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1. Introduction

The Ado–Iwasawa theorem asserts that every finite-dimensional Lie algebra over an arbitrary field
has a faithful finite-dimensional representation. A constructive proof for this theorem in characteris-
tic 0 has been given in [5]. The underlying algorithm is based on a method for extending a faithful
representation of a Lie algebra g to a faithful representation of a semidirect product h� g. It has been
implemented in the library parts of the computer algebra systems GAP4 and Magma.

Here we consider a variation on this theme: we introduce methods for computing a faithful finite-
dimensional representation for a finite-dimensional nilpotent Lie algebra over an arbitrary field. These
take as input a structure constants table for g and determine as output a faithful g-module given by
a list of matrices describing the action of the basis elements of g.
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In the first part of the paper we discuss three methods for this purpose: the algorithms LLIdeal,
Quotient and Dual. All three algorithms are deterministic methods. If d is the dimension of g and c is
its class, then the dimension of their determined representation is bounded above by

ν(d, c) =
c∑

j=0

(
d − j

c − j

)
p( j),

where p( j) is the number of partitions of j and p(0) = 1. More precisely, the algorithm LLIdeal
determines a (possibly large) left ideal of the universal enveloping algebra of g, such that the quotient
is a faithful finite-dimensional module for g. This algorithm is based on the ideas of [2]. The resulting
module has dimension at most ν(d, c). The algorithms Quotient and Dual are both based on LLIdeal.
They usually determine modules of significantly smaller dimension, but require more time for this. All
three methods have been implemented in GAP [4] and a report on their runtimes is included below.
We note that all three methods are usually significantly faster than the method described in [5] and
they usually produce faithful representations of smaller dimensions.

In the theory of Lie algebras, there is significant interested in the smallest dimension μ(g) of a
Lie algebra g. This is motivated, among other things, by problems from geometry and topology. For
example, Milnor’s conjecture [7] stems from this area; it asserts that the Lie algebra g of any solvable
Lie group G satisfies μ(g) � dim(g) + 1. There are counter-examples known to Milnor’s conjecture.
For example, there are infinitely many filiform nilpotent Lie algebras of dimension 10 which do not
have any faithful module of dimension 11. See [3] for details and background.

The three algorithms described above can be used to determine upper bounds for μ(g) for a
nilpotent Lie algebra g, but there is no method available for computing μ(g). At current, it is not even
possible to check if μ(g) � dim(g)+1 holds for a given nilpotent Lie algebra g. Since we wish to study
this problem, we have used a fourth method called Affine in our experiments: This tries to construct a
faithful representation of dim(g)+1 for a given nilpotent Lie algebra g. It uses a randomized approach
for this purpose. If it succeeds, then it returns a module in the desired dimension. However, it is
possible that the method fails, even if a faithful representation of dimension dim(g) + 1 exists.

As final part of this paper we consider applications of our methods. We describe an infinite family
of Lie algebras fn of dimension n for n � 13 and we use our algorithms to study the invariant μ(fn)

for these Lie algebras. We conjecture that these Lie algebras do not have a faithful representation of
dimension n + 1. But our experiments suggest that μ(fn) is polynomial in n for these Lie algebras.

2. Using quotients of the universal enveloping algebra

Let g be a finite-dimensional nilpotent Lie algebra over an arbitrary field. By gm , m � 1, we denote
the terms of the lower central series of g. If {x1, . . . , xd} is a basis of g, then the formal products
xα1

1 · · · xαd
d with αi ∈ N form a Poincaré–Birkhoff–Witt basis (PBW-basis for short) of the universal

enveloping algebra U (g).
We define the weight wgt(x) of an element x ∈ g as the maximal m with x ∈ gm . The weight of a

basis element of U (g) is then defined by

wgt
(
xα1

1 · · · xαd
d

) =
d∑

i=1

αi wgt(xi).

