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Abstract

In this paper we study the existence of positive solutions for a nonlinear Dirichlet problem
involving the m-Laplacian. The nonlinearity considered depends on the first derivatives; in
such case, variational methods cannot be applied. So, we make use of topological methods to
prove the existence of solutions. We combine a blow-up argument and a Liouville-type
theorem to obtain a priori estimates. Some Harnack-type inequalities which are needed in our
reasonings are also proved.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this work we are concerned with the existence of positive solutions for the
problem:
Apu+f(x,u,Vu) =0, xeQ, )
u(x) =0, xeoQ,

where Q< R" is a bounded smooth domain, 4,,u = div(|Vu|" *Vu) stands for the
usual m-Laplacian, 1<m<N, and f: Q x R x RY >R is a nonnegative continuous
function. Observe that problem (1) does not have, in general, a variational structure.
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The main assumption on the function f is the following, which will be referred
throughout the paper as [F]:

u’ — M|"|“<f(xauan)<60up +M|7I|a7
[F] Y (x,u,n)eQ x R x RY, where ¢g=1, M >0,

pe(m—1,m,—1) and oce(m— 1,1%).

Here we denote m, = % Note that under [F], u = 0 is always a solution for (1).

Similar problems have been very studied in the literature, especially when m = 2,
see for instance the classical papers [5] (where the conditions assumed on f are
stronger than [F], even if we restrict ourselves to the case m = 2) and [8] (where f
does not depend on the derivatives and some other technical conditions are imposed;
in exchange, f is allowed to exhibit any subcritical growth). In [24], a very similar
problem is treated in the framework of uniformly elliptic operators (for the case of
systems of equations, see [9]). Azizieh and Clément have recently studied the m-
Laplacian case, but under some additional conditions; f does not depend on x nor
Vu, l<m<2, and Q is a convex domain. The main feature of this work is to remove
all these conditions. We also prove some Harnack-type inequalities which may be
useful in the study of similar problems.

Another related paper is [16], where problem (1) is also considered, but under
different hypotheses on the nonlinearity f.

In order to prove the existence of positive solutions for (1), we will use a degree
argument which was first used by Krasnoselskii [13] (see also [8]). The main
ingredients of our arguments are some a priori estimates on the pairs (u, 1) solving
the problem:

{Amu—l—f(x,u,Vu)+i—07 xeQ, 2)

u(x) =0, xeoQ

with 4>0 and ue C'(Q).

First, we prove that (2) has no solution at all when 4>/, for a certain 4y positive.
We use an argument involving the Picone identity for the m-Laplacian (see [1]).

Most part of the paper is devoted to obtaining a priori estimates (in the L™ sense)
on the weak solutions of (2) when A€[0,4y]. These a priori estimates will be
accomplished by using a blow-up technique, together with Liouville-type theorems
(that is, nonexistence results of positive solutions for the so-called “limit problems™).
This kind of argument was first used in [12], where the authors made use of the
nonexistence of positive solutions for the two problems (see [11,12] respectively).

Au+u’ =0 in RV, (3)

{AM+LI1’—0 in H,,

u(x)=0 in O0H,, 4)
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where 1<p<¥+2and H, = {x = (x1, ..., xy) eR": x; >0} is a halfspace in R".
Mitidieri and Pohozaev proved in [15] that the problem:

Apu + 1’ <0 (5)

has no positive solution in RY when pe (m — 1,m, — 1). However, as far as we know,
there is no Liouville-type result for the generic m-Laplacian in the halfspace. This is
the main difficulty we have to face.

Suppose, reasoning by contradiction, that there exists a divergent sequence (in the
L* norm) of solutions u, of (2). Take x, a point at which u,, attain their maxima. As
shown in [12], the blow-up method provides a solution in a halfspace when the points
x, approach sufficiently fast (in comparison with the L% norm of u,) to the
boundary of Q.

In [4], the authors assume that Q is convex and that 1 <m<2; in that case, they use
the moving plane method (as developed in [6] for the m-Laplacian) to find out that
the sequence x,, cannot approach to the boundary. Then they use the nonexistence
result [15].

