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Abstract

Modular specification and compositional verification of the context management closing proce-
dure of Xpress Transfer Protocol (XTP Protocol Definition, Revision 3.6) in style of Lamport’s
Temporal Logic of Actions is considered. It is assumed that a full-duplex association over a pair
of lossy channels between two contexts on different hosts is being closed, such that any data for
that connection have already been transmitted successfully to the hosts. Thus, the case of the
closing procedure is considered where both contexts are active and synchronized initially, and
only control messages have to be sent until the association is closed. © 1997 Elsevier Science
B.V.
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1. Introduction

Xpress Transfer Protocol is a light-weight transport protocol for high-speed networks
[5]. It allows for reliable sequenced data delivery by establishing a full-duplex connec-
tion between end hosts. We show how the essential part of the context management
closing procedure of XTP, described in XTP Protocol Definition, Revision 3.6 [15],
can be specified and verified in style of Lamport’s Temporal Logic of Actions [10].
Its basic idea is that the (logical) specification language contains unprimed and primed
variables. A specified system is looked upon as a (possibly infinite) state transition
system. Its possible transitions are not described e.g. by an event-state table (cf. [6]),
but rather by action formulae. An action formula is like a first-order predicate logic
formula, except that it may contain primed variables. An unprimed variable denotes
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the value of the variable in the state just before the (atomic) action execution, and a
primed variable its value in a possible next state after execution. A design specification
of a protocol can thus actually be written by listing action formulae describing possible
actions. The operational style can also be used for writing a requirement specification.
Temporal operators can be used for specifying liveness and also for expressing re-
quirement specifications in a more declarative way. The idea is also employed e.g. in
[9, 13, 7], and demonstrated in [12].

Assume that a non-multicast association, meaning a connection in XTP terminology,
between an instance of XTP at a host 4 and an instance of XTP at a host B has been
established over a pair of lossy channels, one for carrying messages in each direction.
The set of state variables for an instance of XTP at an end host is called a context.
One therefore also says that the association exists between a context at host A and
a context at host B. The association consists of a simplex data stream A-to-B and a
simplex data stream B-to-4. Host A4 is the sending host for stream A-to-B and the
receiving host for B-to-4, and symmetrically for host B. Likewise, the context at each
host is the sender for one of the data streams, and the receiver for the other one.
Each context manages both the outgoing and the incoming data stream as well as the
potential for sending and receiving control information. In [15], a context is looked
upon as consisting of a part for managing the outgoing data stream, called an output
data stream, and a part for managing the incoming data stream, called an input data
stream. When the output data stream is in active state, it can receive data from its
host (i.e., XTP user or application), and transmit them over a lossy channel to the
other context and host according to XTP specifications in order to achieve reliable
data transfer. Typically, an acknowledgement/retransmission scheme for error control
is used. When the input data stream of the context at the other host is in active state,
it takes the data from the channel, also acts according to the XTP rules, and puts
correctly received data into a data receive queue, wherefrom the data are read by the
receiving host. A simplex data stream thus consists of an active output data stream
at its sending context and of an active input data stream at its receiving context. If
the output data stream is inactive (we shall also say ‘closed’), no data can be sent
or retransmitted, and if the input data stream is inactive, no data from the incoming
channel can be received, no (negative) acknowledgements sent, and no data from the
receive queue delivered to the application. A simplex data stream is closed, when the
data streams at both ends are inactive. A context is active if at least its output or input
data stream is not inactive. If both are inactive, the context is closed, i.e., it passes to
null state.

When all data for the association have been sent, or for other reasons, the association
is closed. In order for the association to be closed, both contexts must be closed by
the context management closing procedure, so as to be prepared to be activated for a
new association. A context can be closed in several ways. It may be released when its
output and input data stream have been closed. It may be aborted when information
exchange between the hosts becomes impossible. It may also be ended by a local
application whenever it decides so, but we shall not consider this possibility.



T. Kapus, Z. Brezolnik/ Science of Computer Programming 29 (1997) 23-52 25

In other words, in order to close the association, both simplex data streams must be
closed. Graceful or ungraceful (forced) closure for a simplex data stream is possible.
A graceful closure means that a data stream was closed after all data for the data
stream had been correctly transmitted by its output data stream and acknowledged
by the receiving input data stream, and delivered from the data receive queue to the
receiving application. This means that the input data stream had been provided an
opportunity to ask for retransmissions. In this paper, we consider the correctness of
the closing procedure for the following possible situation. We assume that all data for
both simplex data streams have already been correctly transferred and acknowledged,
but there may still be some data in the data receive queue of each one, waiting to
be read by the receiving host, when the closing of the association starts. We assume
both contexts are active, and that both output and input data stream of each context
is active. We also assume that the contexts are synchonized with each other relating
data. The consequence of these assumptions is that no delay of releasing a context,
described in [15], and no aspects of XTP data transfer need be modelled, except for
the delivery of the receive data queues.

Information in XTP is transferred in packets. Each packet contains a header with
bitflags for controlling the operation of XTP and a field for packet-type identification.
For our purpose, only flags WCLOSE (i.e., “write-close”), RCLOSE (“read-close”),
END for the control of association closing, and SREQ (“status request”) flag for con-
trolling the acknowledgement policy have to be modelled. We only need packets with
CNTL or DIAG in their packet-type field. CNTL packets are control packets for ex-
changing state information between end hosts. DIAG packets are diagnostic packets.
A CNTL packet with SREQ set is called CNTL-request packet. Upon receiving such
a packet, a context must immediatelly send a response to the sender of the request.
If the context is active, a CNTL packet with information about its current status,
known as CNTL-response packet, is sent. In our case, the status information con-
sists of WCLOSE, RCLOSE, and END bits only. If the context is already closed, a
DIAG packet is sent, telling the sender that there is no active context at the other
side.

Each simplex data stream must be closed with a handshake consisting of two packets,
one from each host, involving the WCLOSE, RCLOSE, and/or END bits. Closure of
a data stream can be initiated by the sending or the receiving host for the stream.

Basically, the closing procedure in our case works as follows. With graceful close,
the sending context for a data stream sends a CNTL-request packet with WCLOSE
bit set telling the receiving context that the sending host wants to close its out-
put data stream . (in fact, its outgoing simplex data stream), and starts a timer. It
continues to transmit CNTL-request packets with WCLOSE set at timeout intervals.
Upon receiving such a packet, the receiving context waits until its receive data queue
is empty. We consider the closing procedure for the CONFIRM mode of closing
[15]. This means that the context must then still wait for a confirmation from the
application, before it can close the input data stream. After obtaining the confirmation,
it closes its input data stream, and sets RCLOSE in outgoing packets. The sending
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context stops the retransmission and closes the output data stream when it gets a
CNTL packet with RCLOSE bit set. With ungraceful close, the receiving host decides
to close its input data stream (i.e., its incoming simplex data stream), the context
at the host discards any data left in its receive queue, sends a CNTL-request packet
with RCLOSE bit set to the sending context, starts a timer, and continues to send
CNTL-request packets with RCLOSE set at timeout intervals. Upon receiving such a
packet, the sending context closes its output data stream and sets WCLOSE in outgo-
ing packets. The receiving context stops the retransmission and closes its input data
stream upon receiving a control packet with WCLOSE bit set. A context sets END in
a CNTL response to a CNTL-request packet if it has been closed upon receiving the
request.

Every control packet sent by a context carries the status information about both
its output and input data stream. Closing of both data streams may also be initiated
simultaneously. Therefore, the procedure of closing the simplex data streams can be
highly concurrent. For example, it is possible to achieve the closure of both simplex
data streams, and thus of both contexts and of the association, by sending just one
CNTL packet in each direction, a CNTL-request packet with WCLOSE and RCLOSE
bits set in one direction, and a CNTL-response packet with WCLOSE, RCLOSE and
END bits set in the other one. In [15], the closing procedure for a context is described
by mutually dependent semi-formal state machines, one for the output and one for the
input data stream. We are interested in formally specifying and verifying concurrent
behaviour and cooperation of input and output data stream state machines at both hosts
in sending control packets for closing the association. We assume the only thing that
can go wrong is loss of packets in the channels, and not, for example, that a host can
go down. No real time aspects will be modelled.

We write the design specification of the procedure as a parallel composition of a
number of components. The components specifications are written in such a way that
the composition practically satisfies the conjunction of the specifications. A straight-
forward way to prove a requirement specification of the procedure is then by first
constructing the design specification of the complete system by the conjunction, and
prove that the latter implies the requirements. However, we avoid the intermediate
step by providing proof rules for proving typical required properties directly from the
components specifications. Since communication protocols procedures typically consist
of specifically constructed sender, receiver, and channel components, the compositional
verification could have been simplified by developing two proof rules for exactly this
type of systems.