For m � 1 let Um(g) be the ideal in U (g) generated by all basis elements xα1
1 · · · xαd

d of weight at
least m. The following theorem is proved in [2], Proposition 6 (see also [1]).

Theorem 2.1. Let g be a d-dimensional nilpotent Lie algebra of nilpotency class c. Then g acts faithfully on
U (g)/U c+1(g) by multiplication from the left. If the considered basis of g contains bases for gm for every
m � 1, then the resulting representation has dimension at most



604 D. Burde et al. / Journal of Algebra 322 (2009) 602–612
ν(d, c) =
c∑

j=0

(
d − j

c − j

)
p( j),

where p( j) is the number of partitions of j and p(0) = 1.

This theorem yields a straightforward algorithm to construct a faithful module for g. We consider
a basis of g which contains bases of gm for every m. We form the space V spanned by all basis
elements of weight at most c in U (g). An element x ∈ g acts on V by left multiplication, where we
treat any element of weight at least c + 1 as zero. We demonstrate this algorithm in the following
example.

Example 2.2. Let g be the 3-dimensional Heisenberg Lie algebra spanned by x, y, z with non-zero
bracket [x, y] = z. The nilpotency class of g is 2. We form the space spanned by the basis elements of
U (g) of weight at most 2. These are

1, x, y, z, x2, xy, y2.

Thus we obtain a 7-dimensional representation for g. It is straightforward to determine this represen-
tation explicitly by computing actions. For example, y · x = yx = xy − z and x · xy = x2 y = 0.

In general, the modules resulting from this simple and very efficient algorithm have very large
dimension. In the remainder of this section, we describe two methods to determine a module of
smaller dimension from this given module. As a first step, we note that a nilpotent Lie algebra g acts
faithfully on a module if and only if its center Z(g) acts faithfully. Thus if I is a left ideal in U (g) such
that I ∩ Z(g) = 0, then g acts faithfully on U (g)/I .

For our first method we assume that the considered basis of g additionally contains a basis for the
center Z(g). We wish to determine a left ideal I in U (g) which has possibly small codimension and
satisfies that I ∩ Z(g) = 0. Let B be the set of all basis elements of weight at least c + 1 in U (g) and
initialise I = 〈B〉. We now iterate the following: let a be one of the finitely many basis elements of
U (g) not contained in I and not contained in Z(g). If xa ∈ I for all x ∈ g, then we add a to B and thus
enlarge I without destroying the property I ∩ Z(g) = 0. We call this algorithm LLIdeal (for Large Left
Ideal). We demonstrate it in the following example.

Example 2.3. We continue Example 2.2. We initialise B as the basis elements of weight at least c + 1.
Note that Z(g) = 〈z〉. Thus we consider for a the elements x, y, x2, xy, y2. Of those, the elements x2,
xy and y2 satisfy the condition of the algorithm LLIdeal and thus we move these into B . Now also y
satisfies the condition and we also move y into B . Now I is an ideal of codimension 3 in U (g) and
hence we obtain a 3-dimensional faithful representation of g.

Next we describe a method to construct a faithful quotient for a given faithful g-module V . It is
called FaithfulQuotient and consists of the following steps:

(1) Compute the space S = {v ∈ V | x · v = 0 for all x ∈ g}.
(2) Compute the space C = {x · v | v ∈ V , x ∈ Z(g)}.
(3) Set M = S ∩ C and let W be a complement to M in S .
(4) If W = 0 then the algorithm stops, and the output is V . Otherwise, set V := V /W , and return

to (1).

We note that any subspace of S is a g-submodule of V . Therefore the quotient V /W is a g-module.
Let U be a complement to W in V such that C ⊂ U . Then x · V ⊂ U for all x ∈ Z(g). So since Z(g)

acts faithfully on V it acts faithfully on V /W . Hence V /W is a faithful g-module.
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Example 2.4. We consider the module of Example 2.2. Here we get

S = 〈
z, x2, xy, y2〉,

C = 〈z〉,
W = 〈

x2, xy, y2〉.
After taking the quotient we get a module spanned by (the images of) 1, x, y, z. For this module we
can perform the algorithm again. We get S = 〈y, z〉, C = 〈z〉, W = 〈y〉. So we end up with a faithful
module of dimension 3.

