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ABSTRACT 

The ~ oi Gbi-matriees is defined by requ/fius ~ ** ~ i ~ v e  cycle contain any 
negm3w ~Tcle it intersects. Using the c ? ~  ~ ,  s ¢~tonical ~,,rm is developed 
for irr~3ue~ble GM-mstriees. Relationships between the signs of the pr~eipel minors 
and the cycle are derived. In special cases, remks are ob~_'ned on the ~ ,̂,f 
element~ ~f the inv__~-se__ ~ a G M ~ .  

I. INTRODUCTION 

In [7] ]ames Quirk intwduced ~ ~ o~ n - ~ ~ s  he called g ~ e  _v~_ "-zed 
Metzlefian matrices (vr CM-~_.~_'ces__ for .~hort). He c o ~ e c ~  that the 
CM-matfices ~c  the la~ge~ ckLss of qualRa~ve|y defined ma~ces hav~g the 
property that the h)~,pothe~ of ~ i ~  stabflfly for the matrix imp~es ~mt it 

~able. ~Ve r e ~ d  the rea~er tJmt the n × n ~ a t ~  A = [a~t ] ~ ~ e k s ~  
stab|~ if every p "rmci~l ~ o r  o~ order ~ has the s i ~  ( - i)~ f~r 0 < p ~ n, 

More r~cently, in [6] M a ~  and Wiener intreduc~ the concept of a 
~ a ~  h a ~ ' ~  c o ~ e n ~ y  signed p~cilud ramon (see D e f ~ o n  1.~ b~]ow). 
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only fl ~ is B i ~  stable. Quirk did not address the problem of determining 
conditions under which a CM-matr~ would be Hick~" n stable. He used 
Hicksian stability as an adch~onal hypothesis. Also he failed to prove his 
conjecture. 

We think that it is of some interest to derive sufficient conditions for a 
CM-matrix to be Hi~vksian stable (have consistently signed principal sub- 
mala~ces). The methods derived in [6] permit us to do this with the help of an 
interesting canonica| form theorem derived below which shows that very 
detailed structural results are obtainable for a class of qualitatively defined 
matrices. We also show how the results of [6] combined with those of [3] e~an 
be used to obtain some re~d]ts about the signs of the elements-of A-i.  It is 
our hope that the results we have obtai;ned will provide the additional tools 
needed to prove or disprove Quirk's conjecture, at least under the sufficient 
conditions of Sections 5 and 6. 

Following Quirk, we consider n × n matrices A ffi [a~]. In the usual way, 
we associate with A the signed digraph S(A) = (9 ~, ~ ,  o) defined as follows. 
The point set 9 ~ of S(A) consists of n points labeled 1,2,..., n. The arc set 

of S(A) contains the are (i, j )  if and only if a~ ~ 0 for i ~ j. For the are 
j )  we have j )  = + > 0 and. j )  = - if a,-  < O. 

o: J~' ~ { +,  - ). H J~o c ~ ,  then' ~gn ~'o ts the product of the~gns of the 
arcs in -~o (if -a~o ffi ~ ,  sign ~'o ffi +). Here do  could be the arc set of a path 
or cycle of S(A) so that sign ~o would then be understood as the sign of the 
corresponding path or cycle. (For our work paths and cycles will always be 
shnp|e.) It will be convenient to denote by D(A) the underlying digraph of 
S(A), i.e.,. D(A)  ffi (@, ..~'). 

When -~o c .~, we shah denote by ~ ( ~ o )  the set of points of S(A) 
be|onging to the ares of ~o. 

We can now define the class of G M-matrices. 

DmnNn~o~ 1.1. The real n × n matrix A is a CM-matrix if a~ < 0, 
i ffi 1,2,..., n, and whenever c x is a negative cycle of S(A) and c 2 is a 
positive cycle of S( A ), then either @(c l) N @(c9 ) = O or @(c x) c @(c~). 

Observe that the second condition of this definition is purely graph 
theoretiC. We s h ~  show ~ t  we can cst~lish a canonical form for 
mat~ces s a n g  this condiUon alone. Indeed, t l~  is the main result of the 

1~or~on of our work. I~th the result and the methods used in its 
derivation are new and d~erent ~ m  anything in [7]. 