The paper is organized as follows. Section 2 briefly describes the temporal logic
of actions (TLA) used. The system model, basic notions regarding specification, im-
portant system operations, and basic proof rules for them are presented in Section 3.
Section 4 contains a design specification of the simplified XTP closing procedure writ-
ten in style of Lamport’s TLA together with an explanation. Required properties of the
procedure are also specified there. In Section 5 we list necessary proof rules of TLA
and propose some property-specific and system-specific proof rules for compositional



T. Kapus, Z. Brezolnik | Science of Computer Programming 29 (1997) 23-52 27

verification. Proofs of the required properties of the closing procedure applying these
rules are outlined in Section 6. A discussion of the results and future work concludes the

paper.

2. The temporal logic of actions

We use quite a usual linear-time temporal logic (cf. [12]). The alphabet of our
temporal logic language consists of denumerable sets of local individual variables
Z, global individual variables %, local proposition variables ¥, and global propo-
sition variables %. Further, it consists of at most denumerable sets of function and
predicate symbols, the latter including equality. It contains Boolean connectives —,
— (implication), the quantifier 3, and temporal operators ’, (O (“next”), unless,
3, the latter being a “temporal” quantifier for quantification over local variables.
Local variables may change their value from state to state, global may not. Like
in [10], local variables must not occur bound under temporal operators other
than .

Terms Term, temporally unquantified formulae UForm and formulae Form are de-
fined as follows. Let x € &, ye H, ve¥,uc U, weHUU,and z€ LUV . Let
t € Term, F,,G, € UForm, and F,G € Form. Then

tu=x|y|x | f(t,.. . tn)
Fou=vl|u|v |Pt,....ts) | ~Fy | Fs — G, | OF, | F, unless G, | IwF,
Fiu=F, |3zF|-F|F — G| 3wF

for any m-ary function symbol f or predicate symbol P from our sets. Propositional
constants (true, false), other Boolean connectives (A, V, <), and universal quantifiers
can be introduced as usual abbreviations. The same holds for common temporal op-
erators, for example, (OF = F unless false (i.e., “always F”), OF = -O-F (i.e,
“eventually F™).

A variable is called primed, if followed by /, and unprimed otherwise. A state for-
mula is one that does not contain temporal operators including /. A formula containing
at most unprimed, primed variables, and Boolean operators, is called an action formula,
or sometimes simply an action.

Formulae are interpreted in infinite sequences of states. We assume a fixed first-order
interpretation that assigns functions and relations on some domain of values to the
function and predicate symbols. A global valuation # assigns values from the domain
to the global individual variables, and a Boolean value to every global proposition
variable. Each state s; of an infinite state sequence ¢ = (sg,51,...) does the same for
the local individual and proposition variables, respectively. Let a,n = F indicate that
F is true in o under n. The meaning of the operators is as usual, except for existential
quantification of local variables, which is like in [10]:

o,m = BzF iff there exist ¢’, ¢”such that ¢ ~ ¢’,6' ~, 6", and ¢”,n = F,
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where ¢ ~ ¢’ means that the infinite sequences differ at most in how many times each
state is repeated consecutively, and ¢ =, ¢’ means that the sequences differ at most in
values they assign to z. Informally, Hz F says that we do not care about the value of
z, but F must hold. x’ means the value of the variable x in the next state. v/ means
that v is true in the next state. Let ¢[i..] denote the suffix of ¢ starting at s;, We use
the reflexive unless operator:

o,n = F unless G iff g[i.],n = F, for all i20, or
there exists j >0, such that o[j.],n = G and o{k.),n = F
for all £,0<k < j.

Notice that we have an initial semantics. A formula F is valid if it is true in any
o under any 7. A formula is closed iff all occurrences of global variables in it are
bound. A model of a closed formula F is any infinite state sequence in which F is
true. Let [F] denote the set of all models of F.

An action formula can be interpreted in a pair of states. For example, x’ = x + 1
is true at any pair of states (s,s”) such that s'(x) = s(x) + 1. It may be treated as an
analogon of a programming language assignment x :=x + 1.

We call our logic a temporal logic of actions because it contains ' and the following
abbreviations relating actions (cf. [10]). Let x1,...,x, be local (individual or propo-
sition) variables, let ¥ denote a finite set of local variables, and let 4 be an action
formula containing at most the variables from % as free local variables. Then?

unch(xy,...,x,) =x; = x1 A ... AX, = X,

[Al:=AV A x' =x (interpreted as “either action 4

xXEX

is executed or nothing happens™),

(A); =AN \ x' #x (“action 4 is executed”),

XEX

En(4) = 3y1,..., yad(31/x1,- .., ya/x)) (“action A4 is enabled”),

where xj,...,x, are local variables occurring free in 4, and y,...,y, corresponding
global variables, substituted for primed versions of the local variables.
The following abbreviations will also be needed:

WFx(4) = OO En({4);) — 000 (4).,
SFy(4) = O0En({(4);) — 010 (4)..

2 Strictly speaking, we should write < in place of = for every x that is a proposition variable in the
definitions.
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3. The system model and specification

A complete program or algorithm can be looked upon as a closed system. A closed
system Il is similar to the fair state transition system that lies implicitly behind
Lamport’s TLA (also, cf. [12}): I =(V,$t, 7 ,60,%", %) with
e V — the variables of II, a finite subset of the set of local variables of the logic that

IT may access.

V = OUI — the union of observable variables O and internal variables I, such that

oni=40.

e St — the set of all possible states, valuations of all local variables of the logic.

e 7 — a finite set of possible actions including an idling action 1. An action 1 € F
is a binary relation on states S¢, defined by an action formula g, that contains at
most local variables from V as free local vanables.

(s,s") € © iff p; is true at (s,5).

Pu = /\er(xl =x).

e © — a state formula containing at most the variables from V as free local variables,
an initial condition for V.

o W ={Wi,...,W,} — weak fairness requirements, W; = (E;,,T;) € W ,E;CT,CJ —
{u}.

o ¥ = {R,...,F,} — strong fairness requirements, F; = (E;,T;,) € #, E;CT,CT —
{u}.

A part of a complete program that communicates with other parts of it can be
looked upon as an open system. It is almost like a closed one, except that set O
contains a special local proposition variable u. It is introduced for asserting whether
an action is controlled by the program part represented by the system, i.e., whether
it is an action of that program part, or is controlled, i.e., executed, by its environ-
ment. Thus, an open system is a fair state transition system II = (V,St, 7,0, %, %)
with
e V — like in closed system, except that y € O, and O — {u} = O, U O, — the union

of changeable observable variables O, and unchangeable observable variables O,

such that O, N O, = 0.

e St — like in closed system.

e 7 — like in closed system, except that it includes beside 7; also an environment
action 1g defined by

pe= N (X =x)A-p
x €U0,

For t # g, 1’ appears as a conjunct of the action formula p, describing 7, e.g.,
i app i} p g g

b= A W =x)Ad.
xeV-{u}

e ©@ — a state formula over V — {u}.
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e W and & - like in closed system, except that for each pair (F;, T;) in the require-

ments, E;, T; CF — {11,18}.

Actions I — {11,715} are called diligent.

Internal variables are those that are neither of interest to the system user nor can be
accessed by the environment. They are only needed to achieve desired behaviour of
observable variables. In a closed system, observable variables are those that are required
to have specific values during computation by the user. In open systems, we distinguish
between two kinds of observable variables. Unchangeable variables are those for which
a specifier of the system knows in advance, possibly without knowing the environment
of the system, that they cannot be changed by the environment, whereas their values
are important for the user. Changeable variables are those that the environment may
possibly change. Variable u cannot be changed by the environment, but is treated as an
observable one because its value is important when the system is executed concurrently
with another open system.

A computation of (open or closed) system IT is any infinite sequence o of states
such that for every pair of states (s;,8;+1), (Si,Si+1) € 7, T € J, initial condition is
true at so, and such that it satisfies all the fairness requirements.

We know that 4 € V and g € J in a closed system. Then we can define the
following for open and closed systems. We say that an action t € 9 — {t[,1g} is
enabled at s; iff there exists a state s € St such that (p,)V_# is true at (s;,s), i.e., iff
En((pr),,_#) is true at s;. It is executed at state s; of o iff (pT)V_ﬂ is true at (s;,8i41).
A set of actions T is enabled at s; iff some action ¢ € T is enabled at s;. A set of
actions T C 7 — {11, 15} is executed at s; iff some action 7€ T is executed at s;. Notice
that only an action that changes some variables at a state is treated as executed at the
state.

