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Abstract 

Modular specification and compositional verification of the context management closing proce- 
dure of Xpress Transfer Protocol (XTP Protocol Definition, Revision 3.6) in style of Lamport’s 
Temporal Logic of Actions is considered. It is assumed that a full-duplex association over a pair 
of lossy channels between two contexts on different hosts is being closed, such that any data for 
that connection have already been transmitted successfully to the hosts. Thus, the case of the 
closing procedure is considered where both contexts are active and synchronized initially, and 
only control messages have to be sent until the association is closed. @ 1997 Elsevier Science 
B.V. 
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1. Introduction 

Xpress Transfer Protocol is a light-weight transport protocol for high-speed networks 

[5]. It allows for reliable sequenced data delivery by establishing a full-duplex connec- 

tion between end hosts. We show how the essential part of the context management 

closing procedure of XTP, described in XTP Protocol Definition, Revision 3.6 [15], 

can be specified and verified in style of Lamport’s Temporal Logic of Actions [lo]. 

Its basic idea is that the (logical) specification language contains unprimed and primed 

variables. A specified system is looked upon as a (possibly infinite) state transition 

system. Its possible transitions are not described e.g. by an event-state table (cf. [6]), 

but rather by action formulae. An action formula is like a first-order predicate logic 

formula, except that it may contain primed variables. An unprimed variable denotes 
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the value of the variable in the state just before the (atomic) action execution, and a 

primed variable its value in a possible next state after execution. A design specification 

of a protocol can thus actually be written by listing action formulae describing possible 

actions. The operational style can also be used for writing a requirement specification. 

Temporal operators can be used for specifying liveness and also for expressing re- 

quirement specifications in a more declarative way. The idea is also employed e.g. in 

[9, 13,7], and demonstrated in [12]. 

Assume that a non-multicast association, meaning a connection in XTP terminology, 

between an instance of XTP at a host A and an instance of XTP at a host B has been 

established over a pair of lossy channels, one for carrying messages in each direction. 

The set of state variables for an instance of XTP at an end host is called a context. 

One therefore also says that the association exists between a context at host A and 

a context at host B. The association consists of a simplex data stream A-to-B and a 

simplex data stream B-to-A. Host A is the sending host for stream A-to-B and the 

receiving host for B-to-A, and symmetrically for host B. Likewise, the context at each 

host is the sender for one of the data streams, and the receiver for the other one. 

Each context manages both the outgoing and the incoming data stream as well as the 

potential for sending and receiving control information. In [ 151, a context is looked 

upon as consisting of a part for managing the outgoing data stream, called an output 

data stream, and a part for managing the incoming data stream, called an input data 

stream. When the output data stream is in active state, it can receive data from its 

host (i.e., XTP user or application), and transmit them over a lossy channel to the 

other context and host according to XTP specifications in order to achieve reliable 

data transfer. Typically, an acknowledgement/retransmission scheme for error control 

is used. When the input data stream of the context at the other host is in active state, 

it takes the data from the channel, also acts according to the XTP rules, and puts 

correctly received data into a data receive queue, wherefrom the data are read by the 

receiving host. A simplex data stream thus consists of an active output data stream 

at its sending context and of an active input data stream at its receiving context. If 

the output data stream is inactive (we shall also say ‘closed’), no data can be sent 

or retransmitted, and if the input data stream is inactive, no data from the incoming 

channel can be received, no (negative) acknowledgements sent, and no data from the 

receive queue delivered to the application. A simplex data stream is closed, when the 

data streams at both ends are inactive. A context is active if at least its output or input 

data stream is not inactive. If both are inactive, the context is closed, i.e., it passes to 

null state. 

When all data for the association have been sent, or for other reasons, the association 

is closed. In order for the association to be closed, both contexts must be closed by 

the context management closing procedure, so as to be prepared to be activated for a 

new association. A context can be closed in several ways. It may be released when its 

output and input data stream have been closed. It may be aborted when information 

exchange between the hosts becomes impossible. It may also be ended by a local 

application whenever it decides so, but we shall not consider this possibility. 
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In other words, in order to close the association, both simplex data streams must be 

closed. Graceful or ungraceful (forced) closure for a simplex data stream is possible. 

A graceful closure means that a data stream was closed after all data for the data 

stream had been correctly transmitted by its output data stream and acknowledged 

by the receiving input data stream, and delivered from the data receive queue to the 

receiving application. This means that the input data stream had been provided an 

opportunity to ask for retransmissions. In this paper, we consider the correctness of 

the closing procedure for the following possible situation. We assume that all data for 

both simplex data streams have already been correctly transferred and acknowledged, 

but there may still be some data in the data receive queue of each one, waiting to 

be read by the receiving host, when the closing of the association starts. We assume 

both contexts are active, and that both output and input data stream of each context 

is active. We also assume that the contexts are synchonized with each other relating 

data. The consequence of these assumptions is that no delay of releasing a context, 

described in [ 151, and no aspects of XTP data transfer need be modelled, except for 

the delivery of the receive data queues. 

Information in XTP is transferred in packets. Each packet contains a header with 

bitflags for controlling the operation of XTP and a field for packet-type identification. 

For our purpose, only flags WCLOSE (i.e., “write-close”), RCLOSE (“read-close”), 

END for the control of association closing, and SREQ (“status request”) flag for con- 

trolling the acknowledgement policy have to be modelled. We only need packets with 

CNTL or DIAG in their packet-type field. CNTL packets are control packets for ex- 

changing state information between end hosts. DIAG packets are diagnostic packets. 
A CNTL packet with SREQ set is called CNTL-request packet. Upon receiving such 

a packet, a context must immediatelly send a response to the sender of the request. 

If the context is active, a CNTL packet with information about its current status, 

known as CNTL-response packet, is sent. In our case, the status information con- 

sists of WCLOSE, RCLOSE, and END bits only. If the context is already closed, a 

DIAG packet is sent, telling the sender that there is no active context at the other 

side. 

Each simplex data stream must be closed with a handshake consisting of two packets, 

one from each host, involving the WCLOSE, RCLOSE, and/or END bits. Closure of 

a data stream can be initiated by the sending or the receiving host for the stream. 

Basically, the closing procedure in our case works as follows. With graceful close, 
the sending context for a data stream sends a CNTL-request packet with WCLOSE 

bit set telling the receiving context that the sending host wants to close its out- 

put data stream (in fact, its outgoing simplex data stream), and starts a timer. It 

continues to transmit CNTL-request packets with WCLOSE set at timeout intervals. 

Upon receiving such a packet, the receiving context waits until its receive data queue 

is empty. We consider the closing procedure for the CONFIRM mode of closing 

[ 151. This means that the context must then still wait for a confirmation from the 

application, before it can close the input data stream. After obtaining the confirmation, 

it closes its input data stream, and sets RCLOSE in outgoing packets. The sending 
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context stops the retransmission and closes the output data stream when it gets a 

CNTL packet with RCLOSE bit set. With ungraceful close, the receiving host decides 

to close its input data stream (i.e., its incoming simplex data stream), the context 

at the host discards any data left in its receive queue, sends a CNTL-request packet 

with RCLOSE bit set to the sending context, starts a timer, and continues to send 

CNTL-request packets with RCLOSE set at timeout intervals. Upon receiving such a 

packet, the sending context closes its output data stream and sets WCLOSE in outgo- 

ing packets. The receiving context stops the retransmission and closes its input data 

stream upon receiving a control packet with WCLOSE bit set. A context sets END in 

a CNTL response to a CNTL-request packet if it has been closed upon receiving the 

request. 

Every control packet sent by a context carries the status information about both 

its output and input data stream. Closing of both data streams may also be initiated 

simultaneously. Therefore, the procedure of closing the simplex data streams can be 

highly concurrent. For example, it is possible to achieve the closure of both simplex 

data streams, and thus of both contexts and of the association, by sending just one 

CNTL packet in each direction, a CNTL-request packet with WCLOSE and RCLOSE 

bits set in one direction, and a CNTL-response packet with WCLOSE, RCLOSE and 

END bits set in the other one. In [ 151, the closing procedure for a context is described 

by mutually dependent semi-formal state machines, one for the output and one for the 

input data stream. We are interested in formally specifying and verifying concurrent 

behaviour and cooperation of input and output data stream state machines at both hosts 

in sending control packets for closing the association. We assume the only thing that 

can go wrong is loss of packets in the channels, and not, for example, that a host can 

go down. No real time aspects will be modelled. 

We write the design specification of the procedure as a parallel composition of a 

number of components. The components specifications are written in such a way that 

the composition practically satisfies the conjunction of the specifications. A straight- 

forward way to prove a requirement specification of the procedure is then by first 

constructing the design specification of the complete system by the conjunction, and 

prove that the latter implies the requirements. However, we avoid the intermediate 

step by providing proof rules for proving typical required properties directly from the 

components specifications. Since communication protocols procedures typically consist 

of specifically constructed sender, receiver, and channel components, the compositional 

verification could have been simplified by developing two proof rules for exactly this 

type of systems. 

