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Abstract

We generalize Standard Monomial Theory (SMT) to intersections of Schubert varieties and
opposite Schubert varieties; such varieties are called Richardson varieties. The aim of this article
is to get closer to a geometric interpretation of the standard monomial theory as constructed in
(P. Littelmann, J. Amer. Math. Soc. 11 (1998) 551–567). In fact, the construction given here is very
close to the ideas in (P. Lakshmibai, C.S. Seshadri, J. Algebra 100 (1986) 462–557). Our methods
show that in order to develop a SMT for a certain class of subvarieties inG/B (which includes
G/B), it suffices to have the following three ingredients, a basis forH0(G/B,Lλ), compatibility of
such a basis with the varieties in the class, certain quadratic relations in the monomials in the basis
elements. An important tool (as in (P. Lakshmibai, C.S. Seshadri, J. Algebra 100 (1986) 462–557))
will be the construction of nice filtrations of the vanishing ideal of the boundary of the varieties
above. This provides a direct connection to the equivariant K-theory (products of classes of structure
sheaves with classes of line bundles), where the combinatorially defined notion of standardness gets
a geometric interpretation.
 2003 Elsevier Science (USA). All rights reserved.

Introduction

In many respects, the simplest case of the construction of a Standard Monomial basis
is the case of the GrassmannianX = Grr,n of linear subspaces of dimensionr in kn,
embedded into the projective spaceP(

∧r
kn) via the Plücker embedding; letL be the
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corresponding very ample line bundle onX. Then the homogeneous coordinate ring of the
embedded variety coincides with the ringR =⊕∞

m=0 H 0(X,L⊗m), and this ring admits
a nice basis, defined as follows. Let{e1, . . . , en} be the standard basis ofkn, then the
wedge productsei = ei1 ∧ · · · ∧ eir , wherei varies over the setI of all r-tuples such
that 1� i1 < · · ·< ir � n, form a basis of

∧r
kn.

Let B = {pi | i ∈ I } be the dual basis, the elementspi are called thePlücker
coordinates. These elements form naturally a generating set of the homogeneous
coordinate ring of the embedded variety, and it is a natural question to ask for a description
of the ring in terms of relations, and, similarly, for the subvarieties like Schubert varieties,
opposite Schubert varieties, unions and intersections of these. To formulate this more
precisely, first observe that we have a natural partial order onI : i � j if i1 � j1, . . . ,

ir � jr .
A product of Plücker coordinatespipj . . .pk is called standard if the indices are

linearly ordered with respect to this partial order, i.e.,i � j � · · ·� k. These monomials
deserve this “special name” because non-standard products can be expressed as linear
combinations of standard products. This follows from the well-knownPlücker relations:
The Grassmannian Grd,n ⊂ P(

∧d
(V )) consists of the zeroes of the following quadratic

polynomials:

d+1∑
l=1

(−1)lpi1,...,id−1,jl pj1,...,ĵl ,...,jd+1
, (1)

where i1, . . . , id−1 and j1, . . . , jd+1 are any numbers between 1 andn. Here we set
pk1,...,kd = 0 if at least two of the indices are equal, and otherwisepk1,...,kd is up to sign the
Plücker coordinate obtained by rewriting the indeces in increasing order. More precisely,
pk1,...,kd = sgn(σ )pkσ(1),...,kσ(d)

, whereσ is the unique element in the symmetric groupSd

such thatkσ(1) < · · ·< kσ(d). If two Plücker coordinatespi andpi′ are not comparable in
the partial order, by applying the Plücker relation (1) repeatedly, one gets an expression of
the following form, calledquadratic straightening relation

pipi ′ =
∑

j�i,i′�k

aj ,kpjpk, (2)

where the coefficients are elements of the ground fieldk and the productspjpk occurring
on the right side of the equation are standard. Hodge [8] has already observed that these
relations give a full presentation of the ringR. In particular, the standard monomials form
a basis of the ringR. Further, Hodge has also noticed that this basis is compatible with
Schubert varieties, i.e., fori ∈ I let Xi be the Schubert variety consisting of subspaces
U ∈ X such that for all 1� s � r, dim(U ∩ span(e1, . . . , es)) is greater or equal to the
number ofj such thatij � s. We say that a standard monomialpj . . .pk is standard onXi

if i � j . Then Hodge has already shown that the restriction of the standard monomials, not
standard onXi , vanish identically, and the restrictions of the standard monomials, standard
onXi , form a basis ofRi =⊕∞

m=0 H 0(Xi,L
⊗m). Such a description has some immediate

geometric applications, for example the Schubert variety is projectively normal in the
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embedding, one has a presentation of the homogeneous ideal of the Schubert varieties,
etc.

The purpose ofStandard Monomial Theory(SMT) is to generalize this kind of
description to all embeddingsG/P ↪→ P(H 0(G/P,Lλ)∗), whereG is a semi-simple
algebraic group over an algebraically closed field,P is a parabolic subgroup, andLλ is
an ample line bundle onG/P corresponding to a dominant weight ofG.

This paper has two aims: The first aim is to generalize SMT to intersections of Schubert
varieties and opposite Schubert varieties; such varieties will be called Richardson varieties,
since Richardson looked at these first (cf. [27]). The second aim of this paper is to make
SMT easier generalizable to other classes of varieties by relying mostly on geometric
(K-theory) and combinatorial (character formula) arguments, and reducing quantum-
Frobenius splitting arguments used for example in [20] as much as possible.

To be more precise, fix a Borel subgroupB ⊂ G and a maximal torusT , and letB−
denote the Borel subgroup ofG opposite toB (it is the unique Borel subgroup ofG with
the propertyB ∩B− = T ). Let P ⊃ B be a parabolic subgroup, letWP be its Weyl group,
we identifyWP with a subgroup of the Weyl groupW of G. Forτ ∈W/WP , let eτ ∈G/P

be the corresponding coset and letXτ denote theSchubert variety, the Zariski closure of
theB-orbitBeτ in G/P . Similarly, letXτ denote theopposite Schubert variety, the Zariski
closure of theB−-orbit B−eτ in G/P . TheRichardson varietyXκ

τ is then the intersection
Xτ ∩Xκ . ForP = B, such double coset intersectionsB τ B ∩ B−κB first appear in [5,9,
10,27,28]; in fact, it is shown in [27] thatB τ B ∩ B− κ B is dense inB τ B ∩ B− κ B.
Recently, such (as well as similar) double coset intersections have appeared in the context
of total positivity (cf. [22]), but this connection is not relevant for the context of this paper.
Richardson varieties also appear in the context of K-theory of flag varieties as explained
below.

The starting point of our approach will be as in the example above. We start with:

(a) a basisB(λ) of H 0(G/P,Lλ) which will be indexed by a partially ordered setB(λ);
(b) B(λ) is compatible with Schubert and opposite Schubert varietiesZ (i.e., the set

{b|Z | b ∈ B(λ), b|Z �≡ 0} is linearly independent);
(c) B(λ) satisfies certain quadratic relations similar to thequadratic straightening

relations(2) described above.

The main step in the construction of SMT is the following: letXκ
τ be a Richardson

variety. By the boundary∂+Xκ
τ we mean the subvariety ofXκ

τ consisting of the union of
all Richardson varietiesXκ ′

τ ′ such thatκ � κ ′ � τ ′ < τ . Let ∂+Iκ
τ be the ideal sheaf of this

subvariety. Using the global basisB(λ)⊂H 0(G/P,Lλ) and the straightening relations, we
show that the twisted sheaf∂+Iκ

τ ⊗Lλ admits a filtration as a coherentOX-sheaf such that
the associated gradedOX-sheaf is a direct sum of structure sheaves of Richardson varieties,
and for the coefficients we have a combinatorial formula involving the combinatorics of the
indexing setB(λ). Once we have such aPieri–Chevalley type formula, we can proceed in a
straight forward way (using induction on the dimension) and establish a standard monomial
theory compatible with all unions of Richardson varieties.

Summarizing, we conclude the introduction with a short description of the development
of SMT and its present status. It was developed by Lakshmibai, Musili, and Seshadri
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in a series of papers, culminating in [16] where it is established for allG/P ↪→
P(H 0(G/P,Lλ)∗), G a classical group. Further results concerning certain exceptional
and Kac–Moody groups led to conjectural formulations of a general SMT, see [17].
The combinatorial conjectures have been proved by the second author in [18], where
he introduced a new combinatorial tool, the path model. Another development was the
introduction of the dual of Lusztig’s Frobenius map for quantum groups at roots of unity
(see [20]; see also [12,13]). This Frobenius map turns out to provide exactly the right tool
to give a construction of SMT in the most general setting:G/P ↪→ P(H 0(G/P,Lλ)∗),
whereG is an arbitrary symmetrizable Kac–Moody group andλ is an integral dominant
weight such thatLλ is ample onG/P .

To be able to generalize SMT to other types of varieties (compactifications of symmetric
spaces or, more generally, spherical varieties for example), it would be very helpful to get
a better algebraic geometric description or characterization of the SMT. A first step in this
direction is the observation of the connection between SMT and equivariantK-theory as
described in [21], and this article can be described as an effort to reduce the input from
quantum group methods (which are not available in the examples above) in [20] as much
as possible and to use the Pieri–Chevalley type formula as part of the construction instead
of proving it as a consequence of SMT (as in [21]). In fact, once one has a good candidate
for SMT, the inductive procedure and a Pieri–Chevalley type formula reduces the proof
to the counting of global sections while the proof of the vanishing theorem for higher
cohomology has reminiscences of the corresponding proofs using characteristicp > 0
methods (see Theorem 20).

Another step in this direction has been proved recently by M. Brion and the first author
(cf. [2]). They provide a geometric construction of a (SMT) basis forH 0(G/P,Lλ),
compatible with unions of Richardson varieties. The main tool introduced in [2] is a
flat T -invariant degeneration of the diagonal inX × X (X being G/P ) to the union
of all productsXτ × Xτ , where theXτ are the Schubert varieties and theXτ are
the corresponding opposite Schubert varieties; we also obtain this degeneration as a
consequence of the standard monomial basis, see Section 11. It is interesting to note that
while in [2], the above degeneration is the starting point towards developing a SMT for
Richardson varieties, in this paper such a degeneration is obtained as a consequence of
SMT! In fact, by a result of [2], the fact that the special fibre of the degeneration of
the diagonal is the union of all productsXτ × Xτ is equivalent to the fact that standard
monomials form a basis (Theorem 20(ii)). In [2], for any Richardson varietyXκ

τ , the
authors first construct a basis of the space of sections ofLλ on Xκ

τ vanishing on both
of the boundaries∂±Xκ

τ (here,∂−Xκ
τ is the subvariety ofXκ

τ consisting of the union of
all Richardson varietiesXκ ′

τ ′ such thatκ < κ ′ � τ ′ � τ ). This basis is then lifted to global
sections ofLλ that vanish on all Richardson varieties not containingXκ

τ , which in turn
give raise to a basis forH 0(G/P,Lλ); this basis forH 0(G/P,Lλ) is then shown to have
compatibility with unions of Richardson varieties. In this article, we show the compatibility
of the basis of [20] with unions of Richardson varieties (cf. Theorem 20), and the vanishing
of a typical basis vector on∂±Xκ

τ for suitableκ andτ . Thus the basis as constructed in
[20] may be considered as a specially nice basis of the type constructed in [2]. In spite of
this relationship between the bases of [2] and [20], there are still some missing links; to be
very precise, letπ = (τ ,a) be an L–S path of shapeλ, whereτ = (τ0, . . . , τr ) is a strictly
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decreasing sequence inW/WP . The first and last element describe the smallest Richardson
varietyX

τr
τ0 such that the restriction of the path vectorpπ does not vanish identically. The

other terms come up naturally in the quantum group construction and have a suggestive
algebraic geometric interpretation in [20], but they do not have yet an interpretation in the
construction in [2].

