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The proton–proton fusion rate is calculated at low energy in a lattice effective field theory (EFT) 
formulation. The strong and the Coulomb interactions are treated non-perturbatively at leading order 
in the EFT. The lattice results are shown to accurately describe the low energy cross section within the 
validity of the theory at energies relevant to solar physics. In prior works in the literature, Coulomb 
effects were generally not included in non-perturbative lattice calculations. Work presented here is 
of general interest in nuclear lattice EFT calculations that involve Coulomb effects at low energy. 
It complements recent developments of the adiabatic projection method for lattice calculations of nuclear 
reactions.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Calculations of nuclear reactions from a microscopic theory are 
of fundamental importance. Nuclear cross sections are important in 
understanding the observed abundances of elements [1–5]. These 
reactions occur under conditions of extreme densities and temper-
atures where all the known fundamental forces of nature – grav-
itation, electro-weak interactions, and strong interactions – play 
a role. Thus nuclear reaction cross sections impact disparate ar-
eas of physics such as astrophysics, nuclear physics and particle 
physics in a crucial manner. The effective field theory (EFT) formu-
lation of the microscopic nuclear interaction plays a central role 
in the nuclear reaction calculations [6–11]. EFT provides a model-
independent framework where one can make reliable estimates of 
the theoretical error. This is important as many of the nuclear re-
actions occur under extreme conditions that cannot be reproduced 
in terrestrial laboratories. Nuclear astrophysical models require re-
liable handle on the nuclear theory errors [2,4,12]. Further, EFT 
provides a bridge between nuclear physics and particle physics 
where nuclear observables can be connected to particle physics pa-
rameters such as the quark masses [13].

Applications of EFT in the few-nucleon systems have been quite 
successful [6–11]. Though there is a good understanding of the 
microscopic nuclear interactions, their application to larger nu-
clear systems poses serious computational challenges. Numerical 
lattice methods from particle physics combined with EFT provide 
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a promising possibility. The lattice EFT formulation allow a sys-
tematic error analysis derived from EFT. Ground and excited state 
energies for several atomic nuclei have been calculated accurately 
[14–16]. Many-body properties in dilute neutron matter have also 
been addressed [17]. Recently progress has been made in cal-
culating nuclear reactions using lattice methods albeit in simple 
systems [18–20]. The proposal in Refs. [18,19] is to first con-
struct an effective two-body Hamiltonian from first principle using 
an adiabatic projection method. This Hamiltonian is then used to 
calculate elastic and inelastic reactions involving nuclei such as 
a +b → γ + c, a +b → c +d with a, b, c and d being atomic nuclei, 
and γ a photon. In this work we consider the contribution from 
the long range Coulomb force. Nuclear reactions involving com-
pound nuclei will necessarily involve Coulomb interactions that 
become non-perturbative at energies relevant to astrophysics. To 
test the basic formulation we calculate proton–proton elastic scat-
tering and fusion at low energy. This simpler system allows us to 
isolate the Coulomb effect without a complicated nuclear strong 
force.

The pioneering calculation by Bethe and Critchfield showed that 
proton–proton fusion p + p → d + e+ + νe powers the sun [21,22]. 
This is a rare weak process that is the first crucial step in solar fu-
sion. A small Coulomb barrier along with the slow rate of the weak 
process leads to a long and steady burning of hydrogen in medium 
mass stars such as our sun [23]. The proton fusion rate is crucial 
to understanding solar neutrino production and its subsequent de-
tection in terrestrial laboratories [24].

Bahcall and May refined the fusion rate calculation [25] and 
set the benchmark for future evaluations such as Refs. [12,26]. 
The capture rate was expressed in terms of model-independent 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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parameters such as the deuteron binding momentum, the proton–
proton scattering length, etc., that are not sensitive to the details of 
the nuclear potential. The proton–proton fusion rate was analyzed 
in EFT with short-ranged interactions in Refs. [27,28]. The EFT cal-
culations matched the work by Bahcall and May when expressed 
in terms of the two-body scattering parameters and one-body cur-
rents. Higher order corrections from two-body currents have also 
been included in EFT calculations in a systematic manner, see 
Refs. [29–31]. We consider the leading order (LO) contribution 
in lattice EFT. Both the strong and Coulomb interaction are non-
perturbative at LO. The higher order contributions are perturbative 
[27–31] and should not pose any technical challenge in future lat-
tice calculations.