Neat let I c @. We use the notation A[I] to denote the principal 
~bmatr~ of A in the rows and co]un~s l, and A(I) tc denote the principal 
~ b n ~ x  ~ A m the rows and c o ] ~  complementm7 to L 
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~ o ~  1.2. Suppose A is a real n x n nmtrix with a ,  < 0, ~ = 
1,S,..., n. We sty that A has com/sten¢lu ~ ~ n c ~  m~no~ if for each 
I c @ the principal minor det A[I] satidies 

sgndet A l l ] - -  ( - 1) ' ,  (1) 

where p = [I[, the number of points in I (see [6] for a discussion). 

Observe that this definition implies both that A - t  exists and that 
det A[I] ~ 0 for all I (take det A[I] = ! if I = ~ ) .  Moreover, by virtue of the 
Jacobi identifies between minors of a matrix and those of its inverse, 
princil~l minor of A - l  satidies 

sgndet A - t [ I ]  -- 

sgn det A 

sgn(det A) ( - 1)" 

i.e., the condition (1) is alsd~satidied for A-t .  
In the process of studying GM-nmtriees we Shall relate thi~ elms to the 

class of purely qualitative matrices, i.e., L-matrices (see [4] and [5]). For this 
purpose we shall define the n × n matrix A to be an L-matr~ ff a ,  < 0, 
i - 1,..., n, and S(A) b~s only negative cycles. Note that every L-matrix is a 
GM-nmtr~. 

2. SOME USEFUL PRELIMINARY RESULTS 

It turns out that the GM-eondition forces us to ~ e  the way in which 
various cycles intersect. Thin it will be convenient to have at ~ d  a little 
special terminology as well as some basle f~ts  about cycles in strongly 
connected dig~.phs. 

First let H and K be s u b d i ~  of the digraph D ffi (~ ,  M). We c ~  H 
end K d~sjoint: (otherwise i ~ n g )  if @(H) n @(K) ffi O. We e ~  them, 
respectively, ~ ~  or adjacent if l ~ ( H ) n  ~(K)]  = 1 or if H N K (~-~pl: 
theoretic intersection) is a 1ruth in D. In the last sittmtion, the l~th H N K 

be c~dled the path o f~]oc~cy  of H and K. F inny,  K c ~  H memos 

the arc (h, k) ~ ~ ~  ~ H, then. t ~  ~ a c~c~ c, cos~inir~ (h, k), 
which ~ ~ t ~  tan~st r~ ~i~en~ to H. 
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P~oof. Suppose h ~ ~(H).  Since D is strong, (h, k) is an arc of some 
cycle b. If b is ~angent to H, then let c = b. If b is not tangent to H, then 
(h,k) is con~tned in a unique s u b ~  p~(h ~ h9 of b where @(pt)~ 
@(H)ffi {h, h'}. [The argument is virtually identical if instead k ~ @~H).] 
Since H is strong, there exists a path p~(h' ~ h) in H. Thus 9~(px) ~ 
@(p~) ffi ( h, h'}, and we can define a cycle c ffi px(h ~ h')p~(h' ~ h). [] 

COROLLARY 2.2. ~-f the ~ digraph D c ~ m  ~ ~ s t ~ g  
s u b d i g ~ h  H, then there, exists a cycle c tang~t or ed~acent to K ~ 
~(c)-~(H)~O. 

Pwof. Since H is a proper mbdigraph and D is strong, there exists an 
arc (h, k) tangent to H, i.e., h ~ 9~(H) and k ~ ~(H) .  Let c be the cycle 
from Lemma ~.1. [] 

CO~OLL~ ~.3. Let D = (@, J~) be s tm~.  I f  the cycle b ~ ~ h  that 
g~( b ) is a ~ m b ~  o f  g~, then there ~ a c~cle c ~ g e n t  ~ Mjo~e~t 
to b u ~ h  ~ (  c ) - ~ (  b ) , O . 