We use here the same blow-up technique but centered on a certain fixed point
Yo €Q, instead of x,. First of all, we have to verify that u,(yy) > o0 when n— co. In
order to do that, we will compare the values of u, in different points in Q through
some Harnack-type inequalities. One of these inequalities is due to Trudinger [22],
the other being proved in this work, Section 2, by using ideas from Serrin and Zou
(see [19]).

Using this procedure, the corresponding problem will be defined in RY, and we
obtain a contradiction with the Liouville result [15]. To the best of the author’s
knowledge, this variant of the blow-up technique is entirely new in the study of this
type of problems. In our opinion, these arguments may also be used in other
frameworks.

At the end of the paper we use the sub—super solutions method in order to
establish a Ambrosetti—Prodi-type result for problem (2), that is, to study the
existence of at least two solutions, depending on the parameter A.

2. Harnack inequalities

In this section we state the Harnack inequalities given by Theorems 2.3 and 2.4,
which will be needed in next section. The first one is a convenient extension of the
Theorem 4.1 in [19], whereas the second one is due to Trudinger [22].

We first state and prove some lemmas which will be useful to prove Theorem 2.3.
Here and throughout all the paper, C stands for a positive constant which may vary
from one expression to another, but is always independent of u.

Lemma 2.1. Let u be a positive weak C' solution of the inequality:

Azt — M|Vl (6)
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in a domain QcRY, where p>m—1 and m—1<oz<]%. Take ye(0,p) and

UE (O,mepl). Let Ry>0 be fixed, and 0<R<Ry. Denote by Bgr a ball of radius R

such that By is included in Q.
Then, there exists a positive constant C = C(N,m,p,y, u, Ry) such that

/ W< CRmey/(erlfm)’ (7)
Br

i |Vu\“gCRN*(p“)"/(”“*’")_ (8)
R

Remark. Lemma 2.1 is a generalization of Lemma 2.4 of [19] (that lemma treated the
inequality —A4,,u>=u” instead of (6); see also [15]). We just sketch the proof, since it
basically uses the same ideas. The only difference is that now we have a new term to
be estimated.

Proof. We can suppose that the ball Bg is centered at zero. We first focus on

proving (7).
Let ¢ be a radially symmetric C? cut-off function on B,(0), that is:

1. £(x) =1 for |x| <.
2. ¢ has compact support in B,(0) and 0<é<1.
3. |V¢IL2.

Let d = p—y>0. We take ¢ = [¢(x/R)*u~? as a test function for inequality (6)
(we will fix k later), and obtain:

d/ ékuyfp71|vu|m + / ékuyg / uﬂl|vu‘m—l|v§IC| + M/ éku*qu\“
Q Q Q Q
Now we give some estimates by using the Young inequality in the form
1
ab<ea? + b/ @) yg>1, £>0.

Observe that |VEF| = k& 1| VE| <& 2k/RE. Using the above Young’s inequality
with an appropriate &, we have

— d ” m — — —
/uid |vu|m l|v€k|<_£ku,—p71|vu| + CR m/ ék myy r’
Q 2 Q
where we denote » = p + 1 — m. Therefore, we have

d e ., _ . _
E/ .fku’ p—1 |vu|m+/ gyku"SCR m/ (fk ) r+M/ fku d‘vulz. (9)
Q Q Q Q
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Inequality (9) is very similar to expression (2.8) in [19]; the only difference is that
now a second term on the right appears.

We want now to estimate the two right terms of the previous expression.

Step 1: If y = r, the arguments in step 2 together with (9) give (7). Moreover, if
y<r, we apply Holder inequality to obtain

v/r
/u"’SCRN(l_"’)/’</ u"> .
BR BR

So, we obtain the desired estimate, thanks to the case y = r.
Let us focus on the case y>r. Choose k = my/r, and apply the Young inequality
to obtain

1 ) .
R—nz/ﬁk—muy—rg_/6kuy_|_CRN—m,/r.
Q 3 Q

Step 2: We are interested now in the second right term of (9). Using again the
Young inequality, we obtain

d .
u_d|Vu|a<Z PVl + Cu?,

where ¢ = (—d — a2=1)- 2 Thus, we have

d )
M/fku_d|Vu|“<—/fku’_”_l|Vu|m+C/§ku‘/’.
Q 4 Q Q

By using the inequality o <%, one can easily conclude that ¢ <y. Then we can

deduce from the Young inequality that

/ éku‘/’él / & + CRV.
Q 3 Q

Summing up the results of the two preliminary steps, and taking into account (9),
we have

d ., 1 N -
r} /Qf"“"*””lwﬁ 3 /Qé"u'<CRN i (10)

