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Abstract

In this paper we study the existence of positive solutions for a nonlinear Dirichlet problem

involving the m-Laplacian. The nonlinearity considered depends on the first derivatives; in

such case, variational methods cannot be applied. So, we make use of topological methods to

prove the existence of solutions. We combine a blow-up argument and a Liouville-type

theorem to obtain a priori estimates. Some Harnack-type inequalities which are needed in our

reasonings are also proved.
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1. Introduction

In this work we are concerned with the existence of positive solutions for the
problem:

Dmu þ f ðx; u;ruÞ ¼ 0; xAO;

uðxÞ ¼ 0; xA@O;

�
ð1Þ

where OCRN is a bounded smooth domain, Dmu ¼ divðjrujm�2ruÞ stands for the

usual m-Laplacian, 1omoN; and f :O� R� RN-R is a nonnegative continuous
function. Observe that problem (1) does not have, in general, a variational structure.
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The main assumption on the function f is the following, which will be referred
throughout the paper as [F]:

½F


up � MjZjapf ðx; u; ZÞpc0up þ MjZja;
8 ðx; u; ZÞAO� R� RN ; where c0X1; M40;

pAðm � 1;m� � 1Þ and aA m � 1; mp
pþ1

� �
:

2
664

Here we denote m� ¼ mðN�1Þ
N�m

:Note that under [F], u 
 0 is always a solution for (1).

Similar problems have been very studied in the literature, especially when m ¼ 2;
see for instance the classical papers [5] (where the conditions assumed on f are
stronger than [F], even if we restrict ourselves to the case m ¼ 2) and [8] (where f

does not depend on the derivatives and some other technical conditions are imposed;
in exchange, f is allowed to exhibit any subcritical growth). In [24], a very similar
problem is treated in the framework of uniformly elliptic operators (for the case of
systems of equations, see [9]). Azizieh and Clément have recently studied the m-
Laplacian case, but under some additional conditions; f does not depend on x nor
ru; 1omp2; and O is a convex domain. The main feature of this work is to remove
all these conditions. We also prove some Harnack-type inequalities which may be
useful in the study of similar problems.

Another related paper is [16], where problem (1) is also considered, but under
different hypotheses on the nonlinearity f :

In order to prove the existence of positive solutions for (1), we will use a degree
argument which was first used by Krasnoselskii [13] (see also [8]). The main
ingredients of our arguments are some a priori estimates on the pairs ðu; lÞ solving
the problem:

Dmu þ f ðx; u;ruÞ þ l ¼ 0; xAO;

uðxÞ ¼ 0; xA@O

�
ð2Þ

with lX0 and uAC1ð %OÞ:
First, we prove that (2) has no solution at all when l4l0 for a certain l0 positive.

We use an argument involving the Picone identity for the m-Laplacian (see [1]).
Most part of the paper is devoted to obtaining a priori estimates (in the LN sense)

on the weak solutions of (2) when lA½0; l0
: These a priori estimates will be
accomplished by using a blow-up technique, together with Liouville-type theorems
(that is, nonexistence results of positive solutions for the so-called ‘‘limit problems’’).
This kind of argument was first used in [12], where the authors made use of the
nonexistence of positive solutions for the two problems (see [11,12] respectively).

Du þ up ¼ 0 in RN ; ð3Þ

Du þ up ¼ 0 in Hþ;

uðxÞ ¼ 0 in @Hþ;

�
ð4Þ
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where 1opoNþ2
N�2 and Hþ ¼ fx ¼ ðx1;y;xNÞARN : x140g is a halfspace in RN :

Mitidieri and Pohozaev proved in [15] that the problem:

Dmu þ upp0 ð5Þ

has no positive solution in RN when pAðm � 1;m� � 1Þ:However, as far as we know,
there is no Liouville-type result for the generic m-Laplacian in the halfspace. This is
the main difficulty we have to face.

Suppose, reasoning by contradiction, that there exists a divergent sequence (in the
LN norm) of solutions un of (2). Take xn a point at which un attain their maxima. As
shown in [12], the blow-up method provides a solution in a halfspace when the points
xn approach sufficiently fast (in comparison with the LN norm of un) to the
boundary of O:

In [4], the authors assume that O is convex and that 1omp2; in that case, they use
the moving plane method (as developed in [6] for the m-Laplacian) to find out that
the sequence xn cannot approach to the boundary. Then they use the nonexistence
result [15].

We use here the same blow-up technique but centered on a certain fixed point
y0AO; instead of xn: First of all, we have to verify that unðy0Þ-N when n-N: In
order to do that, we will compare the values of un in different points in O through
some Harnack-type inequalities. One of these inequalities is due to Trudinger [22],
the other being proved in this work, Section 2, by using ideas from Serrin and Zou
(see [19]).