The paper is organized as follows: In the first three sections, we recall the combinatorics
of the path model and the construction of the path vector basis: the indexing setI

in the Grassmannian case will be replaced by the set of L–S pathsB(λ) of shapeλ

(Section 2), the basis{pi , i ∈ I } will be replaced by the basisB(λ) consisting of path
vectors{pπ , π ∈ B(λ)} (Section 3), and the Plücker relations will be replaced by the
quadratic straightening relations (Section 5). In Section 4 we recall the connection between
coherent sheaves and graded finitely generated modules over the homogeneous coordinate
ring k[G/P ] given by the embedding. Using the properties (a)–(c), we show in Section 6
that the idealIκ

τ has a basis given by standard monomials. This is used in Section 7 to
prove the Pieri–Chevalley type formula for the ideal sheaf∂+Iκ

τ , and, as a consequence,
we obtain in Section 8 the construction of SMT and the vanishing of higher cohomology
groups. In Sections 9 and 10 we discuss the case where the bundleLλ is only base point
free but not necessarily ample. In the last Section 11, the relationship between K-theory
and SMT is brought out, especially, the computation of the coefficients of the classes of
structure sheaves appearing in the product of the class of the structure sheaf of a Schubert
variety with the class of a line bundle.

1. Notation

In this section we fix some standard notation which will be used throughout the paper.
The ground fieldk is supposed to be algebraically closed of arbitrary characteristic. The
group G is a semisimple, simply connected algebraic group defined overk. We fix a
Borel subgroupB ⊂G and a maximal torusT ⊂ B. We denote byB− the opposite Borel
subgroup, i.e.,B− is the unique Borel subgroup ofG such thatB∩B− = T . The unipotent
radical ofB is denoted byU , and the unipotent radical ofB− is denoted byU−.

We use the same notation (but with Gothic letters) for the corresponding Lie algebras,
i.e.,g is the Lie algebra ofG, b the Lie algebra ofB, b− is the Lie algebra of LieB− and
n± denotes the Lie algebra ofU±. The corresponding enveloping algebras are denoted by
U(g),U(b±) andU(n±).

Let Q ⊃ B be a parabolic subgroup ofG containingB. The projective varietyG/Q

admits a finite number ofB-orbits (as well as a finite number ofB−-orbits), they are
indexed by theT -fixed points inG/Q. Let W be the Weyl group ofG and letWQ be the
Weyl group ofQ. The groupWQ can be canonically identified with the subgroup ofW

generated by the simple reflectionssα such that−α is a root of the root system ofQ. For
τ ∈W/WQ let eτ ∈G/Q be the correspondingT -fixed point. The closure of theB-orbit:
Xτ = Beτ ⊂G/Q is theSchubert varietycorresponding toτ , and the closure of theB−-
orbit: Xτ = B−eτ ⊂G/Q, theopposite Schubert varietycorresponding toτ .

Let τ, σ ∈W/WQ. TheRichardson varietycorresponding to the pair(τ, σ ) is the (set
theoretic) intersectionXσ

τ = Xτ ∩ Xσ (with the induced reduced structure). Note that if
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w0 ∈W/WQ is the class of the longest elementw0 in W , thenXσ
w0
=Xσ . Similarly, one

hasXid
τ =Xτ .

If κ = (κ1, . . . , κs) andσ = (σ1, . . . , σs) are sequences of elements inW/WQ, then we
denote byXσ

κ the unionXσ1
κ1 ∪ · · · ∪X

σs
κs of Richardson varieties with the induced reduced

structure.
Let . be the character group ofT . We denote by.+ the dominant weights and by.++

the regular dominant weights. For the parabolic subgroupQ, let .Q be the subgroup of
weights which can be (trivially) extended to characters ofQ, let.+Q ⊂.Q be the dominant

ones and denote by.++Q theQ-regular dominant weights, i.e., those dominant weights that
cannot be extended to characters of a parabolic subgroup containingQ properly.

Forλ ∈., letLλ =G×B k−λ be the line bundle onG/B associated to theB-character
(−λ). A geometric way to characterize.Q ⊂. is to say thatλ is an element of.Q if and
only if Lλ “goes down” to a line bundleLλ =G×Q k−λ on G/Q, andλ ∈.+Q if only if

Lλ is base point free onG/Q, andλ ∈.++Q if only if Lλ is an ample line bundle onG/Q.

2. The path model and some partial orders

An important combinatorial tool will be the L–S paths of shapeλ, we recall quickly
the most important features of the path model. Letλ ∈.+ be a dominant weight. Fix a
total order “�” on W/Wλ refining theBruhat order“�”. Let τ = (τ0 � · · · � τr ) be a
strictly decreasing sequence of elements ofW/Wλ and leta = (0 < a1 < · · · < ar < 1)

be strictly increasing sequence of rational numbers. The pairπ = (τ ,a) is called aconvex
subset of shapeλ of the orbitW.λ. To motivate the name, seta0 = 0 andar+1 = 1 and
setxi = ai − ai−1 for 1 � i � r + 1. Thenxi is called theweight ofτi−1, and the sum∑r

i=0 xi+1τi(λ) is a convex linear combination, called theweight ofπ , and is denoted
π(1).

Such aconvex subsetπ is called a L–S path of shapeλ if the sequenceτ = (τ0, . . . , τr )

is strictly decreasing in the Bruhat order (onW/Wλ), and if the pair satisfies the following
integrality condition. For alli = 1, . . . , r:

• Setsi = l(τi−1)− l(τi ). There exists a sequenceβ1, . . . , βsi of positive roots joining
τi−1 andτi by the corresponding reflections, i.e.,

τi−1 > sβ1τi−1 > sβ2sβ1τi−1 > · · ·> sβsi
· · · sβ1τi−1= τi,

andai〈τi−1(λ), sβ1 · · · sβj−1(β
∨
j )〉 ∈ Z for all j = 1, . . . , si . Hereβ∨ denotes the coroot

of β , and〈µ,β∨〉 stands for the evaluation ofµ ∈. on the coroot.

For more details on the combinatorics of L–S paths we refer the reader to [18]. Let
B(λ) be the set of L–S paths of shapeλ. The character of the Weyl moduleV (λ) of highest
weightλ can be calculated using the L–S paths:

Theorem 1 [18]. CharV (λ)=∑
π∈B(λ) eπ(1).
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Let π = (τ ,a) be an L–S path of shapeλ, whereτ = (τ0, . . . , τr ). We call i(π)= τ0,
the initial direction ande(π)= τr , thefinal directionof the path.

Definition 2. Let B(λ) be the set of L–S paths of shapeλ. We say thatπ ∈ B(λ) is standard
on a Richardson varietyXκ

τ if τ � i(π) ande(π) � κ , and we denote byBκ
τ (λ) the set of

all L–S paths of shapeλ, standard onXκ
τ . If τ (respectivelyκ) is the class of the longest

word inW (respectivelyid), thenτ (respectivelyκ) will be omitted and we will write just
Bκ(λ) ( respectivelyBτ (λ)).

A sequenceπ = (π1, . . . , πm) of L–S paths of shapeλ is calledstandardif

e(π1) � i(π2) � · · ·� e(πm−1) � i(πm). (3)

The notion of initial and final direction generalizes to standard sequences of lengthm as
follows: We seti(π) = i(π1) ande(π)= e(πm). The notion of a standard sequence on a
Richardson variety generalizes in the obvious way.

Letπ(1)= π1(1)+· · ·+πm(1) be theweight of such a standard sequence. The theorem
above generalizes to standard sequences:

Theorem 3 [18]. CharV (mλ)=∑
eπ(1), where the sum runs over all standard sequences

of lengthm of L–S paths of shapeλ.

We need several orderings on the set of convex subsets ofW.λ. Let π = (τ ,a) and
η = (κ,b) (whereκ = (κ0, . . . , κs) andb = (b1, . . . , bs)) be two convex subsets ofW.λ.
Induced by the Bruhat order onW/Wλ, we have two types of partial orders on such convex
subsets.

• We sayπ � η if π is greater thanη in the weighted lexicographic sense:τ0 > κ0, or
τ0= κ0 anda1 > b1, or τ0= κ0, a1= b1 andτ1 > κ1, etc.

• We sayπ �r η if π is greater thanη in the reverse weighted lexicographic sense:
τr > κs or τr = κs and 1− ar > 1− bs or τr = κs,1− ar = 1− bs andτr−1 > κs−1,
etc.

For a total order� on W/Wλ we define in the same way total orders� and�r on the
set of convex subset of elements ofW/Wλ.

We extend these (partial) orders in the obvious way to sequences. Letπ = (π1, . . . , πt )

andη = (η1, . . . , ηt ) be two sequences of weighted subsets.

• We sayπ � η if π1 > η1 or π1= η1 andπ2 > η2 etc.
• We sayπ �r η if πt > ηt or πt = ηt andπt−1 > ηt−1 etc.

The total orders� and�r are extended to sequences in the same way.
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3. The path vector basis

Supposeλ ∈ .+Q, then the line bundleLλ is base point free. LetV (λ) be the Weyl
module of highest weightλ. The parabolic subgroupQ stabilizes the line through the
highest weight vectorvλ and we have a corresponding map

G/Q→ P
(
V (λ)

)
, gQ �→ [gvλ].

Further,H 0(G/Q,Lλ)= V (λ)∗ is the dual space ofV (λ). Associated to the combinatorial
path model given by the L–S pathsB(λ) of shapeλ, we have the basis

B(λ)= {
pπ | π ∈ B(λ)

}⊂H 0(G/Q,Lλ)

given by the path vectorspπ as constructed in [20].

Remark 4. The reader not acquainted with the construction should think of these sections
in the following way: Letπ = (τ0, . . . , τr , a1, . . . , ar ) be an L–S path of shapeλ. Fix
6 ∈ N minimal such that6ai ∈ N for all i, and fix weight vectorspτi ∈ H 0(G/Q,Lλ) of
weight−τi(λ) (these weight spaces are one-dimensional). Thenpπ can be thought of as
an algebraic approximation

pπ ∼ 6

√
p

6x1
τ0 p

6x2
τ1 p

6x3
τ3 · · ·p6xr+1

τr , xi = ai − ai−1, 1 � i � r + 1.

Note that in the framework of quantum groups at roots of unity the expression above

“makes sense”. Indeed,6

√
p

6x1
τ0 · · · is then the Frobenius splitting map at an6th root of

unity applied to the product, for details see [20].

The path vectors areT -weight vectors of weight−π(1). Further, the partial orders on
L–S paths introduced in the section before are closely related toB-stable (respectively
B−-stable) submodules spanned by path vectors.