(recall that R< Ry). The proof of (7) is complete.
To prove (8), first note that u<m. Use Holder inequality to get

u/m N =u/m
|w|"<(/ u‘f’f’1|W|’"> (/ u> ,
Br Bgr Br

where 7= (p+ 1 — y)p/(m — p). Since ,u<[%, we can choose y close enough to p — 1

such that y<p. Combining (7) and (10) (now referred to the first term on the left) we
deduce the desired inequality. [
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In next lemma we state a result of Harnack type due to Serrin (see Theorem 5 in
[18]). The formulation we give is exactly that of Lemma 4.2 in [19].

Lemma 2.2. Let u be a nonnegative weak solution in a domain Q of:
[ Aa] < )| Vu" - d (0" + £ (),

where ce LY (Q), d, feL!(Q), ¢ >N and ge(N/m,N/(m —1)).
Then, for every R such that Byg = Q, there exists C depending on

N, m, g, ¢, RN el RN (d]|,

such that

sup u< C<inf u+ RmN/‘1|[f||Lq>.
Bgr Br

Now, we derive our Harnack inequality from the previous lemmas:

Theorem 2.3. Suppose that u defined in a domain Q is a positive weak solution of the
inequality:

' — M|Vul* < Ayu<cou + M|Vul* + A

with m<p+ 1<m., m—1<a<mp/(p+ 1) and 2>0. Let R< Ry such that Bor<=Q.
Then, there exists C = C(N,m,p,o, Ry, M) such that

sup u< C(igf u+ R’”Z) .

Br

Remark. Theorem 2.3 is a version of Theorem 4.1(b) in [19] (in that theorem, only
the case & = m — 1 is considered).

Proof. We use Lemma 2.2 with / = 2, ¢ = M|Vu|* """ and d = cou?*'~". Then, it
suffices to prove that

RV f]|,, < CIR", RN lell <€, RN Jd]], < C

for certain C>0. To do that, we will use Lemma 2.1.
The first inequality is proved straightforward:

RmfN/qu»HLq(BZR) _ Rm—N/qCRN/qi — CAR™.

We now treat the second one. As explained in [19], we can assume at first that
Byg = Q: after that it is easy to prove the same results (increasing C) when Byr < Q.
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As in Lemma 2.1, we write r = p + 1 — m.

7 Nl
Hdhu&M::AILA |Vuw} <CR 1
2R

In the above expression we have written u = ¢'(« — m + 1) (for some ¢’ > N not yet
fixed) and we have used Lemma 2.1. To do that, we need to verify that u<mp/(p +
1). Tt suffices to show that N(o — m + 1) <1% and to choose ¢’ > N close enough to

N. Since a <22 we just need to verify

\m,
NP )<
+1 p+1

This last inequality is equivalent to p<m, — 1, and therefore ,u<l% for an
appropriate ¢’ > N.
Hence we can write
. e+
R!- /qlchL‘l'(Bm)<CR 7

For that expression to be bounded (when R<R;) we just need to show that
1—%20, but this holds by using the inequality a<mp/(p + 1) (recall that

=g —m+1).
Now we prove R"~N/4||d||,, < C. Assuming again that Bsg = Q, we obtain:

/q N —mg)
L4(Bg) = €0 {/B u}} < CRW—m4)/4
2R

provided y<p, where we denote y = (p + 1 — m)g<p. As before, taking ¢g>N/m as
close as necessary to N/m, it suffices to show that (p + 1 — m)N/m<p. But this last
inequality is equivalent to p<m, — l<(p+ 1 —m)N/m<p.

The proof is complete. [

\ld

In Section 3 we will also make use of the following weak Harnack inequality, due
to Trudinger [22].

