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similarity class, and define a zeta function corresponding to each
similarity class. We relate it to Dedekind zeta of Z[i], and inves-
tigate the growth of some related Dirichlet series, which reflect
on the distribution of well-rounded lattices. We also construct
a sequence of similarity classes of well-rounded sublattices of Z2,
which gives good circle packing density and converges to the
hexagonal lattice as fast as possible with respect to a natural met-
ric we define. Finally, we discuss distribution of similarity classes
of well-rounded sublattices of Z2 in the set of similarity classes of
all well-rounded lattices in R2.

Video. For a video summary of this paper, please visit http://
www.youtube.com/watch?v=q3LJV4lv0PA.

© 2009 Elsevier Inc. All rights reserved.

Contents

1. Introduction and statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2531
2. Parametrization by Pythagorean triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2538
3. Similarity classes and corresponding zeta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2543
4. Weight enumerators Wd(s) and Wm(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2548
5. Approximating the hexagonal lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2550
6. Diophantine approximation by quotients of Pythagorean triples . . . . . . . . . . . . . . . . . . . . . . . . . . 2554

E-mail address: lenny@cmc.edu.
0022-314X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2009.01.023

https://core.ac.uk/display/82151105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
http://www.youtube.com/watch?v=q3LJV4lv0PA
http://www.youtube.com/watch?v=q3LJV4lv0PA
mailto:lenny@cmc.edu
http://dx.doi.org/10.1016/j.jnt.2009.01.023


L. Fukshansky / Journal of Number Theory 129 (2009) 2530–2556 2531
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2555
Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2556
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2556

1. Introduction and statement of results

Let N � 2 be an integer, and let Λ ⊆ RN be a lattice of full rank. Define the minimum of Λ to be

|Λ| = min
x∈Λ\{0}‖x‖,

where ‖ ‖ stands for the usual Euclidean norm on RN . Let

S(Λ) = {
x ∈ Λ: ‖x‖ = |Λ|}

be the set of minimal vectors of Λ. We say that Λ is a well-rounded lattice (abbreviated WR) if S(Λ)

spans RN . WR lattices come up in a wide variety of different contexts, including discrete optimization
(e.g. sphere packing, covering, and kissing number problems), coding theory, and the linear Dio-
phantine problem of Frobenius, just to name a few. In particular, the classical discrete optimization
problems on lattices can usually be reduced to WR lattices in every dimension. Distribution of uni-
modular WR lattices in RN has been studied by C. McMullen in [17]. Also, the distribution of full-rank
WR sublattices of Z2 has been recently studied in [10]. The goal of this paper is to continue this in-
vestigation from a somewhat different perspective. In particular, in [10] the zeta function ζWR(Z2)(s) of
WR sublattices of Z2 has been introduced, and we proved that it is analytic in the half-plane �(s) > 1
with a pole of order at least two at s = 1. In Theorem 1.5 we establish that in fact the order of the
pole is exactly two, where the notion of the order of the pole we use here is defined by (13) below.
To obtain this result we study the structure of the set of similarity classes of WR sublattices of Z2

(Theorems 1.1–1.3) and use it to provide a simple analytic description for the Dirichlet series corre-
sponding to each such similarity class (Theorem 1.4). We then decompose ζWR(Z2)(s) over similarity
classes to prove Theorem 1.5. We also discuss sphere packing density of similarity classes of WR sub-
lattices of Z2 (Theorem 1.6 and Corollary 1.7), as well as their distribution among all WR similarity
classes in R2 (Theorem 1.8).

We start out with a few words of motivation for the problems we study here. The similarity
classes of the integer lattice Z2 and the hexagonal lattice Λh (defined in (20) below) are very special
in dimension two: these are the only two strongly eutactic similarity classes in R2, and 〈Λh〉 is the
only strongly perfect similarity class (we define the notions of strong eutaxy and perfection at the
end of Section 5, see (61) in particular; also see [16], especially Chapter 16, for a detailed discussion
of strongly eutactic and strongly perfect lattices and their properties). The distribution of sublattices
of Λh is studied in [6], while the distribution of all sublattices of Z2 is well understood (see for
instance [10], especially (52) and the beginning of Section 8, for a discussion of this). Studying the
distribution of WR sublattices of these lattices is arguably even more important, since the WR prop-
erty is vital in lattice theory. The goal of [10] and the current paper is to carry out this investigation
for Z2. We now introduce necessary notation and describe our results in more details.

Recall that two lattices Λ1,Λ2 ⊆ RN of rank N are said to be similar if there exist a matrix A
in O N (R), the group of N × N real orthogonal matrices, and a real constant α such that Λ1 = αAΛ2.
This is an equivalence relation, which we will denote by writing Λ1 ∼ Λ2, and the equivalence classes
of lattices under this relation in RN are called similarity classes. The distribution of sublattices of ZN

among similarity classes has been investigated by W.M. Schmidt in [21].
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The first trivial observation we can make is that WR property is preserved under similarity. In
other words, if two full-rank lattices Λ1,Λ2 ⊆ RN are similar, say Λ1 = αAΛ2 for some α ∈ R and
A ∈ O N (R), then

det(Λ1) = |α|N det(Λ2), |Λ1| = |α||Λ2|,

and Λ1 is WR if and only if Λ2 is WR. Therefore we can talk about similarity classes of well-rounded
lattices in RN . From now on we will write WR(Ω) for the set of all full-rank WR sublattices of
a lattice Ω; we will concentrate on WR(ZN ), so let us write DN and MN for the sets of determinant
and squared minima values, respectively, of lattices from WR(ZN ). We will also write CN for the set
of all similarity classes of lattices in WR(ZN ): this is a slight abuse of notation, since elements of CN

are really nonempty intersections of similarity classes of lattices in RN with WR(ZN ), as indicated
in (15) below when N = 2.

In this paper we study the case N = 2. It is known that for every Λ ∈ WR(Z2) the set S(Λ) has
cardinality 4, and contains a minimal basis for Λ, which is unique up to ± signs and reordering (see
Lemma 3.2 of [10]). For each q ∈ Z>0, define

Sq =
{

p

q
∈ Q ∩

(√
3

2
,1

)
: gcd(p,q) = 1,

√
q2 − p2 ∈ Z

}
, (1)

and let

S =
( ⋃

q∈Z>0

Sq

)
∪ {1}, (2)

where 1 is also thought of as p/q with p = q = 1. It is easy to see that the union in (2) is disjoint,

and each Sq is a subset of the set of Farey fractions of order q in the interval (
√

3
2 ,1). In Section 2

we show that the similarity classes of lattices in WR(Z2) are in bijective correspondence with frac-
tions p/q ∈ S . From now on, for each p/q ∈ S , we will write C(p,q) for the corresponding similarity
class in C2, the set of all similarity classes of lattices in WR(Z2); a formal definition of C(p,q) is
given by (25). The class C(1,1) plays a special role: it is precisely the similarity class of all orthogonal
well-rounded lattices, i.e. lattices of the form

( a −b
b a

)
Z2 for some a,b ∈ Z. The set C2 has interesting al-

gebraic and combinatorial structure. It is not difficult to notice that the set S , which parametrizes C2,
is in bijective correspondence with the set of primitive Pythagorean triples whose shortest leg is less
than half of the hypotenuse. In Section 2 we explore this connection in details and use it to prove the
following result.

Theorem 1.1. The set C2 of similarity classes of lattices in WR(Z2) has the algebraic structure of an infinitely
generated free non-commutative monoid with the class C(1,1) of orthogonal well-rounded lattices serving as
identity. As a combinatorial object, C2 has the structure of a regular rooted infinite tree, where each vertex has
infinite degree, which is precisely the Cayley digraph of this monoid.

Remark 1.1. If G is a monoid with a generating set X , then we define its Cayley digraph to be a directed
graph with vertices corresponding to the elements of G , and with a directed edge between vertices g
and h if h = gx for some x ∈ X (see for instance [19] for details and related terminology).

We explicitly construct the monoid and the corresponding tree structure for C2 in Section 2. Notice
that due to Theorem 1.1 it makes sense to think of C2 as the moduli space of lattices in WR(Z2).

In Section 3, we discuss a more explicit parametrization of C2, which allows to see the structure of
each similarity class C(p,q). It turns out that, although most well-rounded lattices are not orthogonal,
all similarity classes in C2 can be parametrized by a subset of lattices from C(1,1). More precisely, let
us define a subset of Z2
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A = {
(a,b) ∈ Z2: 0 < b < a, gcd(a,b) = 1, 2 � (a + b),

and either b < a <
√

3b, or (2 + √
3 )b < a

}
, (3)

and consider the corresponding subset of C(1,1)

C ′(1,1) =
{(

a −b
b a

)
Z2 ∈ C(1,1): (a,b) ∈ A

}
. (4)

In Section 3 we prove the following theorem.

Theorem 1.2. For each p/q ∈ S , there exists a unique lattice

Ω =
(

a −b
b a

)
Z2 ∈ C ′(1,1),

where a,b ∈ Z>0 are given by

p = max
{
a2 − b2,2ab

}
, and q = a2 + b2, (5)

such that Λ ∈ C(p,q) if and only if

Λ = spanZ

⎧⎨
⎩x,

⎛
⎝

√
q2−p2

q − p
q

p
q

√
q2−p2

q

⎞
⎠ x

⎫⎬
⎭ (6)

for some x ∈ Ω . Moreover, every lattice in the set C ′(1,1) parametrizes some similarity class C(p,q) with p, q
as in (5) in this way.