More precisely, we call a subsetS+ ⊂ B(λ) of L–S paths of shapeλ positive saturated
if for all π,π ′ ∈ S+ the following holds:
• if η ∈B(λ) is such thatπ ′ > η > π , thenη ∈ S+.
We say thatS+ ⊂ B(λ) is maximally positive saturatedif for π ∈ S+ andη ∈ B(λ) the

relationη > π impliesη ∈ S+.

Similarly, we call a subsetS− ⊂ B(λ) of L–S paths of shapeλ negative saturatedif for
all π,π ′ ∈ S− the following holds:
• if η ∈B(λ) is such thatπ ′ >r η >r π , thenη ∈ S−.
We say thatS− ⊂ B(λ) is maximally negative saturatedif for π ∈ S− andη ∈B(λ) the

relationπ >r η impliesη ∈ S−.
Let S+ be a maximally positive saturated subset and letS− be a maximally

negative saturated subset ofB(λ). The corresponding path vectors spanT -submodules
of H 0(G/Q,Lλ):

M
(
S+

)= 〈
pπ | π ∈ S+

〉
and M(S−)= 〈

pπ | π ∈ S−
〉
.
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Theorem 5 [14,20].TheT -submoduleM(S+) is B-stable and theT -submoduleM(S−)

is aB−-stable submodule ofH 0(G/Q,Lλ).

Corollary 6. Let S+ ⊂ B(λ) be a positive saturated subset and letM(S+) be the
T -submodule〈pπ | π ∈ S+〉 of H 0(G/Q,Lλ) spanned by the corresponding path vectors.
ThenM(S+) admits aB-module structure which is isomorphic to a subquotient of a
B-stable filtration ofH 0(G/Q,Lλ).

Proof. Let S+1 = {η ∈ B(λ) | ∃π ∈ S+: η � π} be the “closure” ofS+ with respect to>,
i.e., S+1 consists of all paths which are greater or equal to some element ofS+. The
setS+1 is a maximally positive saturated subset and henceM(S+1 ) is a B-submodule of
H 0(G/Q,Lλ). The setS+2 := S+1 − S+ is again a maximally positive saturated subset
because: supposeπ ∈ S+2 andη ∈ B(λ) is such thatη > π . By the definition ofS+1 andS+2 ,
there exists an elementπ1 ∈ S+ such thatπ > π1, soη > π > π1 impliesη ∈ S+1 . So either
η ∈ S+2 or η ∈ S+. The latter is not possible becauseη,π1 ∈ S+ would imply π ∈ S+, in
contradiction to the assumptionπ ∈ S+2 , which finishes the proof of the claim.

Now M(S+2 ) is hence aB-submodule, and the quotientM(S+1 )/M(S+2 ) is aB-module
which, asT -module, is isomorphic toM(S+). ✷

The corresponding version for negative saturated subsets holds also, the proof is left to
the reader.

Corollary 7. Let S− ⊂ B(λ) be a negative saturated subset and letM(S−) be the
T -submodule〈pπ | π ∈ S+〉 of H 0(G/Q,Lλ) spanned by the corresponding path vectors.
ThenM(S−) admits aB−-module structure which is isomorphic to a subquotient of a
B−-stable filtration ofH 0(G/Q,Lλ).

For τ ∈ W/Wλ let vτ ∈ V (λ) be a weight vector of weightτ (λ), vτ is a so-called
extremal weight vector. The B-submodule spanned by the orbitB.vτ is called the
Demazure moduleassociated toτ and is denotedVτ (λ). Note that set theoretically we
haveXτ =G/Q∩ P(Vτ (λ)). Similarly, theB− submodule spanned by the orbitB−.vτ is
called theopposite Demazure moduleassociated toτ and is denotedV τ (λ).

Theorem 8 [14,20].The path vector basis is compatible with the Demazure submodules,
i.e., the restrictions{pπ |Vτ (λ) | π ∈ Bτ (λ)} form a basis ofVτ (λ)∗ and the restrictions
of the other path vectors vanish on the submodule. Similarly, the restrictions{pπ |V τ (λ) |
π ∈ Bτ (λ)} form a basis ofV τ (λ)∗ and the restrictions of the other path vectors vanish.

Let B(λ)∗ = {uπ ∈ V (λ) | π ∈ B(λ)} be the basis ofV (λ) dual to the path vector basis
of H 0(G/Q,Lλ).

Corollary 9. The vectors{uπ | π ∈ Bτ (λ)} form a basis of the Demazure moduleVτ (λ),
the vectors{uπ | π ∈ Bτ (λ)} form a basis of the opposite Demazure moduleV τ (λ), and
the vectors{uπ | π ∈ Bσ

τ (λ)} form a basis of the intersectionV σ
τ (λ)= Vτ (λ)∩ V σ (λ).
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Proof of the corollary. Theorem 8 implies thatVτ (λ) is the subspace ofV (λ) orthogonal
to 〈pπ | i(π) �� τ 〉. Hence{uπ | i(π) � τ } ⊂ Vτ (λ), and, again by Theorem 8,〈uπ |
i(π) � τ 〉 = Vτ (λ). The proof for the opposite Demazure module is similar and is left
to the reader. The statement for the intersection is then an immediate consequence of the
fact that the basis is compatible with Demazure and opposite Demazure modules.✷

4. Some graded rings and modules

Supposeλ ∈ .++Q , so the line bundleLλ is very ample onG/Q and we have a
corresponding embeddingG/Q ↪→ P(V (λ)). Consider the two rings

R =
⊕
m�0

H 0(G/Q,Lmλ) and k[G/Q] =
⊕
m�0

k[G/Q]m,

where k[G/Q] denotes the homogeneous coordinate ring of the embeddingG/Q ↪→
P(V (λ)) with the usual grading. Sinceλ is ample andG/Q is smooth, one knows that
H 0(G/Q,Lmλ) = k[G/Q]m for m# 0. (Actually, by standard monomial theory [20] or
Frobenius splitting [25], one knows that they coincide for allm, but we do not need this
later.) Correspondingly we denote for a union of Richardson varietiesXσ

κ the associated
rings byRσ

κ andk[Xσ
κ ], i.e.,

Rσ
κ =

⊕
m�0

H 0(Xσ
κ ,Lmλ

)
and k

[
Xσ

κ

]= ⊕
m�0

k
[
Xσ

κ

]
m

.

Let Iσ
κ ⊂ OG/Q be the ideal sheaf and letIσ

κ ⊂ k[G/Q] be the homogeneous ideal of
Xσ

κ ⊂ G/Q ⊂ P(V (λ)). We consider also the gradedR-module, respectively the graded
k[G/Q]-module:

J σ
κ =

⊕
m�0

H 0(G/Q,Iσ
κ ⊗Lmλ

)
, respectively Iσ

κ =
⊕
m�0

(
Iσ
κ

)
m

.

For Schubert varieties and opposite Schubert varieties we still use the notationXτ , Iτ , Xτ ,
I τ , etc., instead ofXid

τ , I id
τ ,Xτ

w0
, I τ

w0
etc.

Our aim is to show in the nextfour sections that the ringsRσ
κ and k[Xσ

κ ] and the
modulesJ σ

κ andIσ
κ coincide and have a basis by standard monomials.

5. Standard monomials and quadratic relations

Let λ ∈ .++Q , we use the same notation as in Section 4. We analyze the structure
of the homogeneous coordinate ringk[G/Q]. We view k[G/Q] as the subalgebra ofR
generated byH 0(G/Q,Lλ)= k[G/Q]1. A monomial of path vectorspπ = pπ1 · · ·pπm is
calledstandardif the sequenceπ = (π1, . . . , πm) is standard. The monomialpπ is called
standard on a Richardson varietyXσ

τ if in additionτ � i(π) � e(π) � σ for the initial and
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final directions ofπ . The monomial is calledstandard on a union of Richardson varieties
Xσ

κ if it is standard on at least one of theXσ
τ ⊂Xσ

κ .
The following relations provide an algorithm to express a non-standard monomial as a

linear combination of standard monomials. To be more precise, we need to introduce the
wedge product of two convex subsets ofW/Wλ.

Let � be a the fixed total order refining the Bruhat order. Given two convex subsets
π = (τ ,a) andπ ′ = (σ ,b) of shapeλ, let κ be the sequence obtained fromτ andσ

{κ0, κ1, . . .} = {τ0, . . . , τr } ∪ {σ0, . . . , σs}
by writing the elementsκj in strictly decreasing order with respect to�.

Next letc be the strictly increasing sequence of rational numbers obtained froma and
b as follows:ci is half the sum of the weights of theτj andσj which are smaller or equal
to κi . More precisely: setc0, a0, b0 := 0. If κi−1 = τj−1 and not equal to one of theσm,
then ci := ci−1 + (aj − aj−1)/2; if κi−1 = σj−1, and not equal to one of theτm, then
ci := ci−1 + (bj − bj−1)/2; if κi−1 = τj−1 = σm−1, thenci := ci−1 + ((aj − aj−1) +
(bm − bm−1))/2.

Definition 10. Thewedge productπ ∧ π ′ of two convex subsets of shapeλ is the convex
subset(κ, c) of shape 2λ.

Note that ifπ,π ′ are L–S paths, thenπ ∧ π ′ is in general not an L–S path. Let now
π,π ′ be L–S paths of shapeλ. We say thatπ andπ ′ have thesame supportif the sequence
κ in π ∧π ′ is strictly decreasing with respect to the Bruhat ordering>. One checks easily
the following properties:

Lemma 11. (i) The map(π,π ′)→ π ∧ π ′ induces a bijection between the set of standard
sequences of length two of L–S paths of shapeλ and the set of L–S paths of shape2λ.

(ii) If π,π ′ have the same support, thenπ ∧ π ′ is an L–S path of shape2λ.

Remark 12. The wedge product of convex sequences generalizes in the obvious way to
m-tuples: We define(κ, c)= π1∧ · · · ∧ πm as follows: The sequenceκ is the union of the
Weyl group cosets occurring in theπj , rewritten in strictly decreasing order. Every coset
κi in κ occurs in at least one path; setwk

i = the weight of the cosetκi , if κi occurs inπk ,
and setwk

i = 0 if κi does not occur inπk . The rational numberci in c corresponding to the
cosetκi is

ci = 1

m

∑
1�6�i

( ∑
1�k�m

wk
6

)
,

the sum over all paths of all weights of the cosets smaller or equal toκi , divided bym. One
checks easily as above: If theπi are L–S paths of shapeλ and have the same support, then∧

π = π1∧ · · · ∧ πm is an L–S path of shapemλ. Further, the map

π = (π1, . . . , πm)→
∧

π = π1∧ · · · ∧ πm
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induces a bijection between the standard sequences of lengthm of L–S paths of shapeλ,
and the set of L–S paths of shapemλ. By construction, one hasi(π) = i(

∧
π) and

e(π)= e(
∧

π), and also the weights coincide:π(1)=∧
π(1).

If π ∧ π ′ is an L–S path of shape 2λ, then (i) implies there exists a standard sequence
(η, η′) such thatη∧η′ = π ∧π ′. In the following we write justπ ∧π ′ = (η, η′) to indicate
the corresponding standard sequence.

We use the notation(η1, η2)� π1∧π2 if eitherη1∧η2 � π1∧π2, orη1∧η2= π1∧π2
andη1� π1. The notationπ1∧π2�r (η1, η2) is defined in the same way: eitherπ1∧π2�r

η1∧ η2, or π1∧ π2= η1∧ η2 andπ2�r η2.

