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Abstract

In this paper, we are concerned with hyponormality and subnormality of block Toeplitz operators acting
on the vector-valued Hardy space Hén of the unit circle.

First, we establish a tractable and explicit criterion on the hyponormality of block Toeplitz operators
having bounded type symbols via the triangularization theorem for compressions of the shift operator.

Second, we consider the gap between hyponormality and subnormality for block Toeplitz operators. This
is closely related to Halmos’s Problem 5: Is every subnormal Toeplitz operator either normal or analytic?
We show that if ¢ is a matrix-valued rational function whose co-analytic part has a coprime factorization
then every hyponormal Toeplitz operator 7¢ whose square is also hyponormal must be either normal or
analytic.

Third, using the subnormal theory of block Toeplitz operators, we give an answer to the following
“Toeplitz completion” problem: find the unspecified Toeplitz entries of the partial block Toeplitz matrix

u* 2
A’z[? U*]

so that A becomes subnormal, where U is the unilateral shift on H2.
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1. Introduction

Toeplitz operators, block Toeplitz operators and (block) Toeplitz determinants (i.e.,
determinants of sections of (block) Toeplitz operators) arise naturally in several fields of
mathematics and in a variety of problems in physics, especially, in quantum mechanics. For
example, the spectral theory of Toeplitz operators plays an important role in the study of
solvable models in quantum mechanics [25] and in the study of the one-dimensional Heisenberg
Hamiltonian of ferromagnetism [24]; the theory of block Toeplitz determinants is used in the
study of the classical dimer model [5] and in the study of the vicious walker model [41]; the
theory of block Toeplitz operators is also used in the study of Gelfand—Dickey Hierarchies
(cf. [9]). On the other hand, the theory of hyponormal and subnormal operators is an extensive
and highly developed area, which has made important contributions to a number of problems in
functional analysis, operator theory, and mathematical physics (see, for example, [40,49,57] for
applications to related mathematical physics problems). Thus, it becomes of central significance
to describe in detail hyponormality and subnormality for Toeplitz operators. This paper
focuses primarily on hyponormality and subnormality of block Toeplitz operators with rational
symbols. For the general theory of subnormal and hyponormal operators, we refer to [10,51].

To describe our results, we first need to review a few essential facts about (block) Toeplitz
operators, and for that we will use [6,26,27,30,52,54,55]. Let H and K be complex Hilbert spaces,
let B(H, K) be the set of bounded linear operators from H to /C, and write B(H) := B(H, H).
For A, B € B(H), we let [A, B] := AB — BA. An operator T € B(H) is said to be normal
if [T*, T] = 0, hyponormal if [T*, T] > 0, and subnormal if 7 has a normal extension, i.e.,
T = N|y, where N is a normal operator on some Hilbert space X 2 H such that H is
invariant for N. For an operator T € B(H), we write ker T and ran T for the kernel and the
range of T, respectively. For a set M, cl M and M~ denote the closure and the orthogonal
complement of M, respectively. Also, let T = R/277Z be the unit circle. Recall that the Hilbert
space L? = L?(T) has a canonical orthonormal basis given by the trigonometric functions
en(z) = 7" for all n € Z, and that the Hardy space H? = HZX(T) is the closed linear
span of {e, : n = 0,1,...}. An element f € L? is said to be analytic if f € H2. Let
H® = H®(T) := L® N H?, ie., H® is the set of bounded analytic functions on the open
unit disk .

Given a bounded measurable function ¢ € L*°, the Toeplitz operator T, and the Hankel
operator H, with symbol ¢ on H 2 are defined by

T,g = P(pg) and H,g:=JP"(pg) (g€ H), (1.1)

where P and Pt denote the orthogonal projections that map from L? onto H? and (H?)',
respectively, and J denotes the unitary operator from L> onto L? defined by J(f)(z) = Zf(2)
for f € L?.

To study hyponormality (resp. normality and subnormality) of the Toeplitz operator T,
with symbol ¢ we may, without loss of generality, assume that ¢(0) = O; this is because
hyponormality (resp. normality and subnormality) is invariant under translations by scalars.
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Normal Toeplitz operators were characterized by a property of their symbols in the early 1960’s
by Brown and Halmos [8] and the exact nature of the relationship between the symbol ¢ € L*
and the hyponormality of T;, was understood via Cowen’s Theorem [14] in 1988.

Cowen’s Theorem ([/14,53]). For each ¢ € L, let
E(@)={ke H® : |klloo < land ¢ — kg € H*}.
Then a Toeplitz operator Ty, is hyponormal if and only if E(¢) is nonempty.

This elegant and useful theorem has been used in the works [21,22,28,31,32,35,42-46,50,
53,591, which have been devoted to the study of hyponormality for Toeplitz operators on H>.
Particular attention has been paid to Toeplitz operators with polynomial symbols or rational
symbols [45,46]. However, the case of arbitrary symbol ¢, though solved in principle by Cowen’s
Theorem, is in practice very complicated. Indeed, it may not even be possible to find tractable
necessary and sufficient condition for the hyponormality of 7, in terms of the Fourier coefficients
of the symbol ¢ unless certain assumptions are made about ¢. To date, tractable criteria for
the cases of trigonometric polynomial symbols and rational symbols were derived from a
Carathéodory—Schur interpolation problem [59] and a tangential Hermite—Fejér interpolation
problem [31] or the classical Hermite—Fejér interpolation problem [45], respectively.

Recall that a function ¢ € L is said to be of bounded type (or in the Nevanlinna class) if
there are analytic functions ¥1, ¥, € H° (D) such that ¢ = /v almost everywhere on T.
To date, no tractable criterion to determine the hyponormality of T, when the symbol ¢ is of
bounded type has been found.

We now introduce the notion of block Toeplitz operators. Let M,,», denote the set of all n x r
complex matrices and write M,, := M, . For X a Hilbert space, let L2 = L2 (T) be the Hilbert
space of X'-valued norm square-integrable measurable functions on ’]T and let va = H/zy (T) be
the corresponding Hardy space. We observe that L2, = L> ® C" and Hén =H>®C".If ¢is
a matrix-valued function in Lg,,o = Li,,o (T) (=L*° ® M,) then Ty : Hé,, — Hén denotes the
block Toeplitz operator with symbol ® defined by

Teof = P,(Pf) for f e H(Cn,

where P, is the orthogonal projection of Lé” onto Hén. A block Hankel operator with symbol
@ e L§] is the operator Hg : H}, — HZ, defined by

Hof = J,PE(®f) for f € HZ,

where J, denotes the unitary operator from L%, onto L%, given by J,(f)(z) := ZI, f(Z) for
fe L2, with I,, the n x n identity matrix. If we set H?%, = H?> @ - .- @® H? then we see that

T(ﬂu e Twln ku e H(/)ln
qu = and H@ = )
T(pnl e T(pnn H‘Pnl e H‘/Jnn
where
P11 0 Pin
9= : €Ly .

@Onl - @nn
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For & € L§; , write
nxm

B(z) = P*(2).

A matrix-valued function © € Hlf,l‘jlxm (= H® ® M, «) is called inner if @%@ = I, almost
everywhere on T. The following basic relations can be easily derived:

Th=Te,  Hhy=Hy (6ely) (1.2)
Tow —TeTy = HypHy (9, ¥ € LY); (1.3)
HoTy =Hpy.  Hypo=TiHp (Pl Ve HY): (1.4)
HzHg — HygHop = HyHo«Hg.He (O € Hyy inner, & € Ly ). (1.5)

For a matrix-valued function ¢ = [¢;;] € L°°n , we say that @ is of bounded type if each entry
@ij is of bounded type, and we say that @ is rational if each entry ¢;; is a rational function. A
matrix-valued trigonometric polynomial ¢ € Lijn is of the form

N
D)= Y Azl (AjeMy),

j=—m

where Ay and A_,, are called the outer coefficients of &.

We recall that for matrix-valued functions A = Z?i_oo Ajzl € L12v1,, and B =
Z?O:_OO szj eL? L we define the inner product of A and B by
o0
(A,B)::/AH(B*A)dM:: > w(BjA)).
T je—oo
where tr (-) denotes the trace of a matrix and define ||A|> = (A, A)%. We also define, for
AelL§,

|A]lloo :=esssup [|[A(z)|| (|| - || denotes the spectral norm of a matrix).
teT

Finally, the shift operator S on H?2, is defined by
S = TZ I-
The following fundamental result will be useful in the sequel.

The Beurling-Lax—Halmos Theorem. A nonzero subspace M of Hén is invariant for the shift
operator S on Hé,, if and only if M = @Hém, where O is an inner matrix function in
H/?/axm (m < n). Furthermore, © is unique up to a unitary constant right factor; that is, if
M = AHé, (for A an inner function in Hyp ), thenm = r and © = AW, where W is a
(constant in z) unitary matrix mapping C™ onto C".

As customarily done, we say that two matrix-valued functions A and B are equal if they
are equal up to a unitary constant right factor. Observe by (1.4) that for ¢ € Li,lon, HpS =
HeT,p, = He.pp, = Hyp0 =T, z*I,, H g, which implies that the kernel of a block Hankel operator

H g is an invariant subspace of the shift operator on Hén. Thus, if ker Hp # {0}, then by the
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Beurling—Lax—Halmos Theorem,
ker HQ'S = QH(ém

for some inner matrix function @. We note that © need not be a square matrix.

On the other hand, recently Gu et al. [34] considered the hyponormality of block Toeplitz
operators and characterized it in terms of their symbols. In particular they showed that if T
is a hyponormal block Toeplitz operator on H?2,, then its symbol & is normal, i.e., $* P =
@ d*. Their characterization for hyponormality of block Toeplitz operators resembles Cowen’s
Theorem except for an additional condition—the normality condition of the symbol.

Hyponormality of Block Toeplitz Operators (/34]). For each ¢ € Li;n, let
£(P) = {K € HY Koo < 1 and & — K &* € H;;;’}
Then T¢ is hyponormal if and only if @ is normal and & (®) is nonempty.

The hyponormality of the Toeplitz operator T¢ with arbitrary matrix-valued symbol &,
though solved in principle by Cowen’s Theorem [14] and the criterion due to Gu, Hendricks
and Rutherford [34], is in practice very complicated. Until now, explicit criteria for the
hyponormality of block Toeplitz operators T¢ with matrix-valued trigonometric polynomials
or rational functions ¢ were established via interpolation problems [34,47,48].

In Section 3, we obtain a tractable criterion for the hyponormality of block Toeplitz operators
with bounded type symbols. To do this we employ a continuous analogue of the elementary
theorem of Schur on triangularization of finite matrices: If 7 is a finite matrix then it can be
represented as T = D + N, where D is a diagonal matrix and N is a nilpotent matrix. The
continuous analogue is the so-called triangularization theorem for compressions of the shift
operator: in this case, D and N are replaced by a certain (normal) multiplication operator and a
Volterra operator of Hilbert—Schmidt class, respectively.

Section 4 deals with the gap between hyponormality and subnormality of block Toeplitz
operators. The Bram—Halmos criterion for subnormality [7,10] states that an operator T € B(H)
is subnormal if and only if Zi’j(Tixj, T/ x;) > 0 for all finite collections xg, X, ..., x; € H. It
is easy to see that this is equivalent to the following positivity test:

(r*. 7] [T**.T] - [T*T]
. . ) . >0 (allk>1). (1.6)
(r*, 7% [, 1% .. (1, 7F]
The positivity condition (1.6) for k& = 1 is equivalent to the hyponormality of 7', while

subnormality requires the validity of (1.6) for all k € Z,.. The Bram—Halmos criterion indicates
that hyponormality is generally far from subnormality. But there are special classes of operators
for which the positivity of (1.6) for some k and subnormality are equivalent. For example,
it was shown ip .[21] thallt if W JF (BN is the weighted shift whose w.eight sequence
consists of the initial weight x followed by the weight sequence of the recursively generated
subnormal weighted shi.ft W( NN with an i.nitial seg.rrllept of pos.it.ive weights ﬁ /b, ﬁ
(cf. [17-19]), then W, is subnormal if and only if the positivity condition (1.6) is satisfied with
k = 2. On the other hand, in [38, Problem 209], it was shown that there exists a hyponormal
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operator whose square is not hyponormal, e.g., U* + 2U (U is the unilateral shift on ¢2), which
is a trigonometric Toeplitz operator, i.e., U* + 2U = T;4,.. This example addresses the gap
between hyponormality and subnormality for Toeplitz operators. This matter is closely related to
Halmos’s Problem 5 [36,37]: Is every subnormal Toeplitz operator either normal or analytic?

In [21], as a partial answer, it was shown that every hyponormal Toeplitz operator T, with
trigonometric polynomial symbol ¢ whose square is hyponormal must be either normal or
analytic. In [33], Gu showed that this result still holds for Toeplitz operators T, with rational
symbol ¢ (more generally, in the cases where ¢ is of bounded type). In Section 4 we prove the
following theorem: If @ is a matrix-valued rational function whose co-analytic part has a coprime
factorization then every hyponormal Toeplitz operator T whose square is hyponormal must be
either normal or analytic. This result generalizes the results in [21,33].

In Section 5, we consider a completion problem involving Toeplitz operators. Given a partially
specified operator matrix, the problem of finding suitable operators to complete the given partial
operator matrix so that the resulting matrix satisfies certain given properties is called a completion
problem. The dilation problem is a special case of the completion problem: in other words, a

dilation of T is a completion of the partial operator matrix [: Z] In recent years, operator
theorists have been interested in the subnormal completion problem for

vu* ?
? U

where U is the unilateral shift on H?. If the unspecified entries? are Toeplitz operators this
is called the Toeplitz subnormal completion problem. Thus this problem is related to the
subnormality of block Toeplitz operators. In Section 5, we solve this Toeplitz subnormal
completion problem.

Finally, in Section 6 we list some open problems.

2. Basic theory and preliminaries

We first recall [1, Lemma 3] that if ¢ € L then
@ is of bounded type <= ker H,, # {0}. 2.1
If p € L™, we write
oy =Py € H? and 7 EP_l(pesz.