Using this procedure, the corresponding problem will be defined in RN ; and we
obtain a contradiction with the Liouville result [15]. To the best of the author’s
knowledge, this variant of the blow-up technique is entirely new in the study of this
type of problems. In our opinion, these arguments may also be used in other
frameworks.

At the end of the paper we use the sub–super solutions method in order to
establish a Ambrosetti–Prodi-type result for problem (2), that is, to study the
existence of at least two solutions, depending on the parameter l:

2. Harnack inequalities

In this section we state the Harnack inequalities given by Theorems 2.3 and 2.4,
which will be needed in next section. The first one is a convenient extension of the
Theorem 4.1 in [19], whereas the second one is due to Trudinger [22].

We first state and prove some lemmas which will be useful to prove Theorem 2.3.
Here and throughout all the paper, C stands for a positive constant which may vary
from one expression to another, but is always independent of u:

Lemma 2.1. Let u be a positive weak C1 solution of the inequality:

�DmuXup � Mjruja ð6Þ
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in a domain OCRN ; where p4m � 1 and m � 1pao mp
pþ1: Take gAð0; pÞ and

mA 0; mp
pþ1

� �
: Let R040 be fixed, and 0oRoR0: Denote by BR a ball of radius R

such that B2R is included in O:
Then, there exists a positive constant C ¼ CðN;m; p; g; m;R0Þ such thatZ

BR

ugpCRN�mg=ðpþ1�mÞ; ð7Þ

Z
BR

jrujmpCRN�ðpþ1Þm=ðpþ1�mÞ: ð8Þ

Remark. Lemma 2.1 is a generalization of Lemma 2.4 of [19] (that lemma treated the
inequality �DmuXup instead of (6); see also [15]). We just sketch the proof, since it
basically uses the same ideas. The only difference is that now we have a new term to
be estimated.

Proof. We can suppose that the ball BR is centered at zero. We first focus on
proving (7).

Let x be a radially symmetric C2 cut-off function on B2ð0Þ; that is:

1. xðxÞ ¼ 1 for jxjp1:
2. x has compact support in B2ð0Þ and 0pxp1:
3. jrxjp2:

Let d ¼ p � g40: We take f ¼ ½xðx=RÞ
ku�d as a test function for inequality (6)
(we will fix k later), and obtain:

d

Z
O
xkug�p�1jrujm þ

Z
O
xkugp

Z
O

u�d jrujm�1jrxkj þ M

Z
O
xku�d jruja

Now we give some estimates by using the Young inequality in the form

abpeaq þ e
1

1�qbq=ðq�1Þ 8q41; e40:

Observe that jrxkj ¼ kxk�1jrxjpxk2k=Rx: Using the above Young’s inequality
with an appropriate e; we haveZ

O
u�d jrujm�1jrxkjpd

2
xkug�p�1jrujm þ CR�m

Z
O
xk�mug�r;

where we denote r ¼ p þ 1� m: Therefore, we have

d

2

Z
O
xkug�p�1 jrujm þ

Z
O
xkugpCR�m

Z
O
xk�mug�r þ M

Z
O
xku�d jruja: ð9Þ
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Inequality (9) is very similar to expression (2.8) in [19]; the only difference is that
now a second term on the right appears.

We want now to estimate the two right terms of the previous expression.
Step 1: If g ¼ r; the arguments in step 2 together with (9) give (7). Moreover, if

gor; we apply Hölder inequality to obtain

Z
BR

ugpCRNð1�gÞ=r

Z
BR

ur

� 	g=r

:

So, we obtain the desired estimate, thanks to the case g ¼ r:
Let us focus on the case g4r: Choose k ¼ mg=r; and apply the Young inequality

to obtain

R�m

Z
O
xk�mug�rp

1

3

Z
O
xkug þ CRN�mg=r:

Step 2: We are interested now in the second right term of (9). Using again the
Young inequality, we obtain

u�d jrujapd

4
ug�p�1jrujm þ Cuj;

where j ¼ �d � a g�p�1
m


 �
m

m�a: Thus, we have

M

Z
O
xku�d jrujapd

4

Z
O
xkug�p�1jrujm þ C

Z
O
xkuj:

By using the inequality ao mp
pþ1

; one can easily conclude that jog: Then we can

deduce from the Young inequality thatZ
O
xkujp

1

3

Z
O
xkug þ CRN :

Summing up the results of the two preliminary steps, and taking into account (9),
we have

d

4

Z
O
xkug�p�1jrujm þ 1

3

Z
O
xkugpCRN�mg=r ð10Þ

(recall that RpR0). The proof of (7) is complete.
To prove (8), first note that mom: Use Hölder inequality to get

Z
BR

jrujmp
Z

BR

ug�p�1jrujm
� 	m=m Z

BR

u%g
� 	1�m=m

;

where %g ¼ ðp þ 1� gÞm=ðm � mÞ: Since mo mp
pþ1

; we can choose g close enough to p � 1

such that %gop: Combining (7) and (10) (now referred to the first term on the left) we
deduce the desired inequality. &
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In next lemma we state a result of Harnack type due to Serrin (see Theorem 5 in
[18]). The formulation we give is exactly that of Lemma 4.2 in [19].