Theorem 13 [14]. If neither pπ1pπ2 nor pπ2pπ1 is standard, then there exist standard
monomialspη1pη2 ∈H 0(G/Q,L2λ) such that

pπ1pπ2 =
∑

aη1,η2pη1pη2

where the coefficientaη1,η2 �= 0 only if (η1, η2)� π1∧ π2�r (η1, η2). Further,π1 ∧ π2=
η1 ∧ η2 is possible only ifπ and π ′ have the same support, and thenaη1,η2 = 1 for the
standard sequence(η1, η2)= π1∧ π2.

This relation should be seen as a generalization of the quadratic straightening relation
for the Grassmann varieties (2) mentioned in the introduction. Sometimes it is more
convenient to formulate the relation as follows:

Corollary 14. If neither the monomialpπ1pπ2 nor the monomialpπ2pπ1 is standard, then,
in the quadratic relation above, the coefficient ofpη1pη2 is non-zero only ifη1 > π1,π2
andπ1,π2 >r η2.

Proof. This is a consequence of the proof of the theorem above in [14]. The main point
we will use from the proof is thataη1,η2 �= 0 only if η1 ∧ η2 > π1∧ π2 in the partial order
on convex subsets. Now on the one hand, the pairs(η1, η2) are standard sequences, so the
wedge productη1∧ η2 is actually independent of the chosen ordering. On the other hand,
π1 ∧ π2 depends on the choice of the total order onW/Wλ, so we are free to choose an
appropriate total ordering.

Letπ1= (τ ,a), π2= (σ ,b) andη1= (κ, c). Suppose firstτ0 andσ0 are not comparable
in the Bruhat order. We can choose a total order�1 such thatτ0�1 σ0 and a total order�2
such thatσ0 �2 τ0. Now η1 ∧ η2 > π1 ∧ π2 implies for the first choice of the total order
thatκ0 � τ0, for the second choice we get as a consequenceκ0 � σ0. Sinceτ0, σ0 are not
comparable, we must have strict inequality in both cases, in particularη1 > π1,π2.

If τ0= σ0, thenη1∧η2 > π1∧π2 implies by the definition of the wedge product and the
partial order thatη1 � π1,π2. So without loss of generality we can assume in the following
τ0 > σ0. Sinceη1∧ η2 > π1∧ π2 impliesκ0 � τ0 > σ0, we see thatη1 > π2. It remains to
show:η1 > π1.

If there exists aj � r such thatσ0 � τj butσ0 �� τj−1, then we can choose a total order
such that the sequence of Weyl group cosets inπ1∧π2 is of the form(. . . , τj−1, σ0, τj , . . .),
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soη1∧η2 > π1∧π2 implies by the partial lexicographic ordering that necessarilyη1 > π1.
Otherwise the sequence of Weyl group cosets inπ1∧π2 is of the form(. . . , τr , σ0, . . .), so
η1 ∧ η2 > π1∧ π2 impliesη1 � π1. But note thatη1= π1 andη1 ∧ η2 > π1 ∧ π2 implies
η2 � π2 and henceτr � σ0, which is not possible by the assumption thatpπ1pπ2 is not
standard. It follows hence also in this case:η1 > π1.

By replacing� and� by �r and�r , the same arguments show thatη2 >r π1,π2. ✷
These quadratic relations and the combinatorial character formula are already sufficient

to prove:

Proposition 15. The homogeneous coordinate ringk[G/Q] has a vector space basis given
by the standard monomials. In particular, the embeddingG/Q ↪→ P(V (λ)) is projectively
normal.

Proof. Consider the polynomial algebraS = k[xπ | π ∈ B(λ)]. We can write any
monomial inS as an ordered product:x

n1
π1 · · ·xnt

πt , whereπ1�r · · · �r πt .
We define a monomial order�r on the monomials inS as follows: We sayxπ �r xπ ′ if

π �r π ′. If m1,m2 are two ordered monomials, then we saym1�r m2 if either the degree
of m1 is strictly greater than the degree ofm2, or, if the degree of the two coincides, then
we saym1�r m2 if m1 comes beforem2 in the reverse lexicographic ordering with respect
to�r .

Let m= xπ1 · · ·xπs be an ordered monomial. By abuse of notation we callm a standard
monomial inS if the sequence(π1, . . . , πs) is standard. DenoteE ⊂ S the ideal generated
by the type of quadratic relations as in Theorem 13, i.e.,E is the ideal generated by the
relations

xπ1xπ2 −
∑

aη1,η2xη1xη2,

where the set of generators runs over all ordered monomialsxπ1xπ2 which are not standard,
and the coefficientsaη1,η2 are as in Theorem 13.

Forf ∈ S, let in(f ) be the initial term, i.e., the greatest monomial off with respect to
the chosen monomial ordering�r .

Let m= xµ1 · · ·xµs ∈ S be an ordered monomial which is not standard, sayxµj xµj+1 is
not standard. By the relations above, we have,xµj xµj+1 −

∑
aη1,η2xη1xη2 is an element

of E, and µj ∧ µj+1 �r (η1, η2) for all standard monomials with nonzero coefficient
aη1,η2. One checks easily that this impliesxµj xµj+1 �r xη1xη2 for all standard monomials
with nonzero coefficientaη1,η2.

Setm1= xµ1 · · ·xµj−1 andm2= xµj+2 · · ·xµs , thenm1xµj xµj+1m2−∑
aη1,η2m1xη1×

xη2m2 is an element ofE with initial termm. So any non-standard monomialm ∈ S occurs
as the initial term of an element ofE.

It follows by Macaulay’s Theorem [6, Theorem 15.3], that the images of the standard
monomials form a generating set for the vector spaceS/E. The canonical epimorphism
S→ k[G/Q] defined byxπ �→ pπ factors throughS/E (Theorem 13). Sincek[G/Q]m =
H 0(G/Q,Lmλ)$ V (mλ)∗ for m# 0, it follows by the character formula (Theorem 3) that
the number of standard monomials is equal to the dimension ofk[G/Q]m, so they form in
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fact a basis. It follows that the standard monomials in(S/E)m are linearly independent for
m# 0.

Note thatπ = (id) is an L–S path of shapeλ. For all6 > 0 and any standard monomial
xπ1 · · ·xπt , the monomialxπ1 · · ·xπt x

6
id of degreet + 6 is again standard. So any linear

dependence relation between standard monomials of low degree can be made into a linear
dependence relation between standard monomials of high degree by multiplying them
with a power ofxid . As a consequence we see that the standard monomials are linearly
independent for allm � 0, and the mapS/E→ k[G/Q] is in fact an isomorphism. ✷

6. Ideals and coordinate rings

We analyze now the homogeneous coordinate ring and the defining ideal of a union of
Richardson varieties. Throughout this section we assumeλ ∈ .++Q and we consider the
embedding

Xσ
κ ⊂G/Q ↪→ P

(
V (λ)

)
.

In the following theorem we recall some results from [5,26,27], and apply them to standard
monomial theory. Actually, these results could also be obtained in the course of proving the
second part of the theorem below with plain standard monomial theory methods (the most
important tool would be the quadratic relations, Theorem 13), but the geometric arguments
used by Deodhar and Richardson and the algebraic Frobenius splitting methods are much
more direct and much shorter, so it seems more appropriate in this case to just quote the
results.

Theorem 16. A Richardson varietyXκ
τ is non-empty if and only ifτ � κ , and, in this case,

Xκ
τ is an irreducible variety of dimension6(τ )− 6(κ).
The vanishing idealIσ

κ ⊂ k[G/Q] for a union of Richardson varietiesXσ
κ has a basis

given by the standard monomials which are not standard onXσ
κ , and the homogeneous

coordinate ringk[Xσ
κ ] has as basis the restrictions of the monomials standard onXσ

κ .
Further, the scheme theoretic intersection of two such unions is reduced and is again a
union of Richardson varieties.

Proof. The dimension formula and the irreducibility for Richardson varieties follow from
the description ofBeτ ∩ B−eκ by Deodhar [5], who showed that the intersection of the
latter is isomorphic to a product ofk’s andk∗’s, and the proof by Richardson [27], that
the closure of such an intersection is a Richardson variety; the reducedness of intersections
and unions of Richardson varieties follow from the existence of a compatible Frobenius
splitting [26].

It remains to describe the idealsIσ
κ . We consider first Schubert varieties. By definition,

the linear span of the conêXτ overXτ ⊂ P(V (λ)) is the Demazure submoduleVτ (λ). If a
standard monomialpπ1 · · ·pπm is not standard onXτ , thenpπ1 is not standard onXτ and
hence vanishes onVτ (λ) (Theorem 8). It follows that the standard monomials which are
not standard onXτ lie in Iτ .
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SinceLλ is ample one knows thatV (mλ)∗ $ k[G/Q]m for m# 0, and the latter has
a basis given by standard monomials of degreem. The monomials which are not standard
on Xτ vanish onXτ and hence onVτ (mλ), the linear span of the conêXτ ↪→ V (mλ).
Theorem 8 (applied to the weightmλ) together with Remark 12 implies that dimVτ (mλ)∗
is equal to the number of standard monomials onXτ of lengthm, so the restrictions form a
basis. This proves the linear independence form# 0. Now one can use the same arguments
as in the proof of Proposition 15 to show that the standard monomials of shapemλ on Xτ

are linearly independent for allm � 0. As a consequence, the standard monomials which
are not standard onXτ form a basis forIτ .

The proof for an opposite Schubert variety is the same, and the proof for Richardson
varieties follows from the reducedness of the scheme theoretic intersection of a Schubert
variety and an opposite Schubert variety. The basis given by the standard monomials is
compatible with intersections of the ideals, i.e., ifB

κi
τi

is the standard monomial basis
for I

κi
τi , thenB

κ1
τ1 ∩ B

κ2
τ2 is a basis forIκ1

τ1 ∩ I
κ2
τ2 . This implies immediately for a union

Xσ
κ of Richardson varieties that the standard monomialspπ , not standard onXσ

κ , form a
basis forIσ

κ . ✷

7. Filtrations of ideals and ideal sheaves

The standard monomial bases of the coordinate rings and defining ideals suggest certain
vector space decompositions: For example, letXσ

τ be a Richardson variety and supposeπ

is an L–S path of shapeλ ∈.++Q standard onXσ
τ . The standard monomials of degreem

on Xσ
τ starting withpπ are all of the formpπpπ ′ , wherepπ ′ is a standard monomial of

degree(m− 1) such that

e(π) � i(π ′) � e(π ′) � σ.

As a vector space, the space of standard monomials of degreem onXσ
τ starting withpπ can

be identified with the space of standard monomials of degree(m− 1), standard onXσ
e(π).

The aim of this section is to formulate this vector space decomposition more precisely in
terms of filtrations and associated graded modules and sheaves.

We have two types of boundaries of a Richardson varietyXσ
τ , the positiveand the

oppositeor negativeboundary:

∂+Xσ
τ =

⋃
σ�κ<τ

Xσ
κ and ∂−Xσ

τ =
⋃

σ<κ�τ

Xκ
τ .

Correspondingly, let∂+Iσ
τ ⊂ k[Xσ

τ ] be the defining ideal of∂+Xσ
τ and let∂−Iσ

τ ⊂ k[Xσ
τ ]

be the defining ideal of∂−Xσ
τ .