Assume now that both ¢ and @ are of bounded type. Then from Beurling’s Theorem, ker Hg— =
0o H? and ker Hy-=0+H 2 for some inner functions 6y, 0+. We thus have b :=9-60y) € H 2 and
hence we can write

¢_ =6pb andsimilarly ¢, =6,a forsomea € H>. (2.2)
In particular, if T, is hyponormal then since

(T;,T,] = H$H¢ — H;H(p = H%Hﬁ — H(;‘TH(/)—_, (2.3)
it follows that || Hg f || > [|[Hg=f || for all f € H?, and hence

9+H2 = ker Hg- C ker Hz— = GOHZ,
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which implies that 8y divides 6, i.e., 64 = 6pf; for some inner function 6;. We write, for an
inner function 6,

H®) = H>© 6 H>.

Note that if f = 6@ € L?, then f € H? if and only if a € H(z0); in particular, if f(0) = 0
then a € H(O). Thus, if ¢ = 9_ + ¢4 € L™ is such that ¢ and @ are of bounded type such that
¢+(0) = 0 and T, is hyponormal, then we can write

¢ =6p01a and @_ =6b, wherea € H(6p0:) and b € H(6y).

By Kronecker’s Lemma [54, p. 183], if f € H® then f is a rational function if and only if
rank H7 < 00, which implies that

f is rational <= f = 60b with a finite Blaschke product . 24
Also, from the scalar-valued case of (1.4), we can see that if k € £(¢) then
(T;, Tyl = H$H¢ - H;‘Hw = H%‘Ha - Hk*kag = Hg(l - T;T;*)Ha 2.5
On the other hand, Abrahamse [1, Lemma 6] showed that if T, is hyponormal, if ¢ ¢ H*,
and if ¢ or @ is of bounded type then both ¢ and @ are of bounded type. However, by contrast
to the scalar case, ¢* may not be of bounded type even though T is hyponormal, ¢ ¢ H /?4(:,
and @ is of bounded type. But we have a one-way implication: if T¢ is hyponormal and &* is
of bounded type then @ is also of bounded type (see [34, Corollary 3.5 and Remark 3.6]). Thus
whenever we deal with hyponormal Toeplitz operators T¢ with symbols @ satisfying that both
@ and ¢* are of bounded type (e.g., @ is a matrix-valued rational function), it suffices to assume
that only ®* is of bounded type. In spite of this, for convenience, we will assume that ¢ and &*
are of bounded type whenever we deal with bounded type symbols.
For a matrix-valued function ¢ € HI%/I,W’ we say that A € Hl%lnxm is a left inner divisor of
@ if A is an inner matrix function such that & = A A for some A € HI%,[WV (m < n). We also
say that two matrix functions ¢ € Hf,,nw and ¥ € Hf,,”m are left coprime if the only common
left inner divisor of both @ and ¥ is a unitary constant and that ¢ € H/%,,nxr and ¥ € H/%,,mxr are
right coprime if @ and ¥ are left coprime. Two matrix functions ¢ and ¥ in H,%,,n are said to be
coprime if they are both left and right coprime. We note that if ¢ € H,%,,n is such that det @ is not
identically zero then any left inner divisor A of @ is square, i.e., A € H/%,,n: indeed, if § = AA
with A € Hf,,nxr (r < n) then for almost all z € T, rank ®(z) < rank A(z) < r < n, so that
det (z) = 0 for almostall z € T. If & € H,%,In is such that det @ is not identically zero then we

say that A € Hf,,n is a right inner divisor of @ if A is a left inner divisor of @.

On the other hand, we have (in the Introduction) remarked that © need not be square in the
equality ker Hp = ©H2,, which comes from the Beurling—Lax—Halmos Theorem. But it was
known [34, Theorem 2.2] that for ¢ € Li,[on , @ is of bounded type if and only if ker Hp = QHé,,
for some square inner matrix function 6.

Let{®; € H 1"’31‘:1 i € J} be a family of inner matrix functions. Then the greatest common left
inner divisor @, and the least common left inner multiple 6, of the family {©; € H A‘Z tielJ}
are the inner functions defined by

OqHEy = \/ OiHz, and O, HE, =) OiHe.

ie ieJ
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The greatest common right inner divisor @), and the least common right inner multiple ©;, of
the family {©; € H 131"’1 : i € J} are the inner functions defined by

OyHE =\/ OiHZ, and O, HE = () 6;He.
ieJ iel
The Beurling-Lax—Halmos Theorem guarantees that ©; and 6, are unique up to a unitary
constant right factor, and @ and @, are unique up to a unitary constant left factor. We write
6y =GCDy{6O; :i e J}, 6 =LCM,{6O; :i € J},
0, =GCD,{6; :i € J}, 0, =LCM, {6; :i € J}.
If n = 1, then GCDy {-} = GCD;, {-} (simply denoted GCD {-}) and LCM; {-} = LCM, {-}
(simply denoted LCM {-}). In general, it is not true that GCDy {-} = GCD; {-} and LCM; {-} =
LCM, {-}.
However, we have:
Lemma 2.1. Let O; := 6; 1, for an inner function 6; (i € J).
(@) GCDy {O; :i € J} =GCD, {6; :i € J} =641, where 6, = GCD{0; : i € J}.
(b) LCM{B; :i € J} =LCM, {6; :i € J} = O, 1, where 8,, = LCM {6; : i € J}.
Proof. (a) If ©; = GCDy{6; : i € J}, then

n

OqHE = \/ 6:HE: =P \/ 0:H* = éedyz,
j=1

iel j=lieJ

which implies that Oy = 6041, with 6; = GCD {0, : i € J}. If instead Oy = GCD,{6; : i € J}
then ©; = GCD¢{6O; : i € J}. Thus we have ©; = 6,1, and hence, O = 6;1,.
(b) If ©,, = LCM,{6; : i € J}, then

n

QmHén = ﬂ QiH(zjn - @ﬂein = éemHza
j=1

iel j=lieJ

which implies that 6, = 6,,1,, with8,, = LCM {6; : i € J}.Ifinstead ©,, = LCM,{6; : i € J},
then the same argument as in (a) gives the result. [

In view of Lemma 2.1, if ©; = 6; I, for an inner function 6; (i € J), we can define the greatest
common inner divisor &, and the least common inner multiple 6, of the 6; by

O, =GCD{B; :ie€J} =GCD;{6; :i € J} =GCD, {O; :i € J};
B =LCM{O; :i € J} =LCM;{6; :i € J} =LCM, {6; :i e J} :

they are both diagonal matrices.
For ¢ € Lﬁ,lon we write

b = P,(P) € Hy and &_:=[P(D)| € Hy, .

Thus we can write ¢ = ¢* + &,. Suppose ¢ = [¢;;] € Lﬁ,lon is such that @¢* is of bounded type.

Then we may write ¢;; = 6; jE,- j» where 6;; is an inner function and 6;; and b;; are coprime. Thus
if 6 is the least common inner multiple of 6;;’s then we can write

& = [gij] = [6i;bij] = [0a;;] = OA* (O =01,, A=l[a;j] € Hy). (2.6)
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We note that in the factorization (2.6), A(«) is nonzero whenever 6(a) = 0.Let & = ¢* + &, €
Lﬁ,[on be such that ¢ and ®* are of bounded type. Then in view of (2.6) we can write

= 6|A* and P_ = 6,B*,

where ©; = 0;1, with an inner function 6; fori = 1,2 and A, B € H2 In particular, if
NS Lﬁ is rational then the 6; can be chosen as finite Blaschke products as we observed
in (2.4).

By contrast with scalar-valued functions, in (2.6) © and A need not be (right) coprime: for

instance, if @ = [Z

_ « |z 0|1 1
w0 1)

but @ = [0 (j] and A = [i :] are not right coprime because \/LE [] _]] is a common right

] then we can write

inner divisor, i.e.,

L1 oz I [z —z _ 0 1 I [z —z
o=l Bl T e asaf ] 50T e
If 2 = GCDy {A, O} in the representation (2.6):
= OA* =A*O (O =01, for an inner function ),

then © = (2(); and A = (2 A, for some inner matrix {2, (where (2 € H]%/I,, because det © is not

identically zero) and some A; € H[%,,n. Therefore if ¢* € Li,lon is of bounded type then we can
write

¢ = A", where Ay and (J are left coprime. 2.8)

A7 (Y is called the left coprime factorization of ®; similarly, we can write
@ = () AF, where A, and {2, are right coprime. 2.9)

In this case, {2 A} is called the right coprime factorization of ®.

Remark 2.2 (/34, Corollary 2.5]). As a consequence of the Beurling—Lax—Halmos Theorem,
we can see that

@ = (2, AY (right coprime factorization) <= ker Hgp+ = 2, Hén. (2.10)
In fact, if & = (2. A* (right coprime factorization) then it is evident that

ker Hg+ 2 2, Hn.
From the Beurling—Lax—Halmos Theorem,

ker Hgp = QH(%,,,

for some inner function ©, and hence (I — P)($*0) =0, i.e., ?* = DO*, forsome D € Hé,,
We want to show that {2, = © up to a unitary constant right factor. Since QHCH D HC,“
have (cf. [29, p. 240]) that {2, = OA for some square inner function A. Thus,

DO* = ¢* = A, 0* = A, A*O*,
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which implies A, = DA, so that A is a common right inner divisor of both A, and {2.. But since
A, and (2, are right coprime, A must be a unitary constant. The proof of the converse implication
is entirely similar. [

From now on, for notational convenience we write
lo=wl, (weH? and H? =1, H}
w n 0 — 24 M,

It is not easy to check the condition “B and © are coprime” in the decomposition F = B*©
(© = Iy is inner and B € HI%/I,,)' But if F is rational (and hence © is given in a form 6 = Iy
with a finite Blaschke product #) then we can obtain a more tractable criterion. To see this, we
need to recall the notion of finite Blaschke—Potapov product.
Let A € D and write
Z—A

by(z) = v

which is called a Blaschke factor. If M is a closed subspace of C" then the matrix function of the
form

by Py + (I — Py) (Py = the orthogonal projection of C" onto M)
is called a Blaschke—Potapov factor; an n x n matrix function D 1is called a finite
Blaschke—Potapov product if D is of the form

M

D=v ] (buku+d = Pw),

m=1

where v is an n X n unitary constant matrix, b,, is a Blaschke factor, and P, is an orthogonal
projection in C" for each m = 1, ..., M. In particular, a scalar-valued function D reduces to
a finite Blaschke product D = v ]_[,ZZI=1 by, where v = €'“. It is also known (cf. [56]) that an
n X n matrix function D is rational and inner if and only if it can be represented as a finite
Blaschke—Potapov product.

Write Z(0) for the set of zeros of an inner function . We then have:

Lemma 2.3. Let B € H;‘Z be rational and © = lg with a finite Blaschke product 6. Then the
following statements are equivalent:

(a) B(w) is invertible for each o € Z(0);
(b) B and © are right coprime;
(¢c) B and O are left coprime.

Proof. See [20, Lemma 3.10]. [
If © e Hf,;; is an inner matrix function, we write
H(O) = (OHE )™
Ho = (OHy )";
Ke = (Hy )"

If ©® = Iy for an inner function 6 then Hg = K g and if n = 1, then H(O) = Ho = Kpo.
The following lemma is useful in the sequel.
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Lemma 24. If O € H]%,,n is an inner matrix function then

dim H(O) < 0o <= 6O is a finite Blaschke—Potapov product.

Proof. Let
8 := GCD {w : wis inner, O is a left inner divisor of 2 = I,} and A := Is,

in other words, § is a ‘minimal’ inner function such that A = I5 = ©©); for some inner matrix
function ;. Note that
O is a finite Blaschke—Potapov product = § is a finite Blaschke product
— dimH(4) < oo.

Observe that
H(A) = H(O6)) = H(6) P OH(6)).

Thus if © is a finite Blaschke—Potapov product, then dim H(©@) < co. Conversely, we suppose
dim H(O) < oco. Write O = [eij]?j=1- Since

rank Hg__ <rank Hg. = dimH(0) < oo,
Ly

it follows that 6;;’s are rational functions. Thus © is a rational inner matrix function and hence a
finite Blaschke—Potapov product. [

Lemma 2.4 implies that every inner divisor of a rational inner function (i.e., a finite
Blaschke—Potapov product) is also a finite Blaschke—Potapov product: indeed, if © is a finite
Blaschke—Potapov product and O is an inner divisor of @, then dim H(0;) < dimH(O) < oo,
and hence by Lemma 2.4, O is a finite Blaschke—Potapov product.

From Lemma 2.4, we know that every inner divisor of B :=1Ip, € chlz is a finite
Blaschke—Potapov product. However we can say more:

Lemma 2.5. Every inner divisor of By = I, € H,f',l‘; is a Blaschke—Potapov factor.

Proof. Suppose D is an inner divisor of B). By Lemma 2.4, D is a Blaschke—Potapov product
of the form

m
D=v[][Di withD; :=byPi+I—P)(m=n).
i=1
We write B, = E D for some E € HI%/I,,' Observe that B) (1;) is not invertible, so that A; = A for
alli =1,2..., m. We thus have

m—1
Py +by(I = Py) =B, Df =E-v ]_[ D;.

i=1
Then we have
ker P,, = ker(ByD;;)(A) 2 ker Dyy—1 (1) = ran Ppy,_1,

which implies that P, P,,_; = 0, and hence P,, and P, _ are orthogonal. Thus D,,_1D,, is a
Blaschke—Potapov factor. Now an induction shows that D is a Blaschke—Potapov factor. [
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With the aid of Lemma 2.5, we can show that the equivalence (b) < (c) in Lemma 2.3 fails if
O is not a constant diagonal matrix. To see this, let

_|ba O 1 [z —
@1.—|:O 11| and 92.—3[1 1].

Then © := 660, and O are not left coprime. Observe that

Ao ba 0 N 1 Zba 1

S A RS A
Since every right inner divisor A of é] is an inner divisor of By = I, it follows from
Lemma 2.5 that A = 91 (up to a unitary constant right factor). Suppose that © and O, are

not right coprime. Then 6 and 91 are not left coprime and hence 91 is a left inner divisor of ©.
Write

1 by 1 _ by O fll f12 ) ,
E[—zba 1}_[0 1“]31 le} (fij € H).

Then we have \/» = by f12, so that f1» = f bg € H?, giving a contradiction.

For X a subspace of H2 L we write Py for the orthogonal projection from H,%,In onto X.