The paper is organized as follows. Section 2 briefly describes the temporal logic 

of actions (TLA) used. The system model, basic notions regarding specification, im- 

portant system operations, and basic proof rules for them are presented in Section 3. 

Section 4 contains a design specification of the simplified XTP closing procedure writ- 

ten in style of Lamport’s TLA together with an explanation. Required properties of the 

procedure are also specified there. In Section 5 we list necessary proof rules of TLA 

and propose some property-specific and system-specific proof rules for compositional 
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verification. Proofs of the required properties of the closing procedure applying these 

rules are outlined in Section 6. A discussion of the results and future work concludes the 

paper. 

2. The temporal logic of actions 

We use quite a usual linear-time temporal logic (cf. [12]). The alphabet of our 

temporal logic language consists of denumerable sets of local individual variables 

X, global individual variables Y, local proposition variables V, and global propo- 

sition variables Y. Further, it consists of at most denumerable sets of function and 

predicate symbols, the latter including equality. It contains Boolean connectives 1, 

+ (implication), the quantifier 3, and temporal operators ‘, 0 (“next”), unless, 

3, the latter being a “temporal” quantifier for quantification over local variables. 

Local variables may change their value from state to state, global may not. Like 

in [lo], local variables must not occur bound under temporal operators other 

than 3. 

Terms Term, temporally unquantified formulae UForm and formulae Form are de- 

finedasfollows.LetxEX, ~EY,vE~,uE~,wEYUU,~~~~EXU~.L~~ 

t E Term, F,, G, E UForm, and F, G E Form. Then 

t ::= x 1 y 1 x’ ( f(Q,...,&) 

F, ::= v 1 u 1 v’ 1 P(tl,. . . , tn) 1 TF, 1 F, -+ G, 1 0 F, ) F, unless G, ) 3wF, 
F ::= F, I3lzF IlF 1 F + G j3wF 

for any n-ary function symbol f or predicate symbol P from our sets. Propositional 

constants (true, false), other Boolean connectives (A, V, -), and universal quantifiers 

can be introduced as usual abbreviations. The same holds for common temporal op- 

erators, for example, OF = F unless false (i.e., “always F”), OF E -JO-F (i.e., 

“eventually p’). 

A variable is called primed, if followed by ‘, and unprimed otherwise. A state for- 
mula is one that does not contain temporal operators including ‘. A formula containing 

at most unprimed, primed variables, and Boolean operators, is called an action formula, 
or sometimes simply an action. 

Formulae are interpreted in infinite sequences of states. We assume a fixed first-order 

interpretation that assigns functions and relations on some domain of values to the 

function and predicate symbols. A global valuation q assigns values from the domain 

to the global individual variables, and a Boolean value to every global proposition 

variable. Each state si of an infinite state sequence c = (ss,si, . . .) does the same for 

the local individual and proposition variables, respectively. Let cr, 11 k F indicate that 

F is true in CJ under q. The meaning of the operators is as usual, except for existential 

quantification of local variables, which is like in [lo]: 

cr, q k 3zF iff there exist cr’, cr”such that 0 pv G’, o’ M, CJ”, and 8, v b F, 
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where ~7 N CJ’ means that the infinite sequences differ at most in how many times each 

state is repeated consecutively, and CJ M, rr’ means that the sequences differ at most in 

values they assign to z. Informally, 3zF says that we do not care about the value of 

z, but F must hold. x’ means the value of the variable x in the next state. u’ means 

that u is true in the next state. Let a[i..] denote the suffix of (T starting at si. We use 

the reflexive unless operator: 

a,~ k F unless G iff a[i..],r] k F, for all i>O, or 

there exists j20, such that o[j..],q + G and a[/~..], y b F 

for all k,Odk < j. 

Notice that we have an initial semantics. A formula F is valid if it is true in any 

CJ under any 9. A formula is closed iff all occurrences of global variables in it are 

bound. A model of a closed formula F is any infinite state sequence in which F is 

true. Let [F] denote the set of all models of F. 

An action formula can be interpreted in a pair of states. For example, x’ = x + 1 

is true at any pair of states (s,s’) such that S’(X) = s(x) + 1. It may be treated as an 

analogon of a programming language assignment x := x + 1. 

We call our logic a temporal logic of actions because it contains ’ and the following 

abbreviations relating actions (cf. [lo]). Let xi , . . . ,x, be local (individual or propo- 

sition) variables, let X denote a finite set of local variables, and let A be an action 

formula containing at most the variables from X as free local variables. Then2 

unch(q ,..., x,) -xi =x1 A . . . AXA = x,,, 

[A]j E A v A x’ = x (interpreted as “either action A 
XE? 

is executed or nothing happens”), 

(A)2 = A A V x’ # x (“action A is executed”), 
XElZ 

En(A) z 3~1,. . , y,J(yi/x{, . . . , y,JxA) (“action A is enabled”), 

where xi , . . .,x, are local variables occurring free in A, and ~1,. . . , yn corresponding 

global variables, substituted for primed versions of the local variables. 

The following abbreviations will also be needed: 

WF&4) = OOEn((A),) + no(A),, 

SF,-(A) = q OEn( (A),) --) 00 (A),. 

‘Strictly speaking, we should write t* in place of = for every x that is a proposition variable in the 
definitions. 
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3. The system model and specification 

A complete program or algorithm can be looked upon as a closed system. A closed 

system I7 is similar to the fair state transition system that lies implicitly behind 

Lamport’s TLA (also, cf. [ 121): IT = (V,St, F-,0, W,F) with 

l V - the variables of II, a finite subset of the set of local variables of the logic that 

Xl may access. 

V = OUI - the union of observable variables 0 and internal variables I, such that 

OflI=0. 

l St - the set of all possible states, valuations of all local variables of the logic. 

l JC - a finite set of possible actions including an idling action ~1. An action z E Y 

is a binary relation on states St, defined by an action formula pr that contains at 

most local variables from V as free local variables. 

(s,s’) E r iff p7 is true at (s,s’). 

Pr, = Ax& = xl. 

l 0 - a state formula containing at most the variables from V as free local variables, 

an initial condition for V. 

l YY = {WI,. . , Wm} - weak fairness requirements, Wi = (Ei, Ti) E -klr, Ei C Ti 2 F- 

{?I}. 
0 9 = {Fl , . . . ,F,} - strong fairness requirements, I$ = (Ei, Ti) E 9, Ei c Ti 2 F - 

{TI). 
A part of a complete program that communicates with other parts of it can be 

looked upon as an open system. It is almost like a closed one, except that set 0 

contains a special local proposition variable p, It is introduced for asserting whether 

an action is controlled by the program part represented by the system, i.e., whether 

it is an action of that program part, or is controlled, i.e., executed, by its environ- 

ment. Thus, an open system is a fair state transition system II = (V, St, F, 0, %““, F) 

with 

l V - like in closed system, except that p E 0, and 0 - {,u} = 0, U 0, - the union 

of changeable observable variables 0, and unchangeable observable variables O,, 

such that 0, n 0, = 0. 

l St - like in closed system. 

0 5 - like in closed system, except that it includes beside zt also an environment 

action 7~ defined by 

PTE = & (x’ = x) A 4. 
” 

For z # ra, ,u’ appears as a conjunct of the action formula pr describing z, e.g., 

0 0 - a state formula over V - {p}. 
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l YY and % - like in closed system, except that for each pair (Ei, 7’;:) in the require- 

ments, Ei, 7;: C_ % - (71, za}. 

Actions % - {zt,zs} are called diligent. 
Internal variables are those that are neither of interest to the system user nor can be 

accessed by the environment. They are only needed to achieve desired behaviour of 

observable variables. In a closed system, observable variables are those that are required 

to have specific values during computation by the user. In open systems, we distinguish 

between two kinds of observable variables. Unchangeable variables are those for which 

a specifier of the system knows in advance, possibly without knowing the environment 

of the system, that they cannot be changed by the environment, whereas their values 

are important for the user. Changeable variables are those that the environment may 

possibly change. Variable p cannot be changed by the environment, but is treated as an 

observable one because its value is important when the system is executed concurrently 

with another open system. 

A computation of (open or closed) system II is any infinite sequence CJ of states 

such that for every pair of states (si,si+i), (Si,Si+i) E t, r E %-, initial condition is 

true at SO, and such that it satisfies all the fairness requirements. 