Now the complete algorithm, called Quotient, to construct a small-dimensional faithful g-module
runs as follows. First we perform the algorithm LLIdeal to find a (possibly large) left ideal I of U (g)

such that g acts faithfully on U (g)/I . Then we perform FaithfulQuotient with input U (g)/I , and obtain
the faithful g-module V . This is the output of our algorithm.

3. Using the dual of the universal enveloping algebra

We have that g acts on the dual U (g)∗ by x · f (a) = f (−xa), for x ∈ g, a ∈ U (g) and f ∈ U (g)∗ .
Let z1, . . . , zr be a basis of the center of g, which we assume to be a subset of the basis x1, . . . , xn .
Let ψi ∈ U (g)∗ for 1 � i � r be defined by ψi(zi) = 1 and ψi(a) = 0 for any PBW-basis element a not
equal to zi (note that this definition depends on the choice of basis of g).

Let ¯ : U (g) → U (g) be the antiautomorphism induced by x̄ = −x for x ∈ g. Then for a,b ∈ U (g),
f ∈ U (g)∗ we get a · f (b) = f (āb). (In other words, ¯ is the antipode of U (g).) Note that ¯̄a = a.

Theorem 3.1. Let V be the g-submodule of U (g)∗ generated by ψ1, . . . ,ψr . Then V is a faithful finite-
dimensional g-module. Moreover, V has no faithful g-submodules, nor has it faithful quotients.

Proof. For k � 1 let U k(g) be as in Section 2. Let W = { f ∈ U (g)∗ | f (U c+1(g)) = 0}. Then W is finite-
dimensional (since U c+1(g) has finite codimension), and a g-submodule of U (g)∗ (since U c+1(g) is
an ideal). Now V ⊂ W ; hence V is finite-dimensional. Let z = ∑

i μi zi be an element of the center
of g. Then z · ψi(1) = −ψi(z) = −μi . So z acts as zero if and only if all μi are zero. So V is a faithful
module.

Let ψ0 ∈ U (g)∗ be defined by ψ0(1) = 1 and ψ0(a) = 0 for PBW-basis elements a not equal to 1.
Then ψ0 = −z1 · ψ1, so ψ0 ∈ V . Let f ∈ V , and suppose there is a PBW-basis element a, not equal
to 1, such that f (a) 	= 0. Then ā · f (1) = f (a) 	= 0. The conclusion is that ψ0 spans the space of
elements that are killed by g. Set M = V /〈ψ0〉. Then M is not a faithful g-module. Indeed, V has a
basis consisting of a · ψi for 1 � i � r, and various PBW-basis elements a. Let z lie in the center of g;
then for all PBW-basis elements b we get z · (a · ψi)(b) = ψi(ābz̄) which is zero unless a = b = 1 (note
that z̄ = −z also lies in the center of g). Furthermore, z · ψi = −μiψ0 (where z = ∑

j μ j z j). It follows
that the center of g acts trivially on V /〈ψ0〉. In particular it is not a faithful g-module. Now, since
every g-submodule of V must contain ψ0, it follows that V has no faithful quotients.