Lemma 2.6. Let © € H j}‘; be an inner matrix function and A € H]%,[n. Then the following hold:

(@) AeKg & OA* € H};
(b) A e Ho & A*O € H};

« %
(©) Pya(04%) = Q(P,C(_)A) .
Proof. Let C € H,%,[n be arbitrary. We then have
AeKg = (A,CO)=0
— / r ((C@)*A) di =0
T

= / tr (C*AO*)du =0 (since tr(AB) = tr(BA))
T

= (AO*,C) =0

— OA* € H},
giving (a) and similarly, (b). For (c), we write A = A+ A3, where A| := P, A and Ay = A3 0
for some A3 € H/%,,n. We then have

Pya(OA) = Pa(OA] + OA3) = Pya( O(Pry A + 00743 ) = O(Prc, A",

giving (c). O

We next review the classical Hermite—Fejér interpolation problem, following [29]; this
approach will be useful in the sequel. Let 6 be a finite Blaschke product of degree d:

N .
9 = e H(bi)’"" <bi = lZ ixl , where o; € D) ,
i=1 -

oz
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where d = ZIN=1 m;. For our purposes rewrite 6 in the form

d
0 = et Hbj,
j=1
where
_ k-1 k
bj=be if Y my<j<y m
=0 =0

and, for notational convenience, mq = 0. Let

qj
1-ajz

vj = bj—tbj—a---bi (1<) <d), @.11)

where ¢1 := ¢1(1 —@1z) "' and g; :== (1 — |a,~|2)% (1 < j <d).Itis well known (cf. [58]) that
{(pj};{zl is an orthonormal basis for H(6).

For our purposes we concentrate on the data given by sequences of n x n complex matrices.
Given the sequence {K;; : 1 <i < N, 0 < j < m;} of n x n complex matrices and a set of
distinct complex numbers «q, ..., oy in D, the classical Hermite—Fejér interpolation problem
entails finding necessary and sufficient conditions for the existence of a contractive analytic
matrix function K in H 1?/10,, satisfying

KW (@)
J!
To construct a matrix polynomial K (z) = P(z) satisfying (2.12), let p;(z) be the polynomial of
order d — m; defined by

pi() = ﬁ(z_“k )"

k=1, o — Ok
ket

=Ki; (1<i<N,0<j<m). 2.12)

Consider the matrix polynomial P (z) of degree d — 1 defined by

N
P(z) = Z(K,{O + K[z —a) + K],z —a)?

i=1
+o K2 a»’"i*) Pi(2), (2.13)

where the K l’ j are obtained by the following equations:

j—] K/ (J_k)( .
ik Pi a;) ) )
Ki/,jZKi,j—Zl(.lfk)‘ (I1<i<N;0<j<m)
= Y :
and Ki/o = K, o (1 <i < N). Then P(z) satisfies (2.12).
On the other hand, for an inner function 6, let Uy be defined by the compression of the shift
operator U: i.e.,

Up = Pro)Ulme)-
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Let © = Iy and W be the unitary operator from @‘f C" onto H(O) defined by

W= gy, Ly ... Iyy), (2.14)

where the ¢; are the functions in (2.11). It is known [29, Theorem X.1.5] that if 6 is the finite
Blaschke product of order d, then Uy is unitarily equivalent to the lower triangular matrix M on
C4 defined by

- 0 0 0 .
q192 o 0 0
—q1%193 9293 o3 0
M= | qaxa3q4 —q203q4 4344 g e e | (2.15)

—q1020304q5 Q20300445 —q304q5 q4qs5 Qs

If L € My, and M = [m; jlaxa, then the matrix L ® M is the matrix on C"*d defined by the
block matrix

Lmyy Lmia -+ Lmyyg

Lmy1 Lmzp -+ Lmpgy
LM = . . .

Lmgy1 Lmgy --- Lmgy

Now let P(z) € H,f,,‘z be a matrix polynomial of degree k. Then the matrix P(M) on C"*? is
defined by

k k
P(M) = Z P, ® M, where P(z) = Z P7. (2.16)
=0 =

For ¢ € Hlf,l‘j’ and © := Iy with an inner function 6, we write, for brevity,

Te)o = ProyTolH(0), (2.17)

which is called the compression of Tg to H(O). If M is given by (2.15) and P is the
matrix polynomial defined by (2.13) then the matrix P (M) is called the Hermite—Fejér matrix
determined by (2.16). In particular, it is known [29, Theorem X.5.6] that

W*(Tp)eW = P(M), (2.18)

which says that P(M) is a matrix representation for (7p)g.

Lemma 2.7. Let A € H 1?,10 and © = Iy for a finite Blaschke product 6. If A(a) is invertible for
alla € Z(0) then (Ty) g is invertible.

Proof. Suppose (T4)o f = 0 for some f € H(O), so that Py g)(Af) = 0 and hence,
Af € OH, 2. Since A(w) is invertible for all @ € Z(0), it follows that f € @Hé,l and hence,
f € ©H2, NH(O) = {0}. Thus (T4) e is one—one. But since (T4) g is a finite dimensional
operator (because 6 is a finite Blaschke product), it follows that (74) g is invertible. [
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3. Hyponormality of block Toeplitz operators

To get a tractable criterion for the hyponormality of block Toeplitz operators with bounded
type symbols, we need a triangular representation for compressions of the unilateral shift operator
U = T,. We refer to [2,54] for details on this representation. For an explicit criterion, we need
to introduce the triangularization theorem concretely. To do so, recall that for an inner function
0, Uy is defined by

Up = ProyUlno)- 3.1

There are three cases to consider.

Case 1: Let B be a Blaschke product and let A := {A, : n > 1} be the sequence of zeros of B
counted with their multiplicities. Write

:3 — 1 :3 _,ﬁ )""_Z |)"n| (k>2)
1 =1 k -— l—xnz A = <),

n=1

3j = —B; (=D,

where d; .= (1 — |Aj|2)%. Let g be a measure on N given by up({n}) = %df (n € N). Then
the map V3 : L?(up) — H(B) defined by

V() = —= Y c(m)dndn, ¢ ={cM}=1, (3.2

b
V2
is unitary and Up is mapped onto the operator

ViUV = (I — Jp)Mp, (3.3)

where (Mpc)(n) = A,c(n) (n € N) is a multiplication operator and

¥ )()-—nf(kn 2. 0O wew
Bcn._kZIC [ Akl .ﬂk(o)kn ne

is a lower-triangular Hilbert—Schmidt operator.

Case 2: Let s be a singular inner function with continuous representing measure u = . Let u;,
be the projection of  ontothearc {¢ : ¢ € T, 0 < arg¢ < argA} and let

r+

5,.(¢) = exp —/ —gdﬂx(l) (¢ eh).
Tt—¢

Then the map V; : L?>() — H(s) defined by

Adp(d)
A=

V(@) = V2 /T c05,.(¢) (¢ eD) (3.4)

is unitary and Uy is mapped onto the operator

VS*UX Ve = — Jo) M, 3.5
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where (M;c)(X) := ,c()) (A € T) is a multiplication operator and
(Jso)(L) =2 / O M enyd,, (1) (A € T)
T

is a lower-triangular Hilbert—Schmidt operator.
Case 3: Let A be a singular inner function with pure point representing measure @ = u . We
enumerate the set { € T : u({t}) > 0} as a sequence {fx}ren. Write ux == w({t%}), k > 1.
Further, let 4w be a measure on Ry = [0, oo) such that dua(X) = pa+1dA and define a
function A, on the unit disk D by the formula

[A]

fy +¢ f+1 +¢
A = — —(A—=[Ar _— 7,
2 (&) GXP{ kE=1 Mk — a =1 ])M[A]Jrltm+1 — C}

where [A] is the integer part of A (A € Ry) and by definition Ag := 1. Then the map
VA L?(up) — H(A) defined by

(Vao)(¢) == ﬁ[l‘% A —Tp10) ' dua®) (¢ eD) (3.6)
+
is unitary and U 5 is mapped onto the operator
VAUAVA = — JA)Ma, 3.7
where (M ac)(X) = t+1¢(A), (A € R) is a multiplication operator and
(Jao)(h) = Z/A C(I)wd/m(t) *reRy)
0 A,(0)

is a lower-triangular Hilbert—Schmidt operator.
Collecting the above three cases we get:

Triangularization theorem (/54, p. 123]). Let 0 be an inner function with the canonical
factorization ® = B - s - A, where B is a Blaschke product, and s and A are singular functions
with representing measures [ty and [ A respectively, with g continuous and ua a pure point
measure. Then the map V : L*(up) x L*(us) x L?>(up) — H(O) defined by

Vg 0 0
V=] 0 BV 0 (3.8)
0 0 BsVp

is unitary, where Vg, up, Vs, us, Va, ua are defined in (3.2)—(3.7) and Uy is mapped onto the
operator

Mg O 0
M=V*UpgV=| 0 My, 0 [+,
0 0 Mp
where Mp, Mg, M A are defined in (3.3), (3.5) and (3.7) and
JpMp 0 0
J=— 0 Js M 0 + A
0 0 JAM A

is a lower-triangular Hilbert-Schmidt operator, with A> = 0, rankA < 3.
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If ¢ e Li,lon, then by (1.3),
[T%, Tgl = HE*qu - H;Hq} + To+p_ -

Since the normality of @ is a necessary condition for the hyponormality of T'¢, the positivity of
H3.Hg+ — HiHg is an essential condition for the hyponormality of 7. Thus, we isolate this
property as a new notion, weaker than hyponormality. The reader will notice at once that this
notion is meaningful for non-scalar symbols.

Definition 3.1. Let ¢ € Lﬁ,lon. The pseudo-self-commutator of T is defined by
[T%, Telp = H;;FH@* — H},Hq;.
T is said to be pseudo-hyponormal if [T}, Te], is positive semi-definite.

As in the case of hyponormality of scalar Toeplitz operators, we can see that the pseudo-
hyponormality of T is independent of the constant matrix term @(0). Thus whenever we
consider the pseudo-hyponormality of T¢ we may assume that #(0) = 0. Observe that if
P e Ly then

(T3 Tol =[Tg. Tolp + Toro— o+
We thus have

T4 is hyponormal <= T is pseudo-hyponormal and @ is normal;

and (via [34, Theorem 3.3]) T is pseudo-hyponormal if and only if £(®) # @.
For ¢ = ¢* + ¢, € L"On, we write

c@ =K ey :o-Ko ey ).
Thus if ¢ € Li,lon then

Kec&(®) e KecC(®) and [K|s <1.

Also if K € C(®) then Hp+ = Hg = TI%H &% 5 which gives a necessary condition for the
nonemptyness of C(®) (and hence the hyponormality of T¢): in other words,

K € C(9) =>kerH¢i C ker Hgp~ . 3.9

We begin with:

Proposition 3.2. Let & = &* + &, € Li,lo” be such that ¢ and ®* are of bounded type. Thus
we may write

b, = O1A" and P_ = O,B%,

where ©; = Iy, for an inner function 6; (i =1,2)and A, B € Hf,,n. If C(®) # @, then Oy is an
inner divisor of Oy, i.e., ©1 = Oy 6, for some inner function Oy.

Proof. In view of (2.6) we may write

¢+ = [elaij]nxn and ¢ = [GZEU]"X" = [eijaj]nxn ’
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where each 6;; is an inner function, ¢;; € H 2 6 j and ¢;; are coprime, and 6, is the least common
multiple of 6;;’s. Suppose C(®) # @. Then there exists a matrix function K € Hf,fn such that

¢* — K &% € Hy, . Thus BO; — KAO} € Hy, , which implies that
BO} O, = [bji0101] € Hy, .
But since 6,b;; = 6;;¢;;, and hence b;; = 6:20;jc;j, it follows that
bjiBa61 = (628 jicji) Babh = Bjiciifh € H.
Since 6;; and cj; are coprime, we have that
0;i0) € H®, andhence 6,0, € H®,
which implies that ©, divides ©;. O
Proposition 3.2 shows that the hyponormality of 7, with scalar-valued rational symbol ¢
implies
deg(p-) < deg(p4),

which is a generalization of the well-known result for the cases of the trigonometric Toeplitz
operators, i.e., if ¢ = ZN ayz" is such that T;, is hyponormal then m < N (cf. [28]).

n=—m
In view of Proposition 3.2, when we study the hyponormality of block Toeplitz operators with

bounded type symbols ¢ (i.e., ¢ and ®* are of bounded type) we may assume that the symbol
P=0F + P, eLfy is of the form

b, = O16hA* and P_ = OB*,

where ©; := Iy, for an inner function 6; (i =0, 1) and A, B € H,@n.
Our criterion is as follows:

Theorem 3.3. Let & = ¢* + &, € L‘;,Ion be normal such that @ and &* are of bounded type of
the form

(Z5+ = 91 QQA* and &_ = 913*,
where ©; = I, for an inner function 0; (i =0,1)and A, B € H,%/I". Write

=12 (uB) X LZ(/LY) X LZ(/,LA) — H(016p) is unitary as in (3.8);
v* U0190V;

(3.10)
If K € C(®) then

(T3, Tol = (T, 6,V (112 = KM KD )V*(Tw) 6,6, P 016, 012,
where K (M) is understood as an H*-functional calculus. Hence, in particular,
K (M) is contractive = T¢ is hyponormal,

the converse is also true if (Ta) 9, 9, has dense range, and in this case,

rank [T}, Tg] = rank (1|£ — K(M)*K(M)).
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Proof. Let E, F € H(O;6)p) and K € C(P). Since ker H91* o = 6 QOH(%,,, we have

Heororxk E = Hoy op (PH(6, 0) (K E)).