An easy consequence of Theorem 1.2 is the existence of a lattice in each similarity class C(p,q)

which, in a sense to be described below, generates C(p,q). First let us recall that given a full-rank
lattice Λ in R2, its Epstein zeta function is defined by

EΛ(s) =
∑′

x∈Λ

‖x‖−2s,

where s ∈ C, and ′ indicates that the sum is taken over all x ∈ (Λ/{±1}) \ {0}. For each such Λ, this
Dirichlet series is known to converge for all s with �(s) > 1. Moreover, EΛ(s) has analytic continua-
tion to C except for a simple pole at s = 1. For more information on EΛ(s) and its properties see [20].
In Section 3 we also prove the following theorem.

Theorem 1.3. Let C(p,q) ∈ C2 . There exists a lattice Λp,q ∈ C(p,q), satisfying the following properties:

(1) |Λp,q| = min{|Λ|: Λ ∈ C(p,q)} = √
q.

(2) det(Λp,q) = min{det(Λ): Λ ∈ C(p,q)} = p.
(3) The norm form of Λp,q with respect to its minimal basis is

Q p,q(x, y) = qx2 + 2xy
√

q2 − p2 + qy2.

(4) For each Λ ∈ C(p,q) there exists U ∈ O 2(R) such that Λ =
√

det(Λ)
p UΛp,q; the quadratic form

(
det(Λ)

p )Q p,q(x, y) is therefore the norm form for Λ with respect to its minimal basis.
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(5) The Epstein zeta function of any lattice Λ ∈ C(p,q) is of the form

EΛ(s) =
(

p

det(Λ)

)s ∑′

(x,y)∈Z2

1

Q p,q(x, y)s
,

and so Λp,q maximizes EΛ(s) on C(p,q) for each real value of s > 1.

We call Λp,q a minimal lattice of its similarity class C(p,q); it is unique up to a rational rotation.

Lattices Λp,q also determine zeta functions of corresponding similarity classes C(p,q). Namely,
with each C(p,q) ∈ C2 we can now associate two Dirichlet series, which incorporate information
about the determinants and the minima of lattices in this similarity class, respectively. Specifically,
define

Zd
p,q(s) =

∑
Λ∈C(p,q)

(
det(Λ)

)−s
, Zm

p,q(s) =
∑

Λ∈C(p,q)

|Λ|−2s,

where s ∈ C. Our next goal is to investigate the properties of Zd
p,q(s) and Zm

p,q(s) for each C(p,q) ∈ C2,
which we do by relating them to the Epstein zeta function of the lattice Ω parametrizing C(p,q), as
in Theorem 1.2.

We will also write ζK (s) for the Dedekind zeta function of a number field K . It is known to be
analytic for all s ∈ C with �(s) > 1 − 1/d, where d = [K : Q], except for a simple pole at s = 1. For
more information on properties of ζK (s) see [15]. There is a standard relation between Dedekind zeta
of imaginary quadratic fields and lattices of rank two, a special case of which we exploit here; see [23]
for more details.

Theorem 1.4. For each C(p,q) ∈ C2 ,

Zd
p,q(s) = 1

ps
ζQ(i)(s) = 1

(det(Λp,q))s
ζQ(i)(s), (7)

and

Zm
p,q(s) = 1

qs
ζQ(i)(s) = 1

|Λp,q|2s
ζQ(i)(s). (8)

We prove Theorem 1.4 in Section 3, as well. Notice in particular that C(1,1), the similarity class
of all lattices coming from ideals in Z[i], has Zd

1,1(s) = Zm
1,1(s) = ζQ[i](s), since Λ1,1 = Z2. This fact is

also discussed in [10].
In [10] we studied basic properties of the zeta function of all well-rounded lattices

ζWR(Z2)(s) =
∑

Λ∈WR(Z2)

(
det(Λ)

)−s
.

It also makes sense to define

ζm
WR(Z2)

(s) =
∑

Λ∈WR(Z2)

|Λ|−2s.

These two Dirichlet series carry information about the distribution of lattices in WR(Z2) with re-
spect to their determinant and minima values. For each similarity class C(p,q) ∈ C2, let us call p its
determinant weight and q its minima weight. Theorem 1.4 immediately implies that
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ζWR(Z2)(s) =
∑

C(p,q)∈C2

∑
Λ∈C(p,q)

(
det(Λ)

)−s

=
∑

C(p,q)∈C2

Zd
p,q(s) = ζQ(i)(s)

∑
p: p/q∈S

for some q∈Z>0

ap

ps
, (9)

and similarly

ζm
WR(Z2)

(s) = ζQ(i)(s)
∑

q: p/q∈S
for some p∈Z>0

bq

qs
, (10)

where ap is the number of similarity classes in C2 with determinant weight p, and bq is the number
of similarity classes in C2 with minima weight q; notice that bq = |Sq|, where Sq is as in (1). In fact,
let us write

Wd(s) =
∑

C(p,q)∈C2

1

ps
=

∑
p: p/q∈S

for some q∈Z>0

ap

ps
, (11)

and

Wm(s) =
∑

C(p,q)∈C2

1

qs
=

∑
q: p/q∈S

for somep∈Z>0

bq

qs
. (12)

We will call Wd(s) and Wm(s) determinant and minima weight enumerators, respectively. Therefore the
question of distribution of lattices in WR(Z2) is linked to understanding the basic analytic proper-
ties of Wd(s) and Wm(s). In Section 4 we use an approach different from that of [10] to prove the
following result.

Theorem 1.5. Let the notation be as above, then Wd(s) and Wm(s) both have simple poles at s = 1 and are
analytic for all s ∈ C with �(s) > 1. Therefore ζWR(Z2)(s) and ζm

WR(Z2)
(s) both have poles of order two at s = 1

and are analytic for all s ∈ C with �(s) > 1.

We should point out that we are using the notion of a pole here not in a sense that would imply
the existence of an analytic continuation, but only to reflect on the growth of the coefficients. More
precisely, for a Dirichlet series

∑∞
n=1 cnn−s , we say that it has a pole of order μ at s = s0, where μ

and s0 are positive real numbers, if

0 < lim
s→s+0

|s − s0|μ
∞∑

n=1

∣∣cnn−s
∣∣< ∞. (13)

Notice that Theorem 1.5 in particular improves slightly on the result of Theorem 1.5 of [10]. The
approach we use in Section 4 to prove Theorem 1.5 uses bounds on coefficients of weight enumerators
Wd(s) and Wm(s) by coefficients of Dirichlet series associated with the set of primitive Pythagorean
triples, which have Euler product expansions.

A standard object of lattice theory is a sphere packing associated with a lattice, and a classical
problem is to determine the optimal packing density among lattices in a given dimension (see [9]).
This problem has been solved in dimension two; in fact, it is not difficult to show that maximization
of packing density can be restricted to WR lattices. Here we will discuss the circle packing density
corresponding to lattices in WR(Z2), investigating how “close” can one come to the optimal packing
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density in dimension two with such lattices. For these purposes, let us write 〈Λ〉 for the similarity
class of any lattice Λ in R2, so that

〈Λ〉 = {
αUΛ: α ∈ R>0, U ∈ O 2(R)

}
. (14)

Then for each p/q ∈ S ,

C(p,q) = 〈Λp,q〉 ∩ WR
(
Z2). (15)

For a lattice Λ in R2 define

θ(Λ) = min

{
arcsin

( |xt y|
‖x‖‖y‖

)
: x, y is a shortest basis for Λ

}
. (16)

By a shortest basis x, y of Λ we mean here that x is a minimal vector of Λ, and y is a vector of small-
est Euclidean norm such that x, y is a basis for Λ. By a well-known lemma of Gauss, θ(Λ) ∈ [π

3 , π
2 ]

(see [10]). It is easy to notice that θ(Λ) remains constant on 〈Λ〉, so we can also write θ(〈Λ〉). If x, y
is a shortest basis for Λ with the angle between x and y equal to θ(Λ), then

det(Λ) = ‖x‖‖y‖ sin θ(Λ),

and so if Λ is well-rounded, then ‖x‖ = ‖y‖ = |Λ|, and so

det(Λ) = |Λ|2 sin θ(Λ). (17)

It is easy to see that two well-rounded lattices Λ1,Λ2 ⊆ R2 are similar if and only if θ(Λ1) = θ(Λ2),
i.e. if and only if

sin θ(Λ1) = sin θ(Λ2) ∈
[√

3

2
,1

]
,

and so similarity classes of well-rounded lattices in R2 are indexed by real numbers in the interval

[
√

3
2 ,1]. Let Sim(R2) be the set of all similarity classes of well-rounded lattices in R2, and for every

two 〈Λ1〉, 〈Λ2〉 ∈ Sim(R2) define

ds(Λ1,Λ2) = ∣∣sin θ(Λ1) − sin θ(Λ2)
∣∣. (18)

It is easy to see that ds is a metric on Sim(R2). If Λ is a well-rounded lattice in R2, then the density
of circle packing given by Λ is

δ(Λ) = π |Λ|2
4 det(Λ)

= π

4 sin θ(Λ)
, (19)

by (17), and so it depends not on the particular lattice Λ, but on its similarity class 〈Λ〉. Moreover,
(19) implies that the smaller is sin θ(Λ) the bigger is δ(Λ). Indeed, it is a well-known fact that the
similarity class 〈Λh〉 gives the optimal circle packing in dimension two, where

Λh =
(1 1

2

0
√

3
2

)
Z2 (20)

is the two-dimensional hexagonal lattice, and sin θ(Λh) =
√

3
2 . The lattice Λh also has the largest

minimum among all lattices in R2 with the same determinant, and minimizes Epstein zeta function
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for all real values of s > 1 (see [7]). However, 〈Λh〉 ∩ WR(Z2) = ∅. How well, with respect to the
metric ds on Sim(R2), can we approximate the similarity class 〈Λh〉 with similarity classes of the
form 〈Λp,q〉, i.e. with similarity classes that have a nonempty intersection with the set WR(Z2)?
This question is especially interesting since, in contrast to the two-dimensional situation, the three-
dimensional counterpart of Λh , the face-centered cubic (fcc) lattice which maximizes sphere packing
density in R3, is in WR(Z3). Our next result addresses this question.