Let M ⊂ V be a faithful g-submodule. Let bij ∈ U (g) be such that {bijψi} is a basis of V . We assume
that bi1 = 1, and that the bij ∈ gU (g) if j > 1 (i.e., they have no constant term). Then zi · bi1ψi = −ψ0
and zi · bkjψk = 0 if k 	= i or j > 1. So since the center acts faithfully on M it follows that M contains
elements of the form

ϕi = ψi +
∑
j>1

1�k�r

ckjbkjψk,

for 1 � i � r. (Here ckj are coefficients in the ground field.) Now we introduce a weight function
on U (g)∗ . For k � 0 set Fk = { f ∈ U (g)∗ | f (U k(g)) = 0}. Then 0 = F0 ⊂ F1 ⊂ · · · . We set wgt( f ) = k if
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f ∈ Fk but f /∈ Fk−1. (For example: wgt(ψ0) = 1.) Let f ∈ U (g)∗ have weight k, and let a ∈ U (g) with
wgt(a) = t; then a calculation shows that wgt(a · f ) � k − t . Hence bijϕi is equal to bijψi plus a sum
of functions of smaller weight. So if we order the bijψi according to weight, and express the bijϕi
in the basis bijψi we get a triangular system. We conclude that the bijϕi are linearly independent.
Hence dim M = dim V and M = V . �

The algorithm based on this theorem is straightforward: by acting with basis elements of g we
compute a basis of the g-module generated by ψ1, . . . ,ψr . Then we compute the matrices of the
basis elements of g with respect to this basis. We illustrate it with an example.

Example 3.2. Let g be the Lie algebra of Example 2.2. For a monomial a ∈ U (g) we denote by ψa the
element of U (g)∗ that takes the value 1 on a, and zero on all other monomials. We compute a basis
of the submodule of U (g)∗ generated by ψz . (Note that the center of g is spanned by z.) We have
x · ψz(a) = −ψz(xa) = 0 for all monomials a. Secondly, y · ψz(x) = ψz(−yx) = ψz(−xy + z) = 1. So we
get y · ψz = ψx . Furthermore, z · ψz = −ψ1 and g · ψ1 = 0, x · ψx = −ψ1, y · ψx = z · ψx = 0. So the
result is a 3-dimensional g-module.

Remark 3.3. Since we are working in the dual of an infinite-dimensional space it is not immediately
clear how to implement this algorithm. We proceed as follows. Let V be as in Theorem 3.1. From the
proof of Theorem 3.1 it follows that f (U (g)c+1) = 0 for all f ∈ V . In other words, for all monomials
a with wgt(a) � c + 1 and all f ∈ V we have f (a) = 0. It follows that we can represent an f ∈ V
by the vector containing the values f (a), where a runs through the monomials of weight at most c.
This enables us to perform the operations of linear algebra (testing linear dependence, constructing
bases of subspaces and so on) with the elements of V . Furthermore, we can compute the action of
elements of g on V .

We can make this approach considerably more efficient by throwing some of the monomials away.
We do this using the following algorithm. Let A be the set of monomials relative to which we repre-
sent the elements of U (g)∗ . At the start this will be the set of monomials of weight at most c. Let B
be the set of all other monomials. So at the outset B spans a left ideal of U (g) and f (b) = 0 for all
f ∈ V and b ∈ B . We move elements from A to B , without changing this last property. Let a ∈ A be
such that a /∈ Z(g) and xa is a linear combination of elements of B for all x ∈ g. Then we claim that
f (a) = 0 for all f ∈ V . In order to see this we use the basis {bijψi} used in the proof of Theorem 3.1.
If j = 1 then bijψi(a) = ψi(a) = 0 as a /∈ Z(g). If j > 1 then bij ∈ gU (g) and hence b̄i ja is a linear
combination of elements in B . Hence bijψi(a) = 0. Also the span of B along with a continues to be a
left ideal. We conclude that we can move a from A to B . We continue this process until we do not
find such monomials any more.

We note that the procedure described in the previous remark is exactly the same as the algorithm
LLIdeal (see Section 2). So we first perform the algorithm LLIdeal to find a left ideal I , and use the
set of PBW-basis elements that are not contained in I to represent elements of the dual of U (g). The
resulting algorithm is called Dual.