The standard monomials (or rather the images), standard onXσ
τ , form a basis ofk[Xσ

τ ].
By Theorem 16,∂+Iσ

τ has a basis given by the standard monomialspπ on Xσ
τ such that

i(π) = τ , and∂−Iσ
τ has a basis given by the standard monomialspπ on Xσ

τ such that
e(π)= σ .
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The partial orders on L–S paths introduced in Section 2 are not only strongly related to
theB–module structure (see Section 3) but also to the ideal structure of the homogeneous
coordinate ring of Richardson varieties.

Denote byS+τ the set of L–S paths of shapeλ such thati(π)= τ . Note that this set is
positive saturated (see Section 3) with a unique maximal element: the path(τ ).

Theorem 17. Let Xσ
τ be a Richardson variety and let∂+Xσ

τ be its positive boundary.
Consider a sequence of subsetsSj ⊂ S+τ such that|Sj | = j , (τ ) ∈ Sj for j > 0, andSj is
positive saturated for allj :

S0= ∅⊂ S1⊂ · · · ⊂ SN−1⊂ SN = S+τ .

Set(∂+Iσ
κ )j =∑

π∈Sj
k[Xτ

κ ]pπ , then the filtration byT -stable ideals

0⊂ (
∂+Iσ

κ

)
1⊂ · · · ⊂

(
∂+Iσ

κ

)
N
= ∂+Iσ

κ

is such that the subquotients are ask[Xσ
κ ]-modules andT -modules isomorphic to:

(
∂+Iσ

κ

)
j

/(
∂+Iσ

κ

)
j−1$ k

[
Xσ

e(π)

]
(−1)⊗ χ−π(1), {π} = Sj − Sj−1,

wherek[Xσ
e(π)] denotes the homogeneous coordinate ring ofXσ

e(π) ⊂Xσ
κ . The isomorphism

is induced by the graded morphism

(
∂+Iσ

κ

)
j
→ k

[
Xσ

e(π)

]
(−1),

(
pπfπ +

∑
η∈Sj−1

pηfη

)
�→ fπ |Xσ

e(π)
.

Remark 18. (i) There is a corresponding obvious version of the theorem for the ideal
∂−Iσ

κ .
(ii) If σ = id, i.e.,Xσ

κ =Xκ is a Schubert variety, then the filtration can in addition be
chosen to beB-equivariant.

(iii) If κ is the class of the longest word inW/Wλ, i.e., Xσ
κ = Xσ is an opposite

Schubert variety, then the filtration for the ideal∂−Iσ
κ can in addition be chosen to be

B−-equivariant.

Proof of Theorem 17. Consider the vector spaceJj ⊂ k[Xσ
κ ] spanned by all standard

monomials starting with apπ , π ∈ Sj , thenJj ⊂ (∂+Iσ
κ )j . SinceSj is positive saturated,

Corollary 14 implies in fact thatJj is an ideal and hence, by the definition,Jj = (∂+Iσ
κ )j .

So the latter has the standard monomials onXσ
κ starting with apπ , π ∈ Sj , as a basis.

This shows that the subquotient(∂+Iσ
κ )j /(∂

+Iσ
κ )j−1 has as basis the images of the

standard monomials onXσ
κ starting withpπ , {π} = Sj − Sj−1.

Let f = ∑
η∈Sj

pηfη be an element of(∂+Iσ
κ )j . Let π ∈ Sj be the unique element

such thatπ /∈ Sj−1. Write fπ = ∑
aηpη ∈ k[Xσ

κ ] as a linear combination of standard
monomials. Letfπ,1 =∑

aηpη be the sum of those summands in the expression above
such thatpπpη is standard, and setfπ,2= fπ − fπ,1.
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The quadratic relations (Corollary 14) imply thatpπfπ,2 ∈ (∂+Iσ
κ )j−1, and Theorem 16

shows that the restriction offπ to Xσ
e(π) coincides with the corresponding restriction

of fπ,1. It follows that the map

(
∂+Iσ

κ

)
j
→ k

[
Xσ

e(π)

]
(−1),

(
pπfπ +

∑
η∈Sj−1

pηfη

)
�→ fπ |Xσ

e(π)

is a well defined gradedk[Xσ
κ ]-module homomorphism. One checks easily that the

map is surjective, has(∂+Iσ
κ )j−1 as kernel and isT -equivariant up to a twist by

the character corresponding to the weight ofpπ . But this is the same as to say that
that the homomorphism induces an isomorphism between theT - and k[Xσ

κ ]-modules
(∂+Iσ

κ )j /(∂+Iσ
κ )j−1 andk[Xσ

e(π)](−1)⊗ χ−π(1). ✷
We consider the corresponding sheaves. LetOXσ

κ
be the structure sheaf ofXσ

κ ⊂G/Q

and let∂+Iσ
κ be the sheaf of ideals of∂+Xσ

κ ⊂Xσ
κ , we get an exact sequence

0→ ∂+Iσ
κ →OXσ

κ
→O∂+Xσ

κ
→ 0.

SinceLλ is ample, the filtration of∂+Iσ
κ (Theorem 17) provides a filtration of∂+Iσ

κ as
sheaf ofOXσ

κ
-module and as aT -sheaf (note that this generalizes Theorem 5.3 in [21]):

Corollary 19 (Pieri–Chevalley type formula).The filtration in Theorem17of the vanishing
ideal ∂+Iσ

κ induces a filtration of∂+Iσ
κ such that the associated graded sheaf is, as

T -equivariant sheaf ofOXσ
κ
-modules, the direct sum

grad∂+Iσ
κ =

⊕
OXσ

e(π)
(−1)⊗ χ−π(1)

where the sum runs over all L–S pathsπ of shapeλ, standard onXσ
κ and such that

i(π)= κ .

8. Vanishing theorems and standard monomials

As before, we assumeλ ∈.++Q . The vanishing of the higher cohomology groups proved
below can also be proved using an appropriate compatible Frobenius splitting, see [2,
Lemma 5]. But since assuming the vanishing would not shorten the proof very much and,
on the other hand, the proof shows very nicely how the different ingredients, the filtration
and the combinatorial character formula, converge now to give the desired SMT for the
cohomology groups, we decided to keep the plain SMT-theoretic proof here since it also
may serve as a model for other types of varieties.

Theorem 20. LetXσ
κ be a union of Richardson varieties.

(i) Hi(Xσ
κ ,Lmλ)= 0 for all i � 1 and all m � 1, and for an irreducible variety one has

in additionHi(Xσ
κ ,OXσ

κ
)= 0 for all i � 1.
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(ii) The standard monomials, standard onXσ
κ of degreem, form a basis forH 0(Xσ

κ ,Lmλ)

for all m � 1.

Proof. The proof is by induction on the maximal dimension of the irreducible components
and on the number of irreducible components of maximal dimension and onm. The
theorem holds if dimXσ

κ = 0.
Assume that the theorem holds for all unions of Richardson varieties of dimension

smaller thann. Suppose now dimXσ
κ = n. Consider the exact sequence

0→ ∂+Iσ
κ ⊗Lλ →OXσ

κ
⊗Lλ →O∂+Xσ

κ
⊗Lλ → 0.

Since ∂+Xσ
κ is a union of Richardson varieties of smaller dimension, the vanishing

theorem holds and henceHi(∂+Xσ
κ ,Lλ) = 0 for i � 1. Moreover, by induction, the

global sections on∂+Xσ
κ can be lifted to global sections onG/Q, so the restriction map

H 0(Xσ
κ ,Lλ)→H 0(∂+Xσ

κ ,Lλ) is surjective.
By Corollary 19, the sheaf∂+Iσ

κ ⊗ Lλ admits a filtration such that the associated
graded is just a direct sum of structure sheafs of Richardson varieties of the form
OXσ

κ ′ , whereκ � κ ′. By induction, forκ ′ < κ the vanishing for the higher cohomology
groups holds. The associated graded has only one subquotient isomorphic toOXσ

κ
, the

contribution coming from the path(κ). So the long exact sequence in cohomology splits
into isomorphismsHi(Xσ

κ ,OXσ
κ
)$Hi(Xσ

κ ,Lλ) for i � 1 and a short exact sequence

0→H 0(Xσ
κ , ∂+Iσ

κ ⊗Lλ

)→H 0(Xσ
κ ,Lλ

)→H 0(∂+Xσ
κ ,Lλ

)→ 0,

so dimH 0(Xσ
κ ,Lλ)= dimH 0(∂+Xσ

κ ,Lλ)+dimH 0(Xσ
κ , ∂+Iσ

κ ⊗Lλ). Consider the right
hand side of the equation. By induction, the first term is equal to the number of L–S paths
of shapeλ standard on∂+Xσ

κ , and the second is by the filtration equal to the number of
L–S paths of shapeλ standard onXσ

κ and such thati(π)= κ . This together is the number
of L–S paths of shapeλ standard onXσ

κ . Sincek[Xσ
κ ]1 ↪→ H 0(Xσ

κ ,Lλ), this proves that
the path vectors form a basis ofH 0(Xσ

κ ,Lλ).
Form > 1 one gets an exact sequence:

0→ ∂+Iσ
κ ⊗Lmλ →OXσ

κ
⊗Lmλ →O∂+Xσ

κ
⊗Lmλ → 0.

The same arguments as above (induction on the dimension or onm and the filtration of
∂+Iσ

κ ⊗ Lmλ) show that the associated long exact sequence in cohomology splits into
isomorphismsHi(Xσ

κ ,L(m−1)λ) $ Hi(Xσ
κ ,Lmλ) for i � 1 and a short exact sequence

for the global sections. The same counting argument as above proves that the standard
monomials form a basis ofH 0(Xσ

κ ,Lmλ). Further, fori � 1 we have isomorphisms:

Hi
(
Xσ

κ ,OXσ
κ

)$Hi
(
Xσ

κ ,Lλ

)$Hi
(
Xσ

κ ,Lmλ

)
, ∀m � 1.

SinceLλ is ample, it follows thatHi(Xσ
κ ,Lmλ)= 0 for all i � 1,m � 0.
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Suppose nowXσ
κ is a union of Richardson varieties. LetXσ

κ be an irreducible
component of maximal dimension and denoteXσ ′

κ ′ the union of the remaining irreducible
components. We have an exact sequence:

0→OXσ
κ
→OXσ

κ
⊕O

Xσ ′
κ ′
→O

Xσ ′
κ ′ ∩Xσ

κ
→ 0.

If we tensor the sequence withLmλ, m � 1, then we know by induction on the
dimension, respectively the number of irreducible components of maximal dimension that
the higher cohomology groups of the second and the last term vanish, and further, for the
global sections the last map is surjective. It follows that the higher cohomology groups
Hi(Xσ

κ ,Lmλ) vanish.
It remains to count the dimensions of the spaces of global sections. Since one

has standard monomial theory for the last two terms by induction on the dimension,
respectively the number of irreducible components of maximal dimension, one checks
easily that in fact dimH 0(Xσ

κ ,Lmλ) is equal to the number of standard monomials on
Xσ

κ of degreem. The same argument as above proves hence that the standard monomials
form a basis of dimH 0(Xσ

κ ,Lmλ). ✷

9. The non-regular case and pointed unions

Fix a dominant weightλ ∈.+Q. Note that in the general case not all results carry over.
We have the following two examples (cf. [2, remark following Lemma 5]).