2. Interaction

Proton–proton fusion at solar energies around the Gamow 
peak is dominated by capture from the s-wave. At these energies 
E ∼ 6 keV, the initial state proton–proton strong interaction at LO 
is described by the Lagrangian [32,33]:

L = ψ†
[

i∂0 + ∇2

2M

]
ψ − c0

4
(ψσ2ψ)†(ψσ2ψ), (1)

where the proton mass M = 938.3 MeV, and ψ represents the 
spin-1/2 protons. The Pauli matrix σ2 is used to project the pro-
tons onto the spin-singlet channel. We use natural units with 
h̄ = 1 = c. The strong interaction potential in coordinate space for 
proton–proton scattering in the s-wave spin-singlet channel, corre-
sponding to Eq. (1), is

V s(�r) = c0δ(�r). (2)

The long range Coulomb force is described by the Coulomb poten-
tial

V c(�r) = α

r
, (3)

with α = 1/137. The coupling c0 can be determined in the contin-
uum from proton–proton scattering length ap [32,33]. Given these 
interactions, we construct the lattice theory by discretizing space 
in a periodic box.

The kinetic energy term in the Hamiltonian is written as 
a Laplacian constructed out of forward–backward differences on 
the lattice:

− 1

2M

∫
d3r ψ(�r)†∇2ψ(�r)

→ − 1

2M̂b

∑
�n,l̂

ψ̂†(�n)
[
ψ̂(�n + l̂) + ψ̂(�n − l̂) − 2ψ̂(�n)

]
, (4)

where b is the lattice spacing, the integer vector �n indicates the 
lattice sites, l̂ is a unit vector in the x-, y-, z-direction. The hatted 
quantities M̂ , ψ̂ are in lattice units. The review article in Ref. [34]
has more details. The strong interaction potential reduces to a Kro-
necker delta function at the origin on the lattice. The Coulomb 
potential is defined on the discretized lattice in a straightforward 
manner. However, at the origin we regulate it, i.e., replace it by 
a Kronecker delta function with a coupling d0 to be determined 
later. In the presence of both strong and Coulomb potentials, only 
the linear combination of c0 + d0 determines phase shifts and am-
plitudes. This is a consequence of the overlap of the ultraviolet 
divergences in the strong and Coulomb interactions in the EFT [32,
33]. The lattice Hamiltonian is defined on a periodic box of size L
in lattice units.
Proton–proton fusion involves a deuteron in the final state 
that can be described in the EFT accurately [35]. The LO spin-
triplet interaction can be described with a short-ranged interaction 
(ψσ2σiφ)†(ψσ2σiφ) where φ is the spin-1/2 neutron field. The 
coupling for this spin-triplet interaction is tuned independently of 
the spin-singlet interaction in Eq. (1) to reproduce the deuteron 
binding energy B = 2.2246 MeV [36]. The deuteron bound state 
can be described in the lattice formulation of the short-ranged in-
teraction as well.

3. Scattering and fusion

Elastic scattering is commonly described in lattice calculations 
using Lüscher’s method [37,38]. The energy shifts in a periodic 
box in the presence of a short-ranged interaction is used to cal-
culate the elastic phase shifts. Perturbative Coulomb contributions 
to two-particle scattering in a finite volume have been considered 
recently [39] but a general method for calculating Coulomb inter-
actions non-perturbatively at low energy using Lüscher’s method 
doesn’t exist. Here we calculate the non-relativistic phase shift in 
the presence of the long range Coulomb force using a hard spher-
ical wall boundary condition. This method was used in Refs. [14,
40] to calculate two-body phase shift due to the short-ranged 
strong interaction. The spherical wall method was found to be bet-
ter suited than Lüscher’s method for problems involving coupled 
channels in Refs. [14] in lattice calculation.

To understand the spherical wall method, consider a short-
ranged potential V s(r) inside a hard spherical wall of radius R [14,
40]. The continuum asymptotic s-wave solution to the Schrödinger 
equation inside the hard wall has the form

∣∣ψs(�r)
∣∣ = ∣∣ j0(kr) cos δs − y0(kr) sin δs

∣∣, (5)

in terms of the spherical Bessel functions j0 and y0 at the center-
of-mass momentum k. At the spherical wall boundary R , the wave 
function must vanish, giving

tan δs(k) = j0(kR)

y0(kR)
. (6)

On a cubic lattice one cannot fit a sphere of radius R . Instead for 
a given spherical hard wall of radius R , following Ref. [14], one 
defines an adjustable wall radius R w where the free wave function 
vanishes:

j0(k0 R w) = 0 ⇒ R w = π

k0
. (7)

k0 is the center-of-mass momentum of the free theory on the lat-
tice. It corresponds to the momentum of the first energy of the 
spectrum on the lattice. The self-consistent use of R w in Eq. (6) by 
setting R = R w is shown to accurately reproduce the strong inter-
action phase shifts for various two-nucleon channels [14]. We fol-
low the same procedure in calculating the strong-Coulomb phase 
shift for proton–proton scattering on the lattice with a box size 
greater than the diameter of the spherical shell.