We know that p 9 V and ZE $! % in a closed system. Then we can define the 

following for open and closed systems. We say that an action r E % - {rr, ~a} is 

enabled at si iff there exists a state s E St such that (P~)~_~ is true at (si,s), i.e., iff 

En( (P~)~_,) is true at si. It is executed at state si of cr iff (P~)~_, is true at (si,si+i). 

A set of actions T is enabled at si iff some action r E T is enabled at si. A set of 

actions T C Y - {q, ZE} is executed at St iff some action r E T is executed at si. Notice 

that only an action that changes some variables at a state is treated as executed at the 

state. 

The meaning of weak fairness requirements is equal for closed and open systems. 

A state sequence o is weakly fair with respect to every (Ei, Ti) E W iE if Ei is enabled 

continuously from some state on in G, then Ti is executed infinitely often in CT. For 

closed systems, a state sequence rr is strongly fair with respect to every (Ei, 7;:) E % 
il7 if Ei is enabled infinitely often in (T, then Ti is executed infinitely often in o. 

The meaning of strong fairness requirements of an open system is a bit different in 

order that they be realizable (e.g., see [l]). 

Let g(ZI) denote the set of computations of open or closed system n. Let p MI r 

mean that infinite state sequences p and r differ at most in values they assign to the 

variables from I. Let [ZI] denote the set of behauiours of II. We define: [n] = (0 E 

St”I3p, z E SP(o N p A p =:I z A z E %7(D))}. Thus, as usual, the values of internal 

variables are abstracted away, and it is the behaviours that will be described by our 

TLA. Also, the set of behaviours is stuttering closed, i.e., closed under finite repetition 

of states. Stuttering-closedness of sets of behaviours allows for hierarchical verification 

and refinement (e.g., [l]). 

A closed formula F of our TLA is stuttering insensitive iff [F] is stuttering closed. 

The basic rule for a formula of our TLA to be stuttering insensitive is that it must not 

contain the operator 0 (cf. [ 161). It is only retained for axiomatisation. A specijcation 
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is any closed formula of our TLA that is stuttering insensitive. A specification S is a 

specijication of a (closed or open) system I7 with observable variables 0 iff its only 

free variables are from 0 and [ZI] & [S]. We then say that l7 satisjies S, or that S is 

valid in II, and denote it by I7 + S. If [II] = [S], then S is a precise spec$cation 

of Il. 
A straightforward way to write a precise specification of a closed or open system is 

to directly describe its meaning with a TLA formula. Let Il = (V, St, Y-, 0, w, F) be 

an open system not containing any internal variables, such that for each (Ei, Ti) E ?Y, 
Ei = z, and likewise for 9. Then the TLA formula is as follows: 

A A s%{p)(z~ PT>. 
(&,T,)E9 

Alternatively, if we have a TLA formula I A 0 [N]f A FVF A SF, where I is a state 

formula, N a disjunction of action formulae, and WF (SF) a conjunction of formulae 

WFf(N;) (SFi(Ni), respectively) for some disjuncts Ni of N, then, if the disjuncts of N 

are properly formed, the formula can be thought of as a precise specification of such 

an open system with I taken for 0, X for V - {,a}, with nonidling actions described 

by the disjuncts of N, and with weak and strong fairness requirements consisting of 

pairs of the sets of actions described by action formulae Ni occurring in WF and SF, 
respectively. We shall write our precise specifications in this “canonical” way. 

Different operations can be performed on systems. Let the result of renaming a 

variable in an open or closed system be the system with all occurrences of the variable 

substituted by a new variable. Let the result of hiding an observable variable in an 

open or closed system be the system with the variable moved from the set 0 to I 

(internal variables are already hidden). 

Two open systems are compatible iff the conjunction of their initial conditions does 

not imply false and no unchangeable variable of one system can be changed by the 

other. 

Let Iii = (Vn,, St,, , Fn,, On,, W_i,, Fn, ), i = 1,2, be compatible open systems. Parallel 
composition of IIt and II2, denoted Iii I( Ilz, is the closed system, obtained by first 

renaming internal variables and .u in such a way that for the newly obtained sets of 

internal variables, In, n In, = 8, 1~~ fl On, = 0, for i = 1,2, j = 1,2, i # j, and pCln, # 

pn,, and then hiding ,un, and pnz in the fair transition system Il = (V, St, ~7, 0, YY, Y) 
with the renamed variables, where 

l V=Vn,UVn,,I=Zn,UI~n,,andO=On,UOn,. 

l St - the set of all possible valuations of local variables of TLA. 

l 9 - the set of actions, obtained from Fn, and Fir,. r E F iff it is described by: 

Pz = Pm, A PQ”, A A (n’ =x), 
xH%n, -&I, 

for i, j = 1,2, i # j, where zn, E Fni - {zrn, }. 
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l o=on, AOn,. 

. w = {W,,..., Wm} - weak fairness requirements. 

Every JVi = (Ei, I;:) E W consists of sets Ei, Ti C F. Wi = (Ei, Ti) is in W” iff there 

exists (En,, Tn,) E %I%, for j = 1 or j = 2 such that for all r E 9: 
_ r E Ei @ 3zn, E EII,(P~ s pm, A p’) where p’ is the rest of the description of z, 

and 
_ r E 7; @ 3zn, E Tn,(pT 3 pm, A p’), where p’ is the rest of the description of r. 

l 9 = {F, , . . . , F,,} - strong fairness requirements. 

Every Fi = (Ei, Ti) E F consists of sets Ei, I;: s F. They are obtained from Fn,, 

j = 1,2, like the weak fairness requirements. 

In parallel composition, diligent actions of a component execute interleaved with the 

actions of the other one. Parallel composition of more than two open systems could 

be defined analogously. 

Using semantic arguments, it can be proved that possible behaviours of the results 

of the operations are such that the following proof rules are valid (e.g., [S]). 

Let II:=, ZIi denote parallel composition of compatible open systems ni,. . .,Zi’,, 

n 22, each Iii containing the set of observable variables 0,. Then the parallel compo- 

sition rule is valid: 

where 

Unch(pi) s A 0(/I; 4 u’ = u), i = l,...,n, 
uW_,O,,)-O,, 

Unch c A Unch(pi), Uneq E 0 A -(/.Li A pj), Who E q (/I t) i pi). 
i=l i,j=l i=l 

i#j 

Compatibility of the components ensures that the parallel composition has a nonempty 

set of behaviours. Clearly, the renaming rule, where ZI[v/u] denotes Il with an ob- 

servable variable u renamed for u and S[u/u] denotes S with v substituted for u, the 

hiding rule with II\x denoting the result of hiding an observable variable x in n, the 

consequence rule, and the conjunction rule are valid, in order of appearance: 

n+s n/=s n +=1, & -+s2 n +s1, n + s2 

m4u1 b S[vlul n\x I= EELS n j= s2 I-I k Sl A s2 

It could be proved that the last five rules without the conjunction rule together with 

precise specifications of open systems as axioms are complete for proving properties 

of systems constructed from the open systems using the operations, relative to the 
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completeness of a TLA proof system (cf. [14]). The conjunction rule is only needed 

for convenience. 

4. Specification of the closing procedure 

4.1. A design specijication 

A design specification of the closing procedure must be a precise specification. Let 

CXT and CHN denote an open system, representing a context at a host, and one 

representing a unidirectional lossy channel, respectively. The procedure is specified as 

a parallel composition of such systems with properly renamed observable variables: 

is the context at host A, CHNAB = CHN[ zOA ZS,ZIB/ZR] / is the channel for sending 

messages from A to B, and symmetrically for CUB, CHN~A. 

Let E denote an empty sequence, l concatenation of sequences, [m] a sequence with 

the only element m, Head(z) the first element of a nonempty sequence z, and Tail(z) 

the rest of it. 

The following messages are sent in CLS: 

A4 = {(C, KV,(U,S),(C, W,R,S),(C), 

(C, V,(C,R),(C, W,R),(C, w,KV,(D)]. 

C means that the message is a CNTL packet. (D) represents the DIAG packet saying 

that the context at a host is not active. If a message from A4 contains S (for SREQ), 

W (for WCLOSE), R (for RCLOSE), or E (for END), it means that the corresponding 

bit would be set in the XTP packet it represents. 

Beside ,u, the open system CHN contains two observable changeable variables, zs 

and ZR, both ranging over sequences of the messages from M. The design specification 

of CHN is as follows: 

where 
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and 

loss(zs,zR) 3 zs # E A zk = Tuil(zs) A unch(zR), 

pass(m,zs,zR) E zs # E A Head = m A z; = TaiZ(zs) A zk = zR l [m]. 