Theorem 2.4. Let u=0 be a weak solution of the inequality A,u<0 in Q. Take
yel[l,m,—1) and R>0 such that Byr<=Q. Then there exists C = C(N,m,7y)
(independent of R) such that

. -n/y
lng u=CR™ ||u||LV'(BZR)'
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3. A priori estimates

As we mentioned before, in this section we are interested in obtaining a priori
estimates using a blow-up procedure. Actually, we are interested in the problem:

{ Apu~+f(x,u,Vu) + 21 =0, xeQ,

u(x) =0, xeoQ. (1)

As we shall see in next section, the parameter A will be used to make an
appropriate homotopy. Hence we are interested in studying the a priori bounds for a
solution of (11). Since we are going to use a degree argument as in [8], we will also
need the nonexistence of solutions of (11) for 1 large. To do that, we will use the
following lemma.

Lemma 3.1. Let u be a positive solution of the problem:

{ —Apu=h(x)=0, xeQ,
(x) =0, xe0Q.

Then

/h S)Ll/(pm

where 1 is the first eigenvalue of the m-Laplacian with Dirichlet boundary conditions,
and ¢, is the associated eigenfunction.
Moreover, the equality holds if and only if u(x) = a¢,(x) for some a>0.

This inequality is an easy consequence of the Picone identity for the m- Laplacian,
see Theorem 1.1 in [1] (see also [3], Lemma 24). Observe that -2 it belongs to W ?(Q)

since u is positive in Q and has nonzero outward derivative on the boundary because
of the Hopf lemma (see [23]).

Proposition 3.2. There exists Ay >0 such that problem (11) has no positive solutions for
any A= 4.

Proof. Suppose that u is a positive solution for (11). Previous lemma yields that

/Q[f(xuVu)erl 1\;Ll/ o

Define

. A+
l:mln{tm—l' t>0}
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One can even give an explicit expression of / =/(1), and it is easy to show that
lim,_, ,/(A) = co. Using previous definition and property [F], it follows:

Wl m

/[f(x 0 V) + 7] S /[|u|P—M\w|“+u i
Q Q

> / MV -2 / o

= — /M|Vu| 11\ (1 =1) /¢1 (12)

We claim that the left integral expression is bounded below. If so, (12) provides a
bound for /, and therefore for 1 (recall that lim,_, ., /(1) = o).
In order to prove the claim, we use the same arguments developed in the proof of

Lemma 2.1. We use now as a test function the quotient y = -7L;, which belongs to

WO1 "(Q) as we explained above. We will argue as in the proof of Lemma 2.1, with
E=¢,,R=1,k=m,y=r=p—m+1and d =m — 1. By multiplying by the test
function ¥/, we obtain

_1 /¢m 7m|vu|m+/¢rlnup7m+l
Q
< / T Vg + M

Note that V¢, is bounded in Q. So, we can estimate the first right expression by
using an trivial version of the Young inequality (x<ex? + C, with a> 1, C depending
on ¢) we obtain, analogously to (9):

o [ e+ [gremt<cn [ gt (13)
¢} Q
We can argue exactly as in step 2 (Lemma 2.1), to conclude that
1
/ d)m 1— m|vu‘ < / d)m —mlvulm +§ / ¢;lnup7m+1 + C. (14)
Q

Using again the Young inequality, and combining the previous inequality with
(13) (analogously to (10)), we get

/ ¢71n *m‘vulm /(bmup m+l<C

Thus, (14) provides us with the desired bound, and the claim is proved. O

We now give a priori estimates on the solutions u of (11), when /1 is bounded.
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Proposition 3.3. Assume that [F] holds, and that A</l for some Ay fixed. Then, there
exists C>0 such that ||u|| < C for any C' solution u of (11), where || - || denotes the
uniform norm.

Proof. Suppose, by contradiction, that there exist 1,<4¢, u,>0 such that u, is
solution of (11) with 4 substituted by 4,, and that ||u,||— co.

We will use a blow-up argument to get a contradiction. Usually, the blow-up
technique is always used around the points x, in which u, attain their maxima.
However, in so doing it may happen that d(x,, 9Q)—0; as we mentioned in the
introduction, in that case we may get into trouble.

