BOOK REPORTS

The Book Reports section is a regular feature of Computers & Mathematics with Applications. It is an unconventional section. The Editors decided to break with the longstanding custom of publishing either lengthy and discursive reviews of a few books, or just a brief listing of titles. Instead, we decided to publish every important material detail concerning those books submitted to us by publishers, which we judge to be of potential interest to our readers. Hence, breaking with custom, we also publish a complete table of contents for each such book, but no review of it as such. We welcome our readers' comments concerning this enterprise. Publishers should submit books intended for review to the Editor-in-Chief,

Professor Ervin Y. Rodin
Campus Box 1040
Washington University in St. Louis
One Brookings Drive
St Louis, MO 63130, U.S.A.

Contents:


Contents:


Contents:


Contents:


Contents:


Contents:


Contents:


Contents:

Contents:


Contents:


Contents:


Contents:


2.2.12. Broadside/endfire antennas. 2.3. Electronic beam steering and direction finding (DF). 2.4. Ground screen design. 2.5. Antenna simulation. 2.5.1. MoM-based. 2.5.2. FDANT and TLMANT codes. 2.6. Numerical simulation examples. 2.6.1. HFSWR transmit array. 2.6.2. HFSWR receive array. 2.6.3. VHF DF antenna. 2.6.4. Cellular phone antenna. 2.6.5. MoM/FDTD comparisons. 2.7. Sample FDANT simulator. 2.8. Conclusions and discussion. References. 2. Electronic beam steering and direction finding (DF). 2.4. Ground screen design. 2.5. Antenna simulation. 2.5.1. MoM-based NEC2 code. 2.5.2. FDANT and TLMANT codes. 2.6. Numerical simulation examples. 2.6.1. HFSWR transmit array. 2.6.2. HFSWR receive array. 2.6.3. VHF DF antenna. 2.6.4. Cellular phone antenna. 2.6.5. MoM/FDTD comparisons. 2.7. Sample FDANT simulator. 2.7.1. The FDANT code. 2.7.2. Time-domain beam steering (FDANT vs. NEC2). 2.8. Conclusions and discussion. References. 3. RCS prediction and reduction. 3.1. Introduction. 3.2. Target reflectivity and RCS reduction. 3.3. Time-domain RCS simulations. 3.4. Sample RCS simulators. 3.4.1. F-SNRCS package. 3.4.2. T-SNRCS packages. 3.4.3. F-SNRCS package. 3.5. Applications. 3.5.1. RCS analysis with canonical objects. 3.5.2. A PEC rectangular prism. 3.5.3. RAM coating and RCS analysis. 3.5.4. Realistic targets and RCS analysis. 3.5.5. RCS/Antenna pattern of wire arrays. 3.6. RCS measurements. 3.7. Conclusions and discussion. References. 4. Microwave network design. 4.1. Introduction. 4.2. Microstrip networks. 4.2.1. Transmission line theory. 4.2.2. Characteristic impedance. 4.2.3. Voltage reflection coefficient. 4.2.4. Standing wave ratio. 4.2.5. Smith chart and impedance matching. 4.2.6. Scattering (S) parameters. 4.2.7. Modes. 4.2.8. Waveguides. 4.2.9. Microstrip simulators. 4.3. Sample microwave simulators. 4.3.1. The structure of F-MSTRIP. 4.3.2. The structure of TLMMS. 4.3.3. Sample scenarios and typical results. 4.4. Numerical examples. 4.4.1. Effective permittivity simulations. 4.4.2. Microstrip impedance matching. 4.4.3. Microstrip broadband filter. 4.4.4. Microstrip coupler. 4.4.5. Radial stub/butterfly. 4.5. Conclusions and discussion. References. 5. EMC/BEM modeling (with M. Orhan Özaylıgın). 5.1. Introduction. 5.2. EMC and shielding effectiveness (SE). 5.2.1. Aperture leakage and SE. 5.2.2. Multi-aperture leakage and SE. 5.3. BEM and specific absorption rate (SAR). 5.3.1. Calculation of radiated and absorbed powers. 5.3.2. Peak SAR calculations. 5.3.3. SAR simulations. 5.4. Calibration against analytical exact solutions. 5.4.1. A PEC resonators and Green's function representation. 5.4.2. PEC resonators and TE01 modes. 5.4.3. FDTD and TLM codes and validation. 5.5. Time-domain simulators. 5.5.1. FDSE and TLMSE packages. 5.5.2. FDSAR and TLM SAR packages. 5.6. Conclusions and discussions. References. 6. Radar simulation. 6.1. Introduction. 6.2. HFSWR characteristics. 6.2.1. HFSWR signal environment. 6.5. A sample simulator. 6.5.1. Scenario editor. 6.5.2. HFSWR simulator. 6.5.3. Detection process. 6.5.4. Tracking process. 6.6. Integrated surveillance, Monte Carlo simulation. 6.7. Conclusions and discussion. References. Appendix A: Electromagnetic fundamentals. A.1. Maxwell equations. A.2. Boundary conditions. A.3. Radiation condition and edge condition. A.4. Duality relations. A.5. Time-harmonic case. A.6. Scattered field formalism. A.7. Wave polarization. A.8. EM sources. A.9. Plane-wave assumption. A.10. EM power and force. A.11. Equivalence principle. A.12. Strategies for wave field solutions. A.13. Sturm-Liouville problem. A.14. Green's function representation. A.15. Wave equation in 1D. A.16. Stoke's problem. A.17. Divergence theorem (Gauss Law). A.18. Ampere's law. A.19. Well-posed problem. References. Appendix B: Tables of computer codes. Index.


Contents:


Contents: