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1. Definition and introduction

To begin with, we first recall some notations and definitions. Let C™*™(R™*™) denote the set of all
m x n complex (real) matrices, A = (a;) € C"™"(n > 2),N = {1,2,...,n}and o C N. We write
|A| = (|a;]) and
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P(A) = D lagl, i=1,2,...,n
JEN,j#i
The infinity norm of A is defined as

lAlloo = max {Pi(A) + |aiil}.

The comparison matrix of A, which is denoted by 1 (A) = (t;), is defined to be

lail, ifi=7];
tj = e
—lagl, ifi#j.
Recall that A is a (row) diagonally dominant matrix (Dy,) if for alli € N,
laii| > Pi(A). (11)

Ais further said to be a strictly diagonally dominant matrix (SD,) if all the strict inequalities in (1.1)
hold. A is a doubly diagonally dominant matrix (DD,) if for alli, j € N, i # j,

laii|laj| = Pi(A)P;(A). (1.2)

Ais said to be a strictly doubly diagonally dominant matrix (SDD,,) if all the inequalities in (1.2) hold.
We call |a;i| —P;(A) (i € N) the D, degree of A withrespect to the ithrow and |a;;||ajj| —P;(A)P; (A) (i,j €
N, i # j) the DD,, degree of A with respect to the ith row and the jth row. For simplicity, we call the Dy,
degree and the DD, degree of A.

A is called an M-matrix if it can be written in the form of A = mI — P, where P is a nonnegative
matrix, m > p(P) and p (P) is the spectral radius of P. A matrix A is an H-matrix if ¢ (A) is an M-matrix.
We denote by HI,, and M, the sets of n x n H-matrices and M-matrices respectively.

Itis well known that SD, and SDD,, are nonsingular(by the Gerschgorin Circle Theorem and the Brauer
Ovals of Cassini Theorem). In addition, if A € SDD,,, there exists at most one index ip € N such that

[aigio| < Pig (A). (1.3)

For nonempty index sets«, 8 € N, we denote by |« | the cardinality of & and write A(«, ) to mean
the submatrix of A € C"*" lying in the rows indexed by « and the columns indexed by 8. A(«, «)
is abbreviated to A(a). Supposing & = {i1, i, ...,ix} C N,&’ = N —a = {j1,j2,...,ji} and the
elements of @ and o’ are both conventionally arranged in increasing order, we denote

A =A(x U {js}), for1 <s< L

Further, if A(«) is nonsingular, we define the Schur complement of A with respect to A(«), which
is denoted by A/A(«) or simply A/, to be

Ale) — A, o) [A(e) ] "Aa, o). (1.4)

The theory of Schur complement plays an important role in many fields such as control theory and
computational mathematics. A lot of work have been done on it. It is known that the Schur comple-
ments of positive semidefinite matrices are positive semidefinite; similar properties hold for M-matrix,
H-matrix, and the inverse of M-matrix (see, e.g. [4]). Carlson and Markham showed that the Schur com-
plements of SDD;, are SDD,, (see [5]). Li and Tsatsomeros [16] and Ikramov [17] independently proved
that the Schur complements of DD, are DD,,. Liu and Huang obtained that the Schur complements of
generalized DD,, are generalized DDj, (see [6]). First it was Smith [14] and then other researchers fol-
lowed and obtained some upper and lower bounds for eigenvalues, singular values and determinants
of Schur complement (see, e.g.[7-15]). These properties have been repeatedly used for the convergence
of iterations in numerical analysis and for deriving matrix inequalities in matrix analysis (see, e.g. [1,
p. 508],[2, p. 58] or [9]).

Meanwhile, investigating the distribution for the eigenvalues of the Schur complement is of great
significance as well as estimating the upper bound for the infinity norm of the inverse of the Schur
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complement. As is known to all, for a non-homogeneous system of linear equation Ax = b, the upper
bound for ||A~!|| s, plays an important role in some iterations for the original system (see, e.g. [20,21]).
Furthermore, for Ax = b, after reducing order, the system matrix of the derived smaller system is the
Schur complement of the original system matrix (see [12,13]). Therefore, the upper bound for the
infinity norm of the Schur complement of A is also useful in the iteration.

However, when dealing with practical problems such as the «-stability constraint, which plays an
important role in control theory (see, e.g. [18,19]), we just need to know the strip distribution for the
real part of the eigenvalues instead of the location for the eigenvalues. So sometimes it is useful and
simple to estimate the strip distribution for the real part of the eigenvalues.

By the Gerschgorin Circles Theorem and the Brauer Ovals of Cassini Theorem, if we know the D,, degree
or the DD,, degree of a matrix, we can obtain bounds for the eigenvalues of the matrix correspondingly.
Liu and Zhang got some results showing that the D,, degree for the Schur complement of D, is greater
than that of the original matrix (see [8]). Unfortunately, there is no definite relationship between the
DDy, degree of the Schur complements on SDD,, and that of the original matrices. This is illustrated by
the following example.

Example 1. Let
3 -1 -1
A= -1 3 -1
-1 -1 2
Take o1 = {3}, @y = {2}. Then A € SDDs,

25 —15 8 -2
A/O[1: s A/OQ: 4 5 .
—-1.5 25 -3 3

By computation,

(A/a)(A/or)2n — (AJar)12(A/or)o1 = 6.25 —2.25 =4

< lanllazz| — (laz| + laiz(laz1| + laz3]) =9 — 4 = 5;

40 16 8

(AJa)11(A)o)2s — (Aa)12(A)az)an = 553

> lay|lass| — (laz| + laz])(las| + |az2|) =6 — 4 = 2.

Thus we see that the DD,, degree of the Schur complement on SDD,, is not necessarily greater or
smaller than that of the original matrices.

In this paper, we first obtain an estimate for the DD, degree on the Schur complement of SDD,,.
Then, as an application we obtain that the eigenvalues of the Schur complements are located in the
Brauer Ovals of Cassini of the original matrices under certain conditions. As another application, for
SDD;,, we obtain an upper bound for |A~!||», and extend the result to || (A/c) ! || oo. Further, based on
the derived results, we give a kind of iteration called the Schur-based iteration, which can solve large
scale linear systems though reducing the order by the Schur complement and can compute out the
results faster.

2. The DD,, degree of A/«
Li and Tsatsomeros obtained that the Schur complement of DDj, is DD, (see [16]). Here we give an

estimate for the DD,, degree on the Schur complement of SDD,,, which extends their results. For this,
we recall a few results.
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Lemma 2.1 (See [3, p. 117, 131]). IfAis an H-matrix, then
(@17 =147
Lemma 2.2 (See [3, p. 114]). IfA € SD,, or SDD,,, then (A) € M, i.e, A € Hj,.

Lemma 2.3 (See [16, Theorem 2.1]). IfA € SD, or SDD,, and « is a proper subset of N, then A/« is in
SD\y| or SDD\y|, where |o| is the cardinality of o!’.

Lemma 2.4 (See [8, Theorem 2]). Let A € SDD, and let iy satisfy (1.3). Then for any index set « =
{i1, 12, ..., ix} containing ip, «’ = N — & = {j1,j2, . ... Ji} and AJee = (al,),

l()( )

| 1010|

lag| — Pe(A/at) = lajj,| — ——P;,(A) >0, fort=1,2,...,1 (2.1)

Lemma 2.5 (See [24, p. 135]). IfA € M, then det(A) > 0.
Now we are ready to give the main result of this section.

Theorem 2.1. Let A € SDD,,, a = {i1,iz,...,ix} C N, &/ = N—«a = {j1,j2,...,ji}. Denote
A/o = (ay). Then

(i)ldgllals| — Pe(A/a)Ps(A/ o)

2 | laj | — Pulh )ij( ) _|ajsjs| maXP (A)PJS(A) = wst, (2.2)
L N {Jt} layy] L |azwzw|
(ii)lanllassl + Pi(A/a)Ps(A/ o)
< Py(A) [ P;, (A) e
< | gl + max - —=Pj.(A ) || + max PJS(A) = Wyt (23)
L EN— {lt} | vv| L alwlw|

Proof. (i) (a)If there exists iy € o C N satisfying (1.3), then for each j; € o',
le A (@A) _ Py
max

fWe“ |al 1W|  veN— Ui} [ap |ai0io| .
From Lemma 2.4 we know thatfort =1,2,...,1,
Plo( )

|a£t| - Pt(A/O[) = |aftft| - PJt(A)

| 1010'
Therefore, foreacht,s =1,2,...,1,t #5,

(10| = Pe(a/@)] [la| — Psa/e)] > 0.