Since Hg: o Hor gy is the projection onto H(6); 6p), it follows that
10

<H5TQSKH9T96‘KE’ F> = (Pr(o100KE, Pre,6)KF)
= «]k)gleoEa(Tk)QIQOF),
which gives
H?:Jr@gKH@r@gKm(@l Q) = (T1<)*@l a(Tx) e, 6,

Observe that [T}, Tg] = HZ@; or Haoror — HE@T Hp oy because @ is normal. But since

1
clran (HXQSQTHAQSF@T) = (kerHAQ(’)‘@f‘) C (6, QOHén)J_ = H(616p)
and
* + 2 \L
clran (HBQI*HBQ]*) = (kerHBQI*) C (O1Hg)™ =H(6y),

we have ran [T, Tg] € H(6O16)). But since ¢ — K &* € Hyp , it follows that on H (6 6y),

T T :(H**H*—H*H )‘
[qs 45] & [ Pl1P H(O, 6y)

- (H;*H@ - H;g@*HK@*)

H(616p)

= H* <H * —@H* H * )
( OO a+o 167 65A+ P~ k(07 5a+0) K (O] 65A+9) )1 g g

_ ok * *
) @oqﬁ_><H@r@gH9f‘93‘ - HK@r@gHKGf‘@J)

x Ta @@45,’
(A+6,6) )H(9190)

= (T, 0, (1116100 — (TkVs,0,(Tk) 6,6, ) (T) 6,6y,

where (T4) 9, ¢, is understood in the sense that the compression (T4) g, g, is bounded even
though T4 is possibly unbounded; in fact,

Pre,00) Ta+6,0,0.)|1H(6,60) = PH (6,60 TAlH(6, 6)-

On the other hand, since K (2) = [krs(2)],_, s<n € Hjp . we may write

K@) =Y Kiz' (Ki€M,).
i=0

1

We also write ky(z) ==Y o ¢ 71 and then K, = I:Ci(”):ll . We thus have
<r,s<n

(Tx)e,0, = Pro,00) Tk IH (6, 6y)
= [ Pr@160) Tis 1H@160) )1 .5 <n
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o0
= [Z C(”)PH(9190)Tzi|H(9190)]

1<r,s<n

o
- [Z cf’ PH(Q]QO)T |H(9]90)) } (because 010gH> C LatT,)
i=0 1<r,s<n

i (rs)
<U9190 ® [Ci :|1<r,s<n>

(Ueleo ® K)

e 10 5

Il
o

i

Let {¢;} be an orthonormal basis for H(016p) and put e; = V*¢;. Then {e;} forms an
orthonormal basis for L?(115) x L*(ps) x L2(j1 ). Thus for each f € C", we have V(e; ® f) =
¢; ® f. It thus follows that

(Tk) 6,6, ® ) e @ g) = (Ui, ® K@ @ ). 10 g)
i=0

(

> (Whao ® Kif). 61 8 5)
> (U Ver Ver) (Kif.g)

> |

M @ K)(e; ® ), e ®g)
=0

= (K(M)(e; ® [), ex ® g),
which implies that
Vi(Tk)e, 6,V = K(M). (3.11)

Here K (M) is understood as a H°°-functional calculus (so called the Sz.-Nagy-Foias functional
calculus) because M is an absolutely continuous contraction: in fact, we claim that

every compression of the shift operator is completely non-unitary.

To see this, write Py U Py for the compression of U to X = Py H 2 with some projection Py.
We assume to the contrary that Py U Py has a unitary summand W acting on a closed subspace
Y € X. Butsince U]l = 1, we must have that Py1U[y = 0. Thus we can see that ) is an
invariant subspace of U. Thus, by Beurling’s Theorem, ) = 6§ H? for some inner function 6. But
then W(9 H?) = z0 H?, and hence W is not surjective, a contradiction. Hence every compression
of the shift operator is completely non-unitary. We can therefore conclude that

(T3, Tol = (Ta)s, 6,V (11c = KM KMV (Ta) 6,0, D 016, 0,12,
The remaining assertions follow trivially from the first assertion. [

If @ is a scalar-valued function then Theorem 3.3 reduces to the following corollary.
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Corollary 3.4. Let ¢ = ¢* + ¢4 € L be such that ¢ and ¢ are of bounded type of the form
¢r =610pa and ¢_ =01b,

where 01 and 0y are inner functions and a, b € H>. If k € C(¢) then
Ty is hyponormal <= k(M) is contractive,

where M is defined as in (3.10).

Proof. By Theorem 3.3, it suffices to show that (7})g,4, has dense range. To prove this suppose
(Ta)zlgof = 0 for some f € H(6100). Then P9, (@f) = 0, ie., af = 016ph for some

h € H?. Thus we have a0y f € (H?)L N H? = {0}, which implies that f = 0. Therefore
(Ta)g1 f is 1-1, which gives the result. [

Remark 3.5. We note that in Corollary 3.4, if ¢ is a rational function then M is a finite matrix.
Indeed, if ¢ is a rational function, and hence 616y is a finite Blaschke product of the form

d
71—
0160 = | | et
j=1 T %L

then M is obtained by (2.15). O

Remark 3.6. We mention that K € C(®) may not be contractive, i.e., there might exist a
function K € C(®) \ £(P). In spite of this, Theorem 3.3 guarantees that
I — K(M)*K(M)

is unchanged regardless of the particular choice of K in C(®). We will illustrate this phenomenon
with a scalar-valued Toeplitz operator with a trigonometric polynomial symbol. For example, let

B(z) =7 242z + 7+ 27%

IfK(z) = 5+ 3z, then 0¥ — K@% = 22 +2: )~ 3+ 3@ " +2:72) = -2 e H®, 50
that K € C(®), but || K |00 = 45'1 > 1. However by (2.15) we have

1
M = |:(1) 8] and hence, K(M) = % (l) ,
4 2
so that
13 3 3 3
I — K(MY*K(M) = [(1) ﬂ o O B R )
8 4 8 4
which implies that T'¢ is hyponormal even though || K || > 1. Of course, in view of Cowen’s
Theorem, there exists a function b € £(P): indeed, b(z) = ot e&(P). O

1+%z

We now provide some revealing examples that illustrate Theorem 3.3.
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Example 3.7. Let A be a singular inner function of the form

1
A::exp(z+ )
z—1

and consider the matrix-valued function
. A A+ zA
T zA+zA A ’

We now use Theorem 3.3 to determine the hyponormality of 7. Under the notation of
Theorem 3.3 we have

_ o |0 1 |z 1
61 =LA, 6y =1, A—|:1 0], B—|:1 Z:|'

If we put

K(z) == [i ﬂ ,

then a straightforward calculation shows that K € C(®). Under the notation of Theorem 3.3 we
can see that

T, = [I(|)L I(|)Li| : L — L is invertible.
But since
|1l M
K(M) = [M m]

it follows that

M*M M+ M*
j— * _—
Ile = K(M)" K (M) = [M+M* MM }
which is not positive (simply by looking at the upper-left entry). It therefore follows from
Theorem 3.3 that T¢ is not hyponormal. [

Example 3.8. Let A be a singular inner function of the form

1
A = exp <i>
z—1

and let
1 1
Q::A%zexp 1t .
2 z—1
Consider the function
4 8 37 — 1 1 29
=74 -A+ 20— —*+ — — 2A).
=T+ —|—50<z ﬁz +¢EZ>+25(Z+ )
Observe that

4 8— 37 —
- =-7+-A+ —( — P)* 0).
7 5z+5 +50( Yz°82)+c¢ (ceC)
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We thus have

25(4 37 ,
Ty 2020 i
(5 + IOOZ ) € C(p)

k=—
29

but

lklloo = L.

— >
116
Thus by the aid of such a function &, we cannot determine the hyponormality of 7;,. Using the
notation in the triangularization theorem we can show that

(i) L*(ua) = L*(0, 1) and L?(up) = C;
(ii) Ma = I and Mp = 0;
(i) (Jac)(h) =2 [ e ~*c(r)dr for & € (0, 1) and ¢ € L2(0, 1);
iv) V. = % and (Vac)(¢) = ﬁfo‘ c(r) exp(—)»%)(l —0O)7ldx, ceD, ce L¥0,1);
(V) M=Mp x MaA+J:L— L, where L=C@® L0, 1) = H(I,»).

Note that H(zA) = H(z) @ zH(A), so that Py, Ay = Py + 2Pr(a)Z. We then have
-t 2] 28] [53]
Since U, = 0, it follows that
M:[VZ o]*[o o_][vZ o]:[ 0 0 }
0 zVal |la zUAZ|| O 2zVa @ZVa)Y*aV, I—Jap
By using the fact that Py = 1 — 6 PO, we can compute:

— A
a= Pyyn)(z-1) = z2Pryz(z- 1) = 2Pra)(1) = z(I — APA)(1) =z <1 - ?> )

Thus we have
0 0

- A
M VZ(I——)VZ I1—Ja
e

Write

N A
A=Vill—-—)V.
e

Then we have
Al? A0) 1 2
HAV=H1—— =Hr———_“{A_Amg
e e e

2
B A(0) 1 5 5
_O—j7>+zomn—M®U
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A straightforward calculation shows that

0

(‘5-‘ + %12(2)(1 |

25
kM) = 25

“Lr Wl s

where

37
S = <<ﬁz9) - JA)>A.

On the other hand, consider the function
¢1(z) = (I — P)(z) + A.

Then g := z{2 € E(¢1). Since M 5o = 1, it follows from Corollary 3.4 that g(M) = (z2)(I—J )
is a contraction. Thus we have
1

IS = 37 () — Jp)A|l < 37 1
~ 100" A= 900 2

Also we consider the function
4 9 —
=—-A+ —( - P)Z* Q)+ A.
©2(2) 5 + 25( )(z" ) +

Put
B(2) 20+ %
7) = —
1+ 2220
Since B(z) = %‘ + %22() + Ag for some g € H?, we have

4 9 — 4 9 —
_—-B = A+ —U-P)ZD)—-+=20+Ag) A
(¢2) (¢2)+ 5 + 25( )(z° 02) <5 + 55% + g)

9 2 2
= ——P(*2)—ge H.
AR
Since || Bl = 1, it follows that T}, is hyponormal. In particular, since
= -+ —z7°0 € C(¢2),
=gt ot (¥2)

it follows from Corollary 3.4 that r (M) = (% + ;—SZZQ)(I — Ja) is a contraction. Thus we have
that

4+ ——R)U-J — @)U —J
‘(5 * 700° )( A) + Too 19 Al

S ‘

4 9 ,
-4+ =z -7
(5 + 557 )( A)
101
< —.
— 100
Using the observation that if A, B, C and D are operators then
'[A B} - ‘[IIAII IIBIIH
c D Ici 11Dl

’
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we can see that

- 4
Bl 0
k(M) < 2
< 55 4 9
2901 s A [
_II [ <5+252 )( A)
- A )
25 3
< — ~ 0. 1
S| 3 [T 10 968 <1,
L 100 2 100

which, by Corollary 3.4, implies that T, is hyponormal.  [J

We now consider the condition “C(®) # @7, i.e., the existence of a function K € H AO,IOn such
that ® — K ¢* € Hﬂo,;:l. In view of (3.9), we may assume that

keersi C ker Hg+ (3.12)
whenever we study the hyponormality of T¢. Recall [31, Corollary 2] that
Hg Her — HyHgp > 0 <= 3K € Hy;
with || K [loo < 1 such that Hox = TZHg: . (3.13)
We thus have

C(®) # W< 3K eH;; suchthat &* — K&* € Hy
<= Hg+ =TZHg: forsome K € Hyp
— HJ@iHa@ — Hy Hgx >0 for some a > 0 (by (3.13))

(3.14)
< ker Hepr ker Hgx and
| Hepx Fl
sup] ———— : F e ker(Hg )", |[F| =1
Hex Fl *

Ifde L°° is a rational function then by Kronecker’s Lemma (cf. [54, p. 183]), ran H & is finite
d1mens10nal Thus by (3.14) we can see that

C(P) £V ¢~ kel‘H@i C ker Hgpx .

Consequently, if ¢ € Li,,on is a rational function then there always exists a function K € C(9)
under the kernel assumption (3.12). We record this in

Proposition 3.9. If ¢ € Lﬁ,,on is a rational function satisfying ker He: < ker Hg+, then
C(P) #0.

We remark that there is an explicit way to find a function (in fact, a matrix-valued polynomial)
K in C(®) for the rational symbol case. To see this, in view of Proposition 3.2, suppose @ € L‘/’W"n
is of the form

P, = O10yA* and P_ = O)B*,
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where ©; = Iy, for a finite Blaschke product 6; (i = 0, 1). We observe first that
KeC(@){:}@—K@*eH,iZ<=>6()B—KA66190HA°,,‘1. (3.15)
Suppose 610 is a finite Blaschke product of degree d of the form

N 7 — mi N
6,60 = d d = .
w=T1(2) ( zm)

i=1

Then the last assertion in (3.15) holds if and only if the following equations hold: for each
i=1,...,N,

Bio Kio 0 0 cee 0 Ao
Bi 1 Ki1 Kio o .- 0 Ail
B, | =] Ki2 Kiir Ko - 0 Aix |, (3.16)
Bim;—1 Kimi—1 Kim—2 -+ Ki1 Kiod LA;m 1
where
KD (a; AD (a; 00 BYD (s
ij — ﬂ’ Al] = & and Blj = w.
, ' . ' . 1
J: J: J:
Thus K is a function in Hffn for which
K9 (a;) . .
—— =Kij (I1=i<N,0=<j<m), (3.17)
j!

where the K; ; are determined by the Eq. (3.16). This is exactly the classical Hermite—Fejér
interpolation problem which we have introduced in Section 2. Thus the solution (2.13) for the
classical Hermite—Fejér interpolation problem provides a polynomial K € C(®).

Therefore we get:

Proposition 3.10. If ¢ € L% is a rational function such that C(®) # (0, then C(®) contains a
polynomial.

However, by comparison with the rational symbol case, there may not exist a function
K € C(®) if @ is of bounded type. But we guarantee the existence of a function K € C(®)
if the bounded type symbol @ satisfies a certain determinant property. To see this, we recall the
notion of the reduced minimum modulus. If T € B(H) then the reduced minimum modulus of T
is defined by

inf{ | Tx|| : x € (ker T)", x| =1} if T #0

v = {0 if T = 0.

It is well known [4,39] that if T # O then y(T') > 0 if and only if T has closed range. We can
easily show that if S, T € B(H) and S is one—one then

y(ST) = y(S)y(T). (3.18)
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We then have:

Proposition 3.11. Let & € Li,[on be such that ® and ®* are of bounded type satisfying
ker Hqufr C ker Hg+ .

If there exists § > 0 such that M = [t ¢ |det Dy ()| < 8] has measure zero then C(®) # .

Proof. Suppose M has measure zero for some § > 0. Write
@, = OA* (right coprime factorization).