Lemma 2.2. Let u be a nonnegative weak solution in a domain O of:

jDmujpcðxÞjrujm�1 þ dðxÞum�1 þ f ðxÞ;

where cALq0 ðOÞ; d; fALqðOÞ; q04N and qAðN=m;N=ðm � 1ÞÞ:
Then, for every R such that B2RCO; there exists C depending on

N; m; q; q0; R1�N=q0 jjcjjLq0 ; Rm�N=q jjdjjLq

such that

sup
BR

upC inf
BR

u þ Rm�N=qjjf jjLq

� 	
:

Now, we derive our Harnack inequality from the previous lemmas:

Theorem 2.3. Suppose that u defined in a domain O is a positive weak solution of the

inequality:

up � MjrujapDmupc0up þ Mjruja þ l

with mop þ 1om�; m � 1papmp=ðp þ 1Þ and l40: Let RpR0 such that B2RCO:
Then, there exists C ¼ CðN;m; p; a;R0;MÞ such that

sup
BR

uoC inf
BR

u þ Rml
� 	

:

Remark. Theorem 2.3 is a version of Theorem 4.1(b) in [19] (in that theorem, only
the case a ¼ m � 1 is considered).

Proof. We use Lemma 2.2 with f ¼ l; c ¼ Mjruja�mþ1 and d ¼ c0u
pþ1�m: Then, it

suffices to prove that

Rm�N=qjj f jjLqoClRm; R1�N=q0 jjcjjLq0oC; Rm�N=q jjdjjLqoC

for certain C40: To do that, we will use Lemma 2.1.
The first inequality is proved straightforward:

Rm�N=qjj f jjLqðB2RÞ ¼ Rm�N=qCRN=ql ¼ ClRm:

We now treat the second one. As explained in [19], we can assume at first that
B4RCO: after that it is easy to prove the same results (increasing C) when B2RCO:
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As in Lemma 2.1, we write r ¼ p þ 1� m:

jjcjjLq0 ðB2RÞ ¼ M

Z
B2R

jrujm
� 
1

q0

pCR
N�ðpþ1Þm=r

q0 :

In the above expression we have written m ¼ q0ða� m þ 1Þ (for some q04N not yet
fixed) and we have used Lemma 2.1. To do that, we need to verify that momp=ðp þ
1Þ: It suffices to show that Nða� m þ 1Þo mp

pþ1
and to choose q04N close enough to

N: Since ap mp
pþ1; we just need to verify

N
mp

p þ 1
� m þ 1

� 	
o

mp

p þ 1
:

This last inequality is equivalent to pom� � 1; and therefore mo mp
pþ1

for an

appropriate q04N:
Hence we can write

R1�N=q0 jjcjjLq0 ðB2RÞpCR
1�ðpþ1Þm

rq0 :

For that expression to be bounded (when RpR0) we just need to show that

1� ðpþ1Þm
rq0 X0; but this holds by using the inequality apmp=ðp þ 1Þ (recall that

m ¼ q0ða� m þ 1Þ).
Now we prove Rm�N=qjjdjjLqoC: Assuming again that B4RCO; we obtain:

jjdjjLqðB2RÞ ¼ c0

Z
B2R

ug
� 
1=q

pCRðN�mqÞ=q

provided gop; where we denote g ¼ ðp þ 1� mÞqop: As before, taking q4N=m as
close as necessary to N=m; it suffices to show that ðp þ 1� mÞN=mop: But this last
inequality is equivalent to pom� � 13ðp þ 1� mÞN=mop:

The proof is complete. &

In Section 3 we will also make use of the following weak Harnack inequality, due
to Trudinger [22].

Theorem 2.4. Let uX0 be a weak solution of the inequality Dmup0 in O: Take

gA½1;m� � 1Þ and R40 such that B2RCO: Then there exists C ¼ CðN;m; gÞ
(independent of R) such that

inf
BR

uXCR�n=gjjujjLgðB2RÞ:
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3. A priori estimates

As we mentioned before, in this section we are interested in obtaining a priori
estimates using a blow-up procedure. Actually, we are interested in the problem:

Dmu þ f ðx; u;ruÞ þ l ¼ 0; xAO;

uðxÞ ¼ 0; xA@O:

�
ð11Þ

As we shall see in next section, the parameter l will be used to make an
appropriate homotopy. Hence we are interested in studying the a priori bounds for a
solution of (11). Since we are going to use a degree argument as in [8], we will also
need the nonexistence of solutions of (11) for l large. To do that, we will use the
following lemma.