Local variable zs represents the sender’s end of the channel, and ZR the receiver’s end 

of the channel. Initially, the channel is empty. One can imagine that the environment 

of the channel can put messages into ZS. The weak fairness requirement ensures that 

the channel takes each message from zs and nondeterministically either loses it (loss) 

or puts it into zR (puss), where it waits to be removed by the environment. The strong 

fairness requirement ensures that messages are not lost every time if sent sufficiently 

often on zs by the environment. Although CHN is an open system, the strong fairness 

requirements are like in closed systems, because we know the CXT systems that make 

up the environment of CHN in CLS cannot disable a puss action. 

The open system CXT contains beside p variables V&r = {cxt,sto,stI,zo,zI, tmr,rq}. 

Local variables zo and ZI range over sequences of the messages from M and 

represent the sender’s end of the context’s outgoing channel and the receiver’s end 

of its incoming channel, respectively. Let x E T mean that x ranges over the 

values from T. The range of the other variables is as follows: cxt E {act,nulZ}, 

sto E {act,wcZ, inact}, stl E {act,rcl,dlv,cls, inact}, rq E {empty,full,dsc}, and 

tmr E {ofS,set}. 

The variable cxt indicates the state of the context. sto describes the state of the 

output data stream, stl the state of the input data stream of the context, and rq the 

state of the data receive queue. There is one timer for the context, represented by tmr. 

We shall now provide a design specification of CXT, followed by an explanation. 

Let the following action formulae represent sending of a message m EM on zo and 

receipt of a message m 6 A4 from ZI, respectively: 

send(m,zo) z z; = zo l [m], 

rec(m,q) = ZI # E A Head = m AZ; = Tail(z1). 

Let recE(z1) s rec((C, W,R,E),ZI), recD(zr) s rec((D),z~), let recC(zr) denote 

receipt of any CNTL packet with SREQ not set, and recS(z1) receipt of any packet 

with SREQ set. 

We take all the variables from V&r to be observable. They all seem interesting 

to us for expressing correctness criteria. Since communication is only possible over 

the channels, only zo and q are changeable. Here is our design specification Scm, 

CXT b scxr: 

SC~~cxt=sto=st~=actAzo=z~=~Atmr=o~ 

A(rq = empty V rq = full) 

A 0 [((Lcl V Tout V Dlr V Cn f V Ret) A p’) 

V(unch(cxt,sto,str,tmr,rq) A T~‘)]v, 
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A WF,,(Tout A ,a’) A WFV,(Dlr A p’) 

A wF~,(Cnf A $1 A wFv,(Rec~ p’), 

where 

Lcl~LWclvLWc2vLWc3vLRclvLRc2, 

Tout = TtOl v Tt02 v TtIl v TtI2, 

Dir = Rdrql V Rdrq2, 

Cnf = Cnf 1 V Cnf2, and 

Ret - RecSR V RecSW V RecSWR V RecCal V RecCR V RecCW V RecCWR 

V RecED V RecC V RecS V RecD with 

RecSR f RecSrl V RecSr2 V RecSr3 V RecSr4 

RecSW = RecSwl V RecSw2 V.. . V RecSwl2 

RecSWR = RecSwrl V RecSwR V RecSwr3 V RecSwr4 

RecCR z RecCrl V RecCr2 V RecCr3 

RecCW = RecCwl V RecCw2 V RecCw3 V RecCw4 V RecCwS V RecCw6 

RecCWR = RecCwrl V RecCwr2 V RecCwr3 V RecCwr4 

are disjunctions of the following action formulae describing possible diligent actions 

of CAT, not yet accompanied by $. 

Local wclosing: 

Gjust local wclosing} 

LWcl 3 cxt = act A sta = act A (str = act V stI = dlv V st1 = cls) 

Asend((C, W,S),za) A.$ = wcl A tmr’ = set A unch(cxt,zl,str,rq) 

{just local wclosing} 

L wc2 3 cxt = act A sta = act A (str = rcI V stt = inact) 

Asend((C, W,R,S),zo) As& = wcl A tmr’ = set A unch(cxt,zl,stl,rq) 

{local wclosing + local rclosing} 

L Wc3 s cxt = act A sta = act A stt = act 

A send((C, W, R, S),za) A rq’ = dsc A sth = wcl A sti = rcl A tmr’ = set 

Aunch(cxt,zI) 

Local rclosing: 

Gust local rclosing} 

LRcl = cxt = act A sta = act A stf = act 

A send((C, R, S), ZO) A rq’ = dsc A sti = rcl A tmr’ = set 

Aunch(cxt,zT,sto) 
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{just local rclosing} 

LRc2 E cxt = act A (sta = we1 V sto = inact) A stI = act 

A send((C, W, R, S),ZO) A rq’ = dsc A stj = rcl A tmr’ = set 

Aunch(cxt,zI,sto) 

Receipt of (CNTL, RCLOSE, SREQ): 

{just wclose and answer to RCLOSE} 

RecSrl = rec((C,R,S),zt) A cxt = act A (stt = act V stt = dlv V stI = cls) 

Asend((C, W),zo) A sth = inact A tmr’ = off A unch(cxt,stt,rq) 

{wclose, also local rclosing, and answer to RCLOSE} 

RecSr2 = rec((C, R, S), zt ) A cxt = act A stI = act 

A send((C, W, R, S),ZO) A rq’ = dsc A sth = inact A st; = rcl 

A tmr’ = set A unch(cxt) 

{just wclose and answer to RCLOSE} 

RecSr3 = rec((C, R, S),zt) A cxt = act A stt = rcl 

Asend((C, W,R),zo) A st& = inact A unch(cxt,stl, tmr,rq) 

{wclose, answer to RCLOSE; also end} 

RecSr4 - rec((C,R,S),zt) A cxt = act A stt = inact 

A send((C, W, R, E),zo) A sth = inact A tmr’ = ofs A cxt’ = null 

Aunch(stI,rq) 

Receipt of (CNTL, WCLOSE, SREQ): 

{pass to delivering of rq and answer to WCLOSE} 

RecSwl E rec((C, W, S), zt ) A cxt = act A sta = act A stI = act A rq = full 

Asend((C),zo) A stf = dlv A unch(cxt,sto,tmr,rq) 

{pass to delivering of rq and answer to WCLOSE} 

RecSw2 = rec((C, W, S),zt) A cxt = act A (sto = wcl V sta = inact) 

A stt = act A rq = full 
Asend((C, W),zo) Astj = dZv A unch(cxt,sto, tmr,rq) 

{rq is empty; get wait for confirmation and answer to WCLOSE} 

RecSw3 = rec((C, W,S),zt) A cxt = act A sto = act A stt = act A rq = empty 

Asend((C),zo) A stj = cls A unch(cxt,sto, tmr, rq) 

{rq is empty; get wait for confirmation and answer to WCLOSE} 

RecSw4 = rec((C, W, S),zt ) A cxt = act A (sto = wcl V sto = inact) 

A stl = act A rq = empty 

Asend((C, W),zo) Asti = cls A unch(cxt,sto,tmr,rq) 

{rq is empty; g t e wait for confirmation, also wclosing, and answer to WCLOSE} 

RecSwS = rec((C, W,S),zl) A cxt = act A sta = act A stt = act A rq = empty 

Asend((C, W,S),za) As& = wcl Astj = cls A tmr’ = set 

Aunch(cxt, rq) 

{just rclose and answer to WCLOSE} 

RecSw6 = rec((C, W,S),zt) A cxt = act A sta = act A (stt = rcl V stl = inact) 

Asend((C,R),zo) Astf = inact A tmr’ = off A unch(cxt,sto,rq) 
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Cjust rclose and answer to WCLOSE} 

RecSw7 - rec((C, W,S),zr) A cxt = act A sto = wcl A (str = rcl V stI = inact) 

A send((C, W, R),za) A stj = inact A unch(cxt,sto, tmr, rq) 

{rclose and answer to WCLOSE; also end} 

RecSw8 E rec((C, W,S),zt) A cxt = act A sto = inact A (str = rcl V stI = inact) 

A send((C, W, R, E),za) A sti = inact A tmr’ = off A cxt’ = null 

Aunch(sto,rq) 

(rclose, also wclosing, and answer to WCLOSE} 

RecSw9 E rec((C, W,S),zr) A cxt = act A sto = act A (stt = rcl V str = inact) 

A send((C, W, R, S),za) A st& = wcl A stj = inact A tmr’ = set 

Aunch(cxt,rq) 

{just answer to WCLOSE} 

RecSwlO = rec((C, W,S),z1) A cxt = act A sta = act A (stt = dlv V st1 = cls) 

Asend((C),za) A unch(cxt,sta,stt,tmr,rq) 

{just answer to WCLOSE} 

RecSwll = rec((C, W,S),z,) A cxt = act A (sta = we1 V sta = inact) 

A (stt = dlv V stl = cls) 

Asend((C, W),za) A unch(cxt,sto,stI, tmr,rq) 