Since det © is inner, we have |det ;| = |det A| a.e. on T. Then by the well-known result
[30, Theorem XXIII.2.4], our determinant condition shows that the multiplication operator M4
is invertible and y(Ms) > 0, where Msf = Af for f € Lg,. Since A € Hpp, the
Toeplitz operator Ty is a restriction of M4. Thus it follows that y (T4) > y(M4) > 0. Since
ran Hg+ = H(O), it follows that

H@i = HA@* = T}H@* = T§'|H(é)H@*
Observe that

y(How) = inf [ | Ho- FIl: F € 1(O), | FIl = 1]

inf{n@*Fu . F e H(O), |F|| = 1]
=1.
We now claim that
Tf'H(é) is one—one. (3.19)
Indeed, since
@Hén = ker Hy o+ = ker TiH@* and ker Hgs = QHén,

it follows that T%|., Hor = T~|H 9 is one—one, which gives (3.19). Now since y(T4) > 0 it
follows from (3.18) and (3.19) that

y(Hee) = y(Her) = y (T3l s Ho) = v (Tily )
> y(T) = y(T3) = y(Ta) > 0.
We thus have

He= FIl H
= Fe(kerHgr) , |Fl=1] < N Hall
|Hg: FIl - y (Hg+)
< a for some a > 0. (3.20)

Therefore, by (3.14) we can conclude that C(®) # . O
4. Subnormality of block Toeplitz operators

As we saw in introduction, the Bram—Halmos criterion on subnormality [7,10] says that
T € B(H) is subnormal if and only if the positive test (1.6) holds. It is easy to see that (1.6)
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is equivalent to the following positivity test:

I T* . Tk
T T*T ... T*T
>0 (allk>1). 4.1)

Condition (4.1) provides a measure of the gap between hyponormality and subnormality. In
fact the positivity condition (4.1) for k = 1 is equivalent to the hyponormality of 7', while
subnormality requires the validity of (4.1) for all k. For k > 1, an operator T is said to be
k-hyponormal if T satisfies the positivity condition (4.1) for a fixed k [16]. Thus the
Bram—Halmos criterion can be stated as: T is subnormal if and only if T is k-hyponormal for
all k > 1. The notion of k-hyponormality has been considered by many authors with an aim at
understanding the gap between hyponormality and subnormality. For instance, the Bram—Halmos
criterion on subnormality indicates that 2-hyponormality is generally far from subnormality.
There are special classes of operators, however, for which these two notions are equivalent.
A trivial example is given by the class of operators whose square is compact (e.g., compact
perturbations of nilpotent operators of nilpotency 2). Also in [21, Example 3.1], it was shown
that there is no gap between 2-hyponormality and subnormality for back-step extensions of
recursively generated subnormal weighted shifts.

On the other hand, in 1970, Halmos posed the following problem, listed as Problem 5 in his
lectures “Ten problems in Hilbert space” [36,37]:

Is every subnormal Toeplitz operator either normal or analytic?

A Toeplitz operator T, is called analytic if ¢ € H*. Any analytic Toeplitz operator is easily
seen to be subnormal: indeed, T, = P(ph) = ¢h = M,h for h € H?, where M, is the
normal operator of multiplication by ¢ on L2. The question is natural because the two classes, the
normal and analytic Toeplitz operators, are fairly well understood and are subnormal. Halmos’s
Problem 5 has been partially answered in the affirmative by many authors (cf. [1,3,12,13,21,
22,53], and etc.). In 1984, Halmos’s Problem 5 was answered in the negative by Cowen and
Long [15]: they found an analytic function ¥ for which T piay O <a <1 is subnormal—in
fact, this Toeplitz operator is unitarily equivalent to a subnormal weighted shift Wz with weight

sequence 8 = {B,}, where 8, = (1 — a2”+2)% forn = 0, 1,2,.... Unfortunately, Cowen
and Long’s construction does not provide an intrinsic connection between subnormality and the
theory of Toeplitz operators. Until now researchers have been unable to characterize subnormal
Toeplitz operators in terms of their symbols. Thus the following question is very interesting and
challenging:

Which Toeplitz operators are subnormal? 4.2)

The most interesting partial answer to Halmos’s Problem 5 was given by Abrahamse [1].
Abrahamse gave a general sufficient condition for the answer to Halmos’s Problem 5 to be
affirmative. Abrahamse’s Theorem can be then stated as follows: Let ¢ = g+ f € L (f, g €
H?) be such that ¢ or @ is of bounded type. If Ty is subnormal then T, is normal or analytic. In
fact, it was also shown (cf. [22,23]) that every 2-hyponormal Toeplitz operator with a bounded
type symbol is normal or analytic, and hence subnormal. On the other hand, very recently, the
authors of [20] have extended Abrahamse’s Theorem to block Toeplitz operators.
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Theorem 4.1 (Extension of Abrahamse’s Theorem; Curto et al. [20]). Suppose & = &* + &, €
Li,,on is such that ® and ®* are of bounded type of the form

é_=B*O (B¢ H,%,,n; © = Iy with an inner function 6),

where B and © are coprime. If T is hyponormal and ker[T3, Tg] is invariant under Ty then
T is normal or analytic. Hence, in particular, if T is subnormal then T is normal or analytic.

We note that if n = 1 (i.e., T is a scalar-valued Toeplitz operator), then ¢_ = bh# with
b € H?. Thus, it automatically holds that b and @ are coprime. Consequently, if n = 1 then
Theorem 4.1 reduces to Abrahamse’s Theorem.

On the other hand, the study of square-hyponormality originated in [38, Problem 209]. It is
easy to see that every power of a normal operator is normal and the same statement is true for
every subnormal operator. How about hyponormal operators? [38, Problem 209] shows that there
exists a hyponormal operator whose square is not hyponormal (e.g., U* + 2U for the unilateral
shift U). However, as we remarked in the preceding, there exist special classes of operators for
which square-hyponormality and subnormality coincide. For those classes of operators, it suffices
to check the square-hyponormality to show subnormality. This certainly gives a nice answer
to question (4.2). Indeed, in [21], it was shown that every hyponormal trigonometric Toeplitz
operator whose square is hyponormal must be either normal or analytic, and hence subnormal.
In [33], Gu showed that this result still holds for Toeplitz operators T, with rational symbols ¢
(more generally, the cases where both ¢ and @ are of bounded type).

The aim of this section is to prove that this result can be extended to the block Toeplitz
operators whose symbols are matrix-valued rational functions.

We begin with:

Lemma 4.2. Suppose & = &* + &, € Li,lon is a matrix-valued rational function of the form
&_ = B*O (coprime factorization) and &L = OOyHA*,

where © = Iy and Oy = Ig, with finite Blaschke products 0,6y and A, B € Hf,ln. If Tg is
hyponormal then A(w) is invertible for each o € Z(0) \ Z(6p).

Proof. Assume to the contrary that A(«) is not invertible for some o € Z(6) \ Z(6p). Then by
Lemma 2.3, A and B,, = I, are not right coprime. Thus there exists a nonconstant inner matrix
function A such that

Ba = A1A = AA[ and A= A1A.

Write 6 := B, 0" = ©'B,. Then we may write ¢, = 6y6' A A}. Since T is hyponormal, it
follows that
QOQ/AlHén C ker dei C ker Hgpx = QH(%,,,

which implies that © is a (left) inner divisor of )0’ Ay (cf. [29, Corollary IX.2.2]). Observe
that

O is a (left) inner divisor of GO’ A; = O*GyO' A € HI%/I,,
= 6)A,0'0* € Hy,
= QA* € Hyy |
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which implies that A is a (right) inner divisor of ©y. But since B, and 6 are coprime, it follows
that A and @ are coprime. Thus A is a constant unitary, a contradiction. This completes the
proof. [

Lemma 4.3. Suppose F, B, € H]‘f,[‘i (B, = Ip,). If G = GCD¢{(F, B,}, then G is a
Blaschke—Potapov factor of the form G = by Py + (I — Py) with

N := (ran F(k))l.
Proof. By assumption, 5 = GCD,{F , E;L}. Then by Lemma 2.5,

G = bz Py + (I — Py) for aclosed subspace N.

Thus F = LG for some L H/%h’ where L and 515* = Py + bj(I — Py) are right coprime.
We argue that ker L(X) N ran (I — Py) = {0}. Indeed, if keLZ(X) N ran (I — Py) =: No # {0}
then PNd_ +by(I — PNd_) would be a right inner divisor of L and Py + b3 (I — Py) as follows:

Z(X)_*ONOL_*O 1 07N
_*ONO_*OObeo’

and hence,
~ o~ 10N )
L=LA)+CB _D|:O bJ No (some C, D € Hy; )
and
1 0 O|N 1 0 O 1 0 0|N
Py+bs(I—Py)=|0 by O|N =|0 by O[O 1 O]|N,
0 0 by | Ny 0 0 1 0 0 by | No

where N’ := N1 & Ny. But since F(1) = Z(X)(beN +U - PN))(X) = L) — Py), it
follows that

N =ker(I — Py) = ker F(A) = ker F*(A) = (ran F(1)) ™.
Therefore G = b, Py + (I — Py) with N := (ran F()»))J'. O

Lemma4.4. Let = &, € Hl?/lon be a matrix-valued rational function of the form
@ = OAAY, (right coprime factorization),
= A}f2, (left coprime factorization),

where © = Iy with a finite Blaschke product 6 and A, {2 are inner matrix functions. Then O is
an inner divisor of 2.

Proof. Since A, is a finite Blaschke—Potapov product, we may write

A = ﬁ (mem + - Pm)) (bm = i) .

m=1 a - amz
Without loss of generality we may assume that v = [,,. Define

6y := GCD {a) : w is inner, A, is an inner divisor of {2 = wl, }
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Then 6y = [, by. Observe that
b = OAAF

M
= o] (mem + - Pm))Aj

m=1
_ Ml(mem + (- Pm))BM(PM + by — PM))*A:@ (B = Iy,
m=1
_ M—1<mem + I - Pm)) I:Ar<PM (I — PM))]*BM@,
m=1
If Pyy = 1, then
M—1

o=1T] (mem + - Pm))A;"BM o,

m=1

where © and A, are coprime. If instead Py; # I, then there are two cases to consider.
Case 1: Let oy ¢ Z(6). Then

M—1
& = [ (buPu+ = Pu))ATBUO  (With A1 = A (Py + by (I = Pa)),

m=1

where © and A are coprime (by passing to Lemma 2.3).
Case 2: Let ay € Z(0). Write 2y = GCD¢{By, Ar(Pu + by (I — Py))}. Then we can
write

By = 20, and A,(PM + by (I — PM)) — Quly 43)
for some -Q//vp I'y e Hf,[‘il. By Lemma 4.3, )y = by Py + (I — Py) with N := (ran (A,
(aM)PM))J'. We now claim that

Iy (apr) is invertible. 4.4)
Since

det[A,(PM by (I — PM))] = pKI=P) e A,
and

det 2y Iy = (ba)™™N - det Ty,
it follows from (4.3) that

det A, - (bp)™ ™ U =Pu) — (p,\IMN et Iy, 4.5)
But since A, and © are right coprime, and hence A, (o) is invertible, it follows that

dim N = dim(ran (A, (on)PM))J' = dim(ran Py)*" = rank(I — Py),

which together with (4.5) implies that det I'y; = det A,. This proves (4.4). Therefore we have

M—1
o=1] (bmpm + - Pm))r;,n,’w@,

m=1
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where Iy (apy) is invertible. Thus 'y («) is invertible for all @ € Z(0), and hence by Lemma 2.3,
O and Iy are coprime.

If we repeat this argument then after M steps we get the left coprime factorization of
¢ = A;‘Q, where (2 still has © as an inner divisor. [

Our main theorem of this section now follows:

Theorem 4.5. Let ¢ € Lﬁn be a matrix-valued rational function. Then we may write
é_ = B*0O,

where B € H/%,,n and © = Ig with a finite Blaschke product 6. Suppose B and O are coprime. If
both Ty and Tq% are hyponormal then Ty is either normal or analytic.

Proof. Suppose @ is not analytic. Then © is not constant unitary. Since T'¢ is hyponormal, it
follows that ker H & CkerHgx = (~)Hén. Thus we can write

@y = OAAF (right coprime factorization),

where A, is an inner matrix function. Let 6y be a minimal inner function such that Oy = Iy, =
A, @ for some inner matrix function ©;. We also write A := A, @1, and hence

b, = OOpA*.

On the other hand, we need to keep in mind that & = Iy and &y = Iy, are inner functions,
constant along the diagonal, so that these factors commute with all other matrix functions in the
computations below. Note that $6? Qg € Hyp and 262 6)3 € Hjp . We thus have

* 2% 2 _ % 2% 2 * 2 2%
eeplle Tollere; = TongpTo Tolore ~ TorgpTals Torep
- Tds*z 2 @a& quz O2 @g - T(pz O*2 @SFZ T¢*2 e? @g

= qu*z O*2 98‘2 P22 @3 - T@Z 2 9(;2 P2 Q2 93
=Tg2g2 — Tg2p2 =0 (since P is normal).

The positivity of [T3*, T3] implies that [T2*, T31T g2 0 = 0. We thus have
0=[7T¢" T§lTor 2
2 2
=TpTpere; — ToTonore;
=T Topgr020; — ToT oo 0267
= (T¢*2¢2@2@§ - H;;Hqﬁ*qﬂemg)
- (T45245*2@2@g — Hj. qu;*z@zeg) (by (1.3))
= Hgp-Hppoorep = HpHg- 020207
= Hy: Hygoorep — Hop: Hoe g2 0207 (4.6)

Let 2 := GCD (6y, ©). Then by Lemma 2.1, {2 = I, for an inner function w. Thus we can
write

©=0'2 and 6= 6N,
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where O’ = Iy and 6 = Ig; for some inner functions 6’ and 6. Observe that

Hoi 20207 = Hiop 10707 4)(0*B+06,42620]
= H(OB*+0* 6} A)(B+620)A)2 O}
= Hg:0: A(+626)4)267
= Hp5+626,4)26,0
= HA(B+9290A)26(’)9/*' “@.7

Since @ is normal we also have

Hopgpor07 = Hop 1605 4)2(6*B+00,4") 626}
= H(92903*+A)(8*B+980A*)

= He2g,8+4+1)B6"
= Hipo*. (4.8)
‘We now claim that
¢’ is not constant. 4.9

Toward (4.9) we assume to the contrary that 8’ is a constant. Then by (4.7) we have
Hp: 20207 = Hasr020542 650+ = 0,

so that H;i,i H g 5202 o= 0, and by (4.6) we have

Observe that
Hppor = 0= ABO* € Hy

< AB € OH};
&= A= OA" (since B and O are coprime),

which implies that A(«) = O for each o € Z(0), a contradiction. Therefore
ng*z@g@g = Hspo+ #0 and clran H¢¢*2@2@§ = ’H(Z)

for some nonconstant (left) inner divisor A of ©. Thus it follows from Lemma 4.4 and (4.10)
that

H(Z) = clran HMs*z@z@g C ker H;«T C éHén,
giving a contradiction. This proves (4.9). Observe

clran H g g2 0202 = clran Hppro20,020)0+ S H(O') L éHé,, = ker Hys,
and

cl raans@*z@z@& =clran Hygg+ C ’H(é) 1L éHén ) kerH;;i.
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Thus by (4.6) we have
ker Hy g2 9202 = ket Hyps H 420262
= ker Hg: Hypp 920
= kerH¢¢*2@2@§. (4.11)

Observe that for all @ € Z(6),
(AB + 62004)?6)) (@) = A) B@?6)(@).
Since B(«) and @(’) (@) are invertible, we have
dimker(A(B + ©26pA)*6))(er) = dimker A(x) = dimker(AB) ().