Theorem 1.6. There exists an infinite sequence of similarity classes 〈Λpk,qk 〉 such that

〈Λpk,qk 〉 → 〈Λh〉, as k → ∞,

with respect to the metric ds on Sim(R2). The rate of this convergence can be expressed by

1

3
√

3qk
< ds(Λh,Λpk,qk ) <

1

2
√

3qk
, (21)

where qk = O (14k) as k → ∞. Moreover, the inequality (21) is sharp in the sense that

1

3
√

3q
< ds(Λh,Λp,q), (22)

for every similarity class of the form 〈Λp,q〉 �= 〈Λ1,1〉. For the similarity class of orthogonal well-rounded

lattices 〈Λ1,1〉 = 〈Z2〉, we clearly have ds(Λh,Z2) = 2−√
3

2 .

Corollary 1.7. Each similarity class 〈Λpk,qk 〉 of Theorem 1.6 gives circle packing density δpk,qk such that

δ(Λh)

(
1

1 + 1
723×(13.928)k−1

)
< δpk,qk < δ(Λh)

(
1

1 + 0.92
723×(13.947)k−1

)
, (23)

where δ(Λh) = π√
12

= 0.9069 . . . is the circle packing density of Λh.

We prove Theorem 1.6 and Corollary 1.7 in Section 5. Notice that a well-rounded lattice in R2 has
a rational basis, i.e. a basis consisting of vectors with rational coordinates, if and only if it belongs
to a similarity class 〈Λp,q〉 for some p, q. Therefore results of Theorem 1.6 and Corollary 1.7 can
be interpreted as statements on best approximation to Λh (and hence best circle packing) by well-
rounded lattices in R2 with rational bases. As we will see in Section 5, this just comes down to

finding best approximations to
√

3
2 by fractions p

q where (p,
√

q2 − p2,q) is a primitive Pythagorean

triple with
√

q2 − p2 � q/2. In fact, a similar approximation result holds for all WR lattices in R2, not
just Λh .

Theorem 1.8. The similarity classes of WR sublattices of Z2 are dense in the set of all similarity classes of WR
lattices in R2 , in other words the set {〈Λp,q〉: p/q ∈ S} is dense in Sim(R2) with respect to the metric ds.
Moreover, for every Λ ∈ Sim(R2), there exist infinitely many non-similar lattices Λp,q ∈ WR(Z2) such that

ds(Λ,Λp,q) � 2
√

2

q
. (24)

We derive Theorem 1.8 in Section 6 as an easy corollary of a theorem of Hlawka on Diophantine
approximation with quotients of Pythagorean triples, and discuss equidistribution of {〈Λp,q〉: p/q ∈ S}
in Sim(R2). As a side remark in Section 6, we also use Hlawka’s result to approximate points on
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a rational ellipse by rational points on the same ellipse. Notice that Theorem 1.8 does not include
Theorem 1.6 as a special case, since the approximating constants in Theorem 1.6 are sharper and the
proof is constructive unlike that of Theorem 1.8. We are now ready to proceed.

2. Parametrization by Pythagorean triples

Notice that if a lattice Λ ∈ WR(Z2), then cos θ(Λ), sin θ(Λ) ∈ Q>0, where θ(Λ) is defined in (16),
and therefore we can index similarity classes of lattices in WR(Z2) by fractions p/q ∈ S , where S is
as in (2), so for each such p/q the corresponding similarity class C(p,q) ∈ C2 is a set of the form

C(p,q) =
{
Λ ∈ WR

(
Z2): sin θ(Λ) = p

q

}
. (25)

For each p/q ∈ S , define t =√
q2 − p2 ∈ Z. Then it is easy to notice that

0 � t <
q

2
<

√
3q

2
< p � q,

and t2 + p2 = q2 with gcd(t, p,q) = 1. In other words, the set S , and therefore the set C2 of similarity
classes of lattices in WR(Z2), is in bijective correspondence with the set of primitive Pythagorean
triples with the shortest leg being less than half of the hypotenuse.

Let

P = {
(x, y, z): x, y, z ∈ Z>0, 2|y, gcd(x, y, z) = 1, x2 + y2 = z2}

be the set of all primitive Pythagorean triples, and let

P = {
(x, y, z) ∈ P: min{x, y} < z/2

}∪ {
(1,0,1)

}
.

Notice that we include (1,0,1) in P , although it is traditionally not included in P. Then p/q ∈ S
if and only if either (t, p,q) ∈ P or (p, t,q) ∈ P . In other words, elements of P can be used to
enumerate similarity classes of lattices in WR(Z2). We will use this approach to provide a convenient
combinatorial description of elements of C2. Define matrices

A =
(1 −2 2

2 −1 2
2 −2 3

)
, B =

(1 2 2
2 1 2
2 2 3

)
, C =

(−1 2 2
−2 1 2
−2 2 3

)
∈ GL3(Z), (26)

and let G = 〈I3, A, B, C〉 be the non-commutative monoid generated by A, B , C with the 3×3 identity
matrix I3. Let us think of elements of P as vectors in Z3, and for each M ∈ G define the corresponding
linear transformations

M(x, y, z) = M

( x
y
z

)
. (27)

It is a well-known fact that for every (x, y, z) ∈ P, A(x, y, z), B(x, y, z), C(x, y, z) ∈ P. Moreover, every
(x, y, z) ∈ P can be obtained in a unique way by applying a sequence of linear transformations A, B ,
C to (3,4,5), the smallest triple in P (this construction is attributed to Barning [4]; also see [1,18]).
This means that (27) defines a free action of G on the set P of primitive Pythagorean triples by
left multiplication. The set P has the structure of an infinite rooted ternary tree with respect to this
action, as described in [1]; this in particular implies that G is a free monoid. In fact, this tree (see
Fig. 1 below) is precisely the Cayley digraph of G with respect to the generating set {A, B, C}.



L. Fukshansky / Journal of Number Theory 129 (2009) 2530–2556 2539
Fig. 1. Ternary tree representation for P.

We can extend this construction by considering the set P′ = P ∪ {(1,0,1)} (compare with [2]).
It is easy to notice that A(1,0,1) = B(1,0,1) = (3,4,5) and C(1,0,1) = (1,0,1), and hence every
(x, y, z) ∈ P can be obtained by applying a sequence of linear transformations A, B , C to (1,0,1).
Such a sequence is no longer unique, hence action of G does not extend to P′ , however a shortest
such sequence is unique up to multiplication on the left by either B A−1 or AB−1.

Notice that P ⊂ P′ . Let

H = {
A2N B, Ak B, ABN B, C2N B, Ck B, C BN B, (AC)k A2N B, (AC)k ABN B, (AC)k AB,

(C A)kC2N B, (C A)kC BN B, (C A)kC B: N ∈ G, k ∈ Z>0
}
. (28)

It is clear that H is a subsemigroup and H ′ = H ∪ {I3} is a submonoid of G . Let us define the image
of P′ under G to be

GP′ = {
M(x, y, z): M ∈ G, (x, y, z) ∈ P′},

and similarly for the images G P , HP′ , and H P .

Lemma 2.1. HP′ = H P = P \ {(1,0,1)}.

Proof. First we will prove that HP′ ⊆ P . It is clear that (1,0,1) /∈ HP′ . Let M ∈ H , then there exists
some N ∈ G such that one of the following is true:

(1) M = A2N ,
(2) M = ABN ,
(3) M = C2N ,
(4) M = C BN ,
(5) M = (AC)k A2N , where k ∈ Z>0,
(6) M = (AC)k ABN , where k ∈ Z>0,
(7) M = (C A)kC2N , where k ∈ Z>0,
(8) M = (C A)kC BN , where k ∈ Z>0.

