rule is valid:

where

Unch(pi) s A 0(/I; 4 u’ = u), i = l,...,n,
uW_,O,,)-O,,

Unch c A Unch(pi), Uneq E 0 A -(/.Li A pj), Who E q (/I t) i pi).
i=l i,j=l i=l

i#j

Compatibility of the components ensures that the parallel composition has a nonempty

set of behaviours. Clearly, the renaming rule, where ZI[v/u] denotes Il with an ob-

servable variable u renamed for u and S[u/u] denotes S with v substituted for u, the

hiding rule with II\x denoting the result of hiding an observable variable x in n, the

consequence rule, and the conjunction rule are valid, in order of appearance:

n+s n/=s n +=1, & -+s2 n +s1, n + s2

m4u1 b S[vlul n\x I= EELS n j= s2 I-I k Sl A s2

It could be proved that the last five rules without the conjunction rule together with

precise specifications of open systems as axioms are complete for proving properties

of systems constructed from the open systems using the operations, relative to the

T. Kapus, Z. BrezoiniklScience of Computer Programming 29 (1997) 23-52 33

completeness of a TLA proof system (cf. [14]). The conjunction rule is only needed

for convenience.

4. Specification of the closing procedure

4.1. A design specijication

A design specification of the closing procedure must be a precise specification. Let

CXT and CHN denote an open system, representing a context at a host, and one

representing a unidirectional lossy channel, respectively. The procedure is specified as

a parallel composition of such systems with properly renamed observable variables:

is the context at host A, CHNAB = CHN[zOA ZS,ZIB/ZR] / is the channel for sending

messages from A to B, and symmetrically for CUB, CHN~A.

Let E denote an empty sequence, l concatenation of sequences, [m] a sequence with

the only element m, Head(z) the first element of a nonempty sequence z, and Tail(z)

the rest of it.

The following messages are sent in CLS:

A4 = {(C, KV,(U,S),(C, W,R,S),(C),

(C, V,(C,R),(C, W,R),(C, w,KV,(D)].

C means that the message is a CNTL packet. (D) represents the DIAG packet saying

that the context at a host is not active. If a message from A4 contains S (for SREQ),

W (for WCLOSE), R (for RCLOSE), or E (for END), it means that the corresponding

bit would be set in the XTP packet it represents.

Beside ,u, the open system CHN contains two observable changeable variables, zs

and ZR, both ranging over sequences of the messages from M. The design specification

of CHN is as follows:

where

34 T. Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52

and

loss(zs,zR) 3 zs # E A zk = Tuil(zs) A unch(zR),

pass(m,zs,zR) E zs # E A Head = m A z; = TaiZ(zs) A zk = zR l [m].

Local variable zs represents the sender’s end of the channel, and ZR the receiver’s end

of the channel. Initially, the channel is empty. One can imagine that the environment

of the channel can put messages into ZS. The weak fairness requirement ensures that

the channel takes each message from zs and nondeterministically either loses it (loss)

or puts it into zR (puss), where it waits to be removed by the environment. The strong

fairness requirement ensures that messages are not lost every time if sent sufficiently

often on zs by the environment. Although CHN is an open system, the strong fairness

requirements are like in closed systems, because we know the CXT systems that make

up the environment of CHN in CLS cannot disable a puss action.

The open system CXT contains beside p variables V&r = {cxt,sto,stI,zo,zI, tmr,rq}.

Local variables zo and ZI range over sequences of the messages from M and

represent the sender’s end of the context’s outgoing channel and the receiver’s end

of its incoming channel, respectively. Let x E T mean that x ranges over the

values from T. The range of the other variables is as follows: cxt E {act,nulZ},

sto E {act,wcZ, inact}, stl E {act,rcl,dlv,cls, inact}, rq E {empty,full,dsc}, and

tmr E {ofS,set}.

The variable cxt indicates the state of the context. sto describes the state of the

output data stream, stl the state of the input data stream of the context, and rq the

state of the data receive queue. There is one timer for the context, represented by tmr.

We shall now provide a design specification of CXT, followed by an explanation.

Let the following action formulae represent sending of a message m EM on zo and

receipt of a message m 6 A4 from ZI, respectively:

send(m,zo) z z; = zo l [m],

rec(m,q) = ZI # E A Head = m AZ; = Tail(z1).

Let recE(z1) s rec((C, W,R,E),ZI), recD(zr) s rec((D),z~), let recC(zr) denote

receipt of any CNTL packet with SREQ not set, and recS(z1) receipt of any packet

with SREQ set.

We take all the variables from V&r to be observable. They all seem interesting

to us for expressing correctness criteria. Since communication is only possible over

the channels, only zo and q are changeable. Here is our design specification Scm,

CXT b scxr:

SC~~cxt=sto=st~=actAzo=z~=~Atmr=o~

A(rq = empty V rq = full)

A 0 [((Lcl V Tout V Dlr V Cn f V Ret) A p’)

V(unch(cxt,sto,str,tmr,rq) A T~‘)]v,

T Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52 3.5

A WF,,(Tout A ,a’) A WFV,(Dlr A p’)

A wF~,(Cnf A $1 A wFv,(Rec~ p’),

where

Lcl~LWclvLWc2vLWc3vLRclvLRc2,

Tout = TtOl v Tt02 v TtIl v TtI2,

Dir = Rdrql V Rdrq2,

Cnf = Cnf 1 V Cnf2, and

Ret - RecSR V RecSW V RecSWR V RecCal V RecCR V RecCW V RecCWR

V RecED V RecC V RecS V RecD with

RecSR f RecSrl V RecSr2 V RecSr3 V RecSr4

RecSW = RecSwl V RecSw2 V.. . V RecSwl2

RecSWR = RecSwrl V RecSwR V RecSwr3 V RecSwr4

RecCR z RecCrl V RecCr2 V RecCr3

RecCW = RecCwl V RecCw2 V RecCw3 V RecCw4 V RecCwS V RecCw6

RecCWR = RecCwrl V RecCwr2 V RecCwr3 V RecCwr4

are disjunctions of the following action formulae describing possible diligent actions

of CAT, not yet accompanied by $.