By Lemma 2.3, A/« isinSDD)y, i.e., foreacht,s =1,2,...,1,t #5,
|agllags| — Pe(A/a)Ps(A/ar) > 0.

Hence, foreacht,s =1,2,...,1,t #5,

|aellas] — Pe(A/@)Ps(Afer) > [1a;] — PeAfer) | [lals] = Po(A/f)]

>[|ajrfr|— max P”(A)mm)} [Iajsjsl may )

P (A)}

veN—{ji} |aVV| |a1w1w
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Thus we get (2.2).
(b) If there does not exist any igp € o C N satisfying (1.3), then by Lemmas 2.1 and 2.2, for each
t,s=1,2,..., Lt #s,

lag|lag,| — Ps(A/a)Pc(A/at)

ailjs ai]jt
-1 . 1
= aijS - (ajsil LA ajsik)[A(a)] N aj[jt - (ajth LI} aj[ik)[A(a)]
aikis aiki[
1 ailju
—1
— | 22 |aigu = @iy » - - > Gi ) [A(@)]
u=1
7 Qi
1 ailjv
—1
x| D2\, — @iy - -5 G ) [A(@)]
v=1
7 i,
|aij |
—1
2 | lajg | = (ajiy I, - - - s laji, D{u[A) ]}
[, |
laiyj, |
—1
X | i | = (ajiy |, - - - lagi, D{rlA(e) 1}
L | @iy, |
! |ai,j, |
—1
— 12 agg, | + Uaiiy |, - - - g D{rlA@)]}
u=1
L |aig, |
I |aij, |
—1
X 120 ajg, | + (i |, - - - @i D{[A@)])
v=1
vEL |aiyj, |

f=9
Ry
ool

lai,j |
= | lai| — (a1, - - - » laji, D{[A@)]} !

| iy, |
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Py(A) Py (A)
X ij.l — max ——P; + max ——P; (A
1% veN—{jc} |ayy] A veN—{jr} |ayy| B
|aij |

—(lajiy 1, - - - laji DA} !

| @iy, |
I |ai1ju|
=12 g | + (il - - laj, D{rlA@)]}
u=1
u+s L |aikju|
! |aij, |
x 137 Hagg | + (il - - lagi D{ulA@) ]}
v=1
il |aig, |
lail \ | _
lajg,| — (g |, - - -5 laii D{plA@)]} !
laigl ) |
|aiyj |
+ |ajsjs| - (|ajsi1 |’ RN} |aj5ik|){:u[A(a)]}_1
L @iy, |
X | max P4 )P A = (g, |, - - - laii DA !
veN—{je} |ayy| x g Itk
’ |aij, |
=12 a | + (il - - - laj, D {lA)]}
u=1
S L |aiy, |
I |aij, |
x 13" | ajg, | + Uiy |, - - -, laji DA} !
v=1
L |aij, |

|aftjt | —

Py(A)

eN=li) |ayy| T A )}

|aij, |

@i, |

(2.4)
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On the other hand,

|ai1]s|
lajj| — (ajiy |, - - - o laji, DIlA@)]} !

| aikis |

P;,(A)
= lajg| — max = ZI jsie |

|a,W,W —
" |aij |
p;, -1
a; Aigiqy |y - - -5 Qi A
lw€a |alw1w §| Jslt (| ]sll| | ]Slk|){u[ (a)]}
@iy, |
P, (A)
a;.i.| — max
= |aj| e g §| sic |
Py, (A) ..
:‘ng()x( Ialwlw‘ Z |a]slr| _lajsill et _|aj5i"|
+; ' —laj|
det ul[A(a)] : wlA(@)]
— @iy, |
def zw( ) 1
a;.i. | — max ——— - detB;j.
| MS' iwea |01W1w| Z| ]S't det,“«[A(a)] 1