{wclosing and answer to WCLOSE} 

RecSwl2 = rec((C, W,S),z1) A cxt = act A sta = act A (str = dlv V stI = cls) 

Asend((C, W,S),za) A sth = wcl A tmr’ = set A unch(cxt,stI,rq) 

Read rq: 

Rdrql = cxt = act A st1 = act A rq = full 
A rq’ = empty A unch(cxt,zo,zl,sto,strr tmr) 

Rdrq2 G cxt = act A stl = dlv A rq = full 

Asti = cls A rq’ = empty A unch(cxt,za,q,sta,tmr) 

Rclose confirmed: 
Cnf 1 z cxt = act A (sto = act V sto = wcl) A stI = cls 

Ast: = inact A unch(cxt,zo,zI,sto, tmr,rq) 

Cn f 2 G cxt = act A sto = inact A stt = cls 

A stf = inact A cxt’ = null A unch(zo,zI,sto, tmr,rq) 

Receipt of (CNTL, WCLOSE, RCLOSE, SREQ): 

{wclose, rclose, answer to WCLOSE, RCLOSE; also end} 

RecSwrl = rec((C, W,R,S),zr) A cxt = act A (stt = rcl V stt = inact) 

A send((C, W, R, E),zo) A stb = inact A st; = inact A tmr’ = ofs 

Acxt’ = null A unch(rq) 

{wclose, pass to delivering, answer to WCLOSE, RCLOSE} 

RecSwr2 = rec((C, W, R, S),zt) A cxt = act A str = act A rq = full 

Asend((C, W),za) A stb = inact A stf = dlv A tmr’ = ofs 

Aunch(cxt,rq) 
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{wclose, get wait for confirmation, answer to WCLOSE, RCLOSE} 

RecSwr3 3 rec((C, W,R,S),z1) A cxt = act A stI = act A rq = empty 
A send((C, W),ZO) A sth = inact A stj = cls A tmr’ = of 

mnch(cxt,rq) 

{wclose, continue rclosing on a past request, answer to WCLOSE, RCLOSE} 

RecSwr4 E rec((C, W, R,S),z[) A cxt = act A (str = dlv V stI = cls) 

Asend((C, W),ZO) Ast& = inact A tmr’ = 08 A unch(cxt,stl,rq) 

tmr runs out: 

TtOl = cxt = act A sto = we1 A (stl = act V str = dlv V str = cls) 
Asend((C, W,S),zo) A unch(cxt,zl,sto,stl,tmr,rq) 

Tt02 = cxt = act A sto = wcl A (stl = rcl V stl = inact) 
Asend((C, W,R,S),zo) A unch(cxt,zl,sto,stl,tmr,rq) 

TtI 1 E cxt = act A sto = act A stI = rcl 
Asend((C,R,S),zo) A unch(cxt,zl,sto,str,tmr,rq) 

Tt12 - cxt = act A sto = inact A stl = rcl 

Asend((C, W,R,S),zo) A unch(cxt,zl,sto,str,tmr,rq) 

Receipt of (CNTL): 
RecCal z rec((C),zr) A cxt = act 

A (sto = act V sto = wcl V stI = act V stI = rcl V stI = dlv V st1 = cls) 
A unch(cxt,zo,sto,str, tmr,rq) 

Receipt of (CNTL, RCLOSE): 
RecCrl = rec((C,R),zr) A cxt = act A (stl = act V stf = d/v V str = cls) 

A sth = inact A tmr’ = ofs A unch(cxt,zo,stl, rq) 
RecCr2 E rec((C,R),z,) A cxt = act A sg = rcl 

Asth = inact A unch(cxt,zo,str,tmr,rq) 

RecCr3 = rec((C,R),zI) A cxt = act A stl = inact 
As& = inact A tmr’ = of A cxt’ = null A unch(zo,stI, rq) 

Receipt of (CNTL, WCLOSE): 
RecCwl E rec((C, W),zl) A cxt = act AstI = act A rq = empty 

Astf = cls A unch(cxt,zo,sto,tmr,rq) 
RecCw2 = rec((C, W),ZI) A cxt = act A stl = act A rq = fill 

Astf = dlv A unch(cxt,zO,sto,tmr,rq) 
RecCw3 = rec((C, W),zr) A cxt = act A (str = dlv V sti = cls) 

Aunch(cxt,zo,sto,str,tmr,rq) 
RecCw4 = rec((C, W),zr) A cxt = act A sto = act A (St* = rcl V stl = inact) 

A sti = inact A tmr’ = of A unch(cxt,zo,sto, rq) 
RecCwS = rec((C, W),zf) A cxt = act A sto = wcl A (St{ = rcl V stl = inact) 

A sti = inact A unch(cxt, ZO, sto, tmr, rq) 
RecCw6 3 rec((C, W),z,) A cxt = act A sto = inact A (stl = rcl V stl = inact) 

Astf = inact A tmr’ = off A cxt’ = null A unch(zo,sto,rq) 
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Receipt of (CNTL, WCLOSE, RCLOSE): 
RecCwrl - rec((C, W,R),zt) A cxt = act A (stt = t-cl V stI = inact) 

A& = inact A stj = inact A tmr’ = of A cxt’=ndlAunch(zo,rq) 

RecCwr2 = rec((C, W, R),zt) A cxt = act A stt = act A rq = empty 
As& = inact Astf = cls A tmr’ = of A unch(cxt,zo,rq) 

RecCwr3 = rec((C, W, R), zt) A cxt = act A stt = act A rq = full 
As& = inact Asti = dlv A tmr’ = off A unch(cxt,zo,rq) 

RecCwr4 - rec((C, W, R),zt) A cxt = act A (stt = diu V stt = cls) 
As& = inact A tmr’ = ofs A unch(cxt,za,stt,rq) 

Receipt of END or DIAG when context active: 

RecED G (recE(zt) V recD(zt)) A cxt = act A (stt = rcl V stt = inact) 
Asth = inact A stf = inact A tmr’ = off A cxt’ = null A unch(zo, rq) 

Receipt of C when no active context: 

RecC = recC(zt) A cxt = null 
A unch(cxt,zo,sto,stl, tmr,rq) 

Receipt of SREQ when no active context: 

RecS = recS(zt) A cxt = nuI1 
Asend((D),zc) A unch(cxt,sta,stt,tmr,rq) 

Receipt of DIAG when no active context: 

RecD = recD(zt) A cxt = nuR 
A unch(cxt,zo,sto,stI, tmr,rq) 

Initially, the context, the input and output data stream are active, both channel ends 

are empty, the data from the receive queue have either already been read (rq = empty), 
or there are still some data in it (rq =fuZZ). 

The state sto of the output data stream changes as follows. When it is active, it 

can start closing. The active context sends a CNTL-request packet containing W, sets 

timer tmr, and sta passes to wclosing (see actions L Wcl, L Wc2, L Wc3 and RecSw5, 
RecSw9, RecSwl2 in the specification). When stc = wcl, tmr runs and a timeout can 

occur (actions TtOl, Tt02). In this case, the context just sends a CNTL-request packet 

with W and sets tmr again. For any value of sto, if the active context receives a 

packet containing R, E, or D, sto closes (or remains closed, respectively), i.e., gets 

inactive (actions RecSR, RecSWR, RecCR, RecCWR, RecED). The context includes W 
in each CNTL packet sent when sto is equal to wcl or inact. 

The input data stream behaves as follows. When stt is active, it can start closing. 

In this case, the active context discards the data receive queue (rq gets the value 

dsc), sends a CNTL-request packet containing R, sets tmr, and changes stt to rclosing 

(actions LWc3, LRcl, LRc2, RecSr2). When stt = rcl, tmr runs and a timeout can 

occur (actions Tt02, TtI 1, TtL2). In this case, the context just sends a CNTL-request 
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packet with R and sets tmr again. If the active context receives a packet with W, E, 

or D when str = rcl or stI = inact, stl closes, i.e., passes to inactive, or remains 

closed, respectively (actions RecSwGRecSw9, RecSwr 1, RecCwbRecCw6, RecCwr 1, 

RecED). 

It is possible that the active context receives a packet with W, when stl is active. 

In this case, st1 passes to cls (“closing”) if rq is already empty (actions RecSw3- 

RecSwS, RecSwr3, RecCwl, RecCwr2), or to dlv (“deliver”) if rq is full (actions 

RecSwl, RecSw2, RecSwr2, RecCw2, RecCwr3). When str = dlv, an action (Rdrq2) 

must happen that reads data from rq, i.e., sets it to empty, and stl passes to cls. The 

data can also be read from rq when str is still active (action Rdrql). At cls state, 

the input data stream waits for a confirmation from the application (action Cnf 1 or 

Cnf2), and then just changes str to inactive. 

The context includes R in each CNTL packet sent when stl is equal to rcl or inact. 