By (4.7), (4.8) and (4.11), we have that A(e) = 0O for all « € Z(w) and hence w is a constant.
Thus {2 is a constant unitary, and hence © = O’ and Oy = 96. Therefore Z(0) = Z(0) \ Z(6p)
and hence, by Lemma 4.2, A(«) is invertible for each « € Z(6). Since for each « € Z(6),

(A(B n QZQOA)ZQ())(a) — A()B(@)?Op(«) and (AB)(«) are invertible,

it follows that A(B + ©2OyA)>6y and O are coprime, and AB and O are coprime. Thus by
4.7), (4.8) and (4.11) we have

cl ran H¢*¢2629§ = clran H(Ms*z@z@g = H(é). 4.12)

By the well-known result of Cowen [11, Theorem 1]— if ¢ € L° and b is a finite Blaschke
product of degree n then Ty, = @, Ty, we may, without loss of generality, assume that
0 € Z(0). Since T¢ is hyponormal, by [34, cf. p. 4] there exists K € H}?Z with | K] < 1
such that

Hge = Hg gy = TEHp:.
Since ¢$*O? Qg € H,f’,,on, we have
TgHprgr0207 = TR HoTppr0202 = Tk Hor Tpgr 02602
= Tg(TgHe ) Togr 0207 = Te TxHogn 0262
Thus by (4.6) we have
0=Hp:Hopoorep = Hpr Horg20207
= Hg: <H¢q§*2929§ - T§H¢*¢292@g)
= Hyp (I = TR TP Hpp 0260 (4.13)
It thus follows from (4.12), (4.13) and Lemma 4.4 that
(I — TRTH(H(®)) = cl ran((l — T,;T%)Hds*zds@z@(?) Cker Hj, € OHZ,.  (4.14)

Since [|K [loo = |K|loo = [IK*[lco0- it follows that ITgll = ITg«|l < 1.Foreachi =1,2,...,n,
put

E; :=(0,0,...,1,0,...,0,0)".
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Since 0 € Z(0) N Z(0), we have E; € H(O) N H(O) and by (4.14),
E; — TRTLE; = OF; (some F; € HZ).
Observe that
E; — TRTLE; = OF = TRTLE; = E; — OF,
— ITRTEEil3 = | Ei — OFi |3
= |TRTLE |} = |Eil} + 1OF |3 (since E; € H(O))
= |TRTLE} = 1+ |OF]3.

But since ||TI;T§|| < 1, it follows that ||TgT1§Ei l2=1and F; =0foralli =1,2,...,n. We
thus have ||T]§E,~||2 =1foralli =1,2,...,n. Write

K@ =[kj@] and kij@) = k"

m=0

Then K*(z) = K (Z) = [kij(@)], and hence
TEE = [P(kii @), P @), ..., Pl DT = [k} Ky ey 1

But since ||T1§E,~ |2 =1foralli =1,2,...,n,it follows that

MK KD, kT =1 foralli =1,2,...,n.

> “ni

Therefore
1 oo Lo 1
_ ' 2 1 myq2 _ L 2 2
1= nll[kij 15 < . mE=() Ik 1l5 = nllKllz <Kz =1,

which implies that [kl(]m)] =0forallm > 1. Hence K = [ki(j(.))], sothat K = K*. Observe that
(I —TRTHHO) = 0
— (I — Tx+x)H(O) =0
= K*K =1, (since0 € Z(9)).
Therefore K = K* is a constant unitary and hence we have
(T3, Tol = HpHox — H3yHe = Hp Hox — Hy T g« He= = 0,
which implies that T is normal. [
Corollary 4.6. Let ¢ € Lﬁ,lon be a matrix-valued trigonometric polynomial whose co-analytic
outer coefficient is invertible. If Ty and T(% are hyponormal then Tg is normal.

Proof. Immediate from Theorem 4.5 together with the observation that $_ = B*O with O =
I is a coprime factorization if and only if B(0) is a co-analytic outer coefficient and is
invertible. [

Remark 4.7. In Theorem 4.5, the “coprime” condition is essential. To see this, let

*
Te = [Tb _g Ty ;) :| (b is a finite Blaschke product).
b
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Since T, + T is normal and T}, is analytic, it follows that Tg and T(% are both hyponormal.

k
Obviously, T¢ is neither normal nor analytic. Note that &_ = [g 8] = [(1) 8] - I, where

[(l) 8] and I are not coprime. [

On the other hand, we have not been able to determine whether this phenomenon is quite
accidental. In fact we would guess that if ¢ € Li,["n is a matrix-valued rational function such that
T is subnormal then T = T4 @ Tp, where T4 is normal and T is analytic.

5. Subnormal Toeplitz completions

Given a partially specified operator matrix with some known entries, the problem of finding
suitable operators to complete the given partial operator matrix so that the resulting matrix
satisfies certain given properties is called a completion problem. Dilation problems are special
cases of completion problems: in other words, the dilation of 7 is a completion of the partial

operator matrix [: Z] In recent years, operator theorists have been interested in the subnormal

u* 2

completion problem for [ ) U*], where U is the shift on H2. In this section, we solve this

completion problem.

A partial block Toeplitz matrix is simply an n x n matrix some of whose entries are specified
Toeplitz operators and whose remaining entries are unspecified. A subnormal completion of
a partial operator matrix is a particular specification of the unspecified entries resulting in a
subnormal operator. For example

T. 1-T.T: G5.0)
0 T:

is a subnormal (even unitary) completion of the 2 x 2 partial operator matrix

T, 2
7 T

A subnormal Toeplitz completion of a partial block Toeplitz matrix is a subnormal completion

whose unspecified entries are Toeplitz operators. Then the following question comes up at once:
Does there exist a subnormal Toeplitz completion of [Tq ;:]? Evidently, (5.1) is not such a

completion. To answer this question, let

P = ¢ @ , L),
[w Z} (p, ¥y eL™)

If T is hyponormal then by [34, cf. p. 4], @ should be normal. Thus a straightforward calculation
shows that

lpl = ly| and Z(p + V) = z(¢ + V),

which implies that ¢ = —/. Thus a direct calculation shows that

k k
(T, Tel = ,
LA PO O
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which is not positive semi-definite because 7,7z — 1 is not. Therefore, there are no hyponormal

Toeplitz completions of [T, qu] However the following problem has remained unsolved until

now:

Problem A. Let U be the shift on H2. Complete the unspecified Toeplitz entries of the partial

block Toeplitz matrix A = [U: J*] to make A subnormal.

In this section we give a complete answer to Problem A.

Theorem 5.1. Let ¢, v € L* and consider

— Tf Tgo
A= [Tw Tz]

The following statements are equivalent.

(i) A is normal.
(i1) A is subnormal.
(>iii) A is 2-hyponormal.
(iv) One of the following conditions holds:
1.

p=e%+p and v =% (BeC;0, wel0,2n));
o=az+e%/1+|a2z+B and

Y=¢ T2 (o BeC,a#0;0 €[0,21)).

Theorem 5.1 says that the unspecified entries of the matrix [T{ ;—] are Toeplitz operators

2.

with symbols which are both analytic or trigonometric polynomials of degree 1. In fact, as we
will see in the proof of Theorem 5.1, our solution is just the normal completion. However the
solution is somewhat more intricate than one would expect.

To prove Theorem 5.1 we need several technical lemmas.

Lemma 5.2. For j = 1,2, 3, let 0; be an inner function. If 61 H(62) C H(03) then either 0, is
constant or 610, is a divisor of 03. In particular, if 61 H(62) C H(61) then 0 or 0, is constant.

Proof. §u2pose 6> is not constant. I_f 01H(62) < 'H(O3) then by Lemma 2.6, for all f €

H(2),01 63 € zH?, and hence fO3 € zH?, so that f € H(63), which implies that

H(62) < H(63), and therefore 63 H2 < 6, HZ. Thus 6, is a divisor of 63. We can then write

63 = 090, for some inner function 6. It suffices to show that 6, is a divisor of 6y. Observe that
01H(62) S H(0o62) = ran (Ty, Hy ) < H(60o62)

= 06 H> C ker Hy Ty
= ng T519092 =0
= Hy g, — T, Hg 90, = 0
= Hp g, — 15, ng Hg,g, =0
= HZZ H9051 =0,
where the fourth implication follows from the fact that Hy,y = TgH,/, + HyTy for any

@, ¥ € L°. But since 6, is not constant it follows that 6 is a divisor of 6. The second assertion
follows at once from the first. [
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Suppose & = &% + &, € LY is such that & and ¢* are of bounded type, with

O, =A*0 and &_ = B;(» (left coprime factorization),

2131

where © = I for an inner function 6. If T is hyponormal, then in view of Proposition 3.2, @

can be written as:
b, =A*» and P = BZQQ,

where 212 = © = Iy. We also note that 2/ {» = @ = (h ().
The following lemma will be extensively used in the proof of Theorem 5.1.

(5.2)

Lemma5.3. Let & = &* + &, € Li,[on be such that ® and D* are of bounded type of the

form (5.2):
Oy = A" =A"O and I_ = B} (left coprime factorization),
where © = Iy for an inner function 6. If ker[T}, T¢] is invariant under Ty, then
1 HE, C ket[Ty, Tgl,
and therefore
clran [Ty, Te] € H(2).
Assume instead that we decompose @ € Lﬁ,lon as:
Dy = AyAgAf  (right coprime factorization)
and
O_ = AyB}  (right coprime factorization).
If Ty is hyponormal then
AyH(Ap) C clran [Ty, Tel.
Hence, in particular, if Tg is hyponormal and ker[T%, T¢] is invariant under Tg, then

AyH(Ag) S clran [Ty, Tel S H(S2).

Proof. See [20, Lemma 3.2 and Theorem 3.7]. [

Lemma 5.4. Let

s = [QZE Qﬂ (a € H(0). b e H®:) and 6, inner (j = 0, 1).
0

If 60 = 2"0; (n > 1, 6(0) # 0) and 61(0) # 0, then ker Hg+ = AH?

c¥
z01 O .

1 |:z91 af) ] n=2 (a :_a(0)>
JieP +1 L@ 7o) T T 00)

where

A=

(5.3)
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Proof. Observe that for f, g € H 2
7 7"9a f zf +Z”67ag )
@*fz_z Z0:||:]€H2<:>|:_ 0 e HS,.
- u [elb 7 Jls c 01bf +7g c
Thus if ¢* [;] € Héz, then 61bf +7zg € H>. Since 6 (0) # 0, we have 81bfz € H?, and hence

f = 011 for some f; € H?. Inturn, bf; +Zzg € H?, so that g = zg| for some g; € H>. We
therefore have

201 fi + 7" '0ag1 € H>. (5.4)
If n = 1, then (5.4) implies g; = Qégz and f; = zf for some g7, f» € H?. Thus f = z61 f and
g = 6pg2, which implies

ker Hp = [Zgl 9(:;| Héz.

If instead n > 2, then (5.4) implies that Z”_Ze_éagl € H? sothat g = z”_z%gz for some
g>» € H?. We thus have

201 fi + 7" '6jagi € H? < 761 fi +Zag, € H*
< 01(0) f1(0) + a(0)g2(0) =0

1 0
e 0@ =~£0 (recallthata = ).
@ 61(0)
Therefore we have
1
[g] ckerHopr < f=01f1, g= Zn—lg(')gz, and g2(0) = Efl (0). (5.5)

Put

A 1 |: z01 b ]
’ fla2 + 1 —afy Zn_le(/) ’
Then A is inner, and for iy, hy € H?,
A hi| 1 2601h1 + ab1hy
ha| — fla2 + 1 —51"06/’11 + z"_l%hg

_ 1 |: 61 (Zh] + (xhz) i|
7" '

- /la2 + 1 7196(—&Zh1 + hz)
But since é(zhl—i—ahg)(O) = (—&zhl +h2) (0), it follows from (5.5) that ker Hg+ = AHéz. O
Lemma 5.5. Let

o — [eza 9111;} (a € H(B0), b € M) and 6; inner (j =0, 1)),
0
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If 61 = 2"0] (n > 1;0](0) # 0) and 6y(0) # 0, then ker Hg» = AH?

c¥
o 0 N
|:O z901| (= 1);

1 "o —591] ( b(0) )
S 2 = .
Ve +1 [ a6 260 (nz2) (@ 80(0)

Proof. Same as the proof of Lemma 5.4. [

where

A=

Lemma 5.6. Let

d_ = |:9Z5 Glzﬂ (a € H(Bo), b € H(01) and 0} inner (j =0, 1)).
0

If 0o = 20, and 01 = z0| then ker Hp+x = AHéz, where

0 0 'n’
[01 90] (@h)©) # @D );
1 [ 01 b

0
—| } (@b)0) = 66D ©) (a = —Q)-
e2+1 L% % 61(0)

A=

Remark 5.7. Since a(0), b(0) # 0, the second part of the above assertion makes sense because
by assumption, 6;(0), 6{(0) # 0. O

Proof of Lemma 5.6. Observe that for f, g € H 2

F - 7 = g
s []- [2, ][ em o [0+
8 (2010 2 8 z(g +01bf)

_f+yag 2

— g+ﬁbf € g
_aag 2

= |20 €H
_eibf] “

— g =0)g1 and f = 6] f; for some g1, f1 € H>.
Thus if &* [g ] € HZ, then Z(6] fi + agi) € H? and Z(6)g1 + bf1) € H>, so that
01(0) f1(0) = —a(0)g1(0) and 6,(0)g1(0) = —b(0) f1(0).
If (ab)(0) = (9691/)(()), then

61(0) £1(0) = —a(0)g1(0) <= 6,(0)g1(0) = —b(0) £1(0).
Put

A = 1 01 0[9{
’ /|2 + 1 —aby 9(/) ’

Then we can see that A is inner and ker Hgx = AHéz.
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If (ab)(0) # (640])(0), put 6y = z"6] and 6; = "0/’ (6 (0), 6]'(0) # 0). If n = m then

nol'y. =n—1p/rpn "
@_ = mZ//_ < 01 b = Izna/lgll < 00 91 Glob_ = Izne/lgll B*
7"0ya b4 071 6a Z'667 01

Since B(0) is invertible, it follows from Lemma 2.3 that 7,» and B are coprime. Observe that

n = —npr n n—1 YA
« | Z T'0ya | " f ) " f +6yag 2
’- [an}_[Z”H_{/b z MZ"g € e 0/bf +2""g € e

which implies
f=0/fi and g=0[g forsome fi,g € H>.
We thus have

ker Hp = |:91 01| H>,.