Let (x, y, z) ∈ P′ , and write (x′, y′, z′) = N(x, y, z), where N is as above. Then, in case (1)

M(x, y, z) = A2(x′, y′, z′) =
( x′ − 4y′ + 4z′

4x′ − 7y′ + 8z′
4x′ − 8y′ + 9z′

)
,

where

1
(4x′ − 8y′ + 9z′) = 2x′ − 4y′ + 9

z′ > x′ − 4y′ + 4z′,

2 2
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hence M(x, y, z) ∈ P . In case (2)

M(x, y, z) = AB(x′, y′, z′) =
( x′ + 4y′ + 4z′

4x′ + 7y′ + 8z′
4x′ + 8y′ + 9z′

)
,

where

1

2
(4x′ + 8y′ + 9z′) = 2x′ + 4y′ + 9

2
z′ > x′ + 4y′ + 4z′,

hence M(x, y, z) ∈ P . In case (3)

M(x, y, z) = C2(x′, y′, z′) =
(−7x′ + 4y′ + 8z′

−4x′ + y′ + 4z′
−8x′ + 4y′ + 9z′

)
,

where

1

2
(−8x′ + 4y′ + 9z′) = −4x′ + 2y′ + 9

2
z′ > −4x′ + y′ + 4z′,

hence M(x, y, z) ∈ P . In case (4)

M(x, y, z) = C B(x′, y′, z′) =
(7x′ + 4y′ + 8z′

4x′ + y′ + 4z′
8x′ + 4y′ + 9z′

)
,

where

1

2
(8x′ + 4y′ + 9z′) = 4x′ + 2y′ + 9

2
z′ > 4x′ + y′ + 4z′,

hence M(x, y, z) ∈ P .
For cases (5) and (6), let

(x2, y2, z2) = M(x, y, z) = (AC)k(x1, y1, z1),

where

(x1, y1, z1) = A2(x′, y′, z′) =
( x′ − 4y′ + 4z′

4x′ − 7y′ + 8z′
4x′ − 8y′ + 9z′

)

in case (5), and

(x1, y1, z1) = AB(x′, y′, z′) =
( x′ + 4y′ + 4z′

4x′ + 7y′ + 8z′
4x′ + 8y′ + 9z′

)

in case (6). It is not difficult to notice that x2 = min{x2, y2}, and

z2

2
= x2 +

(
z1

2
− x1

)
.
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Therefore (x2, y2, z2) ∈ P if and only if x1 � z1/2, which is true in both cases, (5) and (6). On the
other hand,

B(x′, y′, z′) =
( x′ + 2y′ + 2z′

2x′ + y′ + 2z′
2x′ + 2y′ + 3z′

)
,

and

C(x′, y′, z′) =
( −x′ + 2y′ + 2z′

−2x′ + y′ + 2z′
−2x′ + 2y′ + 3z′

)
,

which implies that (AC)k B(x′, y′, z′), (AC)kC(x′, y′, z′) /∈ P for any (x′, y′, z′).
For cases (7) and (8), let

(x2, y2, z2) = M(x, y, z) = (C A)k(x1, y1, z1),

where

(x1, y1, z1) = C2(x′, y′, z′) =
(−7x′ + 4y′ + 8z′

−4x′ + y′ + 4z′
−8x′ + 4y′ + 9z′

)

in case (7), and

(x1, y1, z1) = C B(x′, y′, z′) =
(7x′ + 4y′ + 8z′

4x′ + y′ + 4z′
8x′ + 4y′ + 9z′

)

in case (8). It is not difficult to notice that y2 = min{x2, y2}, and

z2

2
= y2 +

(
z1

2
− y1

)
.

Therefore (x2, y2, z2) ∈ P if and only if y1 � z1/2, which is true in both cases, (7) and (8). On the
other hand,

B(x′, y′, z′) =
( x′ + 2y′ + 2z′

2x′ + y′ + 2z′
2x′ + 2y′ + 3z′

)
,

and

A(x′, y′, z′) =
( x′ − 2y′ + 2z′

2x′ − y′ + 2z′
2x′ − 2y′ + 3z′

)
,

which implies that (C A)k B(x′, y′, z′), (C A)k A(x′, y′, z′) /∈ P for any (x′, y′, z′). We have shown that
H P ⊆ HP′ ⊆ P \ {(1,0,1)}.

To finish the proof of the lemma, we will show that P \ {(1,0,1)} ⊆ H P . Notice that it is
in fact sufficient to show that for each (x, y, z) ∈ P \ {(1,0,1)} there exists M ∈ H such that
(x, y, z) = M(1,0,1). We know that there exists N ∈ G such that (x, y, z) = N(3,4,5), and so
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Fig. 2. Infinite-degree tree representation for P .

(x, y, z) = N B(1,0,1). First notice that N cannot be of the form BN ′ for some N ′ ∈ G . Indeed, suppose
it is, then

(x, y, z) = B(x′, y′, z′) =
( x′ + 2y′ + 2z′

2x′ + y′ + 2z′
2x′ + 2y′ + 3z′

)
,

where (x′, y′, z′) = N ′(x, y, z) ∈ P′ , but

1

2
(2x′ + 2y′ + 3z′) = x′ + y′ + 3

2
z′ < min{x′ + 2y′ + 2z′,2x′ + y′ + 2z′},

which contradicts the fact that (x, y, z) ∈ P . Similarly, from the arguments above it follows that N
cannot be of the form (AC)k BN ′ , (AC)kC N ′ , (C A)k BN ′ , or (C A)k AN ′ . The only options left are those
described in cases (1)–(8) above, which means that M = N B ∈ H . Therefore P \ {(1,0,1)} ⊆ H P ,
which completes the proof. �
Theorem 2.2. H ′ is a free infinitely generated monoid, which acts freely on the set P by left multiplication.
With respect to this action, P has the structure of a regular rooted infinite tree, where each vertex has infinite
degree (see Fig. 2 above); this is precisely the Cayley digraph of H ′ .

Proof. H ′ is a submonoid of G , which is a free monoid, hence H ′ must also be free by the Nielsen–
Schreier theorem (see for instance [19]). To see that H ′ is infinitely generated, consider for instance
the set {ABk: k ∈ Z>0} of elements of H ′ . Since A, Bk /∈ H ′ for any k ∈ Z>0, it is clear that no finite
subset of H ′ can generate all of the elements of the form ABk: if this was possible, there would have
to be relations between elements of H ′ , contradicting the fact that it is free. Therefore H ′ must be
infinitely generated, and so its Cayley digraph is a regular rooted infinite tree, where each vertex has
infinite degree, and the root corresponds to I3.

By Lemma 2.1 we know that H ′P = P . Moreover, we know that for each (x, y, z) ∈ P there ex-
ists a unique element N ∈ G such that N(3,4,5) = (x, y, z), and hence N B is the unique element
in H such that N B(1,0,1) = (x, y, z). This means that H ′ acts freely on P . Then we can identify
(1,0,1) ∈ P with I3 ∈ H ′ , and each (x, y, z) ∈ P with the corresponding unique N B ∈ H ′ such that
N B(1,0,1) = (x, y, z), which means that with respect to the action of H ′ the set P has the structure
of the Cayley digraph of H ′ with respect to an appropriate generating set. �
Corollary 2.3. The set C2 of similarity classes of lattices in WR(Z2) has the structure of a non-commutative
free infinitely generated monoid. Specifically, it is isomorphic to H ′ .

Proof. We will identify C2 with H ′ in the following way. From Theorem 2.2 we know that there exists
a bijection ϕ : P → H ′ , given by

ϕ(x, y, z) = M, such that M(1,0,1) = (x, y, z),
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for each (x, y, z) ∈ P with ϕ−1 : H ′ → P defined by

ϕ−1(M) = M(1,0,1),

for each M ∈ H ′ .
On the other hand, there also exists a bijection ψ : C2 → P , given by

ψ
(
C(p,q)

)=
{

(
√

q2 − p2, p,q) if 2|p,

(p,
√

q2 − p2,q) if 2 � p,

for each C(p,q) ∈ C2 with ψ−1 : P → C2 defined by

ψ−1(x, y, z) = C(p,q), where p = max{x, y}, q = z,

for each (x, y, z) ∈ P . Therefore we have bijections ϕψ : C2 → H ′ and (ϕψ)−1 = ψ−1ϕ−1 : H ′ → C2.
We can now define a binary operation ∗ on C2 as follows: for every C(p1,q1) and C(p2,q2) in C2,

let

C(p1,q1) ∗ C(p2,q2) = ψ−1(ϕψ
(
C(p1,q1)

)
ϕψ

(
C(p2,q2)

)
(1,0,1)

)
. (29)

It is easy to see that C2 is a free non-commutative monoid with respect to ∗, which is isomorphic
to H ′ via the monoid isomorphism ϕψ : C2 → H ′ , and (ϕψ)−1(I3) = C(1,1) ∈ C2 is the identity. Hence
the tree in Fig. 2 is the Cayley digraph of C2 with respect to an appropriate generating set. This
completes the proof. �

Now Theorem 1.1 follows by combining Theorem 2.2 with Corollary 2.3.

3. Similarity classes and corresponding zeta functions

In this section we discuss the structure of similarity classes C(p,q), as well as the properties of
associated zeta functions. Our first goal is to prove Theorem 1.2. For each p/q ∈ S , define

M2(p,q) = {
x ∈ (

Z2/{±1}) \ {0}: x1

√
q2 − p2 ≡ x2 p (mod q), x2

√
q2 − p2 ≡ −x1 p (mod q)

}
.