InBq, foranyr =1, 2, ..., k, we have

Pi, (A) < Pi.(A)
|amr|max v Z| ]slt| = laj.i, | —_— Z| ]51(

| lwlw t=1 lr'r t=1

k
= P;, (A) z |aji | = z |aij, | + Z |aii, | Z |ajgi |
t=1

v;ér

k k
> | laigl + D laii, | | 2 lajil;
v=1 t=1

VT
and foranyq,r =1, 2, ..., k, we have
|aiyi, llaii, | > Pi, (A)P;, (A)
I I

k
= z |alq]u| + Z |alqlv z |airju| + Z |airiv|

u=1 u=1 v=1

v;éq V#T

k k
> [ laigel + 2 laigi, | | (il + > laii, -
Vg vEr



J. Liu et al. / Linear Algebra and its Applications 437 (2012) 168-183 175

Therefore By € SDD)y|+1, by Lemma 2.2, then 1.(B1) € M. Obviously, By = j.(B1). Hence, By € M.
By Lemma 2.5, det B; > 0. Thus from (2.5) we have

|ai |
lajg.| — (laji . - - i D{plA@)]) !
| iy |
Pi, (A) &
> laj| — max — |aji,|
Isl = |aiwiw| ; Jste
p;,(A)
2 laj,| — max P (A) > 0. (2.8)
iwea |aj,i,
So
|| — 2 g, —lagi] o+ —lagl 0 - 0
u#s
!
_ s Pv(A)P. A
‘E |a]‘]"| velllv]i)[(jr} [ayy| ]f( ) 0 . 0 —|aj[,<1| cee _|ajtik|
VL
!
_|ai1j5| - Z |ai1ju|
u=1
u#s
_ : wlA(a)] 0
B =det I
—|aj, | - ; |ai, |
us
I
— 2 lai, | —lai;|
v=1
V£t
0 ulA(a)]
!
- Zﬁl |aig, | —|ayg,|
I—— |
1 1 ~
x % _ detB. (2.9)
wlA(@)] 0 {det u[A(@)]}
det
0 pulA(@)]

It is easy to show that Be SDD>|4|+2 by the fact A € SDD,, and the assumption (b). By Lemma 2.2,

then 4 (B) € M. Obviously, B = 1(B). Hence, B € M. By Lemma 2.3, thus det B > 0.
Therefore, from (2.4), (2.8) and (2.9), we obtain (2.2).
With a similar method we can prove (ii). O

3. Distribution of the eigenvalues

By the famous Gerschgorin Circles Theorem or Brauer Ovals of Cassini Theorem, the eigenvalues of
Schur complement could be estimated after calculating out the Schur complement. In this section,
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as application we present some locations for eigenvalues of the Schur complements of SDD,, by the
elements of the original matrix.

Lemma 3.1 (Brauer Ovals of Cassini Theorem). Let A = (a;) € C"*". Then the eigenvalues of A are in
the union of the following sets:

Uj =1{z e C| |z —ajillz — a;| < Pi(AP;A)}, i,j=1,2,...,n, i#].

Theorem3.1. LetA € SDD,, o = {i1, iz, ..., ik} C N, @' = N—a = {j1, jo, ..., Ji}.SetA/o = (ay,).
Then for every eigenvalue X of A/, there ex1st1 < s, t < I, s # tsuch that

. det A; det Ag P, (A)
(i) |A — - < 2|l max —— Pj,(A)
detA(w) det A(x) o |a Qiyiy |
(A)
+lajj| max i —P; (A) (3.1)
veN—{jc} |ayy]
B det A, det A Py(A)
A — — —D;
W ' detA(e) ‘ det Ae) [' Gl %) gl W
i (A)
i Y—2Pi (A) | . 3.2
[I%SHII;]gg p— is )} (32)