Lemma 3.1. Let u be a positive solution of the problem:

�Dmu ¼ hðxÞX0; xAO;

uðxÞ ¼ 0; xA@O:

�

Then Z
O

hðxÞ fm
1

um�1
pl1

Z
O
fm
1 ;

where l1 is the first eigenvalue of the m-Laplacian with Dirichlet boundary conditions,
and f1 is the associated eigenfunction.

Moreover, the equality holds if and only if uðxÞ ¼ af1ðxÞ for some a40:

This inequality is an easy consequence of the Picone identity for the m-Laplacian,

see Theorem 1.1 in [1] (see also [3], Lemma 24). Observe that
fm
1

um�1 belongs to W
1;p
0 ðOÞ

since u is positive in O and has nonzero outward derivative on the boundary because
of the Hopf lemma (see [23]).

Proposition 3.2. There exists l040 such that problem (11) has no positive solutions for

any lXl0:

Proof. Suppose that u is a positive solution for (11). Previous lemma yields thatZ
O
½ f ðx; u;ruÞ þ l
 fm

1

um�1
pl1

Z
O
fm
1 :

Define

l ¼ min
lþ tp

tm�1
: tX0

� �
:
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One can even give an explicit expression of l ¼ lðlÞ; and it is easy to show that
liml-NlðlÞ ¼ N: Using previous definition and property [F], it follows:

Z
O
½ f ðx; u;ruÞ þ l
 fm

1

um�1
X

Z
O
½jujp � Mjruja þ l
 fm

1

um�1

X �
Z
O
½Mjruja
 fm

1

um�1
þ l

Z
O
fm
1

) �
Z
O
½Mjruja
 fm

1

um�1
pðl1 � lÞ

Z
O
fm
1 : ð12Þ

We claim that the left integral expression is bounded below. If so, (12) provides a
bound for l; and therefore for l (recall that liml-N lðlÞ ¼ N).

In order to prove the claim, we use the same arguments developed in the proof of

Lemma 2.1. We use now as a test function the quotient c ¼ fm
1

um�1; which belongs to

W
1;m
0 ðOÞ as we explained above. We will argue as in the proof of Lemma 2.1, with

x ¼ f1; R ¼ 1; k ¼ m; g ¼ r ¼ p � m þ 1 and d ¼ m � 1: By multiplying by the test
function c; we obtain

ðm � 1Þ
Z
O
fm
1 u�mjrujm þ

Z
O
fm
1 up�mþ1

p
Z
O

mfm�1
1 u�ðm�1Þjrujm�1jrf1j þ M

Z
O
fm
1 u1�mjruja:

Note that rf1 is bounded in %O: So, we can estimate the first right expression by
using an trivial version of the Young inequality (xoexa þ C; with a41; C depending
on e) we obtain, analogously to (9):

m � 1

2

Z
O
fm
1 u�mjrujm þ

Z
O
fm
1 up�mþ1pC þ M

Z
O
fm
1 u1�mjruja: ð13Þ

We can argue exactly as in step 2 (Lemma 2.1), to conclude thatZ
O
fm
1 u1�mjrujapm � 1

4

Z
O
fm
1 u�mjrujm þ 1

2

Z
O
fm
1 up�mþ1 þ C: ð14Þ

Using again the Young inequality, and combining the previous inequality with
(13) (analogously to (10)), we get

m � 1

4

Z
O
fm
1 u�mjrujm þ 1

2

Z
O
fm
1 up�mþ1pC:

Thus, (14) provides us with the desired bound, and the claim is proved. &

We now give a priori estimates on the solutions u of (11), when l is bounded.
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Proposition 3.3. Assume that [F] holds, and that lol0 for some l0 fixed. Then, there

exists C40 such that jjujjoC for any C1 solution u of (11), where jj � jj denotes the

uniform norm.

Proof. Suppose, by contradiction, that there exist lnol0; un40 such that un is
solution of (11) with l substituted by ln; and that jjunjj-N:

We will use a blow-up argument to get a contradiction. Usually, the blow-up
technique is always used around the points xn in which un attain their maxima.
However, in so doing it may happen that dðxn; @OÞ-0; as we mentioned in the
introduction, in that case we may get into trouble.

In this proposition we make the blow-up procedure around a fixed point y0 in O:
To do that, we first need to assure that unðy0Þ-N; which is the main difficulty of
this proof. After that, we will use the Harnack inequalities to prove some uniform
estimates, which are needed to show the convergence of the method.