If instead n # m, then

"l [ “Fl-[ms]
~Le 0/b 7 | L&l | ze+zZ"7'o]bs) ¢
{f +Em_%ag € zH?
g+7"710/bf € zH,
which implies
f=a"""0{fi and g=27"""0(g1.
Suppose n > m, and hence n > 2. We thus have
"7%0] fi +Zag) € H> = Zagi € H* = g1 = 280 = g = 6o
In turn,
g +7"710/bf € zH? = "0 g2 + bf1 € zH* = f1 = 2f2,

which implies

kerH¢*=|:901 9(3)1| Héz-

If m > n, a similar argument gives the result. [
We are ready for:

Proof of Theorem 5.1. Clearly (i) = (ii) and (ii) = (iii). Moreover, a simple calculation shows
that (iv) = (i).
(iii) = (iv): Write

[z ¢]_ .« I 2 A
ol el T2 3]
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and assume that Tg is 2-hyponormal. Since ker[T*, T] is invariant under T for every
2-hyponormal operator T € B(H), we note that Theorem 4.1 and Lemma 5.3 hold for
2-hyponormal operators T'¢. We claim that

lol = |¥], and (5.6)
@ and @* are of bounded type. 5.7

Indeed, if T¢ is hyponormal then & is normal, so that a straightforward calculation gives
(5.6). Also there exists a matrix function K = [1}2 Igi] € HA‘Z with ||K||lcoc < 1 such that
®— KP* e HX./Z’ ie.,

o[k k][O Yy e
E | N R

which implies that

Hz = Hiygr = Hg Ty

H(pf = Hk]ﬂ = HﬁTkﬁ

H‘/fi— = Hk4ﬂ = HﬁT]q;

Hz = Hkgﬂ = HWT;@
If @ is not of bounded type then ker Hg- = 0, so that k; = 0, a contradiction; and if ¥y is not
of bounded type then ker Hﬁ = 0, so that k3 = 0, a contradiction. Therefore we should have

&* of bounded type. Since T is hyponormal, @ is also of bounded type, giving (5.7). Thus we
can write

o_=6pa and Y_:=6;b (aecH@®), beHO).
Put
6p=2"0y and 6 =7"0; (m,n>0; 65(0) # 0 6;(0)).
We now claim that
m=n=0 or m=n=1. (5.8)

We split the proof of (5.8) into three cases.
Case 1 (im # 0 and n = 0) In this case, we have a(0) # 0 because 6y(0) = 0 and 6y and a are
coprime. We first claim that m = 1. To show this we assume to the contrary that m > 2. Write

__90 and v = L
610 NS

By Lemma 5.4, we can write:

o = |: o elb—J = AyB} (right coprime factorization),
bpa =z

where

A e b 761 ab and B — v 6, — aa ab1Z +az
2Tty "6 T b — @) ab 42"
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To get the left coprime factorization of é_, applying Lemma 5.4 for b gives

- [5% 90“:| = (B} (right coprime factorization),
a  z

where

"6 ael] and By ._U|:z'"_296+cxb a2+a012:|

= _
2=y |: —aby 26 " 10y +zb  —w@a+6,

which gives

d_ = |: 925 91Zb1| = B (% (left coprime factorization).
o

On the other hand, since * — K & € Hl%,,n, and hence

[_z éoa]_[kzm LR
01b 7 kagy  k3p4 My

we have

Z—kzﬁEHz, 511)—/(4@61‘12
Z—k3¥y € H, Goa — kY4 € H?,

which via Cowen’s Theorem gives that the following Toeplitz operators are all hyponormal:

Totpps Tgip1g, Tetves Topagy,
Thus by Proposition 3.2 we can see that
oy = 760103d and Y4 = 6pfc  for some inner functions 65, 03.

We thus have

_|26h63 0 0 " _ . . . o
o _[ 0 9092} [d o} = AyAoA;  (right coprime factorization),

. 1 —af|6z 0],
4o '_U[&z z}[O 92]
A ey 201 adp | [0 0 A
2T a0 ey T Lo ey | —ar 1]

Write
6, = zf’eg and 03 = zq9§ (p,qg = 0; 95(0), 9§(0) #0).

If g+1 > m+ p, then LCM (26,03, 606;) is an inner divisor of z‘1+196916£9§. Thus we can write

0 x]
¢+ = |:y 0:| Izq+19(l)910£9é = A*QI.QZ,
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where

_ |0 x 2,.
A._|:y O:| (some x,y € H);

_ [24717m6,66; 0 z -«
& ‘_[ 0 A000] Va1 |

It thus follows from Lemma 5.3 that
AyH(Ap) C clran[Ty, Tgl € H(2). 5.9)
But since in general, ©,H(O;) € H(O; 6,) for inner matrix functions O, ©,, we have
1 —«a 6; 0
-
[ (s g

Thus by (5.9), we have

1 —« 63 0
A2~v|:az Z}H([O QZngm),

or equivalently,

6 0 65 0
[0 Zm%]HqO QZDEH(QO. (5.10)

Since in general, F € H(O) if and only if O*F € (Hén)J-, (5.10) implies

1 «a 63 0 t1=me0; 0
”[—az z:|H<|:O @DEH([ 0 20 meles | ) G-1D

Also since for inner matrix functions @1, ©, and any closed subspace F of Hé,,,
O1F CH(O160;) and 616, = 6,0 = F C H(O6»),
it follows from (5.11) that
[H(eﬂ c [H(ﬂ“""%@é)}
H6) | = | HEIT 0505 |

But since 03 = z40;, it follows that ¢ + 1 — m > ¢, giving a contradiction.
If instead g + 1 < m + p, then LCM (26,03, 6p6>) is an inner divisor of 7”17 6,016,065 Thus
we can write

r *
oy = S }(C)} Lmtogrg,000, = AT (2,
where
Al = 0 x} (some x, y € H?);
Ly 0
0 "Zl’eleéeé 0 i| o |: Z —O(:| ‘
R T Y S I 2

It thus follows from Lemma 5.3 with (2{ in place of (2; that
AyH(Ap) S clran [Ty, Tapl S H2)).
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o =n(v|o ][5 4))
bl el S D)

1 —« 701 0 6 0 /
e, DO S P o

Then by the same argument as (5.10) and (5.11), we can see that

1« 63 0 276,05 0
Y [—az z}H <[0 @D cn ([ 0 2’650 ]) (5.13)
which gives

ZH(02) € H(z70505),

which by Lemma 5.2 implies that 6> should be a constant. Thus (5.13) can be written as

Lo (5 D=5 2]

which gives zH(03) C H(Qé). It follows from again Lemma 5.2 that 63 is a constant. Thus by
(5.12), we have

A A L Qe R (R ]
so that
L bl Dot 7D
—oz 1 az  z az 1
giving a contradiction by Lemma 5.3. Therefore we should have
m=1, ie., 6= z6,.

Thus, by Lemmas 5.5 and 5.6, we have

_2915_Z91091a* . ) o
o_ = |:Z 6a i| = |: 0 60|l 8 (right coprime factorization)

z
and
|z 01b _ 96 al* 6o © . .
d_ = |:Z 9(/)5 Z i| = |:Zb o, 0 0, (left coprime factorization).
Recall that

Yy =6pfc and ¢4 = z0103d  for some inner functions 6, and 65.

We can thus write

[ o zo63d] [z6065 0 [0 " . . o
o, = |: Bo6rT 0 i|_|: 0 00 ||d 0 (right coprime factorization).
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Note that LCM (26103, 6p6») is an inner divisor of 6y616,63. Thus we can write

0 x]*
o) = |:y 0} Iogor00,  (x,y € H?).

It follows from Lemma 5.3 that

[1917'{(93)
OoH(62)

which implies

7H(63) € H(B203) and zH(0;) € H(0203).

i H(616263)
:| Cclran[Tg, Tg] C |:7—((969293):| '

By Lemma 5.2,

{either 63 is constant or z63 is a divisor of 6,65; (5.14)

either 65 is constant or z6, is a divisor of 6,63.

If 6, or 63 is not constant then it follows from (5.14) that z is a divisor of 6, and 03. Thus we have
p,q > 1.Let N := max(p, g). Then LCM (260,03, 6p0>) is an inner divisor of zNeoél%Qé. Thus
we can write

0 x * 2
¢+ = [y O} IZNgogleégé (x, y € H )

It follows from Lemma 5.3 that

Z@lH(qué)
B0H("0)

N /' n!
€ clrman(Tg, Tel S |:H(Z €19293)i|

Nnp’n’n’
H( 040,605
74 is a divisor of zN_léé
7P is a divisor of ZN710§,

giving a contradiction. Therefore
6, and 03 are constant.

We observe that LCM(z60;, 6p) is an inner divisor of 19601. It follows from Lemma 5.3 that

|:91 H?

9(,)H2:| C ker[Tg, Tl

In particular, [e%] € ker[T%, T¢]. Observe that

(P*O_Zgoa 0f |za
19 e oz |60 |zZ60 )

so that
0 _|a(0)
o ] = |60
‘We thus have

H g+ Hepr [éﬂ = [96(0)1(1 — P)(6,b) +a(0):|.

*
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A similar calculation shows that

. 0] o
e[

Since [T}, Tg] = H%* H@; — H;;* H g+, it follows that
* « 11 gx

0,(0)J (I — P)(8)b) = —a(0).

But since a(0) # 0, we must have that 9~15 € ZH?* N (H**, which implies that 6; = cz for a
nonzero constant ¢, giving a contradiction because 61 (0) # 0. Therefore this case cannot occur.
Case 2 (im = 0 and n # 0) This case is symmetrical to Case 1. Thus the proof is identical to
that of Case 1. Therefore this case cannot occur either.
Case3 (m # 0,n # 0and m > 2 or n > 2) In this case we have a(0) £ 0 and »(0) # 0
because 6y(0) = 61(0) = 0, 6y and a are coprime, and 6, and b are coprime. By Lemma 5.6 we
have

- n—1ns *
o_ = _901 9(2)} [Z b91 mell%:| (right coprime factorization).

Similarly, we have

rom—1g/ *
o =|° , 6 Zn_algl,] [%) ;)1j| (left coprime factorization)

and

665 0 [0 " . : o
oy = 0 4 92i| |: d 0] (right coprime factorization).

We then claim that
6, and 63 are constant. (5.15)

Assume 6 is not constant. Put 6, = z”6; and 63 = z76; (6; # 0 # 6;(0) and p, g > 0) and let
N := max(m + p, n + q). Then LCM(6y8,, 0,05) is a divisor of ZNG(’)B{(%(%. Thus we can write

0 x * 2
¢+ = |:y 0i| IZN%OI%% (.x, y € H )
By Lemma 5.3 we have

O1H(G3) | ~ H(ZN"010505)
O0H(02) | = | HEN 040505 |

If 65 is a constant, then ¢ = 0 and m + p < N — n, giving a contradiction because m,n > 2.
If 63 is not constant, thenn +¢q¢ < N —m and m + p < N — n, giving a contradiction because
m,n > 2. Therefore we should have that 6, is constant. Similarly, we can show that 3 is also
constant. This proves (5.15).

We now suppose n < m. By Lemma 5.3 we have

[ 0,H*

zm_"G{)Hz} C ker[Ty, Te).
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In particular. [0{
>0

o o] _ [z 6oalf6r] _[76
~10 6ib z ||0 7'b |’

so that

! 0;(0
Hpe [“ﬂ:[ 1 } (b1 = Pren (b)),

Zn_lbl

—_

€ ker[T%, T&]. Observe that

Put b3 := z”*‘Z. We also have

& [9;(0)] _|z @b [9; (0)} _ _x
| b3 6od z b3 01(0)0oa + b3z |’
so that

_9/_ [~ *
H**H * 1 = = .
e I 9{(0)J(1—P)(90a)+b3(0):|

A similar calculation shows that

0 0

AR
It thus follows that
0[(0)J(I — P)Bod) = —b3(0) => Bod € ZH>
_ _ 1
— Gpa € TH? = Bpa € ZH? N (H2> .

Since_n <mand (m > 2 or n > 2), it follows that m > 2. Thus Boa € ZH? N (HZ)J- implies
" _106 a = c (a constant), which forces a = 0, giving a contradiction. If instead n > m then the
same argument leads a contradiction. Therefore this case cannot occur. This completes the proof
of (5.8).

Now in view of (5.8) it suffices to consider the case m = n = 0 and the case m =n = 1.
Case A (m = n = 0). In this case, we first claim that

o =v%_=0, ie., ¢ and areanalytic. (5.16)

Put 6 := GCD(6p, 61). Then 6y = 60 and 6; = 6;6 for some inner functions 6, 61, and hence
LCM(6y, 61) = 66,,0;. We thus have

B 0000; z0ja " _ .
P = Logyp; [z%b 000) | = Loge; B™

Since B(0) is invertible it follows from Lemma 2.3 that I, and B are coprime. Observe that

< 2f] zZ  Ooa][zf P Ooazg )
- [zg:| - [§1b z ] |:zg] € He = |:§1bzf] € He

> gebyH?, fe6,H,
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which implie

ker Hg

S

g

We thus have

@_:

-Z91
0

Zel 0 i| 2
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0 =z | T

0 -91 za_*
z00 | [zb 6o |

To get the left coprime factorization of &_, we take

@_ =
which implie

d_ =

Since T'¢ is hyponormal and hence,

kel‘ngjsr C ker Hg+ :[

it follows tha

t

26\ H?
290H2 ’

(right coprime factorization).

~ (right coprime factorization),

260 0 160 25|

| 0 191_ _zE 91_

S

- *

f?, zgclz] [1(6)’0 Zglj| (left coprime factorization).