Proof. Let H ffi b in C o r o ~  2.2. [] 

We win now impose the GM-conditio n on the strong, signe~ digraph S. 
We can such graphs GM.~zphs for short. 

T ~ o ~  2.4. ~ e  $ ffi (g~, ~f, a) ~s a GM-oaoh. Then, ~f ~ co~- 
~ a p o ~ w  c~cl~, ~ ~o~U ~ g~ belongs to a p o ~ v e  c~de o f  S. 

Pwof. Let @o be the subset of l~in~ of $ b e | o n ~ g  to lz~sitive cycles. 
By h y I ~ ~ i s  ~o ~ O. H ~o is a pro~,  subset of ~ ,  ~ e ~  exists an arc 
(h, k) E d w ~  h ~ ~o and k ~ ~o. Thus (h, k) is tangent to some positive 
cycle c, whew, h ~ @(c). Applying L e ~  2°1~ we find a cycle b containing 
(h, k). Since ~ ( b ) n  ~ (c )  ~ o  and ~ ( c ) ~  ~(b) ,  the GM-con~on ~n01ies 
that b must be a positive cycle. But then ~ ( b ) c  ~o and so k ~ ~o, a 

_ 

The ~e~ 1emma points out the special si~a~on occur~g when a 
negative cyc~ and a ~ t i v e  cycle share an arc. It will be convement to 
~eno~c by ~'_ ($) the ~ t  of negative cy~le~ and by ~f÷ ($) the set of posi~ve 



and b ,~a~ a common arc ( L k ), &en an.,=,, path p(~. --, k ), o t ~  than ~ aw 
( L k)  i t s d f  , must contain a point f i rm the set .~( b( k ~ i )) - 1. i, k }. Thus b 
is the unique c~cl~ of S co~nc~i~ with t ~  ttath b( k ~ ~.). 

Proof. Suppose 9~(p) n { 9~(b(i ~ k)) - { i, k } ) = ~ .  Then we can de- 
fine the cycle c = p(i ~ k)b(k --, i). Clearly c ~ b, since p(i ~ k) ~ b(i ~ k). 
Moreover, @(p)  - @(b) ~ ~, so @(c) ¢ @(b). Hence c is a positive cycle 
by the GM-condition. Also by the GM-condition, @ ( a ) c  9~(b), so 9~(p)~ 
9~(a) - { i0 k } and we can defme another cycle d = p(i --. k )a(k  ~ i). Again 
~ ( d )  ¢ H(b) ,  so d is a positive cycle. Calculating the sign of the product 
of the ~ ~f c ~ d  d and of v and b, we see that 0 < sgac.sgnd = 
sgn ~t(i --, k )  sgn b(k --, i )  sga p( i  -~ k) sgn a (k  ---, i), so sgn c sgn d = 
sgr~b(k -., i ) s g n a ( k  ~ i). Now 0 > s g n a . s g n d  = sgnb(k ~ i ) s g n a ( k  ~ i), 
c ~ b, since p( i  --, k), since a and b have the common arc (i, k). Therefore 
we have both sgn c sgn d = - sgn a sgn b and sgn c sgn d = sgn c sgn b, a con- 
tradiction. Hence p must intersect the path b(k ~ i) as required. [] 

In a GM-graph S, is it possible that @(c):3 9~(b) where c ~ ~f_(S) and 
b E ~f+ (S)? Clearly if the negative cycle spans S, the answer is yes. The next 
theorem shows that the e o n v e ~  ~ holds. 

T~mOnF.~a 2.6. Let S be a GM-g~aph and a ~ if_ (S). The foUm~ng are 
equivalent: 

(~) @(a ) ~ @(b) for some b ~ if+ (S) (so actua//y @( a ) = ~ (b ) ) ;  
(ii) ~ ( a )  = ~;  
(ui) ~ ( a )  ~ ~(b')  for a~ b' ~ ~+(S). 