Traditionally, proton–proton scattering is described by consid-
ering the Coulomb subtracted phase shift δsc = δfull − δc . The full 
phase shift specifies the scattering amplitude T through the rela-
tion

T (k) = 2π

μ

exp(i2δfull) − 1

2ik
, (8)

where μ = M/2 is the reduced mass. The purely Coulomb phase 
shift δc(k) = Arg[�(1 + iηk)] is independent of the short-ranged 
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nuclear interaction. A standard result derived from the analytical 
properties of the scattering amplitude [41,42] gives:

C2
ηk

[k cot δsc − ik] + 2kηk H(ηk) = − 1

ap
+ r

2
p2 +O

(
p4). (9)

See Ref. [43] for a recent derivation. The Sommerfeld factor

C2
ηk

= 2πηk

exp(2πηk) − 1
, (10)

represents the probability of finding two protons at the origin. 
ηk = αμ/k is the Sommerfeld parameter that serves as the for-
mal expansion parameter in Coulomb interactions. A small ηk im-
plies Coulomb effect is perturbative. At low momentum k, ηk is 
large and Coulomb effect has to be treated non-perturbatively. 
The function H(ηk) is defined through the di-gamma function 
ψ(x) = ∂x ln �(x) as

H(ηk) = ψ(iηk) + 1

2iηk
− ln(iηk). (11)

In the limit α → 0 for “neutral” protons, ηk H(ηk) = i/2 and Eq. (9)
reduces to the familiar effective range expansion for short-ranged 
interaction

k cot δsc = − 1

ap
+ r

2
p2 +O

(
p4). (12)

For the Coulomb calculation we use Eq. (9) with the experimen-
tally determined ap = −7.82 fm and set r = 0 for our LO calcu-
lation. In effect we use one experimental input ap to determine 
a single coupling ĉ0 + d̂0 (in lattice units). Next-to-leading order 
(NLO) correction related to the effective range can be added to the 
EFT calculation systematically [33].

The lattice calculation of the Coulomb subtracted phase shift 
δsc follows from the conventional definition of the s-wave proton–
proton wave function in the presence of both the strong and the 
Coulomb force∣∣ψp(�r)∣∣ = |F0(kr) + G0(kr) tan δsc|

kr
, (13)

that resembles the solution in Eq. (5) with F0(kr) and G0(kr) being 
the regular and irregular Coulomb wave functions, respectively. See 
Ch. 14 in Ref. [44]. Requiring the wave function to vanish at the 
spherical wall gives the lattice phase shift as

δ
(latt)
sc (k) = tan−1

[
− F0(kR w)

G0(kR w)

]
, (14)

where R w is again determined from the free particle spectrum in 
Eq. (7).

The results of the lattice calculation are shown in Fig. 1. In this 
work we consider momenta p � 30 MeV. We choose lattice spac-
ing b such that the physical momenta p are too small to probe the 
high momentum physics associated with the lattice cutoff momen-
tum π/b � p, and as such do not expect the lattice discretization 
errors to be significant. We reproduce the analytical result at two 
different lattice spacings b = 1/100 MeV−1 and b = 1/200 MeV−1. 
The lattice data indeed confirms that the lattice discretization er-
rors are insignificant for these choice of lattice spacings. We find 
the coupling ĉ0 + d̂0 depends on the lattice spacing. This is ex-
pected since there is a short-distance scale associated with the 
dimensionful coupling c0 in the continuum theory, Eq. (1), that 
is regulated by the lattice spacing. This is reflected in the scale de-
pendence of the linear combination ĉ0 + d̂0. The lattice data was 
generated by varying the spherical wall radius R [14,40] up to 80b, 
with smaller momenta p being associated with larger R . We find 
Fig. 1. Coulomb subtracted phase shift. The dashed curve is the analytical re-
sult from Eq. (9). The red circle data correspond to b = 1/100 MeV−1, ĉ0 + d̂0 =
−0.4047, and the blue triangle data correspond to b = 1/200 MeV−1, ĉ0 + d̂0 =
−0.8330 lattice results, respectively. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

that the lattice calculations reproduce Coulomb subtracted δsc ac-
curately to within about 3% or less.