ConsiderG = SL2, soG/B = P
1. Let Xσ

κ = {0,∞} be the union of the twoT -fixed
points. Then dimH 0(G/B,OG/B)= 1 but dimH 0(Xσ

κ ,OXσ
κ
)= 2, so the restriction map

for global sections is not surjective.
In P

1 × P
1, let Xσ

κ be the union of the fourP1’s: {0} × P
1, {∞} × P

1, P
1 × {0} and

P
1× {∞}, thenH 1(Xσ

κ ,OXσ
κ
) �= 0.

But we get a SMT (standard monomial theory) and vanishing theorems also in the
non-regular case for a special class of unions of Richardson varieties. In the inductive
procedure used to construct standard monomial theory, we need a class of varieties which
includes (i) all Richardson varieties, (ii) their boundaries∂+Xκ

τ and∂−Xκ
τ , and (iii) if Y is

in this class andY =X ∪ Y ′ is such thatX is irreducible andY ′ is a union of irreducible
components ofY , thenX, Y ′ ∩X andY ′ are also in this class.

The example above shows: we can expect that the global restriction map is surjective for
all varieties in this class only if it is not possible to construct a non-trivial union of points
by using the operations in (ii) and (iii). This leads to the following definition:

Definition 21. A union of Richardson varietiesY is called pointedif there exists a
κ ∈W/WQ such thatY =⋃

j X
σj
κ , or if there exists aσ ∈W/WQ such thatY =⋃

j Xσ
κj

.

Simple examples for such pointed unions are arbitrary unions of Schubert varieties or
arbitrary unions of opposite Schubert varieties. It is easy to check that the class of pointed
unions of Richardson varieties has the three properties above.
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A first step to construct SMT is the generalization of Corollary 19, but first the definition
of the boundary has to be adjusted. Forτ ∈W/WQ, setτ ≡ τ modWλ, and denotepτ the
extremal weight vector inH 0(G/Q,Lλ) corresponding to the L–S path(τ) of typeλ.

Proposition 22. LetPλ ⊃Q be the parabolic subgroup associated to the weightλ, and for
τ � κ ∈W/WQ consider the projection:

φ : Xκ
τ −→ G/Pλ

↘ ↗
G/Q

Either Xκ
τ ⊂ φ−1(eτ ), in which case the line bundleLλ|Xκ

τ
is trivial, or the preimage of

the set of zeros ofpτ below, called the boundary ofXκ
τ with respect toλ (or just the

λ-boundary), is not empty:

∂+λ Xκ
τ =

{
y ∈Xκ

τ | pτ (y)= 0
} �= ∅.

Remark 23. We use the notation∂+λ Xκ
τ in the following for the corresponding variety with

its induced reduced structure.

Proof. Let Z = φ(Xκ
τ ) be the image of theT -equivariant mapφ. If Z = eτ , thenXκ

τ ⊂
φ−1(eτ ) and the restriction ofLλ to the fibre is constant. Otherwise dimZ � 1 and henceZ
admits at least twoT -fixed points, sayeτ andeσ for someσ �= τ . Let y ∈Xκ

τ be such that
φ(y)= eσ , thenpτ (y)= pτ (eσ )= 0 and hencey ∈ ∂+λ Xκ

τ , so the latter is not empty.✷
Remark 24. Let τ be as above and let∂+Xτ =⋃

Xσi
⊂ G/Pλ be the boundary ofXτ .

Let Xσi ⊂G/Q be the preimage ofXσi , then

∂+λ Xκ
τ =

⋃(
Xκ

τ ∩Xσi

)
,

and this description as union of intersections holds scheme theoretically. In particular,
the λ-boundary is either empty or a pointed union of Richardson varieties. In view of
Proposition 22, we shall henceforth consider only thoseXκ

τ for which theλ-boundary is
non-empty.

It remains to definestandardness onXκ
τ for the non-regular case: Ifπ = (σ0, . . . , σp,

a1, . . . , ap) is an L–S path of shapeλ, thenπ is calledstandard onXκ
τ if there existlifts

σ̃0, . . . , σ̃p ∈W/WQ, i.e., σ̃i ≡ σi modWλ for all i = 0, . . . , r, such that

τ � σ̃0 � σ̃1 � · · ·� σ̃p � κ.

Such a sequence(σ̃0, . . . , σ̃p) is called adefining chain forπ (onXκ
τ ).

For theλ-boundary∂+λ Xκ
τ of the Richardson varietyXκ

τ , letI∂+λ Xκ
τ

be the corresponding
sheaf of ideals.
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Theorem 25. The twisted sheafI∂+λ Xτ
(λ) = I∂+λ Xκ

τ
⊗ Lλ admits a filtration, such that

the associated graded is isomorphic(asOXσ
κ
-sheaf and asT -sheaf) to a direct sum of

structure sheaves, twisted by a character:

gradI∂+λ Xκ
τ
(λ)$

⊕
π∈S

OXκ
e(π)
⊗ χ−π(1),

whereS is the set of all L–S pathsπ of shapeλ, standard onXκ
τ and such thati(π) ≡

τ modWλ.

The rest of this section is devoted to the proof of Theorem 25. For the rest of this
section we fix a regular dominant weightρ ∈ .++Q . Let π ∈ B(λ) be as above and let
η1, . . . , ηs, η

′
1, . . . , η

′
q ∈ B(ρ).

Definition 26. A sequenceη = (η1, . . . , ηs,π, η′1, . . . , η′q) of shape(sρ,λ, qρ), is called
standardif there exists a defining chain(σ̃0, . . . , σ̃p) for π such that

e(η1) � i(η2) � · · ·� e(ηs) � σ̃0 � · · ·� σ̃p � i(η′1) � e(η′1) � · · ·� i(η′q).

The sequenceη is calledstandard onXκ
τ if in addition τ � i(η1) (respectivelyτ � σ̃0 if

s = 0) ande(η′q) � κ (respectivelyσ̃p � κ if q = 0). The sequence(σ̃0, . . . , σ̃p) is then
called adefining chainfor η onXκ

τ .

The monomialpη = pη1 · · ·pηs pπpη′1 · · ·pη′q is calledstandard(onXκ
τ ) if the sequence

η is so. The monomial is calledstandard on a union of Richardson varietiesif it is
standard on at least one irreducible component. We have the following global basis given
by standard monomials:

Theorem 27 [20]. The standard monomials of shape(sρ,λ, qρ) form a basis for
H 0(G/Q,Lλ+(s+q)ρ) for all s, q � 0.

The notion of the final and initial direction has to be adapted to standard sequences. Let
η be a standard sequence onXκ

τ . The set of all defining chains forη on Xκ
τ is partially

ordered: We say(σ̃0, . . . , σ̃p) � (σ̃ ′0, . . . , σ̃ ′p) if and only if σ̃0 � σ̃ ′0, . . . , σ̃p � σ̃ ′p . One
knows by Deodhar’s Lemma that for this partial order there exists a unique minimal and a
unique maximal defining chain (see for example [15,16,19]).

Definition 28. If s � 1, then seti(η)= i(η1) as before. Ifs = 0, then seti(η)= σ̃0 for the
unique minimal defining chain(σ̃0, . . . , σ̃p).

If q � 1, then sete(η) = e(η′q). If q = 0, then sete(η) = σ̃p for the unique maximal
defining chain(σ̃0, . . . , σ̃p).

Remark 29. If q � 1 or s � 1, theni(η) and e(η) are independent of the Richardson
varietyXκ

τ . If q = s = 0, this is not the case: ForG= SL3, Q= B, λ= ω1, η = (id) and
Xκ

τ =X
s1s2
id , we havei(η)= (id), but forXκ

τ =X
s1s2
s1 , we havei(η)= (s1).
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Remark 30. The path model theory provides for alls, q � 0, q + s > 0, a natural weight
preserving bijection between the set of all L–S pathsπ of shapeλ + (s + q)ρ such that
i(π)= τ ande(π)= κ and the set of standard sequencesη of shape(sρ,λ, qρ) such that
i(η)= τ ande(η)= κ , see [19].

Proposition 31. The standard monomials of shape(0, λ,0) are linearly independent on a
pointed union of Richardson varietiesY . Further, for alls+q � 1, the standard monomials
onY of shape(sρ,λ, qρ) form a basis forH 0(Y,Lλ+(s+q)ρ) and the corresponding higher
cohomology groups vanish.

Proof. Theorem 20 implies forq + s � 1 that the higher cohomology groups vanish, and,
by Remark 30, the number of standard monomials, standard onY , is equal to the dimension
of H 0(Y,Lλ+(s+q)ρ). So to prove the proposition in this case, it is sufficient to show that
the standard monomials span the space of global sections. We consider only the caseq � 1,
the cases � 1 can be proved similarly.

The proof for a union of (opposite) Schubert varietiesXτ has been given in [20].
SupposeY =⋃

j Xκ
τj

is a pointed union of Richardson varieties. Denote byZ the union of
Schubert varietiesZ =⋃

j Xτj . The restriction map

H 0(Z,Lλ+(q+s)ρ)→H 0(Y,Lλ+(q+s)ρ), (4)

is surjective by Theorem 20. The standard monomials standard onY are also standard
on Z. But a standard monomialpη, standard onZ, is not standard onY if and only if
e(η) �� κ . But in this case the restriction ofpη|Y vanishes (q > 0!), so, by the surjectivity
of (4), the standard monomials, standard onY , span the space of global sections.

If Y =⋃
j X

κj
τ , then letZ be the Schubert varietyZ = Xτ . As above, the restriction

map on the global sections is surjective, and the same arguments show that a standard
monomial, standard onZ but not onY , vanishes identically onY , which finishes the proof
also in this case.

It remains to consider the caseq = s = 0. Suppose firstY = ⋃
j Xκ

τj
is a pointed

union of Richardson varieties andpπ1, . . . , pπt ∈ H 0(G/Q,Lλ) are standard onY ,
but (

∑t
i=1 aipπi )|Y = 0. The sequence(κ) is an L–S path of shapeρ, let pκ be the

corresponding path vector. By the definition of standardness, the monomialspπi pκ of
shape(0, λ,ρ) are standard onY .

It follows that the sum
∑t

i=1 aipπi pκ = 0 would be a linear dependence relation of
standard monomials of shape(0, λ,ρ), in contradiction to what has been proved above.
For Y = ⋃

j X
κj
τ the arguments are similar, instead ofpκ one takes the path vector

pτ ∈H 0(G/Q,Lρ) and deduces the linear independence of thepπ1, . . . , pπt by the linear
independence of thepτ pπ1, . . . , pτ pπt . ✷

We come now to the proof of Theorem 25.

Proof. The exact sequence 0→ I∂+λ Xκ
τ
→OXκ

τ
→O∂+λ Xκ

τ
→ 0 induces an exact sequence

0→ I∂+λ Xκ
τ
(λ)→OXκ

τ
⊗Lλ →O∂+λ Xκ

τ
⊗Lλ → 0.
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Sinceρ is regular, one gets form# 0 an induced exact sequence

0 → H 0(Xκ
τ ,I∂+λ Xκ

τ
(λ)⊗Lmρ

)
→ H 0(Xκ

τ ,Lλ+mρ

)→H 0(∂+λ Xκ
τ ,Lλ+mρ

)→ 0. (5)

DenoteS+τ the set of L–S paths of shapeλ, standard onXκ
τ and such thatπ = (τ , . . .).