Local wclosing:

Gjust local wclosing}

LWcl 3 cxt = act A sta = act A (str = act V stI = dlv V st1 = cls)

Asend((C, W,S),za) A.$ = wcl A tmr’ = set A unch(cxt,zl,str,rq)

{just local wclosing}

L wc2 3 cxt = act A sta = act A (str = rcI V stt = inact)

Asend((C, W,R,S),zo) As& = wcl A tmr’ = set A unch(cxt,zl,stl,rq)

{local wclosing + local rclosing}

L Wc3 s cxt = act A sta = act A stt = act

A send((C, W, R, S),za) A rq’ = dsc A sth = wcl A sti = rcl A tmr’ = set

Aunch(cxt,zI)

Local rclosing:

Gust local rclosing}

LRcl = cxt = act A sta = act A stf = act

A send((C, R, S), ZO) A rq’ = dsc A sti = rcl A tmr’ = set

Aunch(cxt,zT,sto)

T. Kapus, 2. BrezohiklScience of Computer Programming 29 (1997) 23-52

{just local rclosing}

LRc2 E cxt = act A (sta = we1 V sto = inact) A stI = act

A send((C, W, R, S),ZO) A rq’ = dsc A stj = rcl A tmr’ = set

Aunch(cxt,zI,sto)

Receipt of (CNTL, RCLOSE, SREQ):

{just wclose and answer to RCLOSE}

RecSrl = rec((C,R,S),zt) A cxt = act A (stt = act V stt = dlv V stI = cls)

Asend((C, W),zo) A sth = inact A tmr’ = off A unch(cxt,stt,rq)

{wclose, also local rclosing, and answer to RCLOSE}

RecSr2 = rec((C, R, S), zt) A cxt = act A stI = act

A send((C, W, R, S),ZO) A rq’ = dsc A sth = inact A st; = rcl

A tmr’ = set A unch(cxt)

{just wclose and answer to RCLOSE}

RecSr3 = rec((C, R, S),zt) A cxt = act A stt = rcl

Asend((C, W,R),zo) A st& = inact A unch(cxt,stl, tmr,rq)

{wclose, answer to RCLOSE; also end}

RecSr4 - rec((C,R,S),zt) A cxt = act A stt = inact

A send((C, W, R, E),zo) A sth = inact A tmr’ = ofs A cxt’ = null

Aunch(stI,rq)

Receipt of (CNTL, WCLOSE, SREQ):

{pass to delivering of rq and answer to WCLOSE}

RecSwl E rec((C, W, S), zt) A cxt = act A sta = act A stI = act A rq = full

Asend((C),zo) A stf = dlv A unch(cxt,sto,tmr,rq)

{pass to delivering of rq and answer to WCLOSE}

RecSw2 = rec((C, W, S),zt) A cxt = act A (sto = wcl V sta = inact)

A stt = act A rq = full
Asend((C, W),zo) Astj = dZv A unch(cxt,sto, tmr,rq)

{rq is empty; get wait for confirmation and answer to WCLOSE}

RecSw3 = rec((C, W,S),zt) A cxt = act A sto = act A stt = act A rq = empty

Asend((C),zo) A stj = cls A unch(cxt,sto, tmr, rq)

{rq is empty; get wait for confirmation and answer to WCLOSE}

RecSw4 = rec((C, W, S),zt) A cxt = act A (sto = wcl V sto = inact)

A stl = act A rq = empty

Asend((C, W),zo) Asti = cls A unch(cxt,sto,tmr,rq)

{rq is empty; g t e wait for confirmation, also wclosing, and answer to WCLOSE}

RecSwS = rec((C, W,S),zl) A cxt = act A sta = act A stt = act A rq = empty

Asend((C, W,S),za) As& = wcl Astj = cls A tmr’ = set

Aunch(cxt, rq)

{just rclose and answer to WCLOSE}

RecSw6 = rec((C, W,S),zt) A cxt = act A sta = act A (stt = rcl V stl = inact)

Asend((C,R),zo) Astf = inact A tmr’ = off A unch(cxt,sto,rq)

i? I&pus, 2. BrezoCnikiScience of Computer Programming 29 (1997) 23-52 37

Cjust rclose and answer to WCLOSE}

RecSw7 - rec((C, W,S),zr) A cxt = act A sto = wcl A (str = rcl V stI = inact)

A send((C, W, R),za) A stj = inact A unch(cxt,sto, tmr, rq)

{rclose and answer to WCLOSE; also end}

RecSw8 E rec((C, W,S),zt) A cxt = act A sto = inact A (str = rcl V stI = inact)

A send((C, W, R, E),za) A sti = inact A tmr’ = off A cxt’ = null

Aunch(sto,rq)

(rclose, also wclosing, and answer to WCLOSE}

RecSw9 E rec((C, W,S),zr) A cxt = act A sto = act A (stt = rcl V str = inact)

A send((C, W, R, S),za) A st& = wcl A stj = inact A tmr’ = set

Aunch(cxt,rq)

{just answer to WCLOSE}

RecSwlO = rec((C, W,S),z1) A cxt = act A sta = act A (stt = dlv V st1 = cls)

Asend((C),za) A unch(cxt,sta,stt,tmr,rq)

{just answer to WCLOSE}

RecSwll = rec((C, W,S),z,) A cxt = act A (sta = we1 V sta = inact)

A (stt = dlv V stl = cls)

Asend((C, W),za) A unch(cxt,sto,stI, tmr,rq)

{wclosing and answer to WCLOSE}

RecSwl2 = rec((C, W,S),z1) A cxt = act A sta = act A (str = dlv V stI = cls)

Asend((C, W,S),za) A sth = wcl A tmr’ = set A unch(cxt,stI,rq)

Read rq:

Rdrql = cxt = act A st1 = act A rq = full
A rq’ = empty A unch(cxt,zo,zl,sto,strr tmr)

Rdrq2 G cxt = act A stl = dlv A rq = full

Asti = cls A rq’ = empty A unch(cxt,za,q,sta,tmr)

Rclose confirmed:
Cnf 1 z cxt = act A (sto = act V sto = wcl) A stI = cls

Ast: = inact A unch(cxt,zo,zI,sto, tmr,rq)