After having calculated the elastic scattering phase shift, we 
consider the proton–proton fusion rate. At low energy the fusion 
rate is dominated by peripheral collision. The nuclear contribution 
is described by the expectation value of 〈ψd| OEW |ψp〉, where ψd is 
the final state deuteron wave function, ψp is the incoming proton–
proton wave function, and OEW is the electro-weak current. The 
strong interaction contribution to the transition amplitude from 
one-body current at LO can be written as [25]

Tfusion(k) =
∫

d3r ψ∗
d (�r)ψp(�r), (15)

with the deuteron bound state wave function

ψd(�r) =
√

γ

2π

exp(−γ r)

r
, (16)

where the binding momentum γ = √
2μB is defined in terms 

of the deuteron binding energy B = 2.2246 MeV. The incoming 
s-wave proton–proton wave function ψp(�r) is given by Eq. (13). 
It is possible to evaluate the deuteron wave function using the lat-
tice formulation. Here we want to focus on the non-perturbative 
Coulomb calculation as bound state wave functions have been cal-
culated accurately in lattice EFT before [14–16]. It is convention to 
consider the normalized matrix element following Salpeter [45]

Λ(k) =
√

γ 3

8πC2
ηk

∣∣Tfusion(k)
∣∣. (17)

We use the lattice values for δ(latt)
sc to calculate Λ(k). The re-

sults are compared with the analytical result in Fig. 2. Given that 
the Coulomb subtracted phase shifts are calculated accurately on 
the lattice, see Fig. 1, it is expected that the lattice results for 
Λ(k) would agree well with the analytical results. The lattice re-
sults agree with the analytical results to about 3% or less. An 
extrapolation to zero energy gives Λ(latt)(0) = 2.49 ± 0.02 which 
is consistent with the LO continuum EFT calculation Λ(EFT) = 2.51
[27,28]. At solar energies E = k2/(2μ) ∼ 6 keV, Λ(E) deviates 
no more than a few percent from Λ(0). Beyond LO, effective 
range corrections in both the incoming proton–proton channel and 
the bound state deuteron channel contribute [27,28]. Contribution 
from mixing between the s-wave and the d-wave component of 
the deuteron can be included as well [25,29–31]. Two-body cur-
rents contribute as well at higher order [29–31].
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Fig. 2. Proton–proton fusion rate. The dashed curve is the analytical result. Red cir-
cles and blue triangles show lattice data at b = 1/100 MeV−1 and b = 1/200 MeV−1

with the lattice couplings from Fig. 1. The horizontal grid line at Λ = 2.51 indicates 
the LO continuum EFT result at zero energy [27,28]. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

4. Conclusions

We calculated the elastic proton–proton phase shift on the lat-
tice for momenta p � 30 MeV. The lattice EFT was described us-
ing a short-ranged nuclear interaction at LO, in addition to the 
Coulomb force. While Lüscher’s method is not applicable to prob-
lems involving the long-ranged non-perturbative Coulomb force, 
the spherical wall method was found to be an effective approach 
for the calculation. The LO coupling was determined from the 
known scattering length parameter. We considered two lattice 
spacings, and found the lattice discretization errors to be negli-
gible. The lattice results were shown to agree with the known 
analytical results to about 3% or less.

The strong interaction contribution to the proton–proton fu-
sion rate in the presence of the Coulomb force was calculated. The 
fusion rate is proportional to the bound state deuteron wave func-
tion ψd(�r) and the incoming s-wave proton–proton wave function 
ψp(�r). The wave function ψp(�r) is determined by the Coulomb 
subtracted phase shift δsc that is calculated accurately on the lat-
tice. The lattice fusion rate calculations reproduced the continuum 
results. Future work should explore the higher order corrections in 
the lattice EFT calculation. Contributions from effective range, s–d
mixing in the deuteron wave function, two-body electro-weak cur-
rents at higher order in the continuum EFT are well known from 
the work in Refs. [25,27–31]. Lattice calculation of these higher or-
der effects should be explored.

The results presented in this work complement the recent work 
in the adiabatic projection method for calculating nuclear reac-
tions on the lattice. The adiabatic projection method allows the 
construction of an effective two-body Hamiltonian from first prin-
ciple to describe certain low energy electro-weak nuclear reactions. 
Nuclear reactions involving compound nuclei are of importance in 
astro, nuclear and particle physics analysis. The Coulomb force is 
expected to play an important role in these low energy reaction 
calculations. The current work would be part of the program to 
study these reactions using lattice EFT.
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