The meaning of weak faimess requirements is equal for closed and open systems.
A state sequence o is weakly fair with respect to every (E;, T;) € # iff: if E; is enabled
continuously from some state on in o, then 7; is executed infinitely often in . For
closed systems, a state sequence ¢ is strongly fair with respect to every (E;, T;) € #
iff: if E; is enabled infinitely often in o, then T; is executed infinitely often in o.

The meaning of strong fairness requirements of an open system is a bit different in
order that they be realizable (e.g., see [1]).

Let €(11) denote the set of computations of open or closed system IT. Let p = 1
mean that infinite state sequences p and t differ at most in values they assign to the
variables from /. Let [II] denote the set of behaviours of II. We define: [II] = {¢ €
St®13p,1 € St°(6 ~ p A p =; T A1 € B(II))}. Thus, as usual, the values of internal
variables are abstracted away, and it is the behaviours that will be described by our
TLA. Also, the set of behaviours is stuttering closed, i.e., closed under finite repetition
of states. Stuttering-closedness of sets of behaviours allows for hierarchical verification
and refinement (e.g., [1]).

A closed formula F of our TLA is stuttering insensitive iff [F] is stuttering closed.
The basic rule for a formula of our TLA to be stuttering insensitive is that it must not
contain the operator () (cf. [16]). It is only retained for axiomatisation. A specification
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is any closed formula of our TLA that is stuttering insensitive. A specification S is a
specification of a (closed or open) system II with observable variables O iff its only
free variables are from O and [II]C[S]. We then say that II satisfies S, or that § is
valid in I1, and denote it by II |= S. If [II] = [S], then S is a precise specification
of II.

A straightforward way to write a precise specification of a closed or open system is
to directly describe its meaning with a TLA formula. Let [ = (V,$t, 7,0, % , %) be
an open system not containing any internal variables, such that for each (£;,7;) € %/,
E; = T;, and likewise for #. Then the TLA formula is as follows:

Sp=eA0[ V pr]V—{u} AN WFV——{M}( V p1)
t€T—{r;} (E.,,T)eEW T€E;

NN SFr_i(Vopo).
(B, T)eF 1€E;

Alternatively, if we have a TLA formula 7 ACJ[N]z A WF A SF, where [ is a state
formula, N a disjunction of action formulae, and WF (SF) a conjunction of formulae
WF(N;) (SFx(N;), respectively) for some disjuncts N; of N, then, if the disjuncts of N
are properly formed, the formula can be thought of as a precise specification of such
an open system with I taken for @, x for ¥ — {u}, with nonidling actions described
by the disjuncts of N, and with weak and strong fairness requirements consisting of
pairs of the sets of actions described by action formulae N; occurring in WF and SF,
respectively. We shall write our precise specifications in this “canonical” way.

Different operations can be performed on systems. Let the result of renaming a
variable in an open or closed system be the system with all occurrences of the variable
substituted by a new variable. Let the result of Aiding an observable variable in an
open or closed system be the system with the variable moved from the set O to [
(internal variables are already hidden).

Two open systems are compatible iff the conjunction of their initial conditions does
not imply false and no unchangeable variable of one system can be changed by the
other.

Let I1;,=(Vu,, Stn,» Zn,, On,, Wn,» Zi1,), i=1,2, be compatible open systems. Parallel
composition of IT, and IT,, denoted II, || II,, is the closed system, obtained by first
renaming internal variables and y in such a way that for the newly obtained sets of
internal variables, Iy, NIg, =0, I, NOp, =0, for i = 1,2, j = 1,2, i # j, and pp, #
Ui, and then hiding up, and pg, in the fair transition system I = (V, S8, 7,0, %", %)
with the renamed variables, where
o V= VH1 U Vnz, 1 =IH1 Ulnz, and O = Onl UOH;-

e St — the set of all possible valuations of local variables of TLA.
e 7 - the set of actions, obtained from I, and Jp,. 1€ 7 iff it is described by:

Pt = Py, /\prp,nj A o A o (x' =Xx),
x€0cn; —Ocn;

for i,j = 1,2, i # j, where 15, € 71, — {tenm, }-
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e O=6 N @Hz'
o W ={W,...,W,} — weak fairness requirements.

Every W; = (E;,T;) € W consists of sets E;, I; C 7. W; = (E;,T;) is in #  iff there

exists (Ep;, Tnn;) € #n; for j =1 or j =2 such that for all t€ J:

- T€E; & dup, €Ep(p. = Prn, N p") where p” is the rest of the description of 7,
and
~-t€T; & 3ty €Tn(p. = Pen, A p"), where p” is the rest of the description of 7.
o F ={Fy,...,F,} — strong fairness requirements.

Every F; = (E;,T;) € # consists of sets E;,T; CJ . They are obtained from Fy,,

J=1,2, like the weak fairness requirements.

In parallel composition, diligent actions of a component execute interleaved with the
actions of the other one. Parallel composition of more than two open systems could
be defined analogously.

Using semantic arguments, it can be proved that possible behaviours of the results
of the operations are such that the following proof rules are valid (e.g., [8]).

Let ||7., II; denote parallel composition of compatible open systems ITy,...,II,,
n =2, each II; containing the set of observable variables O;. Then the parallel compo-
sition rule is valid:

Hi(O,')‘=S,', i=1,...,n
I, O(0) = BuBus, ..., ua( i, Silpi/u] A Uneg A Unch A Who) A Cl)

where

Unch(y;) = A O, > v’ =u), i=1,...,n,
UE(U!_,0c,)—0,
n n n
Unch = N\ Unch(p;), Uneg=0 N —(ui Apy), Who=0(u e V ).
i=1 ij=I i=1
i#

Compatibility of the components ensures that the parallel composition has a nonempty
set of behaviours. Clearly, the renaming rule, where IT[v/u] denotes II with an ob-
servable variable u renamed for v and S[v/u] denotes S with v substituted for u, the
hiding rule with IT\x denoting the result of hiding an observable variable x in II, the
consequence rule, and the conjunction rule are valid, in order of appearance:

H'ZS H’:S H':Sl, S1—+S2 H'=S1, H’=S2
H[v/u] E S[v/u] H\x = FxS neEs, IIESAS

It could be proved that the last five rules without the conjunction rule together with
precise specifications of open systems as axioms are complete for proving properties
of systems constructed from the open systems using the operations, relative to the
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completeness of a TLA proof system (cf. [14]). The conjunction rule is only needed
for convenience.

4. Specification of the closing procedure
4.1. A design specification

A design specification of the closing procedure must be a precise specification. Let
CXT and CHN denote an open system, representing a context at a host, and one
representing a unidirectional lossy channel, respectively. The procedure is specified as
a parallel composition of such systems with properly renamed observable variables:

CLS = CXTA ” CHNAB || CHNBA ” CXTB
where
CXTy = CXT[cxty/cxt,z04/20,214/21, Stoa/Sto, Stia[str, tmr 4 /tmr, rq 4/rq]

is the context at host A, CHN 4z = CHN|zp,/zs,z18/2r] is the channel for sending
messages from 4 to B, and symmetrically for CXTg, CHNpy,.

Let ¢ denote an empty sequence, ® concatenation of sequences, [m] a sequence with
the only element m, Head(z) the first element of a nonempty sequence z, and Tail(z)
the rest of it.

The following messages are sent in CLS:

M = {(C,W,S5),(C,R,S),(C,W,R,S),(C),
(C,W),(C,R),(C,W,R),(C,W,R,E),(D)}.

C means that the message is a CNTL packet. (D) represents the DIAG packet saying
that the context at a host is not active. If a message from M contains S (for SREQ),
W (for WCLOSE), R (for RCLOSE), or E (for END), it means that the corresponding
bit would be set in the XTP packet it represents.

Beside u, the open system CHN contains two observable changeable variables, zg

and zg, both ranging over sequences of the messages from M. The design specification
of CHN is as follows:

CHN = Scun

where

Scun = zs = zg = ¢ AO[((oss(zs,2r) V \ pass(m,zs,zp)) A ')V~ 1 zg.20)
meM

ANWF 35 oy (Uoss(zs,zg) V' \|  pass(m,zs,zr)) A y')
meM

AN SFugay( V) (pass(m,zg,zr) A p'))
MieM ¢ meM,;
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and
loss(zs,zgr) =zs £ ¢ /\Zé = Tail(zs) A unch(zg),
pass(m,zs,zr) = zs # ¢ A Head(zs) = m A zg = Tail(zs) A zp = zg ® [m].