Proof. By the Brauer Ovals of Cassini Theorem, there exist 1 < s, t < I, s 7 t such that

| — ag|IA — ag| < Pe(A/a)Ps(A/a). (33)
(i) From (2.2) we have
P (A/a)Ps(A/at)
Py(A) P, (A)
a.lla aj i max —P;, (A) | | lajj; max P (A)
| tr|| ssl [l ]t]t| eN—{ji} | vvl Jt | |:| ]s]| |alwlw| J
ailjs ai1jt
= |, — @iy - - G [A)] ] G, — @iy - - G [A(@)] ™!
iy iyje
(A) i P, (A)
— | lajj. | — ,Jhax il —P;, (A) | | laj,| — max P (A)
|: Jele eN—1{j} | vv| Je i Js] |a'W'W| ji]
laiyj|

< laig | + (gl - - - agi, D{rIA@)]} !
i, |
|aiyje |
lajg, | + (i, 1 - - - s 1@, D{[A@)]) !

i |
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(A ) P, (A)
Nl — max 2P ) 0| — max P, (A)
|: Jde EN Ui} | vv| Jt Js). |01W'W| J
< lal+ max 2@ a |a1515|+max P )
veN—{je} |ayy| |azwzw|
Py(A) ) Py, (A)
— |lajj,| — max Py () lajj| — max “—P; (A)
|: Jtlt veN—1{j} | vv| Jt Jsl |a'W'W| J

= 2| |aj,;,| max B (A)P (A) + |g; | max PV(A)P- A)
el iex Ja; Js s eNale) Jav| :

Tyl |

Additionally, for any s € N — «,

ailjs
A —di| =% — aij, + (@i, - - i) [A@)] !
aikjs
A — det (A/A@) | = |1 — s
=|1 —de a))| = A — —|.
s detA(a)
Similarly,
, detAt
A —dyl = A — ———|.
det A(a)

Hence, from (3.3) and (3.4), we get (3.1).
(ii) Similarly, we can obtain (3.2) from (2.3) and (3.3). O

4. Upper bound for [|(A/o) ™[00

177

(3.4)

Varah (see [20]) obtained the following upper bound for the infinity norm of an H-matrix A

(41)

In this section, we give a new upper bound for |[A~! ||oo which improves (4.1) and extend the result

to ||(A/a) ™! ||l oo by employing Theorem 2.1.

Theorem 4.1. Let A = (a;;) € SDD,, M
|a]j| Z =1 |mj¢| + P;(A) Z =1 |m]t|

= (my) € C™". Then

A" M|loo < max

i,jEN,i#j |a11||a]]| - PI(A)P] (A)
Particularly,
_ lajj| + P;(A)
1A oo < max ———— :
ijeN.i#i |ajil|aj| — Pi(A)Pj(A)

Proof. Since A € SDD,, from Lemma 2.1 and Lemma 2.2 we have [ (A)] !

(4.2)

(4.3)

> |A~1|. Denote
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X1, .os ) =AM, DT

(xg, ...,x;,)T = @ M A,..., DT,

/ / / /
Xj, = Max x;, X; = max  x;.
0 1<i<n 0 1I<i<n,ii

Then we have

X 1 1 1 X1
=@M =AM [ =AML ] =
X! 1 1 1 Xn
and
X 1
[n(A)] = M| .
X! 1
ie.,
n
lan|x] — X laqelx; S |myel
t#1 t=1
— (4.4)
n
[annlxy — > |anelx; S M
t#n t=1

Considering the igth row and the joth row of (4.4)

n

/ / / /
Z |mi0[| = |ai0io |Xi0 - Z |ai0[|xt Z |ai0iolxi0 - Z |ai0t|xj0’
t=1 t#ig t#io
n

/ / / /
> Imjyel = |ajojo 1%, — > lajoelx; = |ajojo 1%, — > lajoe Ixi,
t=1 t#jo t#jo

we can easily get

n n
|aj0jo| z |mi0t| + Z |ai0t| z |mj0t| = XI{O |ai0i0||aj0j0| - Z |ai0t| Z |ajol’|
t=1

t#£ip t=1 t#£ip t#jo
So
A" M||oo = max x; <X,
l lloo max Xi < X,
[ajojo | b=y IMige| + iy |@ige] 2f=q Mjoe
Gigio |1 Gjojo | — 2ectiy [Qige] 2etj | ot |
o lagl opmy Imiel + Xz laie] 2p=y [miel
S, Max |
LJEN, i#] laiillajil — 2ezi |aie] 2z lajel
Thus we obtain (4.2).