Proof. Clearly it su~ce~ to show that (i) implies (fi). Let b ~ ~'+(S) with 
~(b) c ~(a)o If  ~ ( a )  ~ ~ ,  let c be the cycle of Coro _ ~ -  2.3. Since c 
intersects a and @(c) ¢ @(a), the GM-condition L~np~es c ~ ~'+ (S), hence 
9~(c) D 9~(a). Thus c is adjacent to a. Let a(k ~ i )  = c(k ~ i) be the ~ 
of adjacency of a and c. Since 9~(c(i ~ k)) n 9~(a) = { i, k ) and ~ (a )  c 
~(c), we must have ~ ( a ( k  -*  i)) = ~ ( a )  n ~ (c (k  -*  i)). T ~  a = 

By the GM-condi~on ~ (a )  = @(b). Consequently ~.(c(i -~ k)) N 
H ( b ) =  { i ,k} ,  and we can de~ine the cycle d - - - c ( i - - , k ) b ( k ~ i ) .  Again 

and ~ ( a )  c ~ (d ) .  It fol~ow~ that ~ (b )  ~ ~ (d) ,  so ~ (b )  = ~(b(~c - *  ~)) and 



d ~  ~ ~ a ) f f i  ~ .  

~(o) = @. A nondcgcmm~ G M - g r ~  c o a ~ i ~  at ~ oem ~,sFmnlng 
~o~tive cycle. A G M ~  A ~ be. ¢ ~  ~ or n o n d ~  

~ ~ . ~ )  is or ~ not degene~t.. Theon~  ~.~ ~ve  ~ ~ t  
~ t i o a s  for d ~ ~ .  We dose ' , ~  ~ ~ ~ ~ 
~ ~ .  

CoP.o~a~_=-¢_ .~7. Let S be a GM~gm~h u~h [ ~  n, and ~ a ~ _(Sj. 

~( , , )  c ~,=-, 

I~l = n. Thus ~ ( a )  is a ~ r o ~  subset of ~(b), so I,q~b)! = n. 

The matrix a s a n g  

s s n A  ffi 

- - 0 0 + + ]  

0 - - 0 0 - | 
0 + - - 0 0 
0 0 + - - 0 
- 0 0 + - + | 

L -  + 0 0 0 - j  

is a &generate G M ~  The digraph S(A) has two s p ~ - ~ g  posiUve 
cycles, m ~ e ~  (154326) and (162345), and the ~ n i n g  negative eyrie 
(! 2 3 4 8 6). ~n ,ohm. ~..^~ ~ .~ n_~_'ve. 

3. MAXIMAL POD~IT SETS ANTj CANONICAL FORM 
O F  G M - G B A P I - I S  

The ~ ~  ideas ~ this ~ o n  apply to an arbRr '~  ~ign~ ~ p h  $. we 
s h ~  d ~ e  an ~ v ~ e n ~  reL~on ~n the Wales o~ $. 



~ t ~ t y  ~ ~ ~ ~ e ~ ~  ~ are the same under 
e ~  ~ .  

T ~ ~  3..3. For ~ ~ ~  digraph S, the ~ ~ a d  point ~ form a 

u , ~  agd, 1~ is a m a ~ , ~  ~ set, and K ~ the set of  all r o ~  of  S not 

~, ~ ~ I, ~ e ~ _  a ~ p( ~-~ k ), all of  whose arcs b c k ~  to n e g ~  
~ j ~ ,  ~ s. 

~ o f .  Sinc~ I o ~ g o n d s  to an ~ v ~ n e e  class, them exist a, b ~ (g_ 

ey,~m s ~ . ~ g  ~ ~ , , ~  of --. ~ m is ~ and ~ indue- 
tio~ 

For m = 1, we have a = b, and a(i ~ ~) is the required path. 

m 

. , . . , .  j ) ) n  U { i }  
l - g  

By h i - - o n ,  there i: a p ~  p~(j --~ k), all of whose ar~ belong to negative 

p~. ffi a(i ~ j)p~(j --* ~) is a path having the ~ property. U 

We sha~ r~er to g as a ~ ~ p h  o~ S wi& p ~  { p: p ~ l } 

a n d ~  ((io j): (i. j) ~ ~¢~(S)}. 
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FIo. I. 