4. Affine representations at random

Let g be a nilpotent Lie algebra of dimension d. A homomorphism ρ : g → aff(K d) ⊆ gld+1(K ) into
the Lie algebra of affine transformations

aff
(

K d) � gl
(

K d)
� K d

is called an affine representation of g. In this section we describe an algorithm that tries to determine
a faithful affine representation of g of dimension d + 1. If the algorithm succeeds, then it returns such
a faithful representation of dimension d + 1. However, it may also happen that the algorithm fails and



D. Burde et al. / Journal of Algebra 322 (2009) 602–612 607
does not return a representation. Also, it is worth noting that the algorithm uses random methods
and hence different runs of the algorithm may produce different results.

The algorithm uses induction on a central series in g. Thus we assume by induction that we are
given a central ideal I in g with dim(I) = 1 and a faithful affine representation

ρ : g/I → Md(K ).

Let {a1, . . . ,ad} be a basis of g with I = 〈ad〉 and let Mi = ρ(ai + I) for 1 � i � d − 1. We assume that
every Mi is a lower triangular matrix. Clearly, we can readily extend ρ to an affine representation of g

with ρ(ai) = Mi for 1 � i � d where we set Md = 0 (so that ρ(ad) = 0). This extended representation
has kernel I .

Our aim is to extend ρ to a faithful affine representation

ψ : g → Md+1(K )

such that

ψ(ai) =
(

Mi vi
0 0

)
for 1 � i � d,

for certain vectors vi ∈ K d . The following lemma shows that the possible values for vi can be deter-
mined using a cohomology computation. From [6], Chapter III, §10, we recall that

Z 1(g, K d) = {
ν :g → K d linear

∣∣ ν([x, y]) = ρ(x)ν(y) − ρ(y)ν(x)
}

is the space of 1-cocycles with values in the ρ(g)-module K d .

Lemma 4.1. ψ is a representation of g if and only if vi = δ(ai) for 1 � i � d for some δ ∈ Z 1(g, K d).

Proof. Let δ ∈ Z 1(g, K d) with δ(ai) = vi . The linearity of δ implies that ψ is linear. The defining
condition for maps in Z 1(g, K d) implies that ψ is a Lie algebra representation. The converse follows
with similar arguments. �

Note that Z 1(g, K d) is a vector space over K and can be computed readily using linear algebra
methods. The computation of Z 1(g, K d) allows to describe all affine representations of g extending ρ .
It remains to determine the faithful representation among these.

Lemma 4.2. ψ is faithful if and only if vd 	= 0.

Proof. If ψ is faithful, then vd 	= 0. Conversely, suppose that vd 	= 0. As ρ is faithful, it follows that
ker(ψ) ⊆ I . As vd 	= 0, we find that ker(ψ) = 0. �

These ideas can be combined to the following algorithm, called Affine.

(1) Choose a central series g = g0 > g1 > · · · > gd > gd+1 = 0 of ideals in g such that dim(gi/gi+1) = 1.
(2) For i = 1, . . . ,d extend a faithful affine representation from g/gi to g/gi+1, using the following

steps:
– Compute Z 1(g/gi+1, K i).
– Choose a δ ∈ Z 1(g/gi+1, K i) with δ(ai) 	= 0.
– If no such δ exists, then return fail.
– If δ exists, then extend ρ to g/gi+1.
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If g has a faithful affine representation of dimension d + 1, then this algorithm can in principle
find it. However, it may be that a “wrong” choice of a δ at a certain step may cause the algorithm to
fail at a later step.

The algorithm is based on linear algebra only and hence is very effective. It often succeeds in
finding a faithful representation in dimension d + 1 if it exists.

5. A series of filiform nilpotent Lie algebras

Let K be a field of characteristic zero. In this section we define a filiform Lie algebra fn in each
dimension n � 13 having interesting properties (see Proposition 5.5) concerning Lie algebra cohomol-
ogy, affine structures and faithful representations. In fact, we believe that the algebras fn are counter
examples to the conjecture of Milnor mentioned in the introduction, i.e., that μ(fn) � n + 2 holds.
Hence it is interesting to compute the invariants μ(fn).