Particularly, when M = [ = diag(1, 1, ..., 1), we obtain (4.3). OJ
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Remark. (4.3) improves (4.1), which can be demonstrated by the following computations:

lajj| + Pi(A)
|aiil|aji| — Pi(A)P;(A)

_ lajj| + Pi(A)
|aiillaji| — lajj|Pi(A) + |aj|Pi(A) — Pi(A)P;(A)
_ lajj| + Pi(A)
laji| (laii] — Pi(A)) + Pi(A)(aj;| — P;j(A))
|ajj| + Pi(A)

< —
Il,'féll\lll{|aii| — Pi(A)}(|ajj| + Pi(A))
1 1
= max
T,,Téll\l;{laiil —Pi(A)}  ieN |a;| — Pi(A)

Theorem 4.2. Let A = (aj) € SDn, @ = {i1, b2, ..., 0k} C N,o' =N —«a = {j1,j2,....ji} and
M = (m;) € C™!. Then

16A/@) " Ml
w (A Py, (A
(Iagg 1+ maxi, e 220 Py (A)) They Imsl+(maxi, cq 1225 Py (A)+Py (A) Ty el
< max ) @, -(45)
S [Iajfjfi—maxVewfuf) RO [l — maxi,ea 15 P, (4)]
Particularly,

|G| + P, (A) + maxi, o P2 [P (A) + P, <A>]
ai,,

[A/e) Moo < max
5 [l — maxven—) AP (A) ] [|afsjsl max;,cq Py (A)]

S#E
(4.6)
Proof. Denote A/a = (a;;). From Theorem 4.1 we have
d | S ime| + Ps(A/a) XL |m
||(A/Ot)71M||oo < max | tt| Zu_l |/ Su| s( / )Zu_] I tu| (4.7)
s gl — P(A/a)P(A/a)
Similar to (2.8),
iy ji
la| = |ajj, — @iy - - - » @i ) [A@)] ™!
Qiyje
aij|
< laje| + (il - - - g D{plA@)]} !
| @iy, |
P;,, (A)
< lajj | + max P (A). (4.8)

o |a,i, |
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Further, by Theorem 1 of [8],

Py, (A)
Ps(Afa) < lag| — layg,| + P (A) < S max P;,(A) + Pj; (A). (4.9)

a |a 1W1W|

Since A € SDy, it is obvious that A € SDD,,. Therefore, from Theorem 2.1,

|ag | |ais| — Ps(A/a)Pr(A/at)
Py(A) P, (A)
> |laij| — max ——P; @A) | | lajg, max P;. (A) (4.10)
= [| e | veN—ic} |aw| Jt lajgi| — o lai i | J
From (4.7), (4.8), (4.9) and (4.10) we obtain (4.5).
In particular, taking M = I = diag(1, 1, ..., 1), we obtain (4.6). O

5. Numerical examples

In this section, we firstly give a numerical example to estimate the bounds for the eigenvalues on
the Schur complements of SDD,,. Then, we present another numerical example to illustrate that the
iteration can compute out the results faster in reducing the order of large matrix while the methods
in [12,13] could not work.