In this proposition we make the blow-up procedure around a fixed point y, in Q.
To do that, we first need to assure that u,(yy) — oo, which is the main difficulty of
this proof. After that, we will use the Harnack inequalities to prove some uniform
estimates, which are needed to show the convergence of the method.

Let x, be a point in Q such that u,(x,) = ||u,|| = S,. Denote 9, = d(x,,0Q). In
order to prove that u,(yy) — co for some yyeQ, we proceed in several steps:

Step 1: There exists ¢>0 such that ¢<3,S? ™" ™™™ This will be accomplished by a
blow-up argument around the maxima x,.. As we shall see, we will not need to pass to
the limit, but to use some regularity results. Here (and through the rest of the paper),
we use ¢ to denote positive constants, which may vary from one expression to
another, but are always independent of n. Define

wn(x) = S, (),

where y = M,x + x, and M, >0 will be defined later. The functions w, are well
defined at least in B(0,5,M, '), and w,(0) = ||w,|| = 1.
Easy computations show that

Vwa(x) = S, "M, Vu,(»),

AWy (x) = S,l""M,’,"Amun(y).
Note that the above equality must be understood in the weak sense. Then, we have
— A () = S, M (S (0 tn (), Vit () + )
=SIMM(fF(Myx 4 Xy Suwn(X), SuM, N wi (X)) + A)

=0,(x,w,, Vwy,).

m—1—p
We choose M,, =S, ™ . Note that since p>m — 1, M,, —»0. Using condition [F],
we obtain

s
10, (x, w, O)| < colw” + MS,?S, ™ |{]" + AnS,7. (15)
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ptl
Observe that the term MS,; I’SZ ™ tends to zero as n tends to infinity. Moreover,
since 4,57 also converges to 0,

10, (x, w, )| <colw]’ +1¢" + 1 (16)

for n large enough. In fact, we can deduce from [F] that

s
0u(x,w,0) —WP> — MS; 7Sy ™ |{* + AnS;? —0. (17)

Now we use a C'* regularity result up to the boundary due to Lieberman [14], to
conclude from (16) that ||[Vw,||<C for certain C>0 independent of n. We now
argue as in [12]. Let y, €0Q such that d(x,,y,) = J,; then, by using the mean value
theorem,

L= wa(0) = wa( M, (v — xa)) <[Vl [ M, 10, < CM,; 0,
The proof of step 1 is concluded.

Remark. Observe that if M, '8, is unbounded, passing to the limit (and taking into
account (17)), we would obtain a weak (C') positive solution for the problem

Apu+1" <0 in RY, (18)

contradicting the Liouville result of [15]. However, we cannot study in such way the
case M, 15, bounded. If we did, we would obtain a positive solution in a halfspace,
as in [12]; since we do not know if such solutions may exist or not, we do not arrive
to a contradiction. That is the reason why we develop a blow-up argument around a
fixed point ye Q.

Step 2: There exists ye(0,m, — 1) such that

/ |uy|” = 0.
B(x1,6,/2)

First, we use Theorem 2.3 in that ball:

m

S,= max u,<C| min u,+ 4,=2|.
B(Xp,0,/2) B(x4.61/2) 2m

Since 4, and 6, are bounded, we have that ming s, /2 =cS, for certain ¢>0.
Using that inequality and step 1, we obtain

n-n

/ |uay | >CS7(3N;cS;Sr(lm—l_p)N/m-
B(xn:(sn/z)
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It is easy to show now that

(p+1-—m)N

<m,—1 < p<m,—1.

Thus we can choose (p+ 1 —m)N/m<y<m, — 1, and the claim is proved.

Step 3: There exists yo€Q such that u,(yo)— 0. We now need to use the
smoothness of the boundary of @ (in fact, C? regularity suffices). So, we can find
>0, y,€Q such that:

® d(y,,0Q) = 2¢ for all neN.
® B(x,,0,/2)<=B(yy,2¢) for all neN.

The fact that ¢ can be chosen independent of n is due to the compactness and
regularity of 0Q. We now use Theorem 2.4 and step 2 to conclude

1/y
min u,>c / |w,|” - + 0.
B(yne) B(yn,2¢)

Taking a subsequence if necessary, we can assume that y, — yoe Q. For n large, we
have that yye B(yn, ¢), and hence u,(yg) > + 0.