Local variable zg represents the sender’s end of the channel, and zy the receiver’s end
of the channel. Initially, the channel is empty. One can imagine that the environment
of the channel can put messages into zg. The weak fairness requirement ensures that
the channel takes each message from zg and nondeterministically either loses it (/oss)
or puts it into zz ( pass), where it waits to be removed by the environment. The strong
fairness requirement ensures that messages are not lost every time if sent sufficiently
often on zg by the environment. Although CHN is an open system, the strong fairness
requirements are like in closed systems, because we know the CXT systems that make
up the environment of CHN in CLS cannot disable a pass action.

The open system CXT contains beside p variables Vexr = {cxt, sto, st1, 20,25, tmr,rq}.
Local variables zp and z; range over sequences of the messages from M and
represent the sender’s end of the context’s outgoing channel and the receiver’s end
of its incoming channel, respectively. Let x € T mean that x ranges over the
values from 7. The range of the other variables is as follows: cxt € {act,nuil},
sto € {act,wclinact}, sty € {act,rcl,dlv,cls,inact}, rq € {empty,full,dsc}, and
tmr € {off,set}.

The variable cxt indicates the state of the context. szp describes the state of the
output data stream, sz; the state of the input data stream of the context, and rq the
state of the data receive queue. There is one timer for the context, represented by tmr.

We shall now provide a design specification of CXT, followed by an explanation.

Let the following action formulae represent sending of a message m € M on zp and
receipt of a message m € M from zj, respectively:

send(m,zp) =z, = zp ® [m],
rec(m,z;) = z; # ¢ A Head(z;) = m A z; = Tail(z;).

Let recE(z;) = rec((C,W,R,E),z;), recD(z;) = rec((D),z;), let recC(z;) denote
receipt of any CNTL packet with SREQ not set, and recS(z;) receipt of any packet
with SREQ set.

We take all the variables from Vexr to be observable. They all seem interesting
to us for expressing correctness criteria. Since communication is only possible over
the channels, only zp and z; are changeable. Here is our design specification Scxr,
CXT |= SCXT3

Scxr = ext = sto = sty = act Nzg = z7 = e N tmr = off
Nrq = empty V rq = full)
AO[((Lel v Tout V DIr v Cnf V Rec) A y')
v(unch(cxt, sto, st;, tmr,rg) A =1 v
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A WFy, (Tout A y'y A WFy,,.(DIr A i)
AWFyu (Caf A p'y A WFy.(Rec A '),

where

Lel =LWel v LWe2 Vv LWe3 v LRel V LRc2,

Tout = TtO1 Vv TtO2 v TH 1V T2,

Dlr = Rdrql vV Rdrg2,

Cnf=CnflvCnf2, and

Rec = RecSR V RecSW V RecSWR V RecCal V RecCR V RecCW V RecCWR
V RecED V RecC V RecS V RecD with

RecSR = RecSr1 V RecSr2 V RecSr3 V RecSr4

RecSW = RecSwl V RecSw2 V - - V RecSwl2

RecSWR = RecSwrl V RecSwr2 V RecSwr3 V RecSwr4

RecCR = RecCr1 V RecCr2 NV RecCr3

RecCW = RecCwl V RecCw2 V RecCw3 V RecCw4 V RecCwS V RecCw6

RecCWR = RecCwrl V RecCwr2 V RecCwr3 V RecCwréd

are disjunctions of the following action formulae describing possible diligent actions
of CXT, not yet accompanied by z'.

Local wclosing:
{just local wclosing}
LWel = cxt = act Astg = act A(st; = act V sty = dlv V st; = cls)
N send((C, W,S),z0) A sty = wel A tmr' = set A unch(ext,z;, str,rq)
{just local wclosing}
LWe2 = cxt = act A stp = act A (st; = rel V sty = inact)
A send((C,W,R,S),z0) A sty = wel A tmr’ = set A unch(ext, z;, st rq)
{local wclosing + local rclosing}
LWe3 = cxt = act A sto = act A st; = act
Nsend((C,W,R,S8),z0) A\ rq' = dsc A st = wel A st; = rcl A tmr' = set
Aunch(ext, z;)

Local rclosing:
{just local rclosing}
LRcl = cxt = act A stg = act \ sty = act
Asend((C,R,8),z0) AN rq' = dsc A sty = rcl A tmr’ = set
Aunch(ext, z;, sto)
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{just local rclosing}
LRc2 = cxt = act A\ (stp = wel V sto = inact) A sty = act
Asend((C,W,R,S),z0) Arq' = dsc A st; = rcl A tmr’ = set
Aunch(ext, z;, sto)

Receipt of (CNTL, RCLOSE, SREQ):
{just wclose and answer to RCLOSE}
RecSrl = rec((C,R,S),z1) A cxt = act A (st; = act V sty = dlv V sty = cls)
A send((C,W),z0) A sty = inact A tmr’ = off A unch(cxt, st;,rq)
{wclose, also local rclosing, and answer to RCLOSE}
RecSr2 = rec((C,R,S),z;) A\ cxt = act A st; = act
Nsend((C,W,R,8),z0) A rq’ = dsc N\ sty = inact A sty = rel
Atmr’ = set A unch(cxt)
{just wclose and answer to RCLOSE}
RecSr3 = rec((C,R,S),z;) A cxt = act A sty = rel
Asend((C,W,R),zp) A st’o = inact A unch(cxt, sty, tmr,rq)
{weclose, answer to RCLOSE; also end}
RecSr4 = rec((C,R,S),z;) A cxt = act N\ st; = inact
Nsend((C,W,R,E),zo) A sty, = inact A tmr’ = off A ext’ = null
Aunch(st;, rg)

Receipt of (CNTL, WCLOSE, SREQ):
{pass to delivering of rq and answer to WCLOSE}
RecSwl = rec((C,W,S),z1) A cxt = act A stg = act A sty = act Arq = full
A send((C),zo) A st; = dlv A unch(ext, sto, tmr, rq)
{pass to delivering of rq and answer to WCLOSE}
RecSw2 = rec((C, W, S),z1) A ext = act A (sto = wel V stg = inact)
Asty = act Arq = full
A send((C, W ),z0) A st; = dlv A unch(cxt, sto, tmr, rq)
{rq is empty; get wait for confirmation and answer to WCLOSE}
RecSw3 = rec((C, W, S),z1) A ext = act A stop = act \ st; = act Arq = empty
NAsend((C),zo) A st; = cls A unch(cxt, sto, tmr,rq)
{rq is empty; get wait for confirmation and answer to WCLOSE}
RecSwa = rec((C, W, S),z;) A cxt = act A (sto = wel V stg = inact)
A st = act A\ rq = empty
A send((C, W ),zp) A st; = cls A unch(ext, sto, tmr, rq)
{rq is empry; get wait for confirmation, also wclosing, and answer to WCLOSE}
RecSwS = rec((C,W,8),z;) A cxt = act A stg = act A sty = act A rq = empty
Asend((C,W,S8),z0) A st'o =wcl Ast; = cls A tmr' = set
Aunch(ext, rq)
{just rclose and answer to WCLOSE}
RecSwb = rec((C, W,8),2z;) A cxt = act A sto = act A (st; = rcl V sty = inact)
A send((C,R),zo) A st; = inact A tmr’ = off A unch(cxt, sto,rq)
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{just rclose and answer to WCLOSE}

RecSwT = rec((C, W,S),z1) A ext = act A sto = wel A (stp = rel V st; = inact)

A send((C,W,R),z0) A st; = inact A unch(cxt, sto, tmr, rq)
{rclose and answer to WCLOSE; also end}

RecSw8 = rec((C,W,S),z1) A ext = act A stop = inact A (st; = rel V st = inact)
Nsend((C,W,R,E),zo) A st; = inact A tmr’ = off A cxt' = null
Aunch(stg, rq)

{rclose, also wclosing, and answer to WCLOSE}

RecSw9 = rec((C,W,S),z1) A ext = act A stg = act A (st; = rel V stp = inact)
A send((C,W,R,8),z0) A sty = wel A sty = inact A tmr’ = set
Aunch(ext, rq)