Notice that x ∈ M2(p,q) if and only if

Λ(x) := spanZ

⎧⎨
⎩x,

⎛
⎝

√
q2−p2

q − p
q

p
q

√
q2−p2

q

⎞
⎠ x

⎫⎬
⎭ ∈ C(p,q). (30)

Hence lattices in the similarity class C(p,q) are in bijective correspondence with points in M2(p,q).

Lemma 3.1. Let p/q ∈ S . The congruence relations

x1

√
q2 − p2 ≡ x2 p (mod q) (31)

and

x2

√
q2 − p2 ≡ −x1 p (mod q) (32)
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are equivalent, meaning that

M2(p,q) = {
x ∈ (

Z2/{±1}) \ {0}: x1

√
q2 − p2 ≡ x2 p (mod q)

}
.

Proof. Recall that gcd(p,q) = 1. Also q2 − p2 = (p − q)(p + q), and

gcd(q − p,q) = gcd(q + p,q) = gcd(p,q) = 1,

therefore gcd(q2 − p2,q) = gcd(
√

q2 − p2,q) = 1. Hence

x1

√
q2 − p2 ≡ x2 p (mod q)

if and only if

x2 p
√

q2 − p2 ≡ x1
(
q2 − p2)≡ −x1 p2 (mod q),

which happens if and only if −x1 p ≡ x2

√
q2 − p2 (mod q). �

For each p/q ∈ S , define c(p,q) to be the unique integer such that 0 � c(p,q) � q − 1 and

c(p,q)p ≡
√

q2 − p2 (mod q). (33)

Then, by Lemma 3.1, for every x ∈ M2(p,q) we have x2 ≡ c(p,q)x1 (mod q), meaning that x2 =
c(p,q)x1 + yq for some y ∈ Z. In other words, M2(p,q) can be presented as

M2(p,q) =
{(

x
c(p,q)x + qy

)
:

(
x
y

)
∈ (

Z2/{±1}) \ {0}
}
. (34)

Define

Ω(p,q) =
(

1 0
c(p,q) q

)
Z2, (35)

so that M2(p,q) = (Ω(p,q)/{±1}) \ {0}.

Lemma 3.2. Ω(p,q) ∈ C(1,1), and |Ω(p,q)|2 = det(Ω(p,q)) = q. In fact, each Ω(p,q) is in the set C ′(1,1)

as defined by (4). Moreover, every lattice
( a −b

b a

)
Z2 in the set C ′(1,1) is of the form Ω(p,q) for p, q satisfy-

ing (5).

Proof. First fix a lattice Ω(p,q). It is a well-known fact that there exist unique relatively prime
a > b ∈ Z>0 of different parity such that either p = a2 − b2 or p = 2ab, and q = a2 + b2 (this is
the standard parametrization of primitive Pythagorean triples, see for instance [22]). The fact that√

3
2 q < p � q ensures that (a,b) ∈ A. Then the lattice

Ω =
(

a −b
b a

)
Z2
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is in C ′(1,1), and |Ω|2 = det(Ω) = q. We will now show that Ω(p,q) = Ω . Since gcd(a,b) = 1, there
exist g1, g2 ∈ Z such that

g1a − g2b = 1. (36)

Let γ = g1b + g2a, and notice that

(
a −b
b a

)(
g1 b
g2 a

)
=
(

1 0
γ q

)
,

and det
( a −b

b a

)= det
( 1 0
γ q

)= q, so

Ω =
(

1 0
γ q

)
Z2. (37)

Notice that γ 2 + 1 is divisible by q. Indeed, (36) implies that g1 = g2b+1
a , and so

γ 2 + 1 = (g1b + g2a)2 + 1 = g2
2a2 + 2g2b(g2b + 1) + b2

a2
(g2b + 1)2 + 1

= q

(
g2q + 2g2b + 1

a2

)
= q

(
g2

1 + g2
2

)
. (38)

Moreover, we can ensure that 0 � γ � q −1 by replacing γ with γ +qm for some m ∈ Z, if necessary:
it is easy to see that γ 2 + 1 will still be divisible by q, and (37) will still hold. We will now show that
γ = c(p,q). Notice that

Fγ ,q(x, y) =
(

γ 2 + 1

q

)
x2 + 2γ xy + qy2 (39)

is an integral binary quadratic form with discriminant −4, hence it is equivalent to

G(x, y) = x2 + y2,

since the class number of −4 is one. In fact, it is easy to verify that

Fγ ,q(x, y) = G(g1x − by, g2x − ay), G(x, y) = Fγ ,q(ax − by, g2x − g1 y).

Let us write t = a2 − b2, so either p = t or p =√
q2 − t2, then

q = G(a,b) = Fγ ,q(t,k) =
(

γ 2 + 1

q

)
t2 + 2γ tk + qk2,

where k = g2a − g1b. Therefore

γ 2t2 + 2γ tk + q2k2 = q2 − t2,

meaning that

γ 2t2 ≡ q2 − t2 (mod q). (40)
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Notice that gcd(γ ,q) = 1, since q|(γ 2 + 1), so gcd(γ ,q) must divide 1. Therefore, if p = t , then (40)
implies that

γ p ≡
√

q2 − p2 (mod q). (41)

If, on the other hand, p = √
q2 − t2, then (40) implies that γ

√
q2 − p2 ≡ p (mod q), meaning that

γ 2
√

q2 − p2 ≡ γ p (mod q), but on the other hand γ 2 ≡ −1 (mod q), and so

−
√

q2 − p2 ≡ γ p (mod q).

By Lemma 3.1, this last congruence is equivalent to (41). We conclude that 0 � γ � q − 1, and γ
satisfies (41), which means that γ = c(p,q), and so Ω = Ω(p,q).

In the opposite direction, assume that

Ω =
(

a −b
b a

)
Z2 ∈ C ′(1,1),

and define q = a2 + b2, p = max{a2 − b2,2ab}. Then the fact that (a,b) ∈ A ensures that
√

3
2 q < p � q,

i.e. p/q ∈ S . It is not difficult to notice that for p/q ∈ S , p = a2 − b2 if and only if a > (2 + √
3 )b,

and p = 2ab if and only if b < a <
√

3b. The argument identical to the one above now shows that
Ω = Ω(p,q). This completes the proof. �
Remark 3.1. It is not difficult to conclude from an argument very similar to the one in the proof of
Lemma 3.2 that all binary integral quadratic forms of discriminant −4 are of the form Fγ ,q(x, y) as
in (39) for some odd positive integer q which is not divisible by any prime of the form 4k + 3 and
an integer γ (positive or negative) such that γ 2 + 1 is divisible by q. This statement is essentially
equivalent to the fact that there is a bijection between ideals of the form (da + dbi) in Z[i] with
a > b > 0, d > 0, and Pythagorean triples (d2(a2 − b2),2d2ab,d2(a2 + b2)).

Proof of Theorem 1.2. Fix a similarity class C(p,q) ∈ C2 for some p/q ∈ S . For each Λ ∈ C(p,q), we
have Λ = Λ(x) as defined by (30) for some x = ( x

c(p,q)x+qy

)
where x, y ∈ Z, hence x ∈ Ω(p,q). On

the other hand, for each x ∈ Ω(p,q), the corresponding lattice Λ(x) is easily seen to be in C(p,q).
Combining this observation with Lemma 3.2 completes the proof of the theorem. �
Proof of Theorem 1.3. We first introduce the notion of a minimal lattice in each similarity class
C(p,q). Let x(p,q) ∈ Ω(p,q) be such that ‖x(p,q)‖ = |Ω(p,q)|, and let Λ(x(p,q)) be defined by (30);
we will call this lattice a minimal lattice of the similarity class C(p,q) and will denote it by Λp,q . By
Lemma 3.2, we have ∣∣Ω(p,q)

∣∣= ∥∥x(p,q)
∥∥= √

q. (42)

On the other hand, since
√

3/2 < p/q � 1, meaning that the angle between x(p,q) and the other
minimal basis vector given in (30) is arcsin(p/q) ∈ (π/3,π/2), a well-known lemma of Gauss (see [3]
or [10]) implies that |Λp,q| = ‖x(p,q)‖, and so |Λp,q| = √

q. Therefore

det(Λp,q) = |Λp,q|2 p

q
= p = min

{
det(Λ): Λ ∈ C(p,q)

}
. (43)

Moreover, a straight-forward computation shows that the norm form of Λp,q with respect to its min-
imal basis is

Q p,q(x, y) = (x, y)

(
q

√
q2 − p2√

2 2

)(
x
y

)
= qx2 + 2xy

√
q2 − p2 + qy2. (44)
q − p q
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Notice that the minimal lattice of a similarity class may not in general be unique, however it is unique
up to a rational rotation, and so for our purposes it suffices to pick any one of them.

Next, let Λ ∈ C(p,q), then Λ ∼ Λp,q , and so there must exist α ∈ R>0 and U ∈ O 2(R) such that

Λ = αUΛp,q . Then det(Λ) = α2 p, and so α =
√

det(Λ)
p > 1. If we write A and A p,q for the minimal

basis matrices of Λ and Λp,q , respectively, then A =
√

det(Λ)
p U A p,q , and the norm form of Λ with

respect to this minimal basis is

Q Λ(x, y) = (x, y)At A

(
x
y

)
= det(Λ)

p
(x, y)At

p,q A p,q

(
x
y

)
= det(Λ)

p
Q p,q(x, y).