Remark. Observe that, in particular, u,(y) » + oo for any ye B(yo, ¢/2). In fact, it is
easy to prove, by using Harnack inequality (Theorem 2.3), that u,(y) » + oo for any
yeQ.

Once we have found y;eQ such that u,(y9) — oo, we make use of the blow-up
technique around y,. Let S, = u,()9), and define

wa(x) = (S) ' (v),

m—1—p

where y = M,x + yo and M,, = S, ™

Our intention is now to pass to the limit when n— co. To do that, we first need an
uniform bound on the sequence w,. Observe that, when using blow-up around the
maxima of u,, we immediately get ||w,|| = 1. This type of bound is needed to obtain
uniform C'7* estimates, which are essential in the proof of the convergence of the
sequence.

Take & =d(y9,02)>0. We apply then the Harnack inequality given in
Theorem 2.3, to obtain

max u,<C| min wu, + 4,(6/2)"].
B(x0,0/2) B(x0:6/2)

It follows that max g yz15/2) W <C, and clearly M15/2— + 0.
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Define then
20(x) = {wn(x), |)c\<1\7[-n“5/27
0, otherwise.

We can now apply the usual convergence argument (see [12], for instance) to the
sequence z, taking into account that z, < C. Fixed a ball B(0, R) =R", we can take n
large enough so that 2R<3M; '5/2. We use the definition of 0, given in the step 1 of
this proof, but with S,, M, substituted by S,, M,. Note that the expressions (15),
(34) and (15) are also valid here (when S, is replaced with S,,).

Hence, we can use the regularity result [10,21] (which is possible thanks to (16)) to
conclude that ||z,|| . <C in B(0, R) for certain C independent of n. Therefore, z,
converges in the C' norm (up to a subsequence) to a certain function zy. Observe that
z0(0) = 1. Applying (17) with |x|< M, 'd/2, we obtain that:

s -
00(X, 24, Vz,) — 2= — MS, 7S, ™ C*+ 2,8, >0 (n—> o0).

Thus, zj is a nonnegative (weak) solution of the problem 4,,z9 + 25 <0 in B(0, R).
The strong maximum principle of Vazquez [23] yields that wy is actually positive in
that ball.

Since R is arbitrary, using a diagonal procedure, we can take a subsequence (still
denoted by z,) such that z, converge to zy in compact sets of R” (in the norm C'),
where z( is now defined in all R". Then, we obtain that z, is a positive solution of
problem (18), which is a contradiction with [15]. [

4. Existence results and final remarks

In this section we prove the existence of positive solutions for (1). In order to do
that, we use a version of a theorem of Krasnoselskii [13] (see also [8]) about the
existence of fixed points on compact operators defined in a cone. As we shall see,
Propositions 3.2 and 3.3 will be needed.

Theorem 4.1. Let € be a cone in a Banach space and K : € —% a compact operator
such that K(0) = 0. Assume that there exists r>0, verifying:

(@) utK(u) for all ||ul]| =r, te]0,1].

Assume also that there exist a compact homotopy H :[0,1] x € > €, and R>r such
that:

(bl) K(u) = H(0,u) for all ue®.
(b2) H(t,u)#u for any ||u|| = R, t€[0,1].
(®3) H(1,u)#u for any ||u||<R.

Let D = {ue®: r<||u||<R}. Then, K has a fixed point in D.
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Proof. We only sketch the proof, since these type of results are well-known
(see [8,13]). Denote by iy the topological index in the cone %, and B; = B(0,5)N%
for any s>0 (for a definition and the properties of the topological index in cones,
see [7]).

First of all, hypothesis (b3) implies that iyx(H(l,-),Bgr) =0. By using the
homotopy H (and (b1l)-(b2)), we deduce that iy (K, Bg) is also zero. However,
ix(K,B,) =1 because of condition (a). Then, the excision property of the index
yields that ig(K, D) = —1, and hence K must have a fixed point in D. [

Let us state some notations. We consider C(Q) as a Banach space equipped with
the uniform norm || - ||, and C'*(Q) with the usual Holder norm || - || o

For each function ve C(Q), we denote by T'(v) e C'**(Q) the unique weak solution
of the problem:

AnT(v) +v=0

with zero Dirichlet conditions in the boundary of €. It is well known that
T:C(Q)— C'*(Q) is a continuous operator, and maps bounded sets into bounded
sets (see Lemma 1.1 in [4], for instance).