{just answer to WCLOSE}
RecSw10 = rec((C, W, S),2z;) Aext = act A stg = act A\ (st; = dlv V sty = cls)
A send((C),zo) A unch(ext, sto, sty, tmr, rq)
{just answer to WCLOSE}
RecSwll = rec((C, W,8),2;) A ext = act A (stg = wel V st = inact)
A(st; =dlvV sty = cls)
Asend((C, W),zp) A unch(ext, stp, st;, tmr, rq)
{weclosing and answer to WCLOSE}
RecSw12 = rec((C, W,S),z1) A ext = act A sto = act A\ (sty = dlv V stp = cls)
Asend((C,W,8),z0) A sty = wel A tmr’ = set A unch(cxt, sty rq)

Read rg:
Rdrql = cxt = act N st; = act Avqg = full
Arq' = empty A unch(cxt, zp, z;, stg, sty tmr)
Rdrg2 = cxt = act Ast; = div A rq = full
Ast; = cls A rq’ = empty A unch(cxt, zp, zy, sto, tmr)

Rclose confirmed:
Cnfl = ext =act A (stg = act V sto = wely A sty = cls
/\stl/ = inact A unch(cxt, zp, z;, sto, tmr, rq)
Cnf2 = cxt = act \ stg = inact A sty = cls
Ast; = inact A ext’ = null A unch(zo,z;, sto, tmr,rq)

Receipt of (CNTL, WCLOSE, RCLOSE, SREQ):
{wclose, rclose, answer to WCLOSE, RCLOSE; also end}
RecSwrl = rec((C,W,R,S),z1) A cxt = act A (st; = rcl V sty = inact)
N send((C,W,R,E),zp) A sty, = inact A st; = inact A\ tmr' = off
Acxt’ = null A unch(rg)
{wclose, pass to delivering, answer to WCLOSE, RCLOSE}
RecSwr2 = rec((C,W,R,S),z1) A\ cxt = act A sty = act A rq = full
Nsend((C,W),z0) A st = inact A sty = dlv A tmr’ = off
Aunch(ext, rg)
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{weclose, get wait for confirmation, answer to WCLOSE, RCLOSE}
RecSwr3 = rec((C,W,R,S),z;) A cxt = act A sty = act \ rq = empty
NAsend((C,W),z0) A\ sty = inact /sty = cls N tmr’ = off
Aunch(ext, rg)
{wclose, continue rclosing on a past request, answer to WCLOSE, RCLOSE}
RecSwrd = rec((C,W,R,S),zr) A ext = act A (st; = dlv V st; = cls)
Asend((C,W),zp) A sty, = inact A tmr’ = off A unch(cxt,sty,rq)

tmr runs out:

TtO1 = cxt = act A\ stg = wel A(sty = act V sty = dlv V sty = cls)
Asend((C,W,5),z0) A unch(cxt, z;, sto, sty, tmr, rq)

Tt02 = cxt = act A stg = wel A (sty = rcl V sty = inact)
Asend((C,W,R,S),z0) A unch(cxt, z;, sto, sty, tmr,rq)

TtI1 = cxt = act N\ stp = act A\ sty = rcl
Asend((C,R,S),z0) A unch(ext, z;, sto, sty, tmr, rq)

T2 = cxt = act N stp = inact N\ st; = rcl
Asend((C, W,R,S),zp) A unch(cxt, z, stg, sty tmr, rq)

Receipt of (CNTL):
RecCal = rec((C),z;) A cxt = act
A(stg = act V stg = wel V sty=act NV sty=vrcl V sty=dlv V sty =cls)
Aunch(ext, zo, stp, sty, tmr, rq)

Receipt of (CNTL, RCLOSE):
RecCrl = rec({(C,R),z;) A cxt = act A{(st; = act V sty = dlv V st; = cls)
A sty = inact A tmr’ = off A unch(cxt,zo,st;,rq)
RecCr2 = rec((C,R),z;) N ext = act A sty = rcl
A sty = inact A unch(ext,zp, st;, tmr,rq)
RecCr3 = rec({C,R),z;) A\ cxt = act A\ st; = inact
A sty = inact A tmr’ = off A cxt' = null A unch(zo, st1,rq)

Receipt of (CNTL, WCLOSE):

RecCwl = rec((C,W),z;) A cxt = act A st; = act A\ rq = empty
Ast; = cls A unch(cext, zg, sto, tmr, rq)

RecCw2 = rec((C,W),z;) A cxt = act A sty = act A rq = full
Ast; = dlv A unch(ext, zo, sto, tmr, rq)

RecCw3 = rec((C,W),z1) A cxt = act A (st; = dlv V sty = cls)
Aunch(ext, zp, stg, st;, tmr, rq)

RecCwd = rec((C, W),z1) A cxt = act A stg = act A\ (st; = rcl V sty = inact)
Ast; = inact A tmr' = off A unch(cxt,zo,sto,rq)

RecCw5 = rec((C,W),z;) A ext = act A stg = wel A (stp = rel V sty = inact)
A sty = inact A unch(ext, zp, sto, tmr, rq)

RecCwb6 = rec((C,W),z;) A cxt = act A sto = inact A (sty = rcl V sty = inact)
Ast; = inact A tmr' = off A ext’ = null A unch(zo, sto,rq)
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Receipt of (CNTL, WCLOSE, RCLOSE):
RecCwrl = rec((C,W,R),z;) A cxt = act A (st; = rcl V st; = inact)
A sty = inact A st; = inact A tmr' = off A ext' =null A\unch(zo, rq)
RecCwr2 = rec((C,W,R),z;) A cxt = act A sty = act A\ rq = empty
A sty = inact A sty = cls A tmr’ = off A unch(ext,zp,rq)
RecCwr3 = rec((C, W,R),z1) A cxt = act A sty = act A rq = full
A sty = inact A st; = dlv A tmr' = off A unch(ext,zp,rq)
RecCwrd = rec((C, W,R),zi) A cxt = act AN (st; = dlv V sty = cls)
A sty = inact A tmr’ = off A unch(cxt,zop, st;, rq)

Receipt of END or DIAG when context active:
RecED = (recE(z;) V recD(z1)) A cxt = act A (st; = rel V st; = inact)
A sty = inact A st; = inact A\ tmr' = off A cxt’ = null A unch(zg, rq)

Receipt of C when no active context:
RecC = recC(zy) N cxt = null
Aunch(cxt,zo, stp, sty, tmr, ¥q)

Receipt of SREQ when no active context:
RecS = recS(z;) A ext = null
A send((D),z0) A unch(cxt, sto, sty, tmr, rq)

Receipt of DIAG when no active context:
RecD = recD(z;) A cxt = null
Aunch(cext,zo, sto, sty tmr,¥q)

Initially, the context, the input and output data stream are active, both channel ends
are empty, the data from the receive queue have either already been read (rq = empty),
or there are still some data in it (rqg = full).

The state sty of the output data stream changes as follows. When it is active, it
can start closing. The active context sends a CNTL-request packet containing W, sets
timer ¢mr, and stp passes to wclosing (see actions LWcl, LWc2, LWc3 and RecSw5,
RecSw9, RecSwl12 in the specification). When stp = wcl, tmr runs and a timeout can
occur (actions T¢tO1, TtO2). In this case, the context just sends a CNTL-request packet
with W and sets tmr again. For any value of stp, if the active context receives a
packet containing R, E, or D, stp closes (or remains closed, respectively), i.e., gets
inactive (actions RecSR, RecSWR, RecCR, RecCWR, RecED). The context includes W
in each CNTL packet sent when stp is equal to wcl or inact.

The input data stream behaves as follows. When s#; is active, it can start closing.
In this case, the active context discards the data receive queue (rq gets the value
dsc), sends a CNTL-request packet containing R, sets tmr, and changes st; to rclosing
(actions LWc3, LRcl, LRc2, RecSr2). When st; = rcl, tmr runs and a timeout can
occur (actions 702, Tt/1, Tt12). In this case, the context just sends a CNTL-request
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packet with R and sers tmr again. If the active context receives a packet with W, E,
or D when st; = rcl or st; = inact, st; closes, i.e., passes to inactive, or remains
closed, respectively (actions RecSw6—RecSw9, RecSwrl, RecCwd—RecCw6, RecCwrl,
RecED).

It is possible that the active context receives a packet with W, when st; is active.
In this case, st; passes to cls (“closing™) if rq is already empty (actions RecSw3—
RecSw5, RecSwr3, RecCwl, RecCwr2), or to dlv (“deliver”) if rq is full (actions
RecSwl, RecSw2, RecSwr2, RecCw2, RecCwr3). When st; = dlv, an action (Rdrq2)
must happen that reads data from rg, i.e., sets it to empty, and s#; passes to cls. The
data can also be read from rg when st is still active (action Rdrgl). At cls state,
the input data stream waits for a confirmation from the application (action Cnf'1 or
Cnf2), and then just changes st; to inactive.