Yy =z0pbc and ¢4 = z0163d  for some inner functions 6, 63.

We can thus write

4= loe 0

Observe that

b, =

0

[0 «x
y 0

191932} |:Z9193 0

0 260062

*
} Lawoes  (x,y € H?).

It follows from Lemma 5.3 that

201H(63)
260 H(62)

which implie

ZH(03) € H(6203)

s that

:| Cclran [Tz, Tpl C [

Thus the same argument as in (5.14) shows that

6, and 03 are constant.

I

H(616263)
H(606203)

0 ¢
d 0

3

and zH(62) C H(6203).

*
:| (right coprime factorization).

LCM (26,63, z6p6>) is an inner divisor of z090;60,63. Thus we can write

We now observe that LCM(z60;, z6p) is an inner divisor of z6y6;. Thus we can write

0 x * 2
¢+ = |:y 0:| 129091 (X,y €H )
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2
It follows from Lemma 5.3 that [ng ] C ker[T%, Tg]. In particular, [90]] € ker[Tg, Tel.

O H 2
Observe that

- L2

so that

v [3-17)

‘We thus have

o7 [ 0(0
- L0 01(0)J (I — P)(Boa)
A similar calculation shows that
_91_ _*
* _
ngngpjfr 0] = _0] .

It thus follows that
_~ ~ —_— —_ L
01(0)J (I — P)(Bod) = 0 —> Bod € H*> = Bpa € H? —> Bga € H> N <H2> ,

which implies that a = 0 and hence ¢ is analytic. Similarly, we can show that ¥ is also analytic.
This gives (5.16).

Now since by (5.16), ¢, v € H*® and |p| = ||, we can write ¢ = 0;a and ¥ = 6,a, where
the 6; are inner functions and a is an outer function. Observe that

$_ = B*0;,
where B = é ?] and &, = [é (;] are coprime. Thus our symbol satisfies all the assumptions

of Theorem 4.1. Thus by Theorem 4.1, since T is 2-hyponormal then 7T must be normal. We
thus have

H;;iHQT' ZH;‘;ngsi. .17

Now observe that

10 ¢ 1z 0
¢+_|:w Oi| and 45—|:0 Zi|.

Since T'¢ is normal we have

HHy *0 :[HZ 0]
0 HiHj 0 H

which implies
H;Hg = Hy = H%Ha, (5.18)

which says that Hg and H;; are both rank-one operators. Now remember that if 7' is a rank-one
Hankel operator then there exist @ € D and a constant ¢ such that T = c (kg ® k), Where
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ky = ﬁ is the reproducing kernel for w. Note that k5 ® k,, is represented by the matrix
1 o o o
w (,()2 (,()3
o
w3

By (5.18) we have that @ = 0. We thus have
p=e%z4+p and Y =e"z4+p (B1.Br€C, 61,6, € [0,27)). (5.19)

But since |¢| = ||, we have

0= ¥z + B and Y = ei“’w B eC, 0,wel0,2n)). (5.20)
Case B (m = n = 1) In this case, 6y = 26, and 6; = z6; (6,(0), 6;(0) # 0). We thus have
- =z0pa and Y_ = z0(b,
so that
o — [ 4 191’5:|
Wpa 7 |’

There are two subcases to consider.
Case B-1 ((ab)(0) # (6407)(0)). In this case, we have, by Lemma 5.6,

17 / / *
d_ = |:ZQZ(/)5 Zezlbi| = [Zgl Zgéi| |:il 96?)} (right coprime decomposition)

0, al'[z0f O : -
=1, o 0 26 (left coprime factorization)
1 1
and
/ *
o, = |:Z9(1)93 . 92 92:| |:2 (C)i| (right coprime factorization).

Suppose 6, is not constant. Put 6, = z76] and 63 = 2965 (p,q € NU{0}). Let N := max(p, q).
Then LCM (6,63, 6p6>) is a divisor of ZNH%Q{%%. Thus we can write

0 x * 2
oy = |:y 0i| IZN“%@{%% (x,y e HY).

By Lemma 5.3 we have

ZOiH(%) c H(zx 016,69

04H ) | = | HEN 0010,
If 65 is a constant then p + 1 < N = p, giving a contradiction. If instead 83 is not constant then
g+ 1< Nandp+1 < N, giving a contradiction. The same argument gives 63 is a constant.
Therefore 6> and 63 should be constant. Note that LCM(z6, z6;) is an inner divisor of z66;.
Thus we can write

0 x*
@*_[y 0}

Lgg (x,y € H).
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It follows from Lemma 5.3 that
[9{ H*]

oL H? C ker[T}, Tl (5.21)

In particular, [00‘/] € ker[T%, Tg]. Observe that

o [0 [ 2 boa | [617 _ [z61
“lo] [6p z [|O zbh |

so that

AR CAC)
o 1] = %0 |

‘We thus have

& [9;(0)] _|z ab [9;(0)} _ o
L@ T Gz [LeO [T |6 + b(0)Z |
so that

Haox e [0} | 61(0)J (I = P)(B0d) + b(O)} '

A similar calculation shows that

. CANNE
H¢1H¢i|:0 =10l

It thus follows that
0,(0)J(I — P)(Boa) = —b(0).
Since b(0) # 0, we have that 505 € ZH?, which implies that fpa = az for a nonzero constant «.

Therefore we must have that 9(’) is a constant. Similarly, we can show that 01b = Bz for a nonzero
constant 8, and hence 9]/ is also a constant. Therefore by (5.21), T'¢ is normal. Now observe that

0 o x z oz
¢, = * = o .
[0 %] e[E 9] wsosn
Since Tg is normal we have

[HJLHW 0 }_[(HW)HZ (a+B)Hz}

0  HiHp |~ | @+pH: (1+laP)H:

which implies that

p=-a
H;:TH@ =(1+ |ﬂ|22)Hz (5.22)

By the case assumption, 1 # |ab| = |aB| = |a|?, i.e., |a| # 1. By the same argument as in
(5.18) we have

oy =N 1+ |a2z+ 81 and Yy =21+ |a>z+ B,
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(B1, B2 € C; 01,6, € [0, 2m)) which implies that

p=az+e" 1+ az4+p81 and ¢ =—-az+e2 )1+ a2z + B

Since |@| = |y, it follows that
21+ a2 + poz—a@

N1+ a2+ Bzt

We argue that if p and g are polynomials having the same degree and the outer coefficients of
the same modulus then

forallzonT.

Ip(2)| = 1g(z)] onlz| =1 = p(z) = ¢'®q(z) for some w € [0, 27).

Indeed, if |p(z)| = |¢(z)| on |z] = 1, then p = 6q for a finite Blaschke product 6, i.e.,
p= ]_[7:1 %q (lej| < 1). But since the modulus of the outer coefficients are same, it follows
/ . .
that ]_[7:1 |j| = 1and therefore, p = e'“q for some w. Using this fact we can see that v = ¢'“¢
for some w € [0, 27). But then a straightforward calculation shows that ® = w — 2 arg v, and

hence

(p:a2+ei9 1+|0€|2Z+ﬁ and w:ei(n—Zargot)(p’

where o 20, |a| # 1, B € C,and 6 € [0, 27).
Case B-2 ((ab)(0) = (9;0])(0)). A similar argument as in Case 1 shows that 6, and 63 are
constant and the same argument as in Case B-1 gives that

p=az+e? /1 +]a2z+p and ¢ = TRUEDY

where o # 0, |¢| =1, B € C, and 6 € [0, 27r). We here note that the condition |«| = 1 comes

from the case assumption 1 = |6)0;| = |ab| = |«|*.
Therefore if we combine the two subcases of Case B-1 and B-2 then we can conclude that
p=az+e%/1+|a2z+B and y =¢ TN (5.23)

where o # 0, B € C,and 0 € [0, 2r). This completes the proof. [

Remark 5.8. We would also ask whether there is a subnormal non-Toeplitz completion of
Tt_,f Ti] Unexpectedly, there is a normal non-Toeplitz completion of [T; Tr’f] To see this, let B
be a selfadjoint operator and put

T Tz T.+ B

T,+B = |

Then

(T*.T] = T:B+ BT, — (I;B+ BT;) T1.B+ BT; — (IzB + BT;)

’ BTz +T,B— (BT, +TzB) TzB+ BT, — (I;B+ BTy |’

so that 7' is normal if and only if

Tz:B+ BT, =T,B+ BTz, ie., |[T;, B]=|[Tz B]. (5.24)

We define

2 1\"
o1 ;=0 and an:=—§ 1-— —3 forn > 2.
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Let D = diag (o), i.e., a diagonal operator whose diagonal entries are o, (n = 1,2, ...) and for
eachn =1,2,...,let B, be defined by

r .
B, = —Fdlag(an—l)T;n-
Then
IBy|l < =1 Sup{an—l} < F,
which implies that
o
ZB” <2.
n=1
We define C by
o0
C:=) B,
n=1
Then C looks like:
_ 1 1 _
o010 - 0 =
2 22
1 1
000 - 0 = O
2 22
3 3
00 0 O 2 0 X
5
0O0 0 0 0 = ©0
23

a
Il
—
=
cooRR o Rlu o R~ o

coco o
coo o
cocoo o
coco o
coco o
coco o
coco o R

Note that C is bounded. If we define B by
B:=D+C+C*,
then a straightforward calculation shows that B satisfies Eq. (5.24). Therefore the operator
T:[ T; E+B]
T,+ B Tz

is normal. We note that 7, + B is not a Toeplitz operator. [

Remark 5.9. In Theorem 5.1 we have seen that a 2-hyponormal Toeplitz completion of [T; Tr:]

is automatically normal. Consequently, from the viewpoint of k-hyponormality as a bridée
between hyponormality and subnormality, there is no gap between the 2-hyponormality and
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the subnormality of [TT,,, ?‘f] (¢, € H?). Of course there does exist a gap between the

hyponormality and the 2-hyponormality of [;; ;‘f] To see this, let

6| I 724272
T2+ 277 z |

Then & is normal and if we put K := ,then @ — K &* ¢ HI%,, and || K ||ooc = 1, so that

NN —
B = 2
I_I

T4 is hyponormal. But by Theorem 5. 1 T4 is not 2-hyponormal. However, we have not been
able to characterize all hyponormal completions of [ ] T::I ; this completion problem appears to
be quite difficult. [

6. Open problems

1. Nakazi-Takahashi’s Theorem for matrix-valued symbols. Nakazi and Takahashi [53] have
shown that if ¢ € L* is such that 7}, is a hyponormal operator whose self-commutator [7;;, 7]
is of finite rank then there exists a finite Blaschke product » € £(¢) such that

deg(b) = rank [T}, T, ].

What is the matrix-valued version of Nakazi and Takahashi’s Theorem? A candidate is as
follows: If & € Lﬁj is such that T is a hyponormal operator whose self-commutator [T, 7]
is of finite rank then there exists a finite Blaschke—Potapov product B € £(@) such that
deg(B) = rank [T} 5> T¢]. We note that the degree of the finite Blaschke-Potapov product B
is defined by

deg(B) = dim H(B) = deg(det B), 6.1)

where the second equality follows from the well-known Fredholm theory of block Toeplitz
operators [27] that

dim H(©) = dimker Tg+ = —index Tg
= —index Tyet 0 = dimker Ty

dim(’H(det 9)) - deg(det 9).

Thus we conjecture the following:

Conjecture 6.1. If ¢ € LC/i/lo,, is such that T¢ is a hyponormal operator whose self-commutator
[T%, T is of finite rank then there exists a finite Blaschke—Potapov product B € E(®) such that

rank [T%, Tg] = deg(det B).
On the other hand, in [53], it was shown that if ¢ € L is such that T, is subnormal and

¢ = q@, where ¢ is a finite Blaschke product then T, is normal or analytic. We now we pose its
block version:

Problem 6.2. If ¢ < Lﬁ; is such that T is subnormal and ¢ = B &*, where B is a finite
Blaschke—Potapov product does it follow that T is normal or analytic?
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2. Subnormality of block Toeplitz operators. In Remark 4.7 we have shown that if the “coprime”
condition of Theorem 4.5 is dropped, then Theorem 4.5 may fail. However we note that the
example given in Remark 4.7 is a direct sum of a normal Toeplitz operator and an analytic
Toeplitz operator. Based on this observation, we have:

Problem 6.3. Let ¢ L°° be a matrix-valued rational function. If T'¢ and T2 are hyponormal,
but T is neither normal nor analytic, does it follow that T is of the form

Ty = [%‘ 7(,) i| (where T4 is normal and T is analytic)?
B

It is well-known that if T € B(H) is subnormal then ker[7T*, T] is invariant under 7. Thus
we might be tempted to guess that if the condition “T'¢ and T(% are hyponormal” is replaced by
“T¢ is hyponormal and ker[T%, T] is invariant under Tg”, then the answer to Problem 6.3 is
affirmative. But this is not the case. Indeed, consider

T — 2U + U* U*
*= ur w+Ur
Then a straightforward calculation shows that Tg is hyponormal and ker[T, T] is invariant

under T, but T is never normal (cf. [20, Remark 3.9]). However, if the condition “T'¢ and Tq%
are hyponormal” is strengthened to “T¢ is subnormal”, what conclusion do you draw?
3. Subnormal completion problem. Theorem 5.1 provides the subnormal Toeplitz completion of

u* 2 . . 2
s U (U is the shift on H<). (6.2)

Moreover Remark 5.8 shows that there is a normal non-Toeplitz completion of (6.2). However
we were unable to find all subnormal completions of (6.2).

Problem 6.4. Let U be the shift on H2. Complete the unspecified entries of the partial block
matrix [Uj z;*] to make it subnormal.

On the other hand, Theorem 5.1 shows that the solution of the subnormal Toeplitz completion
of l{, Ul consists of Toeplitz operators with symbols which are both analytic or trigonometric

polynomials of degree 1. Hence we might expect that if the symbols of the specified Toeplitz
operators of (6.2) are co-analytic polynomials of degree two then the non-analytic solution of the
unspecified entries consists of trigonometric polynomials of degree < 2.

More generally, we have:

Problem 6.5. If ¢ and ¥ are co-analytic polynomials of degree n, does it follow that the non-
analytic solution of the subnormal Toeplitz completion of the partial Toeplitz matrix [T;” qu,]
consists of Toeplitz operators whose symbols are trigonometric polynomials of degree < n?
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