When tmr is set, it is stopped, i.e., assigned the value ofs, by the context, when it 

passes to null or when its output or input data stream passes to inact, but only if tmr 

does not need to run further for any of the streams. We allow for premature timeouts, 

i.e., a CNTL-request packet may be retransmitted before a response to the previous 

request can come. 

The input and output data stream of the context may begin locally closing simulta- 

neously (action LWc3). Also, it is possible that a data stream starts closing just when 

the context receives a CNTL-request. In this case, a CNTL-request may be sent in 

response (actions RecSr2, RecSwS, RecSw9, RecSw12). 

The context passes to null upon receiving a packet containing E or D (action 

RecED), and whenever the input and output data stream get inactive (RecSr4, RecSw8, 

Cnf 2, RecSwrl, RecCr3, RecCw6, RecCwrl ). The context passes to null in the same 

atomic action, in which the data streams both got inactive. 

We have a group of actions for the receipt of each possible message from M in the 

specification. This is to ensure that there are no unspecified receptions in CXT, i.e., at 

any state of CXT, an action should be enabled that can receive the message currently 

residing at the head of q. Notice that at any time, only some actions for receiving 

exactly one possible element of A4 are enabled. The weak fairness requirement for Ret 

in Scm together with the absence of unspecified receptions is intended to guarantee 

that each message at the head of ZI is eventually removed from ZI. 

In Scm, there is no action for receiving E or D when the state of the input data 

stream is act, dlv, or cls. Since we do not allow for local ending of contexts, it is 

namely not possible that a packet with E or D appears in ZI while str has any of these 

values. This is because the context on the other side of the association can only be 

ended if it knows that the input data stream is closed or rclosing. However, if sg is 

act, dlv, or cls, any packet obtained by the context on the other side will say that the 

input data stream is neither closed nor rclosing. 

The receipt of any CNTL-request packet causes that a response is sent in the same 

atomic action (actions RecSW, RecSR, RecSWR, RecS). Upon receiving a packet without 
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S, the context just commits internal changes depending on the packet contents, but 

sends nothing (actions RecCal, RecCW, RecCR, RecCWR, RecC, RecED, RecD). 

In SC,, the weak fairness requirement for Tout ensures that tmr will eventually 

time out if set long enough and that the information, for which tmr runs, will be 

retransmitted. Weak fairness of Dir and Cnf ensures that the data from the receive 

queue will eventually be delivered to the host and that the input data stream will not 

wait indefinitely for a confirmation before closing, respectively. 

We do not model interactions of the procedure with the user explicitly, since this 

is not needed for verification. Nevertheless, one can imagine that the transition from 

sto = act to sto = wcl in the output data stream (from stI = act to str = rcl in 

the input data stream) indicates that the user requested closing of the outgoing data 

stream (the incoming data stream, respectively). When the output data stream (the 

input data stream) passes to sto = inact (stl = inact, respectively) after the handshake 

initiated by the local request, this can be viewed as also representing issuing of a 

confirmation to the user, that his request for closing a simplex data stream was served. 

Passing to stl = cls can be thought of as also giving an indication to the user that the 

input data stream wants to close. A subsequent execution of Cnf then represents the 

user’s confirmation that the stream may close. Also, the transition of cxt to null can 

be thought of as representing issuing of an indication to the user that the context is 

closed. 

4.2. A requirement specification 

We are now ready to specify important properties that are required to be satisfied by 

CLS. We assume that any side of a simplex data stream can start closing, independent 

of each other, and that each simplex data stream can start closing independent of the 

other. 

Let in the sequel I, P, Q denote state formulae, A, N action formulae, F, G formulae, 

and V a set of local variables. Let P’ denote an action formula obtained from a state 

formula P by replacing any local variables occurring free in P by equally named primed 

variables. Let STAB P = q (P -+ UP), F UNL G E q (F -+ F unless G), and 

F --) G = U(F + 0 G) (“leadsto”). STAB and UNL remind us of UNITY operators 

[3]. Let temporal operators have higher priority than nontemporal ones. Priority of them 

is as follows, in decreasing order: 1, A and V, -+, H. 

Let b be a nonempty subset of {W, R,E,D}. By b 4 z we denote that a variable 

z ranging over sequences of the messages from M does not contain any message 

containing an element of b. Let x E {cl,. . . , c,} denote x = cl V . . V x = c,. 

Define: 

NoLRc~B = q (st[B # rcl), NoL WclA = 0 (stOA # wcl) 

SChlAB = q (stO~ = inact + stIB = inact) 
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sclw&~ = stIB # inact unless rq = empty 

SClw3,4B = 0 ({R, E, D} E ZOB + stIB = inact) 

SC/r&j 3 q (stlB = inact --f stO.4 = inact) 

GRqB = q (rqB = full V rqB = WIptJ’) 

GC~AB - stoA = wcl -+ (st)‘B = inact A rqB = empty A stoA = inact) 

UC~AB = st[A = rcl -) (stoB = inact A stIA = inact), 

and likewise for A and B exchanged. 

Let TRst = tmrA = ofs A tmrB = off. 

CZAss = ( 0 (StOA = Wd) A 0 (stoB = Wd)) 

+ OO(cxtA = null A cxtB = null A TRst) 

UGCZ = (( 0 (StIA = rd) A 0 (.%,A = Wd)) v ( 0 (stIB = rd) A 0 (StOB = WC/))) 

+ OO(cxtA = null A cxtB = null A TRst) 

Then we require the following to hold: 

Theorem 1. 

CLS k NoLRc~B + SCEwl AB A SC~W~AB A SC~W~AB A G&B A GCIAB, 

CLS k NoLRc~A -+ SCIWIBA A SClw2BA A SClw3BA A G&A A GCIBA. 

Theorem 2. 

CLS + NoL WclA + SClrAB, CLS k NoL WCltl ---$ SClrBA. 

Theorem 3. 

CLS b CRASS A UCI!AB A UC~BA A UGCI. 

Theorem 1 is about graceful closing of the simplex data streams. It says that if local 

closing of the input data stream for a simplex data stream never takes place, then its 

output data stream, which is so the only one that may initiate closing, can be closed 

only if the input data stream is already closed. The input data stream must deliver all 

the data before closing, and it must not say that it is closed in outgoing packets before 

getting a confirmation from the application. Theorem 2 is about ungraceful closing of 

the simplex data streams. It says that if the output data stream of a simplex data stream 

does not initiate closing, then its input data stream, which in this case is the only one 

that may initiate closing, can only get inactive when the output data stream is closed. 
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Theorem 3 is about graceful closing, ungraceful closing, and about the combination of 

both. Independent of which side initiates closing of some simplex data stream, they 

must eventually get closed, timers must be stopped, and both contexts must close. 

5. Verification of the closing procedure 

5.1. Some useful proof rules 

To prove the theorems, we treat the components design specifications in the form 

Zi’ b S as axioms. We first provide some useful proof rules for our TLA similar 

to those from [lo]. Remember that in the absence of temporal operators, a primed 

variable of the form x’ is treated like an unprimed variable named x’, thus allowing 

pure assertional reasoning. Also, if an action formula A is proved assertionally valid, 

then 04 is valid. 

INVl-rule: 

q (Z A [NIV + I’) 

z A O[N]y + q z 

INVZ-rule: 

~0(OZ--,(O[N] -cl[NAZAZ’])) 

STAB-rule: 

q (P A [NIV + P’) 

q [Nlv + STAB P 

UNL-rule: 

q (PA [N]JJ --,A VP') 

q [Nlv + P UNLA 

WFl-rule: 

q (PA [NIV + P’vQ’) 

q (PA (N/IA), -+ Q’) 

q (P + -WA)v)) 
Cl [NIV A WV(A) + P -+ Q 

Analogous to these rules, we now propose some rules that enable us to prove im- 

portant properties of a parallel composition without first constructing the conjunction 

of its component specifications using the parallel composition rule. For our purpose, it 

suffices to assume that there are no hidden variables in the specifications. Also, assume 

that the special observable variables do not appear free in properties to be proved by 

the rules. 
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INVlC-rule: 

ZIi ~ZiAO[(NiA~‘)V(unch(O,i)A~~‘)]~ for i= l,...,n 

q (j;Zi +I) 
i=l 

q (IA[NiAunch((jy-~)]u~=,MiII)fori=l,...,n 
j=l 

II;=] ni + 01 

STABC-rule: 

ZZi ~O[(NiA~‘)V(unch(O,i)Al~‘)]~ for i= l,...,n 

q (P A [Ni A unch ( 5 I$ - K)lu;=,s +P’) for i = l,...,n 
j=l 

Ilk1 L’i k STAB P 

UNLC-rule: 

ZZi ~U[(NiA/L’)V(UnCh(O~i)A~~‘)]~ for i= l,...,n 

q (P A [ffi A unch ( 6 5 - K)lu;=,s -+A VP’) for i = l,...,n 
j=l 

\\~=~ I7i k P UNL A 

WFlC-rule: 

ZIi ~O[(NiA~‘)V(LJtICh(O~i)A~~‘)]~ for i= l,...,n 

nk b WFV,(AA$) for some k E {l,...,n} 

q (P A [Ni A unch( 6 I$ - K)lu;=,y + P’V Q’) for i = l,...,n 
j=l 

q (PA(NkAAAUnch(c v-vk))“;=,v, + Q’) 
j=l 

LOC-rule: 

IZ k F for Il an open system 

n II fll II . . . II nn l=F f or any compatible open systems 271,. . . , Ii’, 

Intuitively, soundness of INVlC, STABC, UNLC, and WFlC rules follows from the 

fact that they just subsume the way of proving properties of parallel composition by 

first applying the parallel composition rule on precise specifications of the components 

for obtaining an action formula N describing possible actions of the complete system, 

and then proving the premise of the consequence rule using INVl or one of the other 

TLA rules by cases on the actions of N. Soundness of LOC follows directly from 

the parallel composition rule. Properties that only contain unchangeable variables of IZ 

as free local variables are good candidates to be proved by LOC-rule, thus possibly 

saving a lot of work if validity of the property can be proved locally. 
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Now, assume that we have any system composed like ours. Assume that it consists 

of two communication channels, IZ AB, ~BA, like CHN except that a different set of 

messages M may be communicated in the system. Also, assume that they connect two 

sender/receiver processes, no, lT,, similar to CXT in the following. They communicate 

only over the channel variables. They may execute internal actions, not accessing the 

channels, sending actions, and receiving actions. Assume that they contain some actions 

that are both sending and receiving ones. Only actions for receiving one possible mes- 

sage from A4 are enabled at a process at a time, and all receiving actions are required 

to be weakly fair. It must also be ensured that there are no unspecified receptions. It 

is possible to ensure this already when writing a design specification of a receiving 

component by defining a receiving action for all possible combinations of heads and 

states of the component. Then the system satisfies the channel liveness property 

with zOA the channel variable at IIA’s end of its outgoing channel IIAB and ZIB the 

one at fl,‘s end of n,@?, and symmetrically for channel n&4. This can be proved by 

first constructing a precise specification of the system by the parallel composition rule. 

Using the fairness requirements of the channel and the receiving actions, assuming 

messages do not progress over the channel, the liveness property can be shown to be 

implied by the precise specification, by contradiction. 

Once ensuring the liveness for both channels, the following proof rules for proving 

leads to properties can be derived for this specific type of communication systems 

(cf. [9]). Let MAB,MBA be nonempty subsets of a set of messages M, and ZOA,ZOB and 

Z~,~,ZIB the variables of the outgoing and incoming channel of ZI, and ns, respectively. 

Let P and Q be state formulae not containing the channel variables. 

Leadsto-via-(b&B, ZOA, ZIB )-de: 

LeadSto-Via-(h&A , ZOB , ZfA )-(MAB, ZOA , ZIB )-rule: 

HA k q [(NA A P’> V (unch(%) A -d>Iv, A J+‘Fv,(A A P’) 
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In fact, both rules rely on the existence of a weakly fair timeout action A in &. 

The first rule requires that the messages from A&B are retransmitted by action A of 

&, so that eventually some element of A4 AB is received at I&, whereupon Q holds. 

The second rule requires that the messages from A4 AB are retransmitted by action A of 

nA, so that eventually a message from A&A sent by I&r is received at II,, whereupon 

Q holds. This rule requires that receipts of messages from MAB at IZ, imply sending 

of some message from A4s~ back. This is meant to be ensured by the actions that 

are receiving and sending ones at the same time. In CXT, these are the actions that 

receive CNTL-request messages and immediately send a reply. 

If a formula has already been proved valid for a parallel composition, it can be 

taken as a valid assumption in proving another property by any of INVlC, STABC, 

UNLC, WFlC, or Leadsto-via rules. If G is one of the properties that appear in the 

conclusions of these rules, validity of F --f G in a parallel composition may be proved 

by using F as a valid assumption in proving validity of G in the composition by one 

of the rules. 

5.2. VeriJication of the requirements 

In order to prove the theorems about the closing procedure, we need some lemmata. 

By symmetry of the closing procedure, assume that any lemma containing A and B is 

also valid if A and B are interchanged. 

Lemma 1. Let 

hVcA = cxtA = null t) stOA = inact A stIA = inact. 

Then 

Proof. We first prove ZnvcA A q [N]v -+ q hucA by INvl, for possible actions [NIV 

of CXT,. Because the initial condition of CXTA implies In&A, it follows that the 

precise specification of CXTA implies q lnvC., thus ensuring the validity of the lemma 

by the consequence rule. 0 
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Lemma 2. 

CLS + q znvcA, CLS + clznuc~. 

Proof. From Lemma 1 by LOC. 0 

Lemma 3. Let 

ZnuAB = (stOA = act A stIB = act A rqB E {empty, f Ull} 

A{R,E,D) 4 ZIA A {W,E,D} 4 ZOA A {R&D} $ ZOB A {W,E,D} G! ZIB) 
v (stOA = act A StIB = 7.121 A rqB = dsc 

A{E,D) $ =IA A { W,E,D} @ =OA A @,D} $ =OB A { W,E,D} $ =IB) 

v (StoA = inact A stIB = rcl A rqB = dsc 

A{E>D) 6 =IA A {E,D} 6 =OB) 

V (StOA = inact A StIB = in-act A rqB E (empty, dsc}) 
v (stOA = WC1 A StIB = i-Cl A rqB = dsc 

A{E,D) 4 =[A A {E,D} 6 =OA A 1&D} @ =OB A {E,D} $ =IB) 

v (StoA = WC1 A StIB = act A rqB E {empty, f 2411) 

A{REJ’) $ =IA A j-V} $ ZOA A {K&D} $ =OB A {EJ} +-! =IB) 
v (stOA = WC1 A stIB = dlv A rqB = f Ull 

A{RJVl 6 =IA A {EJ’) 6 =OA A {R-V} cf =OB A {E,D} f$ =IB) 

v (StoA = WC/ A StIB = ClS A rqB = empty 

A{KKDl 6 zIA A {-&D} $ ZOA A {R&D} @ =OB A {ES} 6 =IB) 
v (stOA = WC1 A StIB = iMCt A rqB E (eWIpty, dsc} 

A{EJ’} 6 =OA A {E,D} $ =IB) 

Then 
CLS + q znv,@. 

Proof. By using INVlC!, and either Lemma 1 for A and B side together with INv2 

for using the fact about the contexts in NA and NB, or Lemma 2 for A and B side to 

take the invariants as assumptions. We also need the obvious fact, that if some kind of 

messages are not in a channel, then after executing an action, this will still hold if the 

action does not send this kind of messages into the channel. Also, if a message is not 

in a channel, it is also not at the head of it. Thus receiving actions for the message 

are not enabled. 0 

Lemma 4. CXTA b 0 (stIA # F-Cl A StoA # WC1 --f tmrA = Ofs). 

Proof. By using INVl on the actions of CXTA, analogous to the proof of Lemma 1. 

0 

Lemma 5. CXTA /= 0 (?+A # rcl) + 0 (rqA = full V rqA = empty). 

Proof. By taking q i(st~A # rcl) as a valid assumption, and using INV2 and INVl on 

the actions of CXTA, analogous to the proof of Lemma 1. 0 
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Lemma 6. CXTA + STAB (star = inact) A STAB (stlA = inact). 

Proof. By using STAB on the actions of CXTA and the consequence rule for proving 

each stability property separately, and then using the conjunction rule. 0 

In order to prove basic liveness properties of the procedure, we take the property 

that always, for any message at the head of the incoming channel variable of a context, 

an action that receives the message is enabled, for granted, i.e. 

CLS k q A (Head(zl.4) = m 4 _l?n(N~ A rec(m,zrA))), 
l?GM 

and likewise for the B side. 