The ideas behind the construction of fn are explained in [3], where a family of Lie algebras A2
n(K )

is defined, of which fn is a specialization.
Define an index set In by

I 0
n = {

(k, s) ∈ N × N
∣∣ 2 � k � [n/2], 2k + 1 � s � n

}
,

In =
{

I 0
n if n is odd,

I 0
n ∪ {(n

2 ,n)} if n is even.

Now fix n � 13. We define a filiform Lie algebra fn of dimension n over K as follows. For (k, s) ∈ In

let αk,s be a set of parameters, subject to the following conditions: all αk,s are zero, except for the
following ones:

α�,2�+1 = 3(
�
2

)(2�−1
�−1

) , � = 2,3, . . . ,

⌊
n − 1

2

⌋
,

α3,n−4 = 1,

α4,n−2 = 1

7
+ 10

21

(n − 7)(n − 8)

(n − 4)(n − 5)
,

α4,n =
{ 22105

15246 if n = 13,

0 if n � 14,

and

α5,n = 1

42
− 70(n − 8)

11(n − 2)(n − 3)(n − 4)(n − 5)
+ 25

99

(n − 6)(n − 7)(n − 8)

(n − 2)(n − 3)(n − 4)

+ 5

66

(n − 5)(n − 6)

(n − 2)(n − 3)
− 65

1386

(n − 7)(n − 8)

(n − 4)(n − 5)
.

Let (e1, . . . , en) be a basis of fn and define the Lie brackets as follows:

[e1, ei] = ei+1, i = 2, . . . ,n − 1,

[ei, e j] =
n∑(  j−i−1

2 �∑
(−1)�

(
j − i − � − 1

�

)
αi+�,r− j+i+2�+1

)
er, 2 � i < j � n.
r=1 �=0
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In order to show that this defines a Lie bracket we need the following lemma which follows from
the Pfaff–Saalschütz sum formula:

Lemma 5.1. We have the following identities for all n � 13:

 n−1
2 �∑

�=3

(−1)�−1
(

n − � − 5

� − 2

)
α�,2�+1 = (n − 7)(n − 8)

(n − 4)(n − 5)
,

 n−1
2 �∑

�=5

(−1)�
(

n − � − 5

� − 4

)
α�,2�+1 = − 1

70
+ 12(n − 8)

(n − 2)(n − 3)(n − 4)(n − 5)
,

 n−1
2 �∑

�=3

(−1)�
(

n − � − 3

� − 2

)
α�,2�+1 = − (n − 5)(n − 6)

(n − 2)(n − 3)
.

Proposition 5.2. The Jacobi identity is satisfied, so that fn is a Lie algebra for any n � 13.

Proof. Let n � 14 and choose the parameters αk,s as follows. Consider αk,2k+1, k = 3, . . . , n−1
2 � and

α4,n−2,α5,n as free variables. Let the remaining parameters be zero, except for α2,5 = 1, α3,7 	= 0
and α3,n−4 = 1. The Jacobi identity is equivalent to a system of polynomial equations in the free
parameters. First we obtain the equation α3,7(10α3,7 − α2,5) = 0, so that α3,7 = 1

10 . More generally
we see that

(� − 1) · α�,2�+1 = (4� + 2) · α�+1,2�+3, � = 2,3, . . . ,

⌊
n − 1

2

⌋
.

This implies the given explicit formula for all α�,2�+1. Secondly we obtain

α4,n−2 = α4,9

α3,7
+ α4,9

3α2
3,7

 n−1
2 �∑

�=3

(−1)�−1
(

n − � − 5

� − 2

)
α�,2�+1,

α5,n = 1

α4,9 + α3,7 − 2α2,5

(
−4α4,9 +

 n−1
2 �∑

�=5

(−1)�
(

n − � − 5

� − 4

)
α�,2�+1

)

+ 1

α4,9 + α3,7 − 2α2,5

(
α4,n−2

(
13α4,9 +

 n−1
2 �∑

�=3

(−1)�
(

n − � − 3

� − 2

)
α�,2�+1

))
.