Example 2. Let
1.3 0.2 03 0.4 0.5
0.2 2 040.50.1
A=10304 2 0102, a=({1,2}.
040501 3 03
0.50.10203 3

1.8672 —0.0711 0.0805
Then N — o = {3, 4, 5}, detA(x) = 2.56,A/A(a) = | —0.0711 2.7793 0.1410 |,
0.0805 0.1410 2.8074
Pi(A) =14, Pr(A)=1.2, P3(A) =1, PiA) =13, Ps(A) =1.1;

1.3 0.2 0.3 130204
detA3 =det| 0.2 2 04 | =4.78; detAy=det]| 0.2 2 0.5 | =7.115;
0304 2 0405 3

1.3 0.2 0.5
Py (A) Py(A) P, (A) 14
= max = max = —

lay| veN |ay|  iwee |agq,| 137

detAs =det| 0.2 2 0.1 | =7.187;

0501 3



J. Liu et al. / Linear Algebra and its Applications 437 (2012) 168-183 181

According to Theorem 3.1, by computation we know that the eigenvalue z of A/« satisfies
zeU ={z]||z—1.87||]z—2.78| < 12.06} U {|z — 1.87||z — 2.81| < 11.20}
U{|z — 2.78||z — 2.81| < 15.51}.
According to Theorem 4.2,

(A/e) oo < 4.39.

Example 3. Consider a system of linear equation Ax = b, where

M B T
A= ’ b:(33"'3)1x100’
CcD
70 —40
—40 130 —40
M = s
—40 130 —40
—40 130 50550
0 0--- 040
0 0---00
B=C'=| 1 i :
0 0---00
—400---0 50%50
51 x 130 —400
—400 52 x 130 —400
D=

—400 98 x 130 —400
—400 99 x 130 —400

—400 1300000
50x50

Obviously, the first row of A is not D,,. Hence we could not directly use the methods in [12,13] to

reduce the order.

Itis evident that A is real symmetric and SDD,, with positive diagonal entries. By Lemma 2.1,A/D are
also real symmetric and SDD,, with positive diagonal entries. Thus, A, D and A/D are positive definite
(see [22, p. 23]). Consequently, we can convert the original system into the following systems by using
the Schur complement
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Table 1

Results of Example 3(¢ = 107°).

Computer condition : Pentium(R) 4 CPU 3.2 GHz, extended memory 512 M

oM SCGM CGM SCGM
xs 0060917  0.060299 X60 0000442  0.000429
X 0059857  0.060002 Xe5 0000384  0.000392
x5 0059857  0.060000 X7 0.000333 0.000361
X0 0059857  0.060000 X75 0.000321 0.000336
X5 0059857  0.060000 Xs0 0.000329 0.000313
X3 0059857  0.060000 Xg5 0.000318 0.000292
X35 0059857  0.060000 X0 0.000333 0.000275
xi0 0059857  0.060001 Xo5 0.000261 0.000260
X5 0059835  0.059902 X100 ~0.000000  —0.000000
Xso 0039804 0039601 — cputime  0.0312505  0.015625s
Xss 0000458  0.000472 ~Mx—bll, 1436645 0.023226
Dz =g — (Cy, (5.2)
where
X by bs X51 bsy
X2 b, 4| bs2 X52 bsz
y = 5 f == — BD , Z= , &=
X50 bso b1oo X100 b1oo

Then we can first solve (5.1) and then (5.2) by the conjugate gradient method. We call this method the
Schur-based conjugate gradient method.

For any given accuracy, applying the Schur-based conjugate gradient method, we could perform
approximate calculation to satisfy required accuracy. In this example, if we choose the accuracy as
& = 1075, the results of computation are given out in Table 1.

AsA/D, D and A are all nonsingular, the rank of A is greater than that of A/D and D. On the other hand,
we know from Theorem 3.1 that the eigenvalues of A/D and D are more concentrated than those of A.
So we predict that the Schur-based conjugate gradient method will compute faster than the ordinary
conjugate gradient method (see, e.g. [23, p. 312-317]).

In fact, solving the original system by the conjugate gradient method needs 37 iteration steps and
it takes 0.031250 s cputime to compute out x; solving (5.1) and (5.2) by the conjugate gradient method
needs 13 and 11 iteration steps respectively and it takes 0.015625 s total cputime to compute out x.

From Table 1 we see that the Schur-based conjugate gradient method (SCGM) is much better than
the ordinary conjugate gradient method (CGM).
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