Define N : C1*(Q)— C(Q), N(u) = f(x,u, Vu). From the continuity of f and the
compactness of the inclusion C1*(Q) < C!(Q), we deduce that N is compact.

Define also K = ToN : C'¥(Q)— C'*(Q), which is also compact.

We denote by ¥ C'*(Q) the subset of nonnegative functions. Clearly, % is a
cone. Moreover, K maps % into % because of the maximum principle (in fact, if
ue® — {0}, then K(u) is strictly positive). We are interested in finding nontrivial
fixed points of K in %.

We finally state the main result of this paper:

Theorem 4.2. Consider the problem:

{ Apu+f(x,u,Vu) =0, xeQ, (19)

u(x) =0, xeoQ,

where Q is a bounded C* domain in RN, 1<m<N and f is a nonnegative continuous
function verifying [F]. Then, (19) has at least one positive solution.

Proof. We use Theorem 4.1. First, let us verify condition (a):

Take u in % — {0} such that u = ¢K(u) for certain 7€0,1]. We rewrite this
equality as

At + "7 (x4, Vi) = 0 (20)
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with zero Dirichlet boundary conditions. We multiply by u and integrate to obtain

/|Vu|’”:t’”_]/f(x,u,Vu)gco/up“ —|—M/ |Vu|"u
Q Q Q Q
(p+1)/m o/m (m—a)/m
< C(/ |Vu|m) +</ |Vu|m> (/ u’”/<’”“))
Q Q Q
(p+1)/m (a+1)/m
(™o)™
Q Q

In the previous computations we have used Holder and Poincaré inequalities, as
well as condition [F]. Now, since p + | >m, o+ 1 >m, we deduce that there exists
¢>0 such that [, |Vu|">c. Hence we can choose r>0 small enough such that
|[u]| c1- <r = [, |Vul" <¢; condition (a) is then proved.

We define H:[0,1] x €—>% as H(t,u) = T[N (u) + th] where Ay is given by
Proposition 3.2. Obviously, the image of H is contained in %, again because of the
maximum principle and C'7 estimates.

Condition (bl) of Theorem 4.1 is clearly verified. To prove (b2), observe that the
equality H(z,u) = u is equivalent to

<C

Apu+f(x,u, Vu) +thg =0 (21)

with zero Dirichlet boundary conditions in Q. In Proposition 3.3 we proved that the
solutions of such problem are a priori bounded in their uniform norm. Making use
again of the C'7 estimates [14], we deduce that we can find R>0 such that all
solutions of (21) verify the inequality ||u||~. <R. Condition (b2) is then verified.

Finally, Proposition 3.2 clearly implies that (b3) holds (in fact, for any u€%). The
proof is complete. [

Remark. We can also use some continuation ideas in the spirit of [17] to prove the
existence of a continuum of solutions. Specifically, define

S ={(Au)eR x €: u is solution of (11)}.

Taking condition (a) into account, we can argue exactly as in the Appendix of [4]
to prove the existence of a connected set .o/ =% joining the trivial solution (0,0) and
(0,u) where u is a positive solution for (1).

In the next theorem we make use of the sub-super solutions method to prove an
Ambrosetti-Prodi type result (see [2]), under a certain additional condition on f.

Theorem 4.3. Under the same hypotheses of Theorem 4.2, consider the boundary value
problem:

{Amu+f(x,u,Vu) +1=0, xeQ,

u(x) =0, xeoQ, (22)
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where 2=0. As a consequence of Theorem 4.2, there exists 2* >0 such that (22) has a
solution if and only if A<A™.
Assume also that f satisfies that, for each R>0, there exists u>0 such that:

fCe,u,n) + ud" is increasing in u, 0<u<R

for any xeQ, neRN. Then, for any loe[0,)"), there exist at least two different
solutions for (22).