L~t (~) indicate the mbdigraph of S generated in the usual way by the 
point set I and aii arcs of S joining these points. Thus ~ ( I )  = .~((i))  N 
,~(cE_(S)). Lemnm 3.4 implies that I is a strong subdigraph (and so is ( I )  
for that matter). The following example should clarify the dis~ction we wa.~t 
to make. 

i 

~Ex~v=PL~ 3.5. in the GM-graph shown in Figure 1, I ffi {2,3,4} is a 
maximal point set. The solid :lines ~ the ~gure stand for positive ar~, 
whereas broken lines stcnd for negative arm. The mbdigraph I has an arc set 
{(23), (32), (34),(43)} be~, ~Jse arc (42) does not belong to any negative cycle. 
Of course, the ~ p h  (~ ~ wouid include the ~ (42). 

We now revoke the GM-condition for the further study of maximal . w i l t  
sets. Th~ will lead m to a canonical form for Giant-graphs. An example 
(Example 3.10) igmtm!~ng all of the i ~  appea~s late~, in Figure 4. The 
wader is invited to refer to it beforehand in order to see the ideas more 
concrete|y. 

L E ~  3.6. Let I be a nu~mal point set of  a GM-graph $, a n d  c a 

cycle, of S. I f  l N ~ ( c )  @ f) , then: 

(i) 
(ii) c I 

P,~of. (i): Since the eq~valence classes form a .pa.,~tion of ~'_(S), 
c L 

(fi): Let I be the ¢qmvalenc¢ class m ~ p n d ~ n g  to L Since ~ ~, ~ ' -  ~ -~ 
O o there i~ ~ nega~v¢ cycle a ~ f such that ~ (a )  ¢ I and ~t=~jn ~ ~ ~ (a )  ~ ~.  
By the GM-condition, ~ a )  c ~(c).  Now choose any b ~ L B ~ e  a ~ b, 
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there exists ('ne~tive) cycles c~,..., Cm saUsfying the intersection properties 
~ ' - "  " ! " -  ~ ( c , + ~ )  c ~ Definition 3.1. By the GM-oondition, if .~(c~)c ~-t,~y~ ~ -  

~(c) ,  i ~< i g m .  Thus ~(c t )  = @(a) c:: ~ (c )  implies ~ (b)  - ~t," ~- : ~(c),  
and I c ~ ( c ) .  [] 

We come now to a result of ftmdamen~ i_mportance. 

T r m o ~  3.7. I f  the GM-graph S ~ ~ t  a ..ma~.'m_-~! n ~  o~_~, the_ 
each maxi_ "mai point set I o f  S, &ere exist i, j ~ I such &at: 

(D there is a u.n~.q~ path p ( j  - ,  i) in S from j to i; 
(2) for a//b ~ 9f+ (S) which cover I, @(b( j  ~ i)) --- I. 

Proof. (1): We first cemtmet a cycle b ~ ~+ (S) and find points i, j ~ 1 
for which @(b(j  ~ i ) ) =  I. Then we .~.'.il show that b(j  ~ i) is the ur~e,e 
path in (1), from which (2) reedily follows. 

Since I, by the remark above, is a strong, proper sub~gtrtph of S, we can 
use Coro!hry 2.2 to find a cycle b which is adjacent to I ~md not covered by 
I. Thus L e m t a  3.6 implies that b ~= ff. (S) and b covers L Let b( i --, i) be 
the path of adjacency, wlfi.h obviously gives ~(b(]---, i ) )~ i. ~y definition 
of adjacency, @(b(i .-* j ))N I - { i, j }, so I c @(b) forces I c @(b(j ~ i)). 
Therefore, ~ ( b ( j  --- O)ffi  L Note also that ~ (b ( i  ~ j ) ) -  I ~ 0 .  

C L ~ .  ~(] ~ i )  is a path in the su~igraph !, i.e., each arc of 
b( j ~ i) bdone, s io s~me ~ ' - ~ e  cvde a, uAich ~ a r i l V  has its point set 
in I ~ the GM~-condi,a~'n. 