Let xn be a point in O such that unðxnÞ ¼ jjunjj ¼ Sn: Denote dn ¼ dðxn; @OÞ: In
order to prove that unðy0Þ-N for some y0AO; we proceed in several steps:

Step 1: There exists c40 such that codnS
ðpþ1�mÞ=m
n : This will be accomplished by a

blow-up argument around the maxima xn: As we shall see, we will not need to pass to
the limit, but to use some regularity results. Here (and through the rest of the paper),
we use c to denote positive constants, which may vary from one expression to
another, but are always independent of n: Define

wnðxÞ ¼ S�1
n unðyÞ;

where y ¼ Mnx þ xn and Mn40 will be defined later. The functions wn are well

defined at least in Bð0; dnM�1
n Þ; and wnð0Þ ¼ jjwnjj ¼ 1:

Easy computations show that

rwnðxÞ ¼ S�1
n MnrunðyÞ;

DmwnðxÞ ¼ S1�m
n Mm

n DmunðyÞ:

Note that the above equality must be understood in the weak sense. Then, we have

�DmwnðxÞ ¼S1�m
n Mm

n ð f ðy; unðyÞ;runðyÞÞ þ lnÞ

¼S1�m
n Mm

n ðf ðMnx þ xn;SnwnðxÞ;SnM�1
n rwnðxÞÞ þ lnÞ

:¼ ynðx;wn;rwnÞ:

We choose Mn ¼ S
m�1�p

m
n : Note that since p4m � 1; Mn-0: Using condition [F],

we obtain

jynðx;w; zÞjpc0jwjp þ MS�p
n S

a
pþ1

m
n jzja þ lnS�p

n : ð15Þ
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Observe that the term MS�p
n S

a
pþ1
m

n tends to zero as n tends to infinity. Moreover,

since lnS�p
n also converges to 0,

jynðx;w; zÞjpc0jwjp þ jzja þ 1 ð16Þ

for n large enough. In fact, we can deduce from [F] that

ynðx;w; zÞ � wp
X� MS�p

n S
a

pþ1
m

n jzja þ lnS�p
n -0: ð17Þ

Now we use a C1;t regularity result up to the boundary due to Lieberman [14], to
conclude from (16) that jjrwnjjpC for certain C40 independent of n: We now
argue as in [12]. Let ynA@O such that dðxn; ynÞ ¼ dn; then, by using the mean value
theorem,

1 ¼ wnð0Þ � wnðM�1
n ðyn � xnÞÞpjjrwnjjM�1

n dnpCM�1
n dn:

The proof of step 1 is concluded.

Remark. Observe that if M�1
n dn is unbounded, passing to the limit (and taking into

account (17)), we would obtain a weak (C1) positive solution for the problem

Dmu þ upp0 in RN ; ð18Þ

contradicting the Liouville result of [15]. However, we cannot study in such way the

case M�1
n dn bounded. If we did, we would obtain a positive solution in a halfspace,

as in [12]; since we do not know if such solutions may exist or not, we do not arrive
to a contradiction. That is the reason why we develop a blow-up argument around a
fixed point y0AO:

Step 2: There exists gAð0;m� � 1Þ such that

Z
Bðxn;dn=2Þ

junjg-N:

First, we use Theorem 2.3 in that ball:

Sn ¼ max
Bðxn;dn=2Þ

unpC min
Bðxn;dn=2Þ

un þ ln

dm
n

2m

� 

:

Since ln and dn are bounded, we have that minBðxn;dn=2ÞXcSn for certain c40:

Using that inequality and step 1, we obtain

Z
Bðxn;dn=2Þ

junjgXcSg
nd

N
n XcSg

nSðm�1�pÞN=m
n :
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It is easy to show now that

ðp þ 1� mÞN
m

om� � 1 3 pom� � 1:

Thus we can choose ðp þ 1� mÞN=mogom� � 1; and the claim is proved.
Step 3: There exists y0AO such that unðy0Þ-N: We now need to use the

smoothness of the boundary of O (in fact, C2 regularity suffices). So, we can find
e40; ynAO such that:

* dðyn; @OÞ ¼ 2e for all nAN:
* Bðxn; dn=2ÞCBðyn; 2eÞ for all nAN:

The fact that e can be chosen independent of n is due to the compactness and
regularity of @O: We now use Theorem 2.4 and step 2 to conclude

min
Bðyn;eÞ

unXc

Z
Bðyn;2eÞ

junjg
 !1=g

-þN:

Taking a subsequence if necessary, we can assume that yn-y0AO: For n large, we
have that y0ABðyn; eÞ; and hence unðy0Þ-þN:

Remark. Observe that, in particular, unðyÞ-þN for any yABðy0; e=2Þ: In fact, it is
easy to prove, by using Harnack inequality (Theorem 2.3), that unðyÞ-þN for any
yAO:

Once we have found y0AO such that unðy0Þ-N; we make use of the blow-up

technique around y0: Let %Sn ¼ unðy0Þ; and define

wnðxÞ ¼ ð %SnÞ�1
unðyÞ;

where y ¼ %Mnx þ y0 and %Mn ¼ %S
m�1�p

m
n :

Our intention is now to pass to the limit when n-N: To do that, we first need an
uniform bound on the sequence wn: Observe that, when using blow-up around the
maxima of un; we immediately get jjwnjj ¼ 1: This type of bound is needed to obtain

uniform C1;t estimates, which are essential in the proof of the convergence of the
sequence.