Cn f 2 G cxt = act A sto = inact A stt = cls

A stf = inact A cxt’ = null A unch(zo,zI,sto, tmr,rq)

Receipt of (CNTL, WCLOSE, RCLOSE, SREQ):

{wclose, rclose, answer to WCLOSE, RCLOSE; also end}

RecSwrl = rec((C, W,R,S),zr) A cxt = act A (stt = rcl V stt = inact)

A send((C, W, R, E),zo) A stb = inact A st; = inact A tmr’ = ofs

Acxt’ = null A unch(rq)

{wclose, pass to delivering, answer to WCLOSE, RCLOSE}

RecSwr2 = rec((C, W, R, S),zt) A cxt = act A str = act A rq = full

Asend((C, W),za) A stb = inact A stf = dlv A tmr’ = ofs

Aunch(cxt,rq)

T. Kapus, Z. BrezoCniklScience of Computer Programming 29 (1997) 23-52

{wclose, get wait for confirmation, answer to WCLOSE, RCLOSE}

RecSwr3 3 rec((C, W,R,S),z1) A cxt = act A stI = act A rq = empty
A send((C, W),ZO) A sth = inact A stj = cls A tmr’ = of

mnch(cxt,rq)

{wclose, continue rclosing on a past request, answer to WCLOSE, RCLOSE}

RecSwr4 E rec((C, W, R,S),z[) A cxt = act A (str = dlv V stI = cls)

Asend((C, W),ZO) Ast& = inact A tmr’ = 08 A unch(cxt,stl,rq)

tmr runs out:

TtOl = cxt = act A sto = we1 A (stl = act V str = dlv V str = cls)
Asend((C, W,S),zo) A unch(cxt,zl,sto,stl,tmr,rq)

Tt02 = cxt = act A sto = wcl A (stl = rcl V stl = inact)
Asend((C, W,R,S),zo) A unch(cxt,zl,sto,stl,tmr,rq)

TtI 1 E cxt = act A sto = act A stI = rcl
Asend((C,R,S),zo) A unch(cxt,zl,sto,str,tmr,rq)

Tt12 - cxt = act A sto = inact A stl = rcl

Asend((C, W,R,S),zo) A unch(cxt,zl,sto,str,tmr,rq)

Receipt of (CNTL):
RecCal z rec((C),zr) A cxt = act

A (sto = act V sto = wcl V stI = act V stI = rcl V stI = dlv V st1 = cls)
A unch(cxt,zo,sto,str, tmr,rq)

Receipt of (CNTL, RCLOSE):
RecCrl = rec((C,R),zr) A cxt = act A (stl = act V stf = d/v V str = cls)

A sth = inact A tmr’ = ofs A unch(cxt,zo,stl, rq)
RecCr2 E rec((C,R),z,) A cxt = act A sg = rcl

Asth = inact A unch(cxt,zo,str,tmr,rq)

RecCr3 = rec((C,R),zI) A cxt = act A stl = inact
As& = inact A tmr’ = of A cxt’ = null A unch(zo,stI, rq)

Receipt of (CNTL, WCLOSE):
RecCwl E rec((C, W),zl) A cxt = act AstI = act A rq = empty

Astf = cls A unch(cxt,zo,sto,tmr,rq)
RecCw2 = rec((C, W),ZI) A cxt = act A stl = act A rq = fill

Astf = dlv A unch(cxt,zO,sto,tmr,rq)
RecCw3 = rec((C, W),zr) A cxt = act A (str = dlv V sti = cls)

Aunch(cxt,zo,sto,str,tmr,rq)
RecCw4 = rec((C, W),zr) A cxt = act A sto = act A (St* = rcl V stl = inact)

A sti = inact A tmr’ = of A unch(cxt,zo,sto, rq)
RecCwS = rec((C, W),zf) A cxt = act A sto = wcl A (St{ = rcl V stl = inact)

A sti = inact A unch(cxt, ZO, sto, tmr, rq)
RecCw6 3 rec((C, W),z,) A cxt = act A sto = inact A (stl = rcl V stl = inact)

Astf = inact A tmr’ = off A cxt’ = null A unch(zo,sto,rq)

T. Kapus, Z, BrezoEnikIScience of Computer Programming 29 (1997) 23-52 39

Receipt of (CNTL, WCLOSE, RCLOSE):
RecCwrl - rec((C, W,R),zt) A cxt = act A (stt = t-cl V stI = inact)

A& = inact A stj = inact A tmr’ = of A cxt’=ndlAunch(zo,rq)

RecCwr2 = rec((C, W, R),zt) A cxt = act A stt = act A rq = empty
As& = inact Astf = cls A tmr’ = of A unch(cxt,zo,rq)

RecCwr3 = rec((C, W, R), zt) A cxt = act A stt = act A rq = full
As& = inact Asti = dlv A tmr’ = off A unch(cxt,zo,rq)

RecCwr4 - rec((C, W, R),zt) A cxt = act A (stt = diu V stt = cls)
As& = inact A tmr’ = ofs A unch(cxt,za,stt,rq)

Receipt of END or DIAG when context active:

RecED G (recE(zt) V recD(zt)) A cxt = act A (stt = rcl V stt = inact)
Asth = inact A stf = inact A tmr’ = off A cxt’ = null A unch(zo, rq)

Receipt of C when no active context:

RecC = recC(zt) A cxt = null
A unch(cxt,zo,sto,stl, tmr,rq)

Receipt of SREQ when no active context:

RecS = recS(zt) A cxt = nuI1
Asend((D),zc) A unch(cxt,sta,stt,tmr,rq)

Receipt of DIAG when no active context:

RecD = recD(zt) A cxt = nuR
A unch(cxt,zo,sto,stI, tmr,rq)

Initially, the context, the input and output data stream are active, both channel ends

are empty, the data from the receive queue have either already been read (rq = empty),
or there are still some data in it (rq =fuZZ).