The context includes R in each CNTL packet sent when s#; is equal to rcl or inact.

When tmr is set, it is stopped, i.e., assigned the value off, by the context, when it
passes to null or when its output or input data stream passes to inact, but only if tmr
does not need to run further for any of the streams. We allow for premature timeouts,
i.e., a CNTL-request packet may be retransmitted before a response to the previous
request can come.

The input and output data stream of the context may begin locally closing simulta-
neously (action LWc3). Also, it is possible that a data stream starts closing just when
the context receives a CNTL-request. In this case, a CNTL-request may be sent in
response (actions RecSr2, RecSw5, RecSw9, RecSw12).

The context passes to null upon receiving a packet containing £ or D (action
RecED), and whenever the input and output data stream get inactive (RecSr4, RecSw8,
Cnf2, RecSwrl, RecCr3, RecCw6, RecCwrl). The context passes to null in the same
atomic action, in which the data streams both got inactive.

We have a group of actions for the receipt of each possible message from M in the
specification. This is to ensure that there are no unspecified receptions in CXT, i.e., at
any state of CXT, an action should be enabled that can receive the message currently
residing at the head of z;. Notice that at any time, only some actions for receiving
exactly one possible element of M are enabled. The weak fairness requirement for Rec
in Scxr together with the absence of unspecified receptions is intended to guarantee
that each message at the head of z; is eventually removed from z;.

In Scyr, there is no action for receiving E or D when the state of the input data
stream is act, div, or cls. Since we do not allow for local ending of contexts, it is
namely not possible that a packet with £ or D appears in z; while s# has any of these
values. This is because the context on the other side of the association can only be
ended if it knows that the input data stream is closed or rclosing. However, if st is
act, dlv, or cls, any packet obtained by the context on the other side will say that the
input data stream is neither closed nor rclosing.

The receipt of any CNTL-request packet causes that a response is sent in the same
atomic action (actions RecSW, RecSR, RecSWR, RecS). Upon receiving a packet without
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S, the context just commits internal changes depending on the packet contents, but
sends nothing (actions RecCal, RecCW, RecCR, RecCWR, RecC, RecED, RecD).

In Scxr, the weak fairness requirement for Tout ensures that tmr will eventually
time out if set long enough and that the information, for which #mr runs, will be
retransmitted. Weak fairness of Dir and Cnf ensures that the data from the receive
queue will eventually be delivered to the host and that the input data stream will not
wait indefinitely for a confirmation before closing, respectively.

We do not model interactions of the procedure with the user explicitly, since this
is not needed for verification. Nevertheless, one can imagine that the transition from
sto = act to sto = wel in the output data stream (from st; = act to sty = rel in
the input data stream) indicates that the user requested closing of the outgoing data
stream (the incoming data stream, respectively). When the output data stream (the
input data stream) passes to stp = inact (st; = inact, respectively) after the handshake
initiated by the local request, this can be viewed as also representing issuing of a
confirmation to the user, that his request for closing a simplex data stream was served.
Passing to st; = cls can be thought of as also giving an indication to the user that the
input data stream wants to close. A subsequent execution of Cnf then represents the
user’s confirmation that the stream may close. Also, the transition of cxt to null can
be thought of as representing issuing of an indication to the user that the context is
closed.

4.2. A requirement specification

We are now ready to specify important properties that are required to be satisfied by
CLS. We assume that any side of a simplex data stream can start closing, independent
of each other, and that each simplex data stream can start closing independent of the
other.

Let in the sequel I, P, O denote state formulae, 4, N action formulae, F, G formulae,
and ¥ a set of local variables. Let P’ denote an action formula obtained from a state
formula P by replacing any local variables occurring free in P by equally named primed
variables. Let STAB P = (J(P — OOP), F UNL G = J(F — F unless G), and
F~G=0F — ¢G) (“leadsto”). STAB and UNL remind us of UNITY operators
[3]. Let temporal operators have higher priority than nontemporal ones. Priority of them
is as follows, in decreasing order: -, A and Vv, —, .

Let b be a nonempty subset of {W,R,E,D}. By b ¢ z we denote that a variable
z ranging over sequences of the messages from M does not contain any message
containing an element of b. Let x € {cy,...,¢,} denote x =c; V---Vx = ¢,

Define:

NoLRclg = O(stp # rcl), NoLWcl, = O(stpq # wel)

SCiwl 4p = (stoq = inact — sty = inact)
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SCiw2 45 = styp # inact unless rq = empty

SClw3 3 =UO({R,E,D} € zpp — stig = inact)

SClryg = U(stip = inact — stpg = inact)

GRqp = O(rgp = full vV rqg = empty)

GClyp = stos = wel ~ (stp = inact A rqg = empty A stoy = inact)

UClyp = sty = rcl ~ (stop = inact A sty = inact),

and likewise for 4 and B exchanged.
Let TRst = tmry = off A tmrg = off.

ClAss = (O (stgq = wel) A O (stgp = wel))
— OO(exty = null A extg = null A TRst)

UGCI=((O(styy = rcl) A O (stog = wel)) V (O (st = rel) A O (stop = wel)))
— O0(cxty = null A cxtg = null A\ TRst)

Then we require the following to hold:

Theorem 1.

CLS IZ NOLRCIB — SClWlAB A SClszB A SCZW3AB A GRqB A GCIAB,
CLS = NoLRcly — SClwlgy A SCiw2py A SCiw3gy A GRqq N\ GClgy.

Theorem 2.

CLS |= NoLWecly — SClryp, CLS |= NoLWclg — SClrpy.

Theorem 3.

CLS = Cidss A UCl4p A UClgq N UGCIL.

Theorem 1 is about graceful closing of the simplex data streams. It says that if local
closing of the input data stream for a simplex data stream never takes place, then its
output data stream, which is so the only one that may initiate closing, can be closed
only if the input data stream is already closed. The input data stream must deliver all
the data before closing, and it must not say that it is closed in outgoing packets before
getting a confirmation from the application. Theorem 2 is about ungraceful closing of
the simplex data streams. It says that if the output data stream of a simplex data stream
does not initiate closing, then its input data stream, which in this case is the only one
that may initiate closing, can only get inactive when the output data stream is closed.
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Theorem 3 is about graceful closing, ungraceful closing, and about the combination of
both. Independent of which side initiates closing of some simplex data stream, they
must eventually get closed, timers must be stopped, and both contexts must close.

5. Verification of the closing procedure
5.1. Some useful proof rules

To prove the theorems, we treat the components design specifications in the form
IT = § as axioms. We first provide some useful proof rules for our TLA similar
to those from [10]. Remember that in the absence of temporal operators, a primed
variable of the form x’ is treated like an unprimed variable named x’, thus allowing
pure assertional reasoning. Also, if an action formula 4 is proved assertionally valid,
then (14 is valid.

INV1-rule:

OU ANy = 1)
IAON]y — 01

INV2-rule:
FOOI — @[N] < ON ATATY)
STAB-rule:

O(P A [Ny — P)
O[N]y — STABP

UNL-rule:

OPA[N]ly -4V P)
O[N]y — P UNL A4

WF1-rule:

(P ANy =PV Q)
OP AN ALY, - Q)

O — En({4)y))
ONly AWFy(4) - P~>Q

Analogous to these rules, we now propose some rules that enable us to prove im-
portant properties of a parallel composition without first constructing the conjunction
of its component specifications using the parallel composition rule. For our purpose, it
suffices to assume that there are no hidden variables in the specifications. Also, assume
that the special observable variables do not appear free in properties to be proved by
the rules.
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INV1C-rule:
1I; '= LA E\[(N, A [LI) \% (UnCh(Ou,‘) A _|H,)]I/l fori=1,.
OAL—1)
i=1

O A IN; Aunch(U % = Wlury — I') for i=1,...,n
J=1 i}

iy I O

STABC-rule:
; =E0O[N; A )V (unch(Oy) A=)y fori=1,...,n
O(P A[N; A unch(LnJ Vi=Wluy — P fori=1,...,n

J=1
i1 1 = STAB P

UNLC-rule:
I; = OWN; A ')V (unch(O) A =)y fori=1,...,n
D@ AN Aunch (U V= Wy = AVP) fori=1,..n

j=1
I, T, E P UNL A

WEF1C-rule:

Hk E WFVk(AAu ) for some k € {1,...,n}

O A Aunch(U ¥ = Wlury, — PV Q) fori=1,...,n
=1 )

D(P/\(Nk/\A/\unch(LnJ - Vi) ur_ v —=Q)