Take d ¼ dðy0; @OÞ40: We apply then the Harnack inequality given in
Theorem 2.3, to obtain

max
Bðx0;d=2Þ

unoC min
Bðx0;d=2Þ

un þ lnðd=2Þm

� 

:

It follows that maxBð0; %M�1
n d=2Þ wnoC; and clearly %M�1

n d=2-þN:
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Define then

znðxÞ ¼
wnðxÞ; jxjo %M�1

n d=2;

0; otherwise:

�

We can now apply the usual convergence argument (see [12], for instance) to the
sequence zn taking into account that znpC: Fixed a ball Bð0;RÞCRn; we can take n

large enough so that 2Rod %M�1
n d=2: We use the definition of yn given in the step 1 of

this proof, but with Sn; Mn substituted by %Sn; %Mn: Note that the expressions (15),

(34) and (15) are also valid here (when Sn is replaced with %Sn).
Hence, we can use the regularity result [10,21] (which is possible thanks to (16)) to

conclude that jjznjjC1;toC in Bð0;RÞ for certain C independent of n: Therefore, zn

converges in the C1 norm (up to a subsequence) to a certain function z0: Observe that

z0ð0Þ ¼ 1: Applying (17) with jxjo %M�1
n d=2; we obtain that:

ynðx; zn;rznÞ � zp
nX� %M %S�p

n
%S
a

pþ1
m

n Ca þ ln %S
�p
n -0 ðn-NÞ:

Thus, z0 is a nonnegative (weak) solution of the problem Dmz0 þ z
p
0p0 in Bð0;RÞ:

The strong maximum principle of Vázquez [23] yields that w0 is actually positive in
that ball.

Since R is arbitrary, using a diagonal procedure, we can take a subsequence (still

denoted by zn) such that zn converge to z0 in compact sets of Rn (in the norm C1),
where z0 is now defined in all Rn: Then, we obtain that z0 is a positive solution of
problem (18), which is a contradiction with [15]. &

4. Existence results and final remarks

In this section we prove the existence of positive solutions for (1). In order to do
that, we use a version of a theorem of Krasnoselskii [13] (see also [8]) about the
existence of fixed points on compact operators defined in a cone. As we shall see,
Propositions 3.2 and 3.3 will be needed.

Theorem 4.1. Let C be a cone in a Banach space and K :C-C a compact operator

such that Kð0Þ ¼ 0: Assume that there exists r40; verifying:

(a) uatKðuÞ for all jjujj ¼ r; tA½0; 1
:

Assume also that there exist a compact homotopy H : ½0; 1
 � C-C; and R4r such

that:

(b1) KðuÞ ¼ Hð0; uÞ for all uAC:
(b2) Hðt; uÞau for any jjujj ¼ R; tA½0; 1
:
(b3) Hð1; uÞau for any jjujjpR:

Let D ¼ fuAC: rojjujjoRg: Then, K has a fixed point in D.
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Proof. We only sketch the proof, since these type of results are well-known
(see [8,13]). Denote by iC the topological index in the cone C; and Bs ¼ Bð0; sÞ-C
for any s40 (for a definition and the properties of the topological index in cones,
see [7]).

First of all, hypothesis (b3) implies that iCðHð1; �Þ;BRÞ ¼ 0: By using the
homotopy H (and (b1)–(b2)), we deduce that iCðK ;BRÞ is also zero. However,
iCðK ;BrÞ ¼ 1 because of condition (a). Then, the excision property of the index
yields that iCðK ;DÞ ¼ �1; and hence K must have a fixed point in D: &

Let us state some notations. We consider Cð %OÞ as a Banach space equipped with

the uniform norm jj � jj; and C1;tð %OÞ with the usual Hölder norm jj � jjC1;t :

For each function vACð %OÞ; we denote by TðvÞAC1;tðOÞ the unique weak solution
of the problem:

DmTðvÞ þ v ¼ 0

with zero Dirichlet conditions in the boundary of O: It is well known that

T : Cð %OÞ-C1;tð %OÞ is a continuous operator, and maps bounded sets into bounded
sets (see Lemma 1.1 in [4], for instance).

Define N : C1;tð %OÞ-Cð %OÞ; NðuÞ ¼ f ðx; u;ruÞ: From the continuity of f and the

compactness of the inclusion C1;tð %OÞ+C1ð %OÞ; we deduce that N is compact.