The state sto of the output data stream changes as follows. When it is active, it

can start closing. The active context sends a CNTL-request packet containing W, sets

timer tmr, and sta passes to wclosing (see actions L Wcl, L Wc2, L Wc3 and RecSw5,
RecSw9, RecSwl2 in the specification). When stc = wcl, tmr runs and a timeout can

occur (actions TtOl, Tt02). In this case, the context just sends a CNTL-request packet

with W and sets tmr again. For any value of sto, if the active context receives a

packet containing R, E, or D, sto closes (or remains closed, respectively), i.e., gets

inactive (actions RecSR, RecSWR, RecCR, RecCWR, RecED). The context includes W
in each CNTL packet sent when sto is equal to wcl or inact.

The input data stream behaves as follows. When stt is active, it can start closing.

In this case, the active context discards the data receive queue (rq gets the value

dsc), sends a CNTL-request packet containing R, sets tmr, and changes stt to rclosing

(actions LWc3, LRcl, LRc2, RecSr2). When stt = rcl, tmr runs and a timeout can

occur (actions Tt02, TtI 1, TtL2). In this case, the context just sends a CNTL-request

40 T Kapus, Z. BrezotniklScience of Computer Programming 29 (1997) 23-52

packet with R and sets tmr again. If the active context receives a packet with W, E,

or D when str = rcl or stI = inact, stl closes, i.e., passes to inactive, or remains

closed, respectively (actions RecSwGRecSw9, RecSwr 1, RecCwbRecCw6, RecCwr 1,

RecED).

It is possible that the active context receives a packet with W, when stl is active.

In this case, st1 passes to cls (“closing”) if rq is already empty (actions RecSw3-

RecSwS, RecSwr3, RecCwl, RecCwr2), or to dlv (“deliver”) if rq is full (actions

RecSwl, RecSw2, RecSwr2, RecCw2, RecCwr3). When str = dlv, an action (Rdrq2)

must happen that reads data from rq, i.e., sets it to empty, and stl passes to cls. The

data can also be read from rq when str is still active (action Rdrql). At cls state,

the input data stream waits for a confirmation from the application (action Cnf 1 or

Cnf2), and then just changes str to inactive.

The context includes R in each CNTL packet sent when stl is equal to rcl or inact.

When tmr is set, it is stopped, i.e., assigned the value ofs, by the context, when it

passes to null or when its output or input data stream passes to inact, but only if tmr

does not need to run further for any of the streams. We allow for premature timeouts,

i.e., a CNTL-request packet may be retransmitted before a response to the previous

request can come.

The input and output data stream of the context may begin locally closing simulta-

neously (action LWc3). Also, it is possible that a data stream starts closing just when

the context receives a CNTL-request. In this case, a CNTL-request may be sent in

response (actions RecSr2, RecSwS, RecSw9, RecSw12).

The context passes to null upon receiving a packet containing E or D (action

RecED), and whenever the input and output data stream get inactive (RecSr4, RecSw8,

Cnf 2, RecSwrl, RecCr3, RecCw6, RecCwrl). The context passes to null in the same

atomic action, in which the data streams both got inactive.

We have a group of actions for the receipt of each possible message from M in the

specification. This is to ensure that there are no unspecified receptions in CXT, i.e., at

any state of CXT, an action should be enabled that can receive the message currently

residing at the head of q. Notice that at any time, only some actions for receiving

exactly one possible element of A4 are enabled. The weak fairness requirement for Ret

in Scm together with the absence of unspecified receptions is intended to guarantee

that each message at the head of ZI is eventually removed from ZI.

In Scm, there is no action for receiving E or D when the state of the input data

stream is act, dlv, or cls. Since we do not allow for local ending of contexts, it is

namely not possible that a packet with E or D appears in ZI while str has any of these

values. This is because the context on the other side of the association can only be

ended if it knows that the input data stream is closed or rclosing. However, if sg is

act, dlv, or cls, any packet obtained by the context on the other side will say that the

input data stream is neither closed nor rclosing.

The receipt of any CNTL-request packet causes that a response is sent in the same

atomic action (actions RecSW, RecSR, RecSWR, RecS). Upon receiving a packet without

T. Kapus, 2. BrezoCnikIScience of Computer Programming 29 (1997) 23-52 41

S, the context just commits internal changes depending on the packet contents, but

sends nothing (actions RecCal, RecCW, RecCR, RecCWR, RecC, RecED, RecD).

In SC,, the weak fairness requirement for Tout ensures that tmr will eventually

time out if set long enough and that the information, for which tmr runs, will be

retransmitted. Weak fairness of Dir and Cnf ensures that the data from the receive

queue will eventually be delivered to the host and that the input data stream will not

wait indefinitely for a confirmation before closing, respectively.

We do not model interactions of the procedure with the user explicitly, since this

is not needed for verification. Nevertheless, one can imagine that the transition from

sto = act to sto = wcl in the output data stream (from stI = act to str = rcl in

the input data stream) indicates that the user requested closing of the outgoing data

stream (the incoming data stream, respectively). When the output data stream (the

input data stream) passes to sto = inact (stl = inact, respectively) after the handshake

initiated by the local request, this can be viewed as also representing issuing of a

confirmation to the user, that his request for closing a simplex data stream was served.

Passing to stl = cls can be thought of as also giving an indication to the user that the

input data stream wants to close. A subsequent execution of Cnf then represents the

user’s confirmation that the stream may close. Also, the transition of cxt to null can

be thought of as representing issuing of an indication to the user that the context is

closed.

4.2. A requirement specification

We are now ready to specify important properties that are required to be satisfied by

CLS. We assume that any side of a simplex data stream can start closing, independent

of each other, and that each simplex data stream can start closing independent of the

other.

Let in the sequel I, P, Q denote state formulae, A, N action formulae, F, G formulae,

and V a set of local variables. Let P’ denote an action formula obtained from a state

formula P by replacing any local variables occurring free in P by equally named primed

variables. Let STAB P = q (P -+ UP), F UNL G E q (F -+ F unless G), and

F --) G = U(F + 0 G) (“leadsto”). STAB and UNL remind us of UNITY operators

[3]. Let temporal operators have higher priority than nontemporal ones. Priority of them

is as follows, in decreasing order: 1, A and V, -+, H.

Let b be a nonempty subset of {W, R,E,D}. By b 4 z we denote that a variable

z ranging over sequences of the messages from M does not contain any message

containing an element of b. Let x E {cl,. . . , c,} denote x = cl V . . V x = c,.