Let u( j  ~ i) be a path of the type specified in Lemma 3.4. If b(j  --* i) 
u(j  --* i), then let k ~ i be the first point in b(j  - ,  i) for which b(] --, k) ffi 
u ( j ~ k ) ~  but (k, kl) c b  and (k, k2) c u  wi~ k l ~ k , .  Thus o f  
u(j - ,  k2 )b (k , - ,  i) is a path from j to i (Figure 9,). 

b 

Fxc. 2. 
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" - ' "  i)  i~ a Moreover, c = o ~ 8 ~  j ) v ( j ~  _ cycle not covered by I, since 
@(b(i -~ j))  - I ~ Z.  Again, by Lemma 3.6, I c 9~(c) aad thus I c 
@(~(j --> ~)). But k~ ~ @(~(~ ~ ~D. However, k ~ ~ and (k, k~) c b imply 
k~ ~ L T ~  ~-n~_ic~on  proves t_he clai~o 

T~o c l a ~  h ~  e s t a b ~ e ~  only that b ( j - .  ~) is the -.,~,,,,~.._.,~v r~_th ~, ..... ~ 

mb~graph I from j to ~, but not yet in S. The existence of other paths L,~ S 
f ~  j t6 ~ must next be elinfinated. 

Let ~(] ~ ~) ~ a path in S. If b ( j -~  i ) ~  u( j - - ,  i), then as was doae 
above, we define the points k, k t, and k~. Again k z ~ I, since k ~ ,:. We 
consider several cases. 

Cose 1: 

Case ~: 

k 2 ~ L As in ~ e  proof of the claim, we derive a contr~.~ction 
from the cycle c = u(j  ~ kg.)b(k~ ~ j). 

k2 ~ i. Dei~ine i ~ i by ~(u(k ~ I))n I = {k, I}. Let 
T :  ,~(b( i  ~ j ) ) n , ~ ( u ( k  --, 1)). There are two possibiliUes: 

(i) T - { k , l } = O .  In this situation, c f f i u ( k ~ l ) b ( l . ~ k )  is a 
cyc!~ not covered by I, ~ i ¢ ~(c ) ,  whence kl ~ ~ (c ) .  The 
def~it~on of I fo.-ces k~ to be a point in the path b(l ~ k). 
Since (k, '° " 1) is an ~ of b, it Mlows that k~ ffi l, i.e., (k, l)  is 
an arc of b. By the claim, (k, l) is thin an arc of a negative 
cycle. Since it is also an arc of the positive eyrie c, we can 
apply Lemma 2.5, which leads to the contraAia~ction that T -  

. e .  
r - -  , ] ~- Define /c a as the ~-st~, point along b(i ~ j )  
such that_ ~ (b ( i  ~ ka))N £P(u(k ~ / ))= {ka}. (See Figure 3.) 
T-hen o = b(i ~ k3)u(k ~ --, l) is a path such that gP(v)N ! ffi 
{ i , l }  and g#(t~)- I ~fJ.  T h ~  the cycle c =  v(i--, l ) b ( l -~ i )  
is not covered by L As before, I c @(c), but since k ~ ~(c ) ,  
we have a contrad/ction. 

In conclusion, u( j  ~ i) ffi b(j  ~ i), and b(j  ~ i) is the unique path in S 
~om j to i. 

b ---- 'U 

® P- 

FxC. ,3. 
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(2): Let c ~ ~f+ {S) cover L Then ~, .f ¢ 90~ c), and c(j  ~ i) is a path in S 
from ] to i. By (1), c(] ~ ~ ) -  b(] - ,  i), whelefore ~ (c ( ]  ~ ~))= 
.~(b(~. ---> ~)). _ = ~. _-- 

We point out here the relator.drip between the c ~  of n_ondegenerate 
, - - , - - ~ v ~  and the restxicted c]~..~ of the last r ed ,  to 

C o n o ~ ~  3.8. Let S be a GM-gmph, and s~q~pose i~+(S)i > 1. Then S 
degenera~ (every ~ U t ~  c~cb c ~m ~ ( c )  - ~ )  ~f and onI~ i f  ~(S)  is a 

ma~nud po/n~ set. 