Define also K ¼ T3N : C1;tð %OÞ-C1;tð %OÞ; which is also compact.

We denote by CCC1;tð %OÞ the subset of nonnegative functions. Clearly, C is a
cone. Moreover, K maps C into C because of the maximum principle (in fact, if
uAC� f0g; then KðuÞ is strictly positive). We are interested in finding nontrivial
fixed points of K in C:

We finally state the main result of this paper:

Theorem 4.2. Consider the problem:

Dmu þ f ðx; u;ruÞ ¼ 0; xAO;

uðxÞ ¼ 0; xA@O;

�
ð19Þ

where O is a bounded C2 domain in RN ; 1omoN and f is a nonnegative continuous

function verifying [F]. Then, (19) has at least one positive solution.

Proof. We use Theorem 4.1. First, let us verify condition (a):
Take u in C� f0g such that u ¼ tKðuÞ for certain tA½0; 1
: We rewrite this

equality as

Dmu þ tm�1f ðx; u;ruÞ ¼ 0 ð20Þ
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with zero Dirichlet boundary conditions. We multiply by u and integrate to obtainZ
O
jrujm ¼ tm�1

Z
O

f ðx; u;ruÞpc0

Z
O

upþ1 þ M

Z
O
jrujau

pC

Z
O
jrujm

� 	ðpþ1Þ=m

þ
Z
O
jrujm

� 	a=m

�
Z
O

um=ðm�aÞ
� 	ðm�aÞ=m

pC

Z
O
jrujm

� 	ðpþ1Þ=m

þ
Z
O
jrujm

� 	ðaþ1Þ=m
" #

:

In the previous computations we have used Hölder and Poincaré inequalities, as
well as condition [F]. Now, since p þ 14m; aþ 14m; we deduce that there exists

c40 such that
R
O jrujm4c: Hence we can choose r40 small enough such that

jjujjC1;tpr )
R
O jrujmoc; condition (a) is then proved.

We define H : ½0; 1
 � C-C as Hðt; uÞ ¼ T ½NðuÞ þ tl0
 where l0 is given by
Proposition 3.2. Obviously, the image of H is contained in C; again because of the

maximum principle and C1;t estimates.
Condition (b1) of Theorem 4.1 is clearly verified. To prove (b2), observe that the

equality Hðt; uÞ ¼ u is equivalent to

Dmu þ f ðx; u;ruÞ þ tl0 ¼ 0 ð21Þ

with zero Dirichlet boundary conditions in O: In Proposition 3.3 we proved that the
solutions of such problem are a priori bounded in their uniform norm. Making use

again of the C1;t estimates [14], we deduce that we can find R40 such that all
solutions of (21) verify the inequality jjujjC1;toR: Condition (b2) is then verified.

Finally, Proposition 3.2 clearly implies that (b3) holds (in fact, for any uAC). The
proof is complete. &

Remark. We can also use some continuation ideas in the spirit of [17] to prove the
existence of a continuum of solutions. Specifically, define

S ¼ fðl; uÞAR� C: u is solution of ð11Þg:

Taking condition (a) into account, we can argue exactly as in the Appendix of [4]
to prove the existence of a connected set ACS joining the trivial solution ð0; 0Þ and
ð0; uÞ where u is a positive solution for (1).

In the next theorem we make use of the sub-super solutions method to prove an
Ambrosetti–Prodi type result (see [2]), under a certain additional condition on f :

Theorem 4.3. Under the same hypotheses of Theorem 4.2, consider the boundary value

problem:

Dmu þ f ðx; u;ruÞ þ l ¼ 0; xAO;

uðxÞ ¼ 0; xA@O;

�
ð22Þ
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where lX0: As a consequence of Theorem 4.2, there exists l�40 such that (22) has a

solution if and only if lpl�:
Assume also that f satisfies that, for each R40; there exists m40 such that:

f ðx; u; ZÞ þ mum�1 is increasing in u; 0pupR

for any xAO; ZARN : Then, for any l0A½0; l�Þ; there exist at least two different

solutions for (22).