Define:

NoLRc~B = q (st[B # rcl), NoL WclA = 0 (stOA # wcl)

SChlAB = q (stO~ = inact + stIB = inact)

42 T Kapus, 2. BrezohiklScience of Computer Programming 29 (1997) 23-52

sclw&~ = stIB # inact unless rq = empty

SClw3,4B = 0 ({R, E, D} E ZOB + stIB = inact)

SC/r&j 3 q (stlB = inact --f stO.4 = inact)

GRqB = q (rqB = full V rqB = WIptJ’)

GC~AB - stoA = wcl -+ (st)‘B = inact A rqB = empty A stoA = inact)

UC~AB = st[A = rcl -) (stoB = inact A stIA = inact),

and likewise for A and B exchanged.

Let TRst = tmrA = ofs A tmrB = off.

CZAss = (0 (StOA = Wd) A 0 (stoB = Wd))

+ OO(cxtA = null A cxtB = null A TRst)

UGCZ = ((0 (StIA = rd) A 0 (.%,A = Wd)) v (0 (stIB = rd) A 0 (StOB = WC/)))

+ OO(cxtA = null A cxtB = null A TRst)

Then we require the following to hold:

Theorem 1.

CLS k NoLRc~B + SCEwl AB A SC~W~AB A SC~W~AB A G&B A GCIAB,

CLS k NoLRc~A -+ SCIWIBA A SClw2BA A SClw3BA A G&A A GCIBA.

Theorem 2.

CLS + NoL WclA + SClrAB, CLS k NoL WCltl ---$ SClrBA.

Theorem 3.

CLS b CRASS A UCI!AB A UC~BA A UGCI.

Theorem 1 is about graceful closing of the simplex data streams. It says that if local

closing of the input data stream for a simplex data stream never takes place, then its

output data stream, which is so the only one that may initiate closing, can be closed

only if the input data stream is already closed. The input data stream must deliver all

the data before closing, and it must not say that it is closed in outgoing packets before

getting a confirmation from the application. Theorem 2 is about ungraceful closing of

the simplex data streams. It says that if the output data stream of a simplex data stream

does not initiate closing, then its input data stream, which in this case is the only one

that may initiate closing, can only get inactive when the output data stream is closed.

T. Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23%S2 43

Theorem 3 is about graceful closing, ungraceful closing, and about the combination of

both. Independent of which side initiates closing of some simplex data stream, they

must eventually get closed, timers must be stopped, and both contexts must close.

5. Verification of the closing procedure

5.1. Some useful proof rules

To prove the theorems, we treat the components design specifications in the form

Zi’ b S as axioms. We first provide some useful proof rules for our TLA similar

to those from [lo]. Remember that in the absence of temporal operators, a primed

variable of the form x’ is treated like an unprimed variable named x’, thus allowing

pure assertional reasoning. Also, if an action formula A is proved assertionally valid,

then 04 is valid.

INVl-rule:

q (Z A [NIV + I’)

z A O[N]y + q z

INVZ-rule:

~0(OZ--,(O[N] -cl[NAZAZ’]))

STAB-rule:

q (P A [NIV + P’)

q [Nlv + STAB P

UNL-rule:

q (PA [N]JJ --,A VP')

q [Nlv + P UNLA

WFl-rule:

q (PA [NIV + P’vQ’)

q (PA (N/IA), -+ Q’)

q (P + -WA)v))
Cl [NIV A WV(A) + P -+ Q

Analogous to these rules, we now propose some rules that enable us to prove im-

portant properties of a parallel composition without first constructing the conjunction

of its component specifications using the parallel composition rule. For our purpose, it

suffices to assume that there are no hidden variables in the specifications. Also, assume

that the special observable variables do not appear free in properties to be proved by

the rules.

44 T. Kapus, 2. BrezoEniklScience of Computer Programming 29 (1997) 23-52

INVlC-rule:

ZIi ~ZiAO[(NiA~‘)V(unch(O,i)A~~‘)]~ for i= l,...,n

q (j;Zi +I)
i=l

q (IA[NiAunch((jy-~)]u~=,MiII)fori=l,...,n
j=l

II;=] ni + 01

STABC-rule:

ZZi ~O[(NiA~‘)V(unch(O,i)Al~‘)]~ for i= l,...,n

q (P A [Ni A unch (5 I$ - K)lu;=,s +P’) for i = l,...,n
j=l

Ilk1 L’i k STAB P

UNLC-rule:

ZZi ~U[(NiA/L’)V(UnCh(O~i)A~~‘)]~ for i= l,...,n

q (P A [ffi A unch (6 5 - K)lu;=,s -+A VP’) for i = l,...,n
j=l

\\~=~ I7i k P UNL A

WFlC-rule:

ZIi ~O[(NiA~‘)V(LJtICh(O~i)A~~‘)]~ for i= l,...,n

nk b WFV,(AA$) for some k E {l,...,n}

q (P A [Ni A unch(6 I$ - K)lu;=,y + P’V Q’) for i = l,...,n
j=l

q (PA(NkAAAUnch(c v-vk))“;=,v, + Q’)
j=l

LOC-rule:

IZ k F for Il an open system

n II fll II . . . II nn l=F f or any compatible open systems 271,. . . , Ii’,

Intuitively, soundness of INVlC, STABC, UNLC, and WFlC rules follows from the

fact that they just subsume the way of proving properties of parallel composition by

first applying the parallel composition rule on precise specifications of the components

for obtaining an action formula N describing possible actions of the complete system,

and then proving the premise of the consequence rule using INVl or one of the other

TLA rules by cases on the actions of N. Soundness of LOC follows directly from

the parallel composition rule. Properties that only contain unchangeable variables of IZ

as free local variables are good candidates to be proved by LOC-rule, thus possibly

saving a lot of work if validity of the property can be proved locally.

T. Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52 45

Now, assume that we have any system composed like ours. Assume that it consists

of two communication channels, IZ AB, ~BA, like CHN except that a different set of

messages M may be communicated in the system. Also, assume that they connect two

sender/receiver processes, no, lT,, similar to CXT in the following. They communicate

only over the channel variables. They may execute internal actions, not accessing the

channels, sending actions, and receiving actions. Assume that they contain some actions

that are both sending and receiving ones. Only actions for receiving one possible mes-

sage from A4 are enabled at a process at a time, and all receiving actions are required

to be weakly fair. It must also be ensured that there are no unspecified receptions. It

is possible to ensure this already when writing a design specification of a receiving

component by defining a receiving action for all possible combinations of heads and

states of the component. Then the system satisfies the channel liveness property

with zOA the channel variable at IIA’s end of its outgoing channel IIAB and ZIB the

one at fl,‘s end of n,@?, and symmetrically for channel n&4. This can be proved by

first constructing a precise specification of the system by the parallel composition rule.

Using the fairness requirements of the channel and the receiving actions, assuming

messages do not progress over the channel, the liveness property can be shown to be

implied by the precise specification, by contradiction.

Once ensuring the liveness for both channels, the following proof rules for proving

leads to properties can be derived for this specific type of communication systems

(cf. [9]). Let MAB,MBA be nonempty subsets of a set of messages M, and ZOA,ZOB and

Z~,~,ZIB the variables of the outgoing and incoming channel of ZI, and ns, respectively.

Let P and Q be state formulae not containing the channel variables.

Leadsto-via-(b&B, ZOA, ZIB)-de:

LeadSto-Via-(h&A , ZOB , ZfA)-(MAB, ZOA , ZIB)-rule:

HA k q [(NA A P’> V (unch(%) A -d>Iv, A J+‘Fv,(A A P’)

46 T. Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52

In fact, both rules rely on the existence of a weakly fair timeout action A in &.

The first rule requires that the messages from A&B are retransmitted by action A of

&, so that eventually some element of A4 AB is received at I&, whereupon Q holds.

The second rule requires that the messages from A4 AB are retransmitted by action A of

nA, so that eventually a message from A&A sent by I&r is received at II,, whereupon

Q holds. This rule requires that receipts of messages from MAB at IZ, imply sending

of some message from A4s~ back. This is meant to be ensured by the actions that

are receiving and sending ones at the same time. In CXT, these are the actions that

receive CNTL-request messages and immediately send a reply.

If a formula has already been proved valid for a parallel composition, it can be

taken as a valid assumption in proving another property by any of INVlC, STABC,

UNLC, WFlC, or Leadsto-via rules. If G is one of the properties that appear in the

conclusions of these rules, validity of F --f G in a parallel composition may be proved

by using F as a valid assumption in proving validity of G in the composition by one

of the rules.

5.2. VeriJication of the requirements

In order to prove the theorems about the closing procedure, we need some lemmata.

By symmetry of the closing procedure, assume that any lemma containing A and B is

also valid if A and B are interchanged.

Lemma 1. Let

hVcA = cxtA = null t) stOA = inact A stIA = inact.

Then

Proof. We first prove ZnvcA A q [N]v -+ q hucA by INvl, for possible actions [NIV

of CXT,. Because the initial condition of CXTA implies In&A, it follows that the

precise specification of CXTA implies q lnvC., thus ensuring the validity of the lemma

by the consequence rule. 0

T. Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52 47

Lemma 2.

CLS + q znvcA, CLS + clznuc~.

Proof. From Lemma 1 by LOC. 0

Lemma 3. Let

ZnuAB = (stOA = act A stIB = act A rqB E {empty, f Ull}

A{R,E,D) 4 ZIA A {W,E,D} 4 ZOA A {R&D} $ ZOB A {W,E,D} G! ZIB)
v (stOA = act A StIB = 7.121 A rqB = dsc

A{E,D) $ =IA A { W,E,D} @ =OA A @,D} $ =OB A { W,E,D} $ =IB)

v (StoA = inact A stIB = rcl A rqB = dsc

A{E>D) 6 =IA A {E,D} 6 =OB)

V (StOA = inact A StIB = in-act A rqB E (empty, dsc})
v (stOA = WC1 A StIB = i-Cl A rqB = dsc

A{E,D) 4 =[A A {E,D} 6 =OA A 1&D} @ =OB A {E,D} $ =IB)

v (StoA = WC1 A StIB = act A rqB E {empty, f 2411)

A{REJ’) $ =IA A j-V} $ ZOA A {K&D} $ =OB A {EJ} +-! =IB)
v (stOA = WC1 A stIB = dlv A rqB = f Ull

A{RJVl 6 =IA A {EJ’) 6 =OA A {R-V} cf =OB A {E,D} f$ =IB)

v (StoA = WC/ A StIB = ClS A rqB = empty

A{KKDl 6 zIA A {-&D} $ ZOA A {R&D} @ =OB A {ES} 6 =IB)
v (stOA = WC1 A StIB = iMCt A rqB E (eWIpty, dsc}

A{EJ’} 6 =OA A {E,D} $ =IB)

Then
CLS + q znv,@.

Proof. By using INVlC!, and either Lemma 1 for A and B side together with INv2

for using the fact about the contexts in NA and NB, or Lemma 2 for A and B side to

take the invariants as assumptions. We also need the obvious fact, that if some kind of

messages are not in a channel, then after executing an action, this will still hold if the

action does not send this kind of messages into the channel. Also, if a message is not

in a channel, it is also not at the head of it. Thus receiving actions for the message

are not enabled. 0

Lemma 4. CXTA b 0 (stIA # F-Cl A StoA # WC1 --f tmrA = Ofs).

Proof. By using INVl on the actions of CXTA, analogous to the proof of Lemma 1.

0

Lemma 5. CXTA /= 0 (?+A # rcl) + 0 (rqA = full V rqA = empty).

Proof. By taking q i(st~A # rcl) as a valid assumption, and using INV2 and INVl on

the actions of CXTA, analogous to the proof of Lemma 1. 0

48 T. Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52

Lemma 6. CXTA + STAB (star = inact) A STAB (stlA = inact).

Proof. By using STAB on the actions of CXTA and the consequence rule for proving

each stability property separately, and then using the conjunction rule. 0

In order to prove basic liveness properties of the procedure, we take the property

that always, for any message at the head of the incoming channel variable of a context,

an action that receives the message is enabled, for granted, i.e.