This amounts to the given formulas in the definition of fn , if we substitute the identities from
Lemma 5.1. Conversely this also shows that the Jacobi identity is satisfied if the free parameters are
given in this way.

For n = 13 there is one difference. The parameter α4,n coincides with the parameter α4,13, which
is given by

α4,13 = α3,9(−α5,13 + 6α4,11 − 5α3,9)

α3,7 + 2α2,5
,

and cannot be chosen to be zero. For n � 14 the choice α4,n = 0 is consistent with the Jacobi iden-
tity. �
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Example 5.3. The parameters for f13 are given as follows:

α2,5 = 1, α3,7 = 1

10
, α4,9 = 1

70
, α5,11 = 1

420
, α6,13 = 1

2310
,

α3,9 = 1, α4,11 = 43

126
, α4,13 = 22105

15246
, α5,13 = 313

3388
.

The algebras fn belong to the family of filiform Lie algebras A2
n(K ) defined in [3]. Let us recall the

following definition (cf. [3]).

Definition 5.4. Let g be a filiform nilpotent Lie algebra of dimension n. A 2-cocycle ω ∈ Z 2(g, K ) is
called affine, if ω:g ∧ g → K does not vanish on Z(g) ∧ g. A class [ω] ∈ H2(g, K ) is called affine if
every representative is affine.

The cohomology class [ω] ∈ H2(g, K ) of an affine 2-cocycle ω is affine and non-zero. If a filiform
Lie algebra g of dimension n � 6 has second Betti number b2(g) = 2, then there exists no affine
cohomology class, see [3].

We have shown in [3] that a filiform Lie algebra g which has an affine cohomology class, admits a
central extension

0 → a
ι−→ h

π−→ g → 0

with some Lie algebra h and ι(a) = Z(h), and has an affine structure. In particular, such a Lie algebra
has a faithful representation of dimension n + 1.

We can conclude from the results in [3] that the Lie algebras fn do not have an affine structure
arising this way.

Proposition 5.5. The algebras fn, n � 13 have second Betti number b2(fn) = 2. Hence there exists no affine
cohomology class [ω] ∈ H2(g, K ). In particular there is no central Lie algebra extension as above.

For Lie algebras in A2
n(K ) the second Betti number is 3 or 2, depending on whether a certain

polynomial identity α3,n−4 = P in the free parameters does hold or does not hold (see [3]). For fn we
have chosen the parameters in such a way that P = 0 and α3,n−4 = 1. This implies that b2(fn) = 2.

It follows that a very natural way to obtain a faithful representation of dimension n + 1 does not
work. In fact, we believe that there is no such representation at all for these algebras:

Conjecture 5.6. The Lie algebras fn, n � 13 do not have any faithful representation of dimension n + 1, i.e.,
μ(fn) � n + 2.

For n = 13 a very complicated analysis of possible faithful representations seems to confirm this
conjecture. In general our methods are not sufficient to prove this for all n � 14. Even more difficult of
course is the determination of μ(fn). For computations of faithful representations for the algebras fn ,
for small n, see Table 3.

6. Practical experiences

We implemented all the algorithms described above in the computer algebra system GAP. In this
section we report on the application of these implementations to various examples. We have the
algorithms Quotient (Section 2), Dual (Section 3), and Affine (Section 4). We note that the first two
algorithms share the first basic step, which is the algorithm LLIdeal (see Section 2).