Proof. Take u� a solution of problem (22) for l ¼ l�; R ¼ jju�jj; and fix 0ol0ol�:
Define gðx; u; ZÞ ¼ l0 þ f ðx; u; ZÞ þ mum�1 which is increasing in u; if 0pupR:
Clearly, the functions 0 and u� are sub and super solutions (respectively) for the
problem

�Dmu þ mum�1 ¼ gðx; u;ruÞ; xAO;

uðxÞ ¼ 0; xA@O:

�
ð23Þ

Define Qm :C-C given by QmðuÞ ¼ w; where w is the unique solution of the

problem:

�Dmw þ mwm�1 ¼ gðx; u;ruÞ; xAO;

uðxÞ ¼ 0; xA@O:

�

In order to use the sub–super solution method, we need to prove some
monotonicity properties on Qm: In fact, we claim that if u; vAC; upv; jjvjjpR;

then QmðuÞpQmðvÞ:
Reasoning by contradiction, assume that there exist u; vAC; jjvjjpR; upv; such

that the functions w ¼ QmðuÞ; z ¼ QmðvÞ verify that l ¼ maxfw � zg40: Take %R40

such that jruðxÞjo %R; jrvðxÞjo %R for all xA %O:
We choose l=2okol arbitrarily close to l; we shall use the test function f ¼

ðw � z � kÞþ: Clearly, f is zero outside the compact set Ak ¼ fxAO: wðxÞ �
zðxÞXkg:

Take an arbitrary e40; and choose an appropriate d40 such that
gðx; u; ZÞpgðx; v; xÞ þ e for all ðx; u; v; Z; xÞAK :

K ¼ fðx; u; v; Z; xÞAAl=2 � ½0;R
2 � B2
%R
: upv; jZ� xjpdg;

where B %R stands for the ball in RN centered at zero and with radius %R:
Note that rz ¼ rw in Al ; and

Al ¼
\N
n¼1

Al�1=n:

So, we can choose k ¼ kðdÞ close enough to l such that jrzðxÞ � rwðxÞjod for
every xAAk:

ARTICLE IN PRESS
D. Ruiz / J. Differential Equations 199 (2004) 96–114 111



We now use the test function f in the weak equalities:

�Dmw þ mwm�1 ¼ gðx; u;ruÞ; ð24Þ

�Dmz þ mzm�1 ¼ gðx; v;rvÞ: ð25Þ

Integrating in O and subtracting, we obtainZ
Ak

½jrwjm�2rw � jrzjm�2rz
 � ðrw �rzÞ þ m
Z

Ak

½wm�1 � zm�1
f

¼
Z

Ak

½gðx; u;ruÞ � gðx; v;rvÞ
f:

The first summand in the right term is positive (in fact, more precise estimates are
known, see for instance [20]). So, we can write:

m
Z

Ak

½wm�1 � zm�1
fp
Z

Ak

½gðx; u;ruÞ � gðx; v;rvÞ
fpe
Z

Ak

f:

Note that in Ak; w � zXk4l=2; so, it suffices to take e small enough so that

mðwm�1 � zm�1Þ4e; to get a contradiction. The claim is proved.
Note that we would have obtained also a contradiction if, instead of (24), (25), one

assumes the inequalities:

�Dmw þ mwm�1pgðx; u;ruÞ;

�Dmz þ mzm�1
Xgðx; v;rvÞ:

So, we can follow a typical iterating procedure to assure the existence of a solution
u0 for (23), 0pu0pu� (actually, u040 in O).

In order to prove the existence of another solution, we argue by contradiction,
assuming that u0 is the unique solution for (23). Since l�4l0; we can choose e40
small such that the function u� þ e is also a super-solution for (23). By hypothesis,
there are no solutions in the boundary of the set:

U ¼ fuAC: uðxÞou�ðxÞ þ e 8xAOg:

Then, the index iCðQm;UÞ is well defined and, in fact, iCðQm;UÞ ¼ 1: To prove that, it

suffices to use the homotopy:

H : ½0; 1
 � C-C; Hðt; uÞ ¼ tQmðuÞ

and to take into account that Qmð %UÞC %U (due to the monotonicity of Qm).

Since the fixed points of the operators Qm do not depend on m; we can use the

homotopy

½0; m
 � C{ðt; uÞ/QtðuÞ
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to show that iCðQ0;UÞ ¼ 1: But in Theorem 4.2 we proved that iCðQ0;BRÞ ¼
iCðK ;BRÞ ¼ 0; and it implies the existence of another solution which yields the
desired contradiction. &

Open Problem. An interesting open problem is the case with higher exponents,

specifically m� � 1ppom� � 1 where m� ¼ Nm
N�m

is the Sobolev critical exponent for

the inclusion W 1;mðOÞ+LpðOÞ: In [19] Serrin and Zou proved Liouville type results
for the problem:

Dmu þ up ¼ 0 in RN

for pAðm � 1;m� � 1Þ: However, it seems difficult to obtain the a priori estimates in
the same way we have done here.
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Professors David Arcoya, José Luis Gámez and Mabel Cuesta for some fruitful
discussions.

References

[1] W. Allegretto, Y.X. Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear

Anal. 32 (7) (1998) 819–830.

[2] A. Ambrosetti, G. Prodi, On the inversion of some differentiable mappings with singularities between

Banach spaces, Ann. Mat Pura Appl. 4 (93) (1972) 231–246.
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