Lemma 7. CLS + r\F=, Li where 

L1 E (st*A = wcl A stIB = act /\ rqB = empty) 

--) ((St&j = wcl /\ stre = cls) v (St&, = wcl ,, stIfj = ?-cl)) 

L2 z (st*A = wcl A stIB = act A rqB = f dl) 

--) ((stOA = wd A st[B = act A rqB = empty) 

V(stOA = WC1 A StIB = dlv A rqB = fldl) v (StoA = WC1 A StIB = id)) 

L3 Z (StOA = WC1 A StIB = dlv A rqB = f dl) 

--) (stOA = wcl A stIB = cls A rqB = empty) 

L4 z (StoA = WC1 A StIB = Ck) -+ (StoA = WC1 A st[B = inaCt) 

L5 = (stOA = wcl A stIB = rcl) 

--) ((stO,4 = wcl A stIB = inact) V (st0A = inact A stIB = rcl)) 

-hj 3 (StOA = inact A stIB = rcl) --) (stO.4 = inact A stIB = inact) 

L7 s (stOA = wcl A stIB = inact) -+ (stO.4 = inact A stp, = inact) 

L8 = (sto.4 = act A StIB = rcl) 

-+ ((sto.4 = inact A stIf3 = rcl) V (st0.4 = wcl A stIB = rcl)) 

Proof. Let (*, String) denote all the messages of M that contain String. L3 and L4 can 

be proved by WFlC-rule assuming q InvCB and q lnv.,@, by weak fairness of Dir and 

weak fairness of Cnf in CXTB, respectively. 

LX can also be proved without checking all the components of CLS in the following 

way. We first prove 

CXTB k (sb = dlv A rqB = f dl) -+ (stIB = cls A rqB = empty) 

with help of Lemma 1, INV2, and WFl-rule by weak fairness of DZr in CXTB. Then, 

by LOC also CLS b (strs = dlv A rqB = full) -+ (st[B = cls A rqB = empty). 

From the latter and since StoA = wcl A stIB = dlv A rqB = full always implies 

StIB = dlv A rqg = full, CLS b ( t S 04 = WC1 A StIB = dlv A rqB = full) -) (StIB = 

cls A rqB = empty), because q (F -+ G) implies F --) G and by transitivity of --) . 
From Lemma 3, CLS + q (st IB = c/s A rqB = empty --f stOA = wcl), and thus 

clearly CLS + L3. 
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L 1, L2, and L5 can be proved by Leadsto-via-( { (*, W, S)} ), ZOA, zr~) exploiting weak 

fairness of Tout in CXTA, assuming q InvAB when proving Ll and L2, and assum- 

ing ElZnvCA and q InvCB in the proofs of Ll, L2, and L5. L6 can be proved by 

Leadsto-via-({(*, W),(O)},zo~,zr~)-({(*,R,S)} ,zo~,zIA ) using weak fairness of Tout in 

CXTB and assuming q ZnvC~. L7 can be proved by Leadsto-via-( {(*,R), (D)},zoB,zIA)- 

({(*, W,~‘)},ZOA,ZIB) using weak fairness of Tout in CXTA and assuming q Z~VCA. L8 

can be proved by Leadsto-via-( { (*, R, S)}), zo~,zI~) by weak fairness of Tout in CXTB 

and assuming q lnvA~, q lnvC~ and OlnvC’. 0 

Lemma 8. 

Proof. We will only outline the proof of the first liveness property. The other can be 

proved similarly. By the consequence rule, from Lemma 3, 

CLS + q (&A = WC1 + ((StoA = wcl A stfB = act A rqB = empty) 

v (stOA = wd A stIB = act A rqB = f dl) 

v (dOA = WC1 A StIB = dlv A rqB = full) 

v (stOA = wcl A stIB = cls A rqB = empty) 

v (stOA = WC/ A stIB = UC1 A rqB = dsc) v (stOA = WC1 A StIB = ii’UZCt))>. 

Using the temporal logic proof rule from [ 111, 

F --) (Gl V G2), G, -) G, G2 -+ G 

FaG 
3 

we can prove 

CLS + (stOA = wcl A stIB = act A rqB = empty) 
-) (StIB = inact A stOA = inact) 

from CLS /= L1 A L4 A L5 A L6 A L7, which follows by the consequence rule from 

Lemma 7, and likewise for the other possible combinations with st&?oA = wcl. Then, 

by the conjunction and consequence rule, because q (F -+ G) implies F-+G, and by 

transitivity of -+ we obtain the first liveness property of the current lemma. 0 

Proof of Theorem 1. We will only sketch the proof of the requirement in one direction, 

namely, when the input data stream at B cannot be locally closed. Validity of the 

requirement for graceful closing in the other direction follows by symmetry. By the 

conjunction rule and propositional reasoning, it suffices to prove 

CLS /= NoLRc~B -+ SC~W~AB, CLS k NoLRcle --f SClw2/& 

CLS b NoLRc~B -+ SClw3AB, CLS b NoLRcls --) GRqB, 

CLS k NoLRc~B + GCIAB. 
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The first requirement is proved easily by using the consequence rule on InvAB 

(Lemma 3) assuming NoLRcZB. 

To prove the second requirement, we first prove 

CXTB + NoLRclB ---f stIB # inact UNL rq = empty 

from the precise specification of CXTB using the consequence rule, UNL, and INV2 

assuming NoLRc~B. Since initially, StIB # inact in CXTB, also 

CXTB /= NoLRcZB + stIB # inact unless rq = empty, 

and thus by LOC also CLS satisfies the requirement. 

The third requirement can be proved by using the consequence rule on I~VAB. Assum- 

ing NoLRc~B, we can prove that q znvAB implies 0 (strs # inact -+ {R,E,D} $! ZOB), 

thus proving the requirement. 

The fourth requirement follows by symmetry and LOC from Lemma 4. The fifth 

requirement can be proved as follows. By Lemma 8 and the consequence rule, 

CLS k NoLRc~B + (stoA = wcl -) (stlB = inact A stoA = inact)). 

Also, assuming NoLRc~B, by the consequence rule on Z~VAB, CLS k q (st1B = 

inact --) rqB = empty). By the conjunction rule, then validity of the fifth requirement 

follows. 0 

Proof of Theorem 2. We can prove this safety property easily by using the conse- 

quence rule on ZnvAB (Lemma 3) assuming NoLWCZA for direction A-to-B. The property 

for data stream B-to-A follows by symmetry. El 

Proof of Theorem 3. We can prove 

CLS k q (stoA = inact A stA = inact + tmrA = ofs A cxtA = null). 

This follows by LOC from Lemmas 1 and 4, using the conjunction and consequence 

rule, and symmetrically for side B. By Lemma 8 and by symmetry, starting closing 

of the data stream in each direction either by setting wcl or rcl, eventually stOA, stu, 

StOB, and stIB will be inactive. By Lemma 6, because 0 PA 0 Q A STAB PA STAB Q 

always implies VO(P A Q), CLS + OO( t s O,j = st1A = inact A StOB = StIB = inact) 

holds, assuming that closing of both simplex data streams has been initiated. From the 

first temporal assertion in the proof, it follows that both timers and contexts will also 

get and remain off and null, respectively, which proves the theorem. 0 

6. Conclusion 

We showed how the essential features of the procedure for closing contexts at each 

side of an XTP association can be specified and verified using a TLA. Our work could 
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be compared to that of [7]. There, a message-passing model is used instead of the 

original TLA shared-variables one. The former is usef$l for layered specification and 

verification of protocols, where specification module boundaries are not equal to process 

boundaries. By introducing appropriate notation for sending and receiving messages on 

channels, our design specification could also be modularized, for example, with regard 

to the two simplex data streams. Also, it would be possible to specify a context in terms 

of its input and output data stream. However, assuming the degree of concurrency in 

them as taken in our specification would make the way to get the specification of the 

complete system more complicated than if directly considering all possible concurrency 

in the contexts, 

This is also because our verification problem is still of a moderate size. Since each 

data stream can in fact close independent of the other, we can say that the system 

has 144 global states, observing I~VAB for one data stream, not looking at possible 

contents of channel variables. Mechanical support would be welcome for the reasons of 

reliable verification, but the verification is also quite manageable just by hand. Having 

appropriate proof rules, the majority of reasoning reduces just to simple checking if 

some small state formulae are preserved or transformed to some other simple state 

formulae by actions that in many cases do not even affect the formulae. This is usually 

true for communication protocols, since processes at different sides of communication 

links generally communicate only over a small number of variables. TLA also seems 

quite appropriate at least for writing protocol specifications by protocol developers that 

are not logic experts, because of its simple state-based model. 

Although we used a TLA, our approach can also be compared to UNITY [3]. 

Whereas it is common to include some features that have arised with the work on 

TLA in UNITY (e.g., [4]), some of our proof rules can be seen as adding the UNITY 

style to TLA specifications. Beside a TLA, we also used the meta notation for sat- 

isfaction of specifications. We gave only an outline of proofs in this paper. It would 

be interesting to specify and verify the closing procedure without assuming that all 

the data have been transferred correctly. Errors have namely been found in this setting 

(e.g., by simulation [2]). However, then also at least some aspects of the data transfer 

part of the protocol would have to be included. And assuming a high degree of con- 

currency, more sophisticated ways of writing modular specifications of protocols and 

effectively reasoning about them would be needed. This will be a part of our future 

work. 
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