CLS k q A (Head(zl.4) = m 4 _l?n(N~ A rec(m,zrA))),
l?GM

and likewise for the B side.

Lemma 7. CLS + r\F=, Li where

L1 E (st*A = wcl A stIB = act /\ rqB = empty)

--) ((St&j = wcl /\ stre = cls) v (St&, = wcl ,, stIfj = ?-cl))

L2 z (st*A = wcl A stIB = act A rqB = f dl)

--) ((stOA = wd A st[B = act A rqB = empty)

V(stOA = WC1 A StIB = dlv A rqB = fldl) v (StoA = WC1 A StIB = id))

L3 Z (StOA = WC1 A StIB = dlv A rqB = f dl)

--) (stOA = wcl A stIB = cls A rqB = empty)

L4 z (StoA = WC1 A StIB = Ck) -+ (StoA = WC1 A st[B = inaCt)

L5 = (stOA = wcl A stIB = rcl)

--) ((stO,4 = wcl A stIB = inact) V (st0A = inact A stIB = rcl))

-hj 3 (StOA = inact A stIB = rcl) --) (stO.4 = inact A stIB = inact)

L7 s (stOA = wcl A stIB = inact) -+ (stO.4 = inact A stp, = inact)

L8 = (sto.4 = act A StIB = rcl)

-+ ((sto.4 = inact A stIf3 = rcl) V (st0.4 = wcl A stIB = rcl))

Proof. Let (*, String) denote all the messages of M that contain String. L3 and L4 can

be proved by WFlC-rule assuming q InvCB and q lnv.,@, by weak fairness of Dir and

weak fairness of Cnf in CXTB, respectively.

LX can also be proved without checking all the components of CLS in the following

way. We first prove

CXTB k (sb = dlv A rqB = f dl) -+ (stIB = cls A rqB = empty)

with help of Lemma 1, INV2, and WFl-rule by weak fairness of DZr in CXTB. Then,

by LOC also CLS b (strs = dlv A rqB = full) -+ (st[B = cls A rqB = empty).

From the latter and since StoA = wcl A stIB = dlv A rqB = full always implies

StIB = dlv A rqg = full, CLS b (t S 04 = WC1 A StIB = dlv A rqB = full) -) (StIB =

cls A rqB = empty), because q (F -+ G) implies F --) G and by transitivity of --) .
From Lemma 3, CLS + q (st IB = c/s A rqB = empty --f stOA = wcl), and thus

clearly CLS + L3.

T Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52 49

L 1, L2, and L5 can be proved by Leadsto-via-({ (*, W, S)}), ZOA, zr~) exploiting weak

fairness of Tout in CXTA, assuming q InvAB when proving Ll and L2, and assum-

ing ElZnvCA and q InvCB in the proofs of Ll, L2, and L5. L6 can be proved by

Leadsto-via-({(*, W),(O)},zo~,zr~)-({(*,R,S)} ,zo~,zIA) using weak fairness of Tout in

CXTB and assuming q ZnvC~. L7 can be proved by Leadsto-via-({(*,R), (D)},zoB,zIA)-

({(*, W,~‘)},ZOA,ZIB) using weak fairness of Tout in CXTA and assuming q Z~VCA. L8

can be proved by Leadsto-via-({ (*, R, S)}), zo~,zI~) by weak fairness of Tout in CXTB

and assuming q lnvA~, q lnvC~ and OlnvC’. 0

Lemma 8.

Proof. We will only outline the proof of the first liveness property. The other can be

proved similarly. By the consequence rule, from Lemma 3,

CLS + q (&A = WC1 + ((StoA = wcl A stfB = act A rqB = empty)

v (stOA = wd A stIB = act A rqB = f dl)

v (dOA = WC1 A StIB = dlv A rqB = full)

v (stOA = wcl A stIB = cls A rqB = empty)

v (stOA = WC/ A stIB = UC1 A rqB = dsc) v (stOA = WC1 A StIB = ii’UZCt))>.

Using the temporal logic proof rule from [111,

F --) (Gl V G2), G, -) G, G2 -+ G

FaG
3

we can prove

CLS + (stOA = wcl A stIB = act A rqB = empty)
-) (StIB = inact A stOA = inact)

from CLS /= L1 A L4 A L5 A L6 A L7, which follows by the consequence rule from

Lemma 7, and likewise for the other possible combinations with st&?oA = wcl. Then,

by the conjunction and consequence rule, because q (F -+ G) implies F-+G, and by

transitivity of -+ we obtain the first liveness property of the current lemma. 0

Proof of Theorem 1. We will only sketch the proof of the requirement in one direction,

namely, when the input data stream at B cannot be locally closed. Validity of the

requirement for graceful closing in the other direction follows by symmetry. By the

conjunction rule and propositional reasoning, it suffices to prove

CLS /= NoLRc~B -+ SC~W~AB, CLS k NoLRcle --f SClw2/&

CLS b NoLRc~B -+ SClw3AB, CLS b NoLRcls --) GRqB,

CLS k NoLRc~B + GCIAB.

50 T. Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52

The first requirement is proved easily by using the consequence rule on InvAB

(Lemma 3) assuming NoLRcZB.

To prove the second requirement, we first prove

CXTB + NoLRclB ---f stIB # inact UNL rq = empty

from the precise specification of CXTB using the consequence rule, UNL, and INV2

assuming NoLRc~B. Since initially, StIB # inact in CXTB, also

CXTB /= NoLRcZB + stIB # inact unless rq = empty,

and thus by LOC also CLS satisfies the requirement.

The third requirement can be proved by using the consequence rule on I~VAB. Assum-

ing NoLRc~B, we can prove that q znvAB implies 0 (strs # inact -+ {R,E,D} $! ZOB),

thus proving the requirement.

The fourth requirement follows by symmetry and LOC from Lemma 4. The fifth

requirement can be proved as follows. By Lemma 8 and the consequence rule,

CLS k NoLRc~B + (stoA = wcl -) (stlB = inact A stoA = inact)).