Epstein zeta function of Λ is therefore given by

EΛ(s) =
∑′

x∈Λ

‖x‖−2s =
∑′

(x,y)∈Z2

Q Λ(x, y)−s =
(

p

det(Λ)

)s ∑′

(x,y)∈Z2

Q p,q(x, y)−s.

Then (43) implies that for every fixed real value of s > 1, EΛ(s) achieves its maximum on C(p,q)

when Λ = Λp,q , and it does not achieve a minimum since there exist lattices in C(p,q) with arbitrar-
ily large determinants. This completes the proof of the theorem. �
Proof of Theorem 1.4. We now derive the properties of the Dirichlet series corresponding to
each C(p,q). Fix a similarity class C(p,q) ∈ C2. By Theorem 1.2, each Λ ∈ C(p,q) is of the form Λ(x)

for some x ∈ Ω(p,q). As in the proof of Theorem 1.3 above, a well-known lemma of Gauss (see [3]
or [10]) implies that |Λ(x)| = ‖x‖. Since also, by Lemma 3.2 of [10], the set of minimal vectors of Λ(x)

is precisely

⎧⎨
⎩±x,±

⎛
⎝

√
q2−p2

q − p
q

p
q

√
q2−p2

q

⎞
⎠ x

⎫⎬
⎭ ,

it follows that Λ(x1) = Λ(x2) if and only if x1 = ±x2. Therefore

Zm
p,q(s) =

∑
Λ∈C(p,q)

|Λ|−2s =
∑′

x∈Ω(p,q)

‖x‖−2s = EΩ(p,q)(s).

Now Theorem 1.2 readily implies that there exists U ∈ O 2(R) such that

Ω(p,q) = U

(√
q 0

0
√

q

)
Z2,

which means that EΩ(p,q)(s) is equal to the Epstein zeta function of
(√

q 0
0

√
q

)
Z2. Hence

Zm
p,q(s) = EΩ(p,q)(s) = 1

qs

∑′

x∈Z2

‖x‖−2s = 1

qs
ζQ(i)(s),

which proves (8). Now recall that for each Λ ∈ C(p,q),

det(Λ) = |Λ|2 sin θ(Λ) = |Λ|2 p

q
.

Then (7) follows. �
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4. Weight enumerators Wd(s) and Wm(s)

In this section we will discuss in more details some properties of the Dirichlet series Wd(s) and
Wm(s) as defined in (11) and (12), respectively, and will prove Theorem 1.5. Recall that we write ap

and bq for the coefficients of Wd(s) and Wm(s), respectively, as defined in Section 1. The following
formulas for ap and bq are immediate from Theorem 1.2 and the definition of the set A in (3).

Lemma 4.1. For each p such that p/q ∈ S for some q ∈ Z>0 ,

ap = ∣∣{(m,n) ∈ A: p = max
{
m2 − n2,2mn

}}∣∣,
and for each q such that p/q ∈ S for some p ∈ Z>0 ,

bq = ∣∣{(m,n) ∈ A: q = m2 + n2}∣∣.
Notice that the expression for ap in Lemma 4.1 is similar in spirit to the function β defined in [10],

in particular it can also be bounded in terms of Hooley’s 
-function. On the other hand, we can obtain
simple explicit bounds for ap and bq from our Pythagorean tree construction in Section 3. For each
p,q ∈ Z>0, define L(p) to be the number of primitive Pythagorean triples with a leg p, and H(q) to be
the number of primitive Pythagorean triples with the hypotenuse q. There are well-known formulas
for L(p) and H(q) (see [5, p. 116]): if p,q > 1, then

L(p) =
{

0 if p ≡ 2 (mod 4),

2ω(p)−1 otherwise,

where ω(p) is the number of distinct prime divisors of p, and

H(q) =
{

0 if 2|q, or if q has a prime factor l ≡ 3 (mod 4),

2ω(q)−1 otherwise.

For convenience, we also set L(1) = H(1) = 1
2 . It is clear that ap � L(p) and bq � H(q) when p,q > 1,

and a1 = b1 = 1. One can ask how good are these bounds? We will now show that the correct order
of magnitude of the bound for both, ap and bq , in the sense that the corresponding Dirichlet series
has the same behavior at s = 1 as Wd(s) and Wm(s), is given by H and not by L. Namely, define

L(s) =
∞∑

n=1

L(n)

ns
, H(s) =

∞∑
n=1

H(n)

ns
.

Lemma 4.2. H(s) has a simple pole at s = 1 and is analytic for all s ∈ C with �(s) > 1. Moreover when
�(s) > 1, H(s) has an Euler product type expansion

H(s) = 1

2

∏
l≡1 (mod 4)

ls + 1

ls − 1
, (45)

where the product is over primes l.

Proof. Let us define

V 1 = {
n ∈ Z>0: n is only divisible by primes which are ≡ 1 (mod 4)

}
.

Then notice that, as in the proof of Lemma 8.1 of [10],
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2H(s) =
∑

n∈V 1

2ω(n)

ns
=

∏
l≡1 (mod 4)

( ∞∑
k=0

2ω(lk)l−ks

)
=

∏
l≡1 (mod 4)

(
1 + 2

∞∑
k=1

l−ks

)

=
∏

l≡1 (mod 4)

(
2

1 − l−s
− 1

)
=

∏
l≡1 (mod 4)

ls + 1

ls − 1
,

whenever this product is convergent, where l is always prime. The fact that H(s) has a simple pole at
s = 1 and is analytic for all s ∈ C with �(s) > 1 then follows immediately from Lemma 8.1 of [10]. �
Proof of Theorem 1.5. First of all notice that since

√
3

2 q � p � q, we have

∣∣∣∣
(√

3

2

)s∣∣∣∣ ∑
C(p,q)∈C2

∣∣∣∣ 1

ps

∣∣∣∣� ∑
C(p,q)∈C2

∣∣∣∣ 1

qs

∣∣∣∣� ∑
C(p,q)∈C2

∣∣∣∣ 1

ps

∣∣∣∣,
meaning that Wd(s) and Wm(s) must have poles of the same order and the same half-plane of con-
vergence. Since bq � H(q), Lemma 4.2 implies that Wm(s) has at most a simple pole at s = 1, and is
analytic when �(s) > 1. On the other hand, Theorem 1.5 of [10] implies that ζWR(Z2)(s) has at least
a pole of order two at s = 1, meaning that, by (9), Wd(s) must have at most a simple pole at s = 1.
This means that both, Wd(s) and Wm(s), have simple poles at s = 1 and are analytic when �(s) > 1,
and therefore, by (9) and (10), ζWR(Z2)(s) and ζm

WR(Z2)
(s) both have poles of order two at s = 1 and

are analytic when �(s) > 1. This completes the proof. �
Remark 4.1. Notice that Theorem 1.5 combined with Lemma 4.2 implies that the Dirichlet series∑

(x,y,z)∈P
1

max{x,y}s and
∑

(x,y,z)∈P′ 1
max{x,y}s have poles of the same order 1 at s = 1. This fact could

be roughly interpreted to mean that the sets P and P′ are comparable in size, i.e. that “most” primi-
tive Pythagorean triples correspond to similarity classes of lattices from WR(Z2). In other words, the
imposed condition that the shortest leg of a primitive Pythagorean triple is no longer than half of the
hypotenuse is not particularly restrictive. Moreover, we can roughly think of H(n) as a bound on the
average orders of an and bn for each n ∈ Z>0.

On the other hand, we have the following.

Lemma 4.3. Let the notation be as above, then L(s) has a pole of order two at s = 1 and is analytic for all
s ∈ C with �(s) > 1. Moreover when �(s) > 1, L(s) has an Euler product type expansion

L(s) = 1

2

(
4s − 2s + 2

4s − 2s

) ∏
l �=2 prime

ls + 1

ls − 1
= 1

2

(
4s − 2s + 2

4s + 2s

)
ζ(s)2

ζ(2s)
, (46)

where ζ(s) is the Riemann zeta function.

Proof. Let us consider the Dirichlet series 2L(s), then

2L(s) =
∞∑

n=1

2L(n)

ns
=
∑
2�n

2ω(n)

ns
+
∑
4|n

2ω(n)

ns
=
∑
2�n

2ω(n)

ns
+ 1

4s

∞∑
n=1

2ω(2n)

ns

=
∑
2�n

2ω(n)

ns
+ 1

4s

(
2
∑
2�n

2ω(n)

ns
+
∑
2|n

2ω(n)

ns

)

=
(

1 + 2

4s

)∑
2�n

2ω(n)

ns
+ 1

4s

∑
2|n

2ω(n)

ns
. (47)
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On the other hand,

∑
2|n

2ω(n)

ns
= 1

2s

∞∑
n=1

2ω(2n)

ns
= 1

2s

(
2
∑
2�n

2ω(n)

ns
+
∑
2|n

2ω(n)

ns

)
,

and so

∑
2|n

2ω(n)

ns
= 2

2s − 1

∑
2�n

2ω(n)

ns
. (48)

Combining (47) and (48), we obtain

2L(s) =
(

4s − 2s + 2

4s − 2s

)∑
2�n

2ω(n)

ns
. (49)

Now define

L1(n) =
{

0 if 2|n,

2ω(n) 2 � n.