O(P — En({4)y, )
iz i =P~ Q
LOC-rule:

II = F for IT an open system
I\ | ...\, = F for any compatible open systems IIi,...,II,

Intuitively, soundness of INV1C, STABC, UNLC, and WFIC rules follows from the
fact that they just subsume the way of proving properties of parallel composition by
first applying the parallel composition rule on precise specifications of the components
for obtaining an action formula N describing possible actions of the complete system,
and then proving the premise of the consequence rule using INV1 or one of the other
TLA rules by cases on the actions of N. Soundness of LOC follows directly from
the parallel composition rule. Properties that only contain unchangeable variables of IT
as free local variables are good candidates to be proved by LOC-rule, thus possibly

saving a lot of work if validity of the property can be proved locally.
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Now, assume that we have any system composed like ours. Assume that it consists
of two communication channels, I1,p, Ilgy4, like CHN except that a different set of
messages M may be communicated in the system. Also, assume that they connect two
sender/receiver processes, 114, I1p, similar to CX7T in the following. They communicate
only over the channel variables. They may execute internal actions, not agcessing the
channels, sending actions, and receiving actions. Assume that they contain some actions
that are both sending and receiving ones. Only actions for receiving one possible mes-
sage from M are enabled at a process at a time, and all receiving actions are required
to be weakly fair. It must also be ensured that there are no unspecified receptions. It
is possible to ensure this already when writing a design specification of a receiving
component by defining a receiving action for all possible combinations of heads and
states of the component. Then the system satisfies the channel liveness property

/\ (DO \/ send(m,zOA)—ADO V VEC(m,ZIB))

Mg —p meM,; meM,

with zp4 the channel variable at I1,’s end of its outgoing channel [T,z and zjz the
one at IIg’s end of Il,p, and symmetrically for channel I1z4. This can be proved by
first constructing a precise specification of the system by the parallel composition rule.
Using the fairmess requirements of the channel and the receiving actions, assuming
messages do not progress over the channel, the liveness property can be shown to be
implied by the precise specification, by contradiction.

Once ensuring the liveness for both channels, the following proof rules for proving
leads to properties can be derived for this specific type of communication systems
(cf. [9]). Let Myp, Mp,4 be nonempty subsets of a set of messages M, and zp4,zpp and
z14,27p the variables of the outgoing and incoming channel of I1 and ITj, respectively.
Let P and Q be state formulae not containing the channel variables.

Leadsto-via-(M5,z04, z;p)-rule:

0y = O[04 A 1)V (Unch(Ou) A~ Yy, A WFy (AN i)

O — En({d)y,), U@ ANNsAA)y, — \]{/[ send(m,zp4))
meMyp

M = 0[Nz A ') V (unch(Oyz) A =)l
B(P A [Ns Aunch(Vp)lyur, — PV Q')
O(P A [Ng A unch(V)lyur, — P’V Q')

D(P A < e\]{/[ (NB A rec(m,zIB)) A UnCh(VA»mUVE — Q’)

Iy || I || gy || Iz =P ~ Q

Leadsto-via-(MBA s ZOBs ZIA )'(MAB, ZOAs ZIB )-rule:

I = O[(Ng A i) v (unch(Oug) A =)y, A WFy(A A )
O — En({4)y,), O(PANsANA), — \ send(m,zo4))

meEMyp
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11z |= O[(Ng A 1) V (unch(Ous) A =)y,

O(P A [Ng Aunch(V)lyur, — PV Q')

O(P A [Ng Aunch(V)lyur, — PV Q)

O@A{ V (NgArec(m,zig)) Aunch(Ve)ur, — Q)

mEMpy
OPA{ V (NgArec(mzp))y, — \ send(m,zop))
meMyp mEMpy

Iy || yp || My || g =P ~ Q

In fact, both rules rely on the existence of a weakly fair timeout action A4 in Il,.
The first rule requires that the messages from M, p are retransmitted by action 4 of
I, so that eventually some element of Mz is received at Ilz, whereupon @ holds.
The second rule requires that the messages from Mg are retransmitted by action 4 of
I, so that eventually a message from Mp, sent by Il is received at Iy, whereupon
Q holds. This rule requires that receipts of messages from M,z at IIz imply sending
of some message from Mp, back. This is meant to be ensured by the actions that
are receiving and sending ones at the same time. In CXT, these are the actions that
receive CNTL-request messages and immediately send a reply.

If a formula has already been proved valid for a parallel composition, it can be
taken as a valid assumption in proving another property by any of INV1C, STABC,
UNLC, WFI1C, or Leadsto-via rules. If G is one of the properties that appear in the
conclusions of these rules, validity of ' — G in a parallel composition may be proved
by using F as a valid assumption in proving validity of G in the composition by one
of the rules.

5.2. Verification of the requirements
In order to prove the theorems about the closing procedure, we need some lemmata.
By symmetry of the closing procedure, assume that any lemma containing 4 and B is
also valid if 4 and B are interchanged.
Lemma 1. Let
InvC, = cxty = null & stoq = inact A styy = inact.
Then
CXTA 'Z DInvCA.
Proof. We first prove InvCy AU[N]y — OInvCy by INV1, for possible actions [N]y
of CXT,. Because the initial condition of CXT, implies InvCy, it follows that the

precise specification of CXT, implies OInvCy, thus ensuring the validity of the lemma
by the consequence rule. [
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Lemma 2.
CLS =0OInvCy, CLS = OnvCp.

Proof. From Lemma 1 by LOC. O
Lemma 3. Let

Invp = (stoq = act A stip = act Argp € {empty, full}

NR,E,D} ¢ zjy N{W,E,D} ¢ zos A {R,E,D} ¢ zop N{W,E,D} ¢ zjp)
V (stog = act A stig = rel Arqg = dsc

ME,D} ¢ 214 N{W,E,D} ¢ zo4 N{E,D} ¢ zop N{W,E,D} ¢ z3)
V (stoq = inact N\ stig = rcl A rqp = dsc

NE,D} ¢ zia A{E,D} ¢ zop)
V (stos = inact A stip = inact A rqg € {empty,dsc})
V (stos = wel A stig = rcl Argp = dsc

/\{E,D} é zy N\ {E,D} $ zZoa N\ {E,D} ¢ zog N\ {E,D} ¢ ZIB)
V (stoa = wel Astig = act A rqp € {empty, full}

/\{R,E,D} &z N {E,D} $ Zoa N\ {R,E,D} ¢ zog N\ {E,D} é Zp)
V (stoqg = wel Astig = dlv Argg = full

/\{R,E,D} ¢z N {E,D} € zoq N {R,E,D} ¢ zop N\ {E,D} ¢ zp)
V (stos = wel A stig = cls A rqg = empty

/\{R,E,D} ¢z A {E,D} ¢ Zoa N {R,E,D} ¢ zZog N\ {E,D} ¢ zg)
V (stoq = wel A stig = inact A rqg € {empty,dsc}

/\{E,D} é Zo4 A {E,D} ¢ ZIB)

Then
CLS '= DInvAB.

Proof. By using INVIC, and either Lemma 1 for 4 and B side together with INV2
for using the fact about the contexts in Ny and Nz, or Lemma 2 for 4 and B side to
take the invariants as assumptions. We also need the obvious fact, that if some kind of
messages are not in a channel, then after executing an action, this will still hold if the
action does not send this kind of messages into the channel. Also, if a message is not
in a channel, it is also not at the head of it. Thus receiving actions for the message
are not enabled. (O

Lemma 4. CXT, = O (st # rcl Astog # wel — tmry = off).

Proof. By using INV1 on the actions of CXT,, analogous to the proof of Lemma 1.
O

Lemma 5. CXT, |=0(styy # rcl) — O(rqy = full V rqy = empty).

Proof. By taking U (st;4 # rcl) as a valid assumption, and using INV2 and INV1 on
the actions of CXT}, analogous to the proof of Lemma 1. O
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Lemma 6. CXT, = STAB (stpq4 = inact) A STAB (st;4 = inact).

Proof. By using STAB on the actions of CX7, and the consequence rule for proving
each stability property separately, and then using the conjunction rule. O

In order to prove basic liveness properties of the procedure, we take the property
that always, for any message at the head of the incoming channel variable of a context,
an action that receives the message is enabled, for granted, i.e.

CLS =0 A\ (Head(zi4) = m — En(N4 A rec(m,z14))),
meM

and likewise for the B side.