Also, assuming NoLRc~B, by the consequence rule on Z~VAB, CLS k q (st1B =

inact --) rqB = empty). By the conjunction rule, then validity of the fifth requirement

follows. 0

Proof of Theorem 2. We can prove this safety property easily by using the conse-

quence rule on ZnvAB (Lemma 3) assuming NoLWCZA for direction A-to-B. The property

for data stream B-to-A follows by symmetry. El

Proof of Theorem 3. We can prove

CLS k q (stoA = inact A stA = inact + tmrA = ofs A cxtA = null).

This follows by LOC from Lemmas 1 and 4, using the conjunction and consequence

rule, and symmetrically for side B. By Lemma 8 and by symmetry, starting closing

of the data stream in each direction either by setting wcl or rcl, eventually stOA, stu,

StOB, and stIB will be inactive. By Lemma 6, because 0 PA 0 Q A STAB PA STAB Q

always implies VO(P A Q), CLS + OO(t s O,j = st1A = inact A StOB = StIB = inact)

holds, assuming that closing of both simplex data streams has been initiated. From the

first temporal assertion in the proof, it follows that both timers and contexts will also

get and remain off and null, respectively, which proves the theorem. 0

6. Conclusion

We showed how the essential features of the procedure for closing contexts at each

side of an XTP association can be specified and verified using a TLA. Our work could

T. Kapus, 2. BrezoEniklScience of Computer Programming 29 (1997) 23-52 51

be compared to that of [7]. There, a message-passing model is used instead of the

original TLA shared-variables one. The former is usef$l for layered specification and

verification of protocols, where specification module boundaries are not equal to process

boundaries. By introducing appropriate notation for sending and receiving messages on

channels, our design specification could also be modularized, for example, with regard

to the two simplex data streams. Also, it would be possible to specify a context in terms

of its input and output data stream. However, assuming the degree of concurrency in

them as taken in our specification would make the way to get the specification of the

complete system more complicated than if directly considering all possible concurrency

in the contexts,

This is also because our verification problem is still of a moderate size. Since each

data stream can in fact close independent of the other, we can say that the system

has 144 global states, observing I~VAB for one data stream, not looking at possible

contents of channel variables. Mechanical support would be welcome for the reasons of

reliable verification, but the verification is also quite manageable just by hand. Having

appropriate proof rules, the majority of reasoning reduces just to simple checking if

some small state formulae are preserved or transformed to some other simple state

formulae by actions that in many cases do not even affect the formulae. This is usually

true for communication protocols, since processes at different sides of communication

links generally communicate only over a small number of variables. TLA also seems

quite appropriate at least for writing protocol specifications by protocol developers that

are not logic experts, because of its simple state-based model.

Although we used a TLA, our approach can also be compared to UNITY [3].

Whereas it is common to include some features that have arised with the work on

TLA in UNITY (e.g., [4]), some of our proof rules can be seen as adding the UNITY

style to TLA specifications. Beside a TLA, we also used the meta notation for sat-

isfaction of specifications. We gave only an outline of proofs in this paper. It would

be interesting to specify and verify the closing procedure without assuming that all

the data have been transferred correctly. Errors have namely been found in this setting

(e.g., by simulation [2]). However, then also at least some aspects of the data transfer

part of the protocol would have to be included. And assuming a high degree of con-

currency, more sophisticated ways of writing modular specifications of protocols and

effectively reasoning about them would be needed. This will be a part of our future

work.

References

[I] M. Abadi and L. Lamport, Composing specifications, ACM TOPLAS 15 (1993) 73-132.

[2] 0. Cat&a, Protocol analysis and verification methods, application to the Xpress Transport Protocol 4.0,

in: P. DembiIiski and M. Sredniawa, eds., Conj: Proc. PSTV’9.5, Warsaw, Poland (1995) 365-380.

[3] K.M. Chandy and J. Misra, Parallel Program Design - A Foundation (Addison-Wesley, Reading, MA,

1988).

52 T. Kapus, Z. BrezoEniklScience of Computer Programming 29 (1997) 23-52

[4] P. Collette, Application of the composition principle to Unity-like specifications, in: M.-C. Gaudel and

J.-P. Jouannaud, eds., TAPSOFT ‘93, Lecture Notes in Computer Science, Vol. 668 (Springer, Berlin,

1993) 230-242.

[5] W.A. Doeringer et al., A survey of light-weight transport protocols for high-speed networks, IEEE

Trans. Commun. 38 (1990) 2025-2039.
[6] F. Halsall, Data Communications, Computer Networks and Open Systems (Addison-Wesley, Reading,

MA, 1992).

[7] P. Herrmann and H. Krumm, Compositional specification and verification of high-speed transfer

protocols, Research Report No. 540, Universitit Dortmund, 1994.

[8] T. Kapus, True concurrency semantics and correctness of concurrent programs, Ph.D. Thesis, University

of Maribor, Faculty of Technical Sciences, 1994 (in Slovene).

[9] S.S. Lam and A.U. Shankar, A relational notation for state transition systems, IEEE Trans. Soft. Eng.
16 (1990) 755-775.

[lo] L. Lamport, The temporal logic of actions, ACM TOPLAS 16 (1994) 872-943.
[ll] Z. Manna and A. Pnueli, The anchored version of the temporal framework, in: J.W. de Bakker,

W.P. de Roever and G. Rozenberg, eds., Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin, 1989)

201-284.

(121 Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specification
(Springer, Berlin, 1992).

[13] S.L. Murphy and A.U. Shankar, Connection management for transport layer: service specification and

protocol verification, IEEE Trans. Commun. 39 (1991) 1762-1775.

[14] V. Nguyen, A. Demers, D. Gries and S. Owicki, A model and temporal proof system for networks of

processes, Distributed Comput. 1 (1986) 7-25.

[15] XTP Protocol Definition, Revision 3.6, 11 January 1992, PEI 92-10, TU Berlin, Text and Protocol

Conversion, derived from the original edited by Protocol Engines Incorporated.

[16] S. Zhou, R. Gerth and R. Kuiper, Transformations preserving properties and properties preserved

by transformations in fair transition systems, in: E. Best, ed., CONCUR ‘93, Lecture Notes in Computer

Science, Vol. 715 (Springer, Berlin, 1993) 353-367.