It is easy to see that L1(1) = 1 and L1 is multiplicative, i.e. if gcd(m,n) = 1 then L1(mn) = L1(m)L1(n).
Therefore, by Theorem 286 of [11],

∑
2�n

2ω(n)

ns
=

∞∑
n=1

L1(n)

ns
=

∏
l prime

( ∞∑
k=0

L1(lk)

lks

)
=

∏
l �=2 prime

(
1 + 2

∞∑
k=1

l−ks

)

=
∏

l �=2 prime

(
2

1 − l−s
− 1

)
=

∏
l �=2 prime

ls + 1

ls − 1
, (50)

when �(s) > 1. Moreover, by Theorem 301 of [11],

ζ(s)2

ζ(2s)
=

∞∑
n=1

2ω(n)

ns
=

∏
l prime

ls + 1

ls − 1
. (51)

Now (46) follows by combining (49), (50), and (51). Moreover, ζ(s)2/ζ(2s) clearly has a pole of order
two at s = 1, and is analytic for all s ∈ C with �(s) > 1. This completes the proof. �
Remark 4.2. Since L(s) is the sum over all the legs of primitive Pythagorean triples, short and long,
and it is easy to see that for each (x, y, z) ∈ P′ , max{x, y} � 1√

2
z, Lemma 4.3 combined with Re-

mark 4.1 imply that
∑

(x,y,z)∈P′ 1
min{x,y}s must have a pole of order 2 at s = 1.

5. Approximating the hexagonal lattice

In this section we will talk about circle packing density corresponding to similarity classes of
lattices in WR(Z2). Our goal is to prove Theorem 1.6. We do it by first proving the following slightly
more technical lemma, from which the theorem follows easily.
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Lemma 5.1. Let A, B, C be matrices as in (26). For each k ∈ Z>0 , let

(pk, tk,qk) = (C A)kC B(1,0,1) ∈ P , (52)

then pk > tk, 2|tk, and C(pk,qk) ∈ C2 . Moreover,

tk =
√

q2
k − p2

k = qk − 1

2
, (53)

and so

1

(2 + √
3 )qk

− 2

(2 + √
3 )q2

k

<

∣∣∣∣
√

3

2
− pk

qk

∣∣∣∣< 1

2
√

3qk
→ 0, as k → ∞, (54)

and more precisely

241(7 + 4
√

3 )k−1 = 241 × (13.928 . . .)k−1 < qk < 241 × (13.947)k−1. (55)

Hence, by (19), for each such C(pk,qk) the corresponding circle packing density is

π√
12

(
1

1 + 1
723(7+4

√
3 )k−1

)
< δpk,qk = πqk

4pk
<

π√
12

(
1

1 + 0.920...

723×(13.947)k−1

)
, (56)

so δpk,qk → π√
12

= 0.9069 . . . = δ(Λh) as k → ∞, and the quadratic form Q pk,qk (x, y) as in (44) satisfies

1

qk
Q pk,qk (x, y) = x2 +

(
qk − 1

qk

)
xy + y2 → Q h(x, y) := x2 + xy + y2, as k → ∞, (57)

where Q h(x, y) is the norm form of Λh with respect to the basis matrix as in (20). �
Proof. We start by proving (53). Let (pk, tk,qk) be given by (52), then

( pk
tk
qk

)
=
(7 −4 8

4 −1 4
8 −4 9

)k (15
8
17

)
. (58)

We argue by induction on k. First notice that p1 = 209, t1 = 120, and q1 = 241, so that p1 > t1, 2|t1,
and (53) is satisfied. Now assume this holds for (pk−1, tk−1,qk−1). By (58),

( pk
tk
qk

)
=
(7pk−1 − 4tk−1 + 8qk−1

4pk−1 − tk−1 + 4qk−1
8pk−1 − 4tk−1 + 9qk−1

)
, (59)

and so

pk = tk + (3pk−1 − 3tk−1 + 4qk−1) > tk,

since pk−1 > tk−1, as well as

tk = 4(pk−1 + qk−1) − tk−1
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is divisible by 2, since 2|tk−1, and finally

qk − 1

2
= 4pk−1 − tk−1 + 4qk−1 +

(
qk−1 − 1

2
− tk−1

)
= tk,

since qk−1−1
2 = tk−1. The conclusion follows by induction.

Next we derive (54) from (53). Notice that by squaring both sides of (53) and rearranging terms,
we immediately obtain

(
pk

qk
−

√
3

2

)(
pk

qk
+

√
3

2

)
= qk − 2

2q2
k

, (60)

and since pk
qk

< 1, we have

∣∣∣∣ pk

qk
−

√
3

2

∣∣∣∣> qk − 2

(2 + √
3 )q2

k

,

which is the lower bound of (54). For the upper bound, we rewrite (60) as

∣∣∣∣ pk

qk
−

√
3

2

∣∣∣∣= qk − 2

qk(2pk + √
3qk)

<
1

2pk + √
3qk

<
1

2
√

3qk
,

since
√

3qk < 2pk . It is also clear that qk → ∞ as k → ∞.
To prove (55), we first notice that q1 = 241. Moreover, by (54), the sequence pk/qk is monotone

decreasing and converges to
√

3/2, therefore

√
3

2
� pk

qk
� p1

q1
= 209

241
,

for every k � 1. Then, by (59) and (53),

qk = 8pk−1 − 4tk−1 + 9qk−1 � (7 + 4
√

3 )qk−1 + 2 > (7 + 4
√

3 )qk−1,

and

qk = 8pk−1 − 4tk−1 + 9qk−1 �
(

7 + 8 × 209

241

)
qk−1 + 2 < 13.947 × qk−1.

The inequalities (55) follow by induction on k.
To prove (56), notice that upper bound (54) implies that

pk

qk
<

√
3

2
+ 1

2
√

3qk
=

√
3

2

(
1 + 1

3qk

)
<

√
3

2

(
1 + 1

723(7 + 4
√

3 )k−1

)
,

where the last inequality is obtained by applying by the lower bound of (55). Then the lower bound
of (56) follows. To obtain the upper bound of (56), combine the lower bound of (54) with the upper
bound of (55) in a similar manner.

Finally notice that (57) follows immediately from (53) and the fact that qk → ∞ as k → ∞, and
this completes the proof. �



L. Fukshansky / Journal of Number Theory 129 (2009) 2530–2556 2553
Proof of Theorem 1.6. Let 〈Λpk,qk 〉 be the sequence of similarity classes corresponding to the triples
(pk, tk,qk) as defined in (52), then (54) guarantees convergence of this sequence to the similarity
class 〈Λh〉 with respect to the metric ds on Sim(R2), and also implies (21), since qk � q1 = 241. The
fact that qk = O (14k) follows immediately from (55). To prove (22), assume that there exists some
similarity class 〈Λp,q〉 �= 〈Λ1,1〉 such that

ds(Λh,Λp,q) = p

q
−

√
3

2
� 1

3
√

3q
,

which implies that (3
√

3p − 1)2 � 81
4 q2, and therefore

q2 − p2 �
(

1

2

)2 27q2 − 24
√

3p + 4

27
,

where

27q2 − 24
√

3p + 4

27
> q2 − 8p

3
√

3
> q(q − √

3 ) > 1,

since if q > 1, then q � 13. Hence

√
q2 − p2 >

1

2
,

which contradicts the fact that either (p,
√

q2 − p2,q) or (
√

q2 − p2, p,q) is in P , and so (22) must
be true for each similarity class of the form 〈Λp,q〉. This completes the proof of the theorem. �

Finally, Corollary 1.7 follows immediately from (56).
The approximation result of Theorem 1.6 is also interesting since the similarity class 〈Λh〉 has

a number of important properties: besides providing the optimal circle packing and minimizing Ep-
stein zeta function, as mentioned in Section 1, it also solves the related minimization problem for the
height of flat tori in dimension 2 (see [8] for details), as well as the quantizer problem in dimension 2
(see [9] for details). Let us also recall that a lattice Λ is called perfect if any real symmetric matrix A
in the corresponding dimension can be represented as

A =
∑

x∈S(Λ)

αxxxt ,

where S(Λ) is the set of minimal vectors of Λ as in Section 1, each x is written as a column vector,
and each αx is a real number. It is not difficult to see that for a lattice Λ in R2 to be perfect, the car-
dinality of S(Λ) must be six, meaning that the only perfect lattices in R2 come from 〈Λh〉. Moreover,
〈Λh〉 is strongly perfect, meaning that it supports a spherical 5-design: we say that a lattice Λ in RN

(and hence its similarity class) supports a spherical t-design for t ∈ Z>0 if for every homogeneous
polynomial f (x) of degree � t with real coefficients

∫
SN−1

f (x)dx = 1

|S(Λ)|
∑

x∈S(Λ)

f (x), (61)

where SN−1 is the unit sphere in RN with the canonical measure dx on it, normalized so that∫
SN−1 dx = 1. No other similarity class in Sim(R2) supports a spherical 5-design (or 4-design), and

〈Λ1,1〉 is the only other similarity class that supports a spherical 3-design (or 2-design); such sim-
ilarity classes are called strongly eutactic (clearly, every lattice supports a 1-design). For detailed
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information on perfect and eutactic lattices see [16], especially Chapter 16 for connections to spherical
designs.