Lemma 7. CLS = /\f.;:1 L; where

Ly = (stoqg = wcl A stip = act A\ rqp = empty)
~> ((stog = wel N stig = cls) V (stoq = wel A stg = rel))
Ly = (stog = wel Astip = act Arqg = full)
~> ((stoqg = wel A stig = act A rqp = empty)
V(stog = wel Astig = dlv Argqg = full)V (stosa = wel A stig = rel))

Ly = (stog = wel Astg = dlv Argp = full)

~ (stoq = wel A sty = cls A rqg = empty)
Ly = (stoqg = wel A stip = cls) ~ (stpq = wel A stip = inact)
Ls = (stog = wel A sty = rel)

~> ((stog = wel A stig = inact) V (stoy = inact A stig = rcl))
L¢ = (stpq = inact A stig = rel) ~ (stoq = inact A stjp = inact)
Ly = (stoqg = wel A stig = inact) ~ (stpq = inact A stip = inact)
Lg = (stps = act A\ stig = rcl)

~ ((stoq = inact A stig = rcl) V (stgq = wel A stig = rel))

Proof. Let (*,String) denote all the messages of M that contain String. L3 and L4 can
be proved by WF1C-rule assuming (1InvCp and Oinv,p, by weak faimess of Dir and
weak fairness of Cnf in CXTpg, respectively.

L; can also be proved without checking all the components of CLS in the following
way. We first prove

CXTp = (stig = dlv Argg = full) ~ (stip = cls A rqp = empty)

with help of Lemma 1, INV2, and WF1-rule by weak fairness of DIr in CXTp. Then,
by LOC also CLS [= (stip = dlv A rqp = full) ~ (stip = cls A rqg = empty).

From the latter and since stoq = wel A sty = dlv A rgg = full always implies
sty = dlv ANrqp = full, CLS k= (stogs = wel Astig = dlv Argg = full)~ (stip =
cls A rqg = empty), because LJ(F — G) implies F ~ G and by transitivity of ~ .
From Lemma 3, CLS | O(st;z = cls Argg = empty — stog = wel), and thus
clearly CLS = Ls.
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L1, L2, and L5 can be proved by Leadsto-via-({(x, W,8)}),zo4,z5) exploiting weak
faimmess of Tout in CXT,, assuming CInvyp when proving L1 and L2, and assum-
ing OInvCy and OInvCy in the proofs of L1, L2, and L5. L6 can be proved by
Leadsto-via-({(*, W), (D)}, 204,218 )-({(*, R, S)},z08, z14) using weak fairness of Tout in
CXTp and assuming OInvCg. L7 can be proved by Leadsto-via-({(*,R),(D)}.zop, 214 )-
({(x, W,58)},204,218) using weak fairness of Tout in CXT, and assuming OInvCy. L8
can be proved by Leadsto-via-({(*,R,S)}),zog,z14) by weak fairness of Tout in CXTp
and assuming (lnvg, OInvCy and OInvCy. O

Lemma 8.

CLS E stog = wel ~ (stip = inact A stoq = inact)
CLS |= sty = rel ~ (stop = inact A styy = inact)

Proof. We will only outline the proof of the first liveness property. The other can be
proved similarly. By the consequence rule, from Lemma 3,

CLS = O(stoy = wel — ((stgq = wel A stig = act N\ rgg = empty)
V (stoq = wel A stig = act Argg = full)
V (stog = wel Astig = dlv A rqg = full)
V (stoq = wel A stig = cls N\ rqg = empty)
V (stog = wel A stig = rel Arqp = dsc) V (stog = wel A stip = inact))).

Using the temporal logic proof rule from [11],

F""(Gl\/Gz), G~>G, G~>G
F->G ’

we can prove

CLS = (stos = wel Astip = act A\ rqg = empty)
~ (stjp = inact A stp4 = inact)

from CLS |= Ly ALy A Ls A Lg A Ly, which follows by the consequence rule from
Lemma 7, and likewise for the other possible combinations with stategy = wel. Then,
by the conjunction and consequence rule, because CI(F — G) implies F~G, and by
transitivity of ~> we obtain the first liveness property of the current lemma. O

Proof of Theorem 1. We will only sketch the proof of the requirement in one direction,
namely, when the input data stream at B cannot be locally closed. Validity of the
requirement for graceful closing in the other direction follows by symmetry. By the
conjunction rule and propositional reasoning, it suffices to prove

CLS |= NoLRclg — SClwlyp, CLS = NoLRclg — SClw24p,
CLS |= NoLRclg — SCiw3 48, CLS = NoLRclg — GRqs,
CLS l= NOLRCZB ad GCIAB.
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The first requirement is proved easily by using the consequence rule on Invgp
(Lemma 3) assuming NoLRclp.
To prove the second requirement, we first prove

CXTp = NoLRclg — stip # inactUNL rq = empty

from the precise specification of CXTy using the consequence rule, UNL, and INV2
assuming NoLRclg. Since initially, st;p # inact in CXTp, also

CXTp = NoLRclg — stjg # inact unless rqg = empty,

and thus by LOC also CLS satisfies the requirement.

The third requirement can be proved by using the consequence rule on /nvp. Assum-
ing NoLRclg, we can prove that Olnv,p implies O (stp # inact — {R,E,D} ¢ zpp),
thus proving the requirement.

The fourth requirement follows by symmetry and LOC from Lemma 4. The fifth
requirement can be proved as follows. By Lemma 8 and the consequence rule,

CLS |= NoLRclg — (stpq = wel ~ (stig = inact A stoy = inact)).

Also, assuming NoLRclg, by the consequence rule on Invgp, CLS = O(stp =
inact — rqp = empty). By the conjunction rule, then validity of the fifth requirement
follows. [

Proof of Theorem 2. We can prove this safety property easily by using the conse-
quence rule on Invyp (Lemma 3) assuming NoLWcl, for direction 4-to-B. The property
for data stream B-to-A follows by symmetry. [

Proof of Theorem 3. We can prove
CLS | O(stoy = inact A\ sty = inact — tmrg = off A cxty = nudl).

This follows by LOC from Lemmas 1 and 4, using the conjunction and consequence
rule, and symmetrically for side B. By Lemma 8 and by symmetry, starting closing
of the data stream in each direction either by setting wcl or rcl, eventually stoy, Stiy,
stop, and st will be inactive. By Lemma 6, because OPA CQASTABPASTAB Q
always implies OO(P A Q), CLS = OU(stos = sty = Inact A stpg = stig = inact)
holds, assuming that closing of both simplex data streams has been initiated. From the
first temporal assertion in the proof, it follows that both timers and contexts will also
get and remain off and null, respectively, which proves the theorem. [

6. Conclusion

We showed how the essential features of the procedure for closing contexts at each
side of an XTP association can be specified and verified using a TLA. Our work could
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be compared to that of [7]. There, a message-passing model is used instead of the
original TLA shared-variables one. The former is useful for layered specification and
verification of protocols, where specification module boundaries are not equal to process
boundaries. By introducing appropriate notation for sending and receiving messages on
channels, our design specification could also be modularized, for example, with regard
to the two simplex data streams. Also, it would be possible to specify a context in terms
of its input and output data stream. However, assuming the degree of concurrency in
them as taken in our specification would make the way to get the specification of the
complete system more complicated than if directly considering all possible concurrency
in the contexts.

This is also because our verification problem is still of a moderate size. Since each
data stream can in fact close independent of the other, we can say that the system
has 144 global states, observing Inv,p for one data stream, not looking at possible
contents of channel variables. Mechanical support would be welcome for the reasons of
reliable verification, but the verification is also quite manageable just by hand. Having
appropriate proof rules, the majority of reasoning reduces just to simple checking if
some small state formulae are preserved or transformed to some other simple state
formulae by actions that in many cases do not even affect the formulae. This is usually
true for communication protocols, since processes at different sides of communication
links generally communicate only over a small number of variables. TLA also seems
quite appropriate at least for writing protocol specifications by protocol developers that
are not logic experts, because of its simple state-based model.

Although we used a TLA, our approach can also be compared to UNITY [3].
Whereas it is common to include some features that have arised with the work on
TLA in UNITY (e.g., [4]), some of our proof rules can be seen as adding the UNITY
style to TLA specifications. Beside a TLA, we also used the meta notation for sat-
isfaction of specifications. We gave only an outline of proofs in this paper. It would
be interesting to specify and verify the closing procedure without assuming that all
the data have been transferred correctly. Errors have namely been found in this setting
(e.g., by simulation [2]). However, then also at least some aspects of the data transfer
part of the protocol would have to be included. And assuming a high degree of con-
currency, more sophisticated ways of writing modular specifications of protocols and
effectively reasoning about them would be needed. This will be a part of our future
work.
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