This set is positive saturated, i.e., ifπ,π ′ are elements of this set andπ ′ � η � π , thenη

is an element of this set too (see Section 3). This set has a unique maximal element: the
path(τ ). By deleting step by step one element, it is possible to get a sequence of subsets

S0= ∅⊂ S1⊂ · · · ⊂ SN−1⊂ SN = S+τ

such that(τ ) ∈ Sj for all j > 0 and theSj are positive saturated for allj . Fix M # 0 so
that(5) holds for allm � M and consider theR-module

Iκ
τ (λ) :=

⊕
m�M

H 0(Xκ
τ ,Lmρ ⊗ I∂+λ Xκ

τ
(λ)

)
.

The path vectorspπ , π ∈ S+τ , are sections inH 0(Xκ
τ ,Lλ) which vanish on∂+λ Xκ

τ , this
follows immediately from the description of the boundary in Remark 24 and the fact that
thepπ vanishes on∂+Xτ . Set

(
Iκ
τ (λ)

)
j
=

∑
π∈Sj

( ∑
m�M

H 0(Xτ
κ ,Lmρ

)
pπ

)
,

then (Iκ
τ (λ))j is a T -stableR-submodule ofIκ

τ (λ) and hence this defines a filtration of
Iκ
τ (λ) by T -stableR-submodules

0⊂ (
Iκ
τ (λ)

)
1⊂ · · · ⊂

(
Iκ
τ (λ)

)
N
= Iκ

τ (λ).

The middle term in the short exact sequence (5) has as basis the standard monomials of
shape(0, λ,mρ), standard onXκ

τ , and the last term has as basis the standard monomials
of shape(0, λ,mρ), standard on∂+λ Xκ

τ (see Proposition 31). LetI (λ+mρ) be the set of
standard monomials of shape(0, λ,mρ), standard onXκ

τ but not standard on∂+λ Xκ
τ . These

are the standard monomials of the formpη = pπpη′ , π ∈ S+τ andpη′ of shapemρ. These
monomials vanish on∂+λ Xκ

τ . It follows that thepη , η ∈ I (λ+mρ), form a basis of the first
term.

The next step is to prove that the basis is compatible with the filtration. So suppose
pπ ∈ H 0(Xκ

τ ,Lλ) is such thatπ ∈ S+τ and letpη be a path vector inH 0(Xκ
τ ,Lρ) and

standard onXκ
τ . Suppose the monomialpπpη of shape(0, λ,ρ) is not standard onXκ

τ .
Sinceρ ∈.++, this implies automatically that the product is not standard on the Schubert
varietyXτ . Now the quadratic relations in [21, Theorem 3.13], show:

pπpη =
∑
π ′,η′

bπ ′,η′pπ ′pη′
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gives a presentation of the product as linear combination of standard monomials, standard
on Xτ , where(π ′, η′) � (π,η) �r (π ′, η′). Such a standard monomialpπpη is then not
standard onXκ

τ if and only if e(η′) �� κ , in which case the monomial vanishes onXκ
τ . But

this implies that we have the same type of relation for non-standard products also onXκ
τ

and hence:

pπpη =
∑

(π ′,η′)�(π,η)�r (π ′,η′)
bπ ′,ηpπ ′pη′ , all pπ ′pη′ are standard onXκ

τ . (6)

The setsSj are positively saturated, and hence (as in the regular case) the subspace spanned
by elements of degreem in thej th filtration part:(

Iκ
τ ,m(λ)

)
j
=H 0(Xκ

τ ,I∂+λ Xκ
τ
(λ)⊗Lmρ

)
j

has a basis given by the standard monomials, standard onXκ
τ , starting with apπ , π ∈ Sj .

Let {π} = Sj − Sj−1. As in the regular case, the map

(
Iκ
τ ,m(λ)

)
j
→H 0(Xκ

e(π),Lmρ

)
,

(
pπfπ +

∑
η∈Sj−1

pηfη

)
�→ fπ |Xκ

e(π)

induces an isomorphism(Iκ
τ ,m(λ))j /(Iκ

τ ,m(λ))j−1→H 0(Xτ
e(π),Lmρ). Since this holds for

all m � M, this induces a filtration of the sheaf

0⊂ (
I∂+λ Xκ

τ
(λ)

)
1⊂

(
I∂+λ Xκ

τ
(λ)

)
2⊂ · · · ⊂

(
I∂+λ Xκ

τ
(λ)

)
N
= I∂+λ Xκ

τ
(λ)

such that the associated graded is isomorphic to the direct sum

gradI∂+λ Xκ
τ
(λ)=

⊕
π∈S

OXκ
e(π)
⊗ χ−π(1). ✷

10. SMT in the non-regular case

We have the following generalization of Theorem 20 to the non-regular case:

Theorem 32. Supposeλ ∈ .+Q is a dominant weight and letY be a pointed union of
Richardson varieties.

(i) Hi(Y,Lmλ)= 0 for all i � 1 and allm � 1.
(ii) The standard monomials, standard onY of degreem, form a basis forH 0(Y,Lmλ) for

all m � 1.

Proof. We give only a sketch of the proof form= 1 (respectivelym= 0 in (i)), the case
m � 2 can be proved in the same way as in the regular case. The proof of the appropriate
version of Proposition 31 for monomials of type(sρ,mλ,qρ) is the same.
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The proof is (as in the regular case) by induction on the number of components of
maximal dimension and on the dimension. The theorem holds obviously in caseY is a
point. We assume now that the theorem holds for all pointed unions of Richardson varieties
of dimension smaller thann. SupposeXσ

κ is of dimensionn and consider the projection
φ :Xσ

κ →G/Pλ.
If ∂+λ Xσ

κ = ∅, thenXσ
κ ⊂ p−1(eκ) by Proposition 22, and the restriction of the line

bundle toXσ
κ is trivial. The theorem holds obviously in this case in view of Theorem 20.

If ∂+λ Xσ
κ �= ∅, then the inclusionI∂+λ Xσ

κ
↪→ OXσ

κ
, tensored byLλ, induces an exact

sequence

0→ I∂+λ Xσ
κ
(λ)→OXσ

κ
⊗Lλ →O∂+λ Xσ

κ
⊗Lλ → 0. (7)

Since∂+λ Xσ
κ is a pointed union of Richardson varieties of smaller dimension, the vanishing

theorem for higher cohomology groups holds, i.e., fori � 1 we haveHi(∂+λ Xσ
κ ,Lλ)= 0.

By Theorem 25, the sheafI∂+λ Xσ
κ
(λ) admits a filtration such that the associated graded sheaf

is isomorphic to a direct sum of sheaves of the formOXσ
e(π)
⊗ χ−π(1). Now Theorem 20(i)

states thatHi(Xσ
κ ,OXσ

κ
) = 0 for all i � 1, we conclude by the long exact sequence

associated to the filtration thatHi(Xσ
κ ,I∂+λ Xσ

κ
(λ)) = 0 for all i � 1. So the long exact

sequence associated to the short exact sequence(7) shows thatHi(Xσ
κ ,Lλ) = 0 for all

i � 1. Further, the short exact sequence

0→H 0(Xσ
κ ,I∂+λ Xσ

κ
(λ)

)→H 0(Xσ
κ ,Lλ

)→H 0(∂+λ Xσ
κ ,Lλ

)→ 0

shows dimH 0(Xσ
κ ,Lλ) = dimH 0(∂+λ Xσ

κ ,Lλ) + dimH 0(Xσ
κ ,I∂+λ Xσ

κ
(λ)). Consider the

right hand side of the equation. By induction, the first term is equal to the number of
L–S paths of shapeλ standard on∂+λ Xσ

κ , and the second is by the filtration equal to the
number of L–S paths of shapeλ standard onXσ

κ and such thati(π)= κ . This together is
the number of L–S paths of shapeλ standard onXσ

κ . Since we have already proved that the
restrictions of the corresponding path vectors remain linearly independent (Proposition 31),
this proves that the path vectors form a basis ofH 0(Xσ

κ ,Lλ).
The proof for a pointed union of Richardson varieties proceeds now as at the end of the

proof of Theorem 20. ✷
Remark 33. The result (i) in Theorem 32 is also proved in [2] (cf. [2, Proposition 1]).

11. Standard monomials and equivariant K-theory

In this section we will show that the notion of a “standard monomial” is directly related
to geometry of Richardson varieties, and this can be best expressed in terms of equivariant
K-theory.

The Chow ring Chow(G/B) has aZ-basis consisting of[Xτ ], the class in Chow(G/B)

defined by the cycle represented by the Schubert varietyXτ , τ ∈ W . Let λ ∈ . (=
the weight lattice),Lλ the associated line bundle. The class[c1(Lλ)] is defined by a
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codimension one cycle. We have, the following expression for the product[Xτ ] · [c1(Lλ)]
in the Chow ring:

(1) [Xτ ] · [c1(Lλ)] =
∑

ai[Xτi ]

where the summation runs over all Schubert divisorsXτi in Xτ ; further, one has an explicit
expression forai due to Chevalley (cf. [3]). WhenG = SL(n), (1) is just the classical
formula of Pieri.

Denote byK(G/B) the Grothendieck ring of (isomorphism classes of) coherent sheaves
onG/B. Then one knows that the classes[OXτ ] in K(G/B) of the structure sheavesOXτ

of the Schubert varietiesXτ form aZ-basis ofK(G/B). Let

(2) [OXτ ] · [Lλ] =
∑
κ∈W

aλ
τ,κ [OXκ ].

More generally, letKT (G/B) be the Grothendieck ring ofT -equivariant sheaves onG/B.
By [11] one knows again that the classes[OXτ ]T of the structure sheaves of the Schubert
varieties form aZ[.]-basis, whereZ[.] is the group algebra of the weight lattice.. Let

(3) [OXτ ]T · [Lλ]T =
∑
κ∈W

Cλ
τ,κ [OXκ ]T

whereCλ
τ,κ ’s are formal sums of characters ofT with integral coefficients. Assume now

that λ ∈ .+. Then one knows that in (1) allai � 0 (cf. [3]). The integersaλ
τ,κ in (2)

were determined by Fulton and Lascoux (cf. [7]) for the caseG= SL(n); they provide a
formula foraλ

τ,κ (using the combinatorics of Grothendieck polynomials). The general case
was treated by Mathieu using representation theory (cf. [23]), who shows thatCλ

τ,κ are
effective i.e., formal sums of characters with positive integral coefficients. For an L–S path
π = (τ1 > · · · > τr;a1 < · · · < ar) we set the initial direction asi(π) = τ1 and the final
directione(π)= τr .