In all our experiments Quotient and Dual returned faithful representations of the same dimension
(with Dual being slightly faster). This is illustrated in Table 3. We believe that there must be an
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Table 1
Running times (in seconds) for Un(F).

n F dim(Un(F)) LLIdeal Dual Affine

time dim time dim time dim

4 F2 6 0.0 7 0.1 5 0.0 7
5 F2 10 0.25 15 0.3 11 0.3 11
6 F2 15 3.4 35 3.6 17 3.5 16
7 F2 21 65 79 66 35 45 22

4 F3 6 0.0 7 0.0 5 0.0 7
5 F3 10 0.2 15 0.3 11 0.3 11
6 F3 15 3.4 35 3.6 17 3.7 16
7 F3 21 65 79 67 35 46 22

4 Q 6 0.0 7 0.0 5 0.0 7
5 Q 10 0.2 15 0.3 11 0.3 11
6 Q 15 3.0 35 3.2 17 3.6 16
7 Q 21 66 79 67 35 45 22

Table 2
Running times (in seconds) for Nn,c(Q).

n c F dim(Nn,c(F)) LLIdeal Dual Affine

time dim time dim time dim

2 5 Q 14 0.2 20 0.3 20 0.5 15
2 6 Q 23 0.9 34 1.3 34 8.4 24
2 7 Q 41 3.2 65 4.8 65 � �
2 8 Q 71 14 117 21 117 � �
3 4 Q 32 0.8 41 1.7 41 54 33
3 5 Q 80 11.5 113 17.5 113 � �
4 3 Q 30 0.9 36 1.3 36 37 31
4 4 Q 90 13 113 19.7 113 � �

intrinsic reason for this to happen, such as one module being the dual of the other. But we have no
proof of that. We only exhibit the results of Dual in Tables 1 and 2, noting that the results for Quotient
are similar in all cases.

All computations were done on a 2 GHz processor with 1 GB of memory for GAP.

6.1. Upper triangular matrix Lie algebras

The upper triangular matrices in Mn(F) form a nilpotent Lie algebra Un(F) with n − 1 generators
and class n − 1. We applied our algorithms to some Lie algebras of this type. The results are recorded
in Table 1.

Table 1 exhibits that the underlying field does not have much impact on the runtime or the result.
The larger the dimension of the considered Lie algebra is, the more superior is Affine. It yields small-
dimensional representations and is the fastest of all methods.

6.2. Free nilpotent Lie algebras

Next we consider the free nilpotent Lie algebras with n generators of class c over the field F,
denoted Nn,c(F).

Table 2 displays the time in seconds for the three algorithms, with input Nn,c . The � in the last
two columns indicates that the algorithm Affine did not succeed, either because it made the “wrong”
choice at some stage, or due to Memory problems: for its cohomology computation it has to solve a
system of linear equations which is of the size O (dim(g)2) and this can be time and space consuming.
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Table 3
Running time (in seconds) for the Lie algebras fn .

n LLIdeal Quotient Dual Affine

time dim time dim time dim

13 8.6 85 14 43 12.3 43 �
14 17 105 28 53 24.7 53 �
15 33 145 63 64 50 64 �
16 64 185 125 77 102 77 �
17 123 256 323 94 218 94 �
18 234 316 731 111 461 111 �
19 487 433 1844 134 1162 134 �
20 920 538 4009 158 3039 158 �

6.3. The Lie algebras fn

Finally, we consider the Lie algebras fn of the previous section. The results of that are contained in
Table 3.

Table 3 displays the time in seconds for the algorithms Quotient and Dual, with input fn . The � in
the last column indicates that the algorithm Affine did not succeed. In this case, this was due to the
fact that Affine did not find any possible faithful representation of dimension n + 1. Of course, if our
conjecture on fn holds, then it cannot succeed.

Note that the dimensionals of the determined modules for fn are significantly larger than n + 1.
However, they do not seem to grow very fast. Some naive tests with least squares fits seem to suggest
that the dimensions grow quadratically or cubically.

6.4. Some comments

From the above tables we conclude that if Affine succeeds, then it usually finds a module of sig-
nificantly smaller dimension than Quotient or Dual. This supports the suggested strategy to try this
algorithm first.
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