Proof. Take u* a solution of problem (22) for A = 2%, R = ||u*||, and fix 0< Ay <A".
Define g(x,u,n) = Ao +f(x,u,n) + p™~" which is increasing in u, if 0<u<R.
Clearly, the functions 0 and u* are sub and super solutions (respectively) for the
problem

{ _Amu + ﬂu’n71 = g(x, u, Vu)a XEQ, (23)

u(x) =0, xe0Q.

Define Q,:%—% given by QO,(u) =w, where w is the unique solution of the
problem:

{ _AHIW + MW”171 = g(X, u, V”)v er?
u(x) =0, xe0Q.

In order to use the sub-super solution method, we need to prove some
monotonicity properties on Q,. In fact, we claim that if u,ve¥%, u<v, ||v||<R,
then Q,(u) < Q,(v).

Reasoning by contradiction, assume that there exist u, ve®, ||v|| <R, u<v, such
that the functions w = Q,(u), z = Q,(v) verify that / = max{w — z} >0. Take R>0
such that |[Vu(x)| <R, |Vuv(x)|<R for all xeQ.

We choose //2<k<I arbitrarily close to /; we shall use the test function ¢ =
(w—z—k)". Clearly, ¢ is zero outside the compact set A = {xeQ: w(x) —
z(x) =k}

Take an arbitrary &>0, and choose an appropriate 6>0 such that
g(x,u,n)<g(x,v,&) + ¢ for all (x,u,v,n,&)ek:

K = {(X,“,Uvﬂvf)eAl/z X [OvR]Z X B%{ u<v, |17 - £|<5}7

where By stands for the ball in R centered at zero and with radius R.
Note that Vz = Vw in 4;, and

o0
A= ﬂ Ai_1/n-
n=1

So, we can choose k = k(J) close enough to / such that |Vz(x) — Vw(x)|<¢ for
every x € Ay.
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We now use the test function ¢ in the weak equalities:

_Amw"i_,uWM7l = g(xv u, Vu), (24)

_Amz + 'umel = g(x7 v, VU) (25)

Integrating in Q and subtracting, we obtain

/ (VW™ Vw — [Vz|" V2] - (Vw — Vz) + / Wl — 21
Ak

A

- /[g(x,u,Vu)—g(xw,VU)](ﬁ-
Ay

The first summand in the right term is positive (in fact, more precise estimates are
known, see for instance [20]). So, we can write:

i [ =2 s [ gt Vi) - gl Volgs [ o
Ay Ay Ay
Note that in Ay, w—z=k>1/2; so, it suffices to take ¢ small enough so that
p(w™=1 — zm=1y>¢ to get a contradiction. The claim is proved.
Note that we would have obtained also a contradiction if, instead of (24), (25), one
assumes the inequalities:

—Apw + ! <g(x,u, Vu),

— Az + 2" 2 g(x, v, Vo).

So, we can follow a typical iterating procedure to assure the existence of a solution
up for (23), 0<up<u* (actually, up>0 in Q).

In order to prove the existence of another solution, we argue by contradiction,
assuming that uy is the unique solution for (23). Since "> 1y, we can choose ¢>0
small such that the function u* + ¢ is also a super-solution for (23). By hypothesis,
there are no solutions in the boundary of the set:

U ={ueC: u(x)<u'(x) +¢ VxeQ}.

Then, the index ix(Q,, %) is well defined and, in fact, ix(Q,, %) = 1. To prove that, it
suffices to use the homotopy:

H:[0,1] x%—%, H(t,u) =t0,(u)

and to take into account that Q, (%)<= (due to the monotonicity of Q).
Since the fixed points of the operators O, do not depend on u, we can use the
homotopy

[Ohu] X €3 (lv u) '_’Ql(u)
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to show that iyx(Qp, %) = 1. But in Theorem 4.2 we proved that iy (Qy, Br) =
ix(K,Bgr) =0, and it implies the existence of another solution which yields the
desired contradiction. [

Open Problem. An interesting open problem is the case with higher exponents,
specifically m, — 1<p<m* — 1 where m* = 2 is the Sobolev critical exponent for

the inclusion W (Q)< 17(Q). In [19] Serrin and Zou proved Liouville type results
for the problem:

Api+ 1 =0 in RY

for pe(m — 1,m* — 1). However, it seems difficult to obtain the a priori estimates in
the same way we have done here.
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