We assume for simplicity thatλ is regular dominant. Using the path model theory, Pittie
and Ram (cf. [24]) gave an explicit determination ofCλ

τ,κ ’s:

(4) [OXτ ]T · [Lλ]T =
∑

i(π)�τ

[OXe(π)
]T eπ(1)

where the summation runs over L–S pathsπ of shapeλ.
An effective version of the relation (4) is proved in [21] by constructing a filtration

F := {F i} for OXτ ⊗ Lλ by B-equivariantOG/B -modules such that each subquotient, as
aB-equivariantOG/B -sheaf, is isomorphic toOXe(π)

⊗ χ−π(1), the structure sheafOXe(π)
,

twisted by the character−π(1) of B, for a suitableπ such thati(π) � τ .
Fixing aκ � τ , we obtain from (4) that the coefficient of[OXκ ]T on the right-hand side

of (4) equals ∑
{π |τ�i(π),e(π)=κ}

eπ(1).
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Using the results of the preceding sections, we give this character a representation theoretic
interpretation. By tensoring the exact sequence

0→ I∂−Xκ
τ
→OXκ

τ
→O∂−Xκ

τ
→ 0

by Lλ, and writing the cohomology exact sequence, we get the exact sequence

0→H 0(Xκ
τ ,I∂−Xκ

τ
(λ)

)→H 0(Xκ
τ ,Lλ

)→H 0(∂−(Xκ
τ ),Lλ

)→ 0.

Hence we obtain dimH 0(Xκ
τ ,I∂−Xκ

τ
(λ)) = #{pπ | i(π) � τ, e(π) = κ}. Since these

vectors form a basis for the kernel of the second map, it follows that{pπ | i(π) � τ, e(π)=
κ} is actually a basis ofH 0(Xκ

τ ,I∂−Xκ
τ
(λ)). In the non-regular case, we have to work with

theλ-boundary∂−λ Xκ
τ in the place of∂−Xκ

τ . Thus we obtain

Theorem 34. With notations as above, letλ be dominant. We have

Cλ
τ,κ = CharH 0(Xκ

τ ,Lλ ⊗ I∂−Xκ
τ

)
,

aλ
τ,κ = #

{
π L–S path, shapeλ | τ � i(π), e(π)= κ

}
.

The above result is also proved in [1] using a flat family with generic fiber∼= diag(Xτ )⊂
Xτ ×Xτ , and the special fiber∼=⋃

x�τ Xx ×Xx
τ . We will give a different construction of

the flat family using SMT. Again the connection can be most directly established in the
language of equivariantK-theory.

Let Xκ
τ ⊂ G/Q be a Richardson variety. On the one hand, consider the Richardson

varietyXκ
τ diagonally embedded inZ =G/Q×G/Q, we writeFXκ

τ for this variety. On
the other hand, consider the subvariety

Y =
⋃

κ∈W/WQ
κ�σ�τ

Xκ
σ ×Xσ

τ ⊂Xκ
τ ×Xκ

τ ⊂Z.

We denote the corresponding structure sheavesOFXκ
τ
, respectivelyOY ; we are interested

in describing their classes in the Grothendieck groupKT (Z) of T -equivariant coherent
sheaves ofOZ-modules onZ. It turns out that these are intimately related to the notion of
standard monomials.

The existence of a filtration and a flat family as in Theorem 35 below is also proved
in [2]. The existence of a filtration is proved in [1] for any Cohen–Macaulay subvariety
X of a flag variety, in general position with respect to opposite Schubert varieties (note
that the assumptions onX hold for Schubert varieties). It is interesting to note that while
in this paper the existence of a filtration and a flat family in Theorem 35 is obtained
as a consequence of SMT, in [2] it is the starting point towards developing a SMT! It
should be pointed out that the construction of the flat family in [2] is much more direct
and explicit. The point of the approach used here is: the quadratic straightening relations
(Theorem 13, Corollary 14) deform into the most simple form one can imagine: any
product of monomials which is non-standard is zero. So the main point in presenting the
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approach here is to give an explicit link between the Gröbner basis style touch of SMT and
the K-theory of flag varieties. The construction here can be viewed as a special case of
the more general theory developed by Chrivi of deformations of LS-algebras into discrete
LS-algebras, see [4].

Theorem 35. In KT (Z), the following equality of classes ofT -equivariant coherent
sheaves ofOZ-modules holds:

[OFXκ
τ
]T = [OY ]T =

∑
σ∈W/WQ
κ�σ�τ

[
∂+Iκ

σ ⊗OXσ
τ

]
T
=

∑
σ∈W/WQ
κ�σ�τ

[
OXκ

σ
⊗ ∂−Iσ

τ

]
T
.

More precisely, there existT -stable filtrations ofOY as sheaf ofOZ-modules, such that
the associated graded is the direct sum of the sheaves∂+Iκ

σ ⊗OXσ
τ
, respectively the direct

sum of the sheavesOXκ
σ
⊗ ∂−Iσ

τ , whereκ � σ � τ .
Further, there exists a flatT -equivariant family of subvarieties ofZ with basis the affine

line, such that the generic fibre is isomorphic to the diagonal Richardson varietyFXκ
τ , and

the special fibre isY .

Proof. We use again the correspondence between graded modules over the homogeneous
coordinate ring and coherent sheaves. Fix a (Q-regular) dominant weightλ ∈ .++Q and
let Bκ

τ (nλ) be the set of standard sequences of lengthn of L–S paths of shapeλ, standard
onXκ

τ .
DenoteR̂ the homogeneous coordinate ring corresponding to the embeddingZ ↪→

P(H 0(Z,Lλ ⊗Lλ)∗), so that

R̂ =
⊕
n�0

H 0(Z,Lnλ ⊗Lnλ),

and letR̂κ
τ be the quotient:

R̂κ
τ =

⊕
n�0

H 0(Xκ
τ ,Lnλ

)⊗H 0(Xκ
τ ,Lnλ

)=⊕
n�0

H 0(Xκ
τ ×Xκ

τ ,Lnλ ⊗Lnλ

)
.

Consider forn � 1 the subspace (this is definitely not an ideal)

SMκ
τ (λ)n =

〈
pπ1 ⊗ pπ2 | π1,π2 ∈Bκ

τ (nλ), pπ1pπ2 standard inH 0(Xκ
τ ,L2nλ)

〉
and setSMκ

τ (λ)0= k. Consider the graded vector space:

SMκ
τ (λ)=

⊕
n�0

SMκ
τ (λ)n.

We will present two ways to make this graded vector space into a gradedR̂-module.
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First note that the subvarietyY is a union of Richardson varieties (for the groupG×G

with Borel subgroupB × B). So by Theorem 20, the following restriction map isT -
equivariant, surjective, and maps the subspaceSMκ

τ (λ) isomorphically onto its image:

R̂ κ
τ → R̂Y =

⊕
n�0

H 0(Y,Lnλ ⊗Lnλ).

The kernel is in this case also easy to describe: If the productpπ1pπ2 is not standard, then
e(π1) �� i(π2) ande(π2) �� i(π1); hence eitherpπ1|Xκ

σ
≡ 0 orpπ2|Xσ

τ
≡ 0. It follows that

the restriction ofpπ1 ⊗ pπ2 on all irreducible componentsXκ
σ ×Xσ

τ vanishes. Since the
tensor productspπ1⊗pπ2, π1,π2 ∈Bκ

τ (nλ), form a basis, it follows that the kernel of the
map is spanned by allpπ1 ⊗ pπ2 such thatπ1,π2 ∈Bκ

τ (nλ) andpπ1pπ2 is not standard in
H 0(Xκ

τ ,L2nλ).
Summarizing, by theT -equivariant graded vector space isomorphism ofSMκ

τ (λ)→ R̂Y

we have endowedSMκ
τ (λ) in a T -equivariant way with the structure of an̂R-module.

Next consider the product map

R̂κ
τ → R̂FXκ

τ
=

⊕
n�0

H 0(FXκ
τ ,Lnλ ⊗Lnλ

)
.

Again by Theorem 20, this map induces aT -equivariant isomorphism of graded vector
spacesSMκ

τ (λ)→ R̂FXκ
τ
, so this induces a different structure asR̂-module onSMκ

τ (λ).
Consider theZ[.]-linear mapχλ : KT (Z) → Z[.] defined on the class of aT -

equivariant coherent sheafF as follows:

χλ

([F ])=∑
i�0

(−1)i CharHi
(
Z,F ⊗OZ

(Lλ ⊗Lλ)
)
.

If two elements ofKT (Z) do not coincide, say
∑

aF [F ] �=
∑

aF ′ [F ′], then it is well
known (see for example [21]) that there exists ann ∈N such that

χnλ

(∑
aF [F ]

)
�= χnλ

(∑
aF ′

[
F ′

])
.

Now by the vanishing of the higher cohomology (Theorem 20) and theT -equivariant
graded vector space isomorphisms above, we get:

χnλ(OY )= CharSMκ
τ (λ)n = χnλ(OFXκ

τ
)

and hence[OY ] = [OFXκ
τ
] in KT (Z).

Next fix a numerationκ = σ1, σ2, . . . , τ = σq of the elements betweenκ andτ such that
σj > σi impliesj > i. SetY j =⋃

1�i�j Xκ
σi
×X

σi
τ , so we get a filtration

Y 1=Xκ
κ ×Xκ

τ ⊂ Y 2⊂ · · · ⊂ Y q = Y.
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SetR̂Y (j)=⊕
n�0 H 0(Y j ,Lnλ ⊗Lnλ), this ring again has a basis consisting of standard

monomials. SetK1 = R̂Y , and, for j = 1, . . . , q , let Kj+1 ⊂ R̂Y be the kernel of the
restriction map̂RY → R̂Y (j). We get a filtration

Kq+1= 0⊂Kq ⊂ · · · ⊂K2⊂K1= R̂Y .

The kernelsKj have again a basis by standard monomials. In fact, recall the basis elements
pπ1 ⊗ pπ2 in SMκ

τ (λ), thenKj is spanned by those such thati(π1)= σi for somei � j .
Consider the map

Kj →H 0(Xκ
σj
×X

σj
τ ,Lnλ ⊗Lnλ

)
, s �→ s|

Xκ
σj
×X

σj
τ

.

It follows immediately thatKj+1 is the kernel of this map, and, by the proof of
Theorem 34, we get an isomorphism ofR̂-modules:

Kj/Kj+1$
⊕
n�0

H 0(Xκ
σj

,I∂+Xκ
σj

(nλ)
)⊗H 0(X

σj
τ ,Lnλ).

Since all these maps areT -equivariant, translated into the language of sheaves ofOZ-
modules, this means that the filtration of̂RY induces aT -stable filtration ofOY asOZ-
sheaf such that the associated graded is a direct sum of theT -equivariantOZ-sheaves
I∂+Xκ

σj
⊗O

X
σj
τ

.

The proof for the second filtration is similar and is left to the reader. To describe the flat
family note that the kernel of the product map

R̂κ
τ → R̂FXκ

τ
=

⊕
n�0

H 0(FXκ
τ ,Lnλ ⊗Lnλ

)

is the ideal generated by the commutation relationspπ1 ⊗ pπ2 − pπ2 ⊗ pπ1 for all
π1,π2 ∈ Bκ

τ (λ), and if neitherpπ1pπ2 nor pπ2pπ1 is standard inH 0(Xκ
τ ,L2λ), then we

have the additional relations

pπ1 ⊗ pπ2 −
∑

aη1,η2pη1 ⊗ pη2

where thepη1pη2 are standard and the coefficientsaη1,η2 �= 0 only if (η1, η2) � π1 ∧
π2 �r (η1, η2). This follows easily from Theorem 13, using a monomial order as in
Proposition 15. Further, these elements form a reduced Gröbner basis for the ideal. The
existence of the flat deformation follows now from standard Gröbner basis arguments.✷
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