6. Diophantine approximation by quotients of Pythagorean triples

In this section we first prove Theorem 1.8. It follows immediately from the following direct con-
sequence of a theorem of Hlawka [12] on simultaneous Diophantine approximation by quotients of
Pythagorean triples, which we state here.

Theorem 6.1. Let x ∈ (0,1) be a real number. Then there exist infinitely many Pythagorean triples
(p,

√
q2 − p2,q) such that

∣∣∣∣x − p

q

∣∣∣∣� 2
√

2

q
. (62)

Proof of Theorem 1.8. Recall that

ds(Λ,Λp,q) = ∣∣sin θ(Λ) − sin θ(Λp,q)
∣∣= ∣∣∣∣sin θ(Λ) − p

q

∣∣∣∣,
and apply Theorem 6.1 with x = sin θ(Λ). �

Moreover, we can say that the set {〈Λp,q〉: p/q ∈ S} of similarity classes of WR sublattices of Z2 is
equidistributed in the set Sim(R2) of similarity classes of all WR lattices in R2 in the following sense.
It is a well-known fact that the map

t �→
(

1 − t2

1 + t2
,

t

t2 − 1

)

is a bijection from the set of rational numbers onto the set of all rational points on the unit circle.
Ordering Q as the set of Farey fractions induces an ordering on the set of rational points on the unit

circle, and hence on the set S of y-coordinates of such points that fall in the interval [
√

3
2 ,1]. Now, it

is a well-known fact that Farey fractions are uniformly distributed (mod 1).
As a side remark, we can also use Theorem 6.1 to approximate points on a unit circle with rational

points on the same circle.

Corollary 6.2. Let (x, y) be a point on the unit circle. Then either x, y ∈ {0,±1}, or there exist infinitely many
rational points (p/q, r/q) on the same circle such that

max

{∣∣∣∣x − p

q

∣∣∣∣,
∣∣∣∣y − r

q

∣∣∣∣
}

� 2
√

2

q
. (63)

Proof. First notice that it suffices to prove the statement of this corollary for the case 0 < x, y < 1,
namely the case when the point in question lies in the first quadrant, since any other point on the
circle can be obtained from those in the first quadrant by a rational rotation. Let c be an arbitrary
real number in the interval (0,1), then either

0 < x �
√

1 − c2 < 1, c � y < 1, (64)

or

0 < y �
√

1 − c2 < 1, c � x < 1. (65)
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First assume that (64) holds. By Theorem 6.1, there exist infinitely many Pythagorean triples (p, r,q)

with r =√
q2 − p2 which satisfy (62). Then:

2
√

2

q
�
∣∣∣∣x − p

q

∣∣∣∣=
∣∣∣∣
√

1 − y2 −
√

1 − r2

q2

∣∣∣∣= | r2

q2 − y2|√
1 − y2 +

√
1 − r2

q2

=
r
q + y√

1 − y2 +
√

1 − r2

q2

∣∣∣∣y − r

q

∣∣∣∣� c(1 + n
n+1 )

2
√

1 − n2

(n+1)2 c2

∣∣∣∣y − r

q

∣∣∣∣. (66)

The last inequality is true because w+z√
1−w2+

√
1−z2

is an increasing function in both variables for

0 < z, w < 1; since y � c, we can pick q large enough so that r/q would have to be sufficiently

close to y so that r/q � n
n+1 c for some n ∈ Z>0, then r/q + y � c(1 + n

n+1 ), and
√

1 − y2 +
√

1 − r2

q2 �

2
√

1 − n2

(n+1)2 c2. Then (66) implies

∣∣∣∣y − r

q

∣∣∣∣�
√

1 − n2

(n+1)2 c2

c(1 + n
n+1 )

× 4
√

2

q
. (67)

Since our choice of c ∈ (0,1) and positive integer n was arbitrary, we can for instance choose

c = 2n + 2√
8n2 + 4n + 1

, (68)

and take n = 2, in which case, combining (62), (67), and (68), we obtain (63).
If, on the other hand, (65) holds instead of (64), simply repeat the above argument interchanging x

with y and p/q with r/q. This completes the proof. �
A related result has also been obtained by Kopetzky in [13] (also see [14]), however his bounds

are different in flavor in the sense that the constants in the upper bounds depend on x and y. Notice
that the bound of Corollary 6.2 can be easily extended to any rational ellipse.

Corollary 6.3. Let (x, y) be a point on the ellipse E, given by the equation

(
x

a

)2

+
(

y

b

)2

= 1,

where a, b are positive rational numbers. Then either (x, y) = (±a,0), (0,±b), or there exist infinitely many
rational points (p/q, r/q) on the same ellipse such that

max

{∣∣∣∣x − p

q

∣∣∣∣,
∣∣∣∣y − r

q

∣∣∣∣
}

� 2
√

2 max{a,b}
q

. (69)

Proof. Notice that the map (x, y) �→ (x/a, y/b) is a bijection between E and the unit circle, which
takes rational points to rational points. Now apply Corollary 6.2 to points of the form (x/a, y/b). �
Acknowledgments

I would like to thank Pavel Guerzhoy and the referees for their helpful comments on the subject
of this paper. I would also like to acknowledge the wonderful hospitality of Institut des Hautes Études
Scientifiques in Bures-sur-Yvette, France, where a part of this work has been done.



2556 L. Fukshansky / Journal of Number Theory 129 (2009) 2530–2556
Supplementary material

The online version of this article contains additional supplementary material.
Please visit doi:10.1016/j.jnt.2009.01.023.

References

[1] R. Alperin, The modular tree of Pythagoras, Amer. Math. Monthly 112 (9) (2005) 807–816.
[2] P. Arpaia, D. Cass, Matrix generation of Pythagorean n-tuples, Proc. Amer. Math. Soc. 109 (1) (1990) 1–7.
[3] R. Baraniuk, S. Dash, R. Neelamani, On nearly orthogonal lattice bases, SIAM J. Discrete Math. 21 (1) (2007) 199–219.
[4] F.J.M. Barning, On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular

matrices (Dutch), Math. Centrum Amsterdam Afd. Zuivere Wisk., ZW-011:37 pp., 1963.
[5] A.H. Beiler, Recreations in the Theory of Numbers – The Queen of Mathematics Entertains, Dover Publications, 1966.
[6] M. Bernstein, N.J.A. Sloane, P.E. Wright, On sublattices of the hexagonal lattice, Discrete Math. 170 (1–3) (1997) 29–39.
[7] J.W.S. Cassels, On a problem of Rankin about the Epstein zeta-function, Proc. Glasg. Math. Assoc. 4 (1959) 73–80.
[8] P. Chiu, Height of flat tori, Proc. Amer. Math. Soc. 125 (3) (1997) 723–730.
[9] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices, and Groups, Springer-Verlag, 1988.

[10] L. Fukshansky, On distribution of well-rounded sublattices of Z2, J. Number Theory 128 (8) (2008) 2359–2393.
[11] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, fifth ed., The Clarendon Press, Oxford Univ. Press, New

York, 1979.
[12] E. Hlawka, Approximation von Irrationalzahlen und Pythagoraische Tripel, in: Lectures from the Colloquium on the Occasion

of Ernst Peschl’s 70th Birthday, in: Bonner Math. Schriften, vol. 121, Univ. Bonn, Bonn, 1980, pp. 1–32.
[13] H.G. Kopetzky, Rationale Approximationen am Einheitskreis, Monatsh. Math. 89 (4) (1980) 293–300.
[14] H.G. Kopetzky, Diophantische Approximationen auf Kreisen und Zyklische Minima von Quadratischen Formen, Technical

Report 179, Forschungszentrum Graz, Mathematisch–Statistische Sektion, Graz, 1981.
[15] S. Lang, Algebraic Number Theory, Springer-Verlag, 1994.
[16] J. Martinet, Perfect Lattices in Euclidean Spaces, Springer-Verlag, 2003.
[17] C. McMullen, Minkowski’s conjecture, well-rounded lattices and topological dimension, J. Amer. Math. Soc. 18 (3) (2005)

711–734.
[18] D. Romik, The dynamics of Pythagorean triples, preprint, arXiv:math.DS/0406512.
[19] J.J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, 1995.
[20] P. Sarnak, A. Strombergsson, Minima of Epstein’s zeta function and heights of flat tori, Invent. Math. 165 (1) (2006) 115–151.
[21] W.M. Schmidt, The distribution of sublattices of Zm , Monatsh. Math. 125 (1) (1998) 37–81.
[22] J.H. Silverman, A Friendly Introduction to Number Theory, Prentice–Hall, 2006.
[23] D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta function, Invent. Math. 83 (2) (1986) 285–301.

http://dx.doi.org/10.1016/j.jnt.2009.01.023

	On similarity classes of well-rounded sublattices of Z2
	Introduction and statement of results
	Parametrization by Pythagorean triples
	Similarity classes and corresponding zeta functions
	Weight enumerators Wd(s) and Wm(s)
	Approximating the hexagonal lattice
	Diophantine approximation by quotients of Pythagorean triples
	Acknowledgments
	Supplementary material
	References