Fmof. if S is i t~ J  a m ~ a l  point set, d~en S is eieady a degenerate 
CM ~-~aDh__ _ ~_~. . So let _I be a maxiraal point set of_ S, and mppo~ that 9~(S)-  
14: ~ .  Let b, c e ~'+ (S) with b ~ c, and assume beth b and v span S. 

By Theorem 3.7, b(]  --" i) ffi v(] --* i) for some i, ] E I such that 
• ~ ( b ( / - - , 0 ) = L  So if b~c, ,  there eJ~ts k a ~ ( b ( i - - , D ) -  {1)  such that 
b( i ~ k ) ffi c( i ~ k)  with (k, kl) an arc of b, (k,/¢9) an arcof c, and 1¢ I ~ k ~. 

D e ~ e  the cycle d ffi c(t ~ k~.)b(k 2 -~  ~). Then k~ ~ ~ (d ) ,  so d does not 
span $. ~ k 2 ~ I, so I :b @(d). Thus sign d = + and S is not degenerate. [] 

We note that by removing arc (4,2) ~t~om the ~gra@h m Figure 1 we 
obtain a degenerate G M - ~ p h  .with maximal point set {2, 3, 4 } ~ffi 9~(S). 

With reference to the decomp~tiou ~f 9~(S) in tern~¢ of i~ ~ ' ~ ~  
point ~ ts  as given by Theorem 3.3, we see t.hat m ~ nondegenerate 
GM-graph, either (a) ~ > 1 o~ ~o) ~ - 1 vo.'th K ~ ~ (and at least two positive 
cycles). The remaining results will then be phra.q~ in terms of nondegener- 
acy of S, and any p~vious remit requiring, equivalently, that S not be a 
w ~  point set will be invoked withceat ~a . ,~r  mention of C o r o ~  3.8. 

Let ! ~ a maximal point set of a nondegenerate GM-graph S. W~ denote 
by ~ , "  " ,,, ~" ~ ~ e  unique path of S from ~ to i, where i, ] are as in Theorem 3.7. 
Thb path makes I a linearly ordered set w i~  ~--3nimum element ~ aad 
maximum e|ement i. It foB~ws that for k, k' e I wRh k < ~' (in t ~  ~rder~ng 
of I) ,  there e ~  a ~ ~ e  path from ~ to k' in $, ~.~eiy ~ e  s e b ~ .  
l(k, k9 ~ the path ""  ~i,~)" 

Every pasitive cycle propody covering I must leav~ I at .~ and enter I at 
J. Thin ~ ~ the umqee e~t  w ~  n~ ~, ~n~ 
o | L  

~ - - ~  c~ a negative c?~le of $ relative to 
maxima] point set to w]fic~ it be|ong~. 
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Proof. By Theorem 3.7, I is line~rly ordered. Let k be the maximum 
po,_'~& of ~ ( a )  in the/-ordering. Then 1 < k, and a ffi(k, l)I(l, k). [] 

We can now describe tim ~nonical form for a nondegenerate GM- 
graph S. 

Denote the m ~ a l  point sets of S by Xp, 1 ~< p ~< t, and label ~ei r  
entrance and exit points, respectively, as jp, ip. All arcs emanating from 
k ~ i p -  { ip } must belong to a negative cycle of Ip. For arcs of the form 
(,~p, E) there ~ ~ver~X po~bili~es: 

(a) k ~. Iv. _'~en either k ~ K or k = jq for mine q ~ p. 

(b) k E Ip. If k ~ jp, then (ip, k) belongs to a negative cycie of Ip. If 
k ffi jp, then there are two subeases: 

(1) (i~., ]p) is an am of  the digraph I ,  only. Then (ip, j,)Ip(jp, i p )  is a 

negative cycle covering Ip. 
(2) (ip, Sp) is not an arc of  lp only. ~.~e~ (~p, j~,)Z~,(j~,,ip) is a positive 

cyd~ co'¢er~ by !~. A ~aniiar an~ysis can be made for ares of the 
form (k, 

/ 

,g 
/ 

/ 
/ ,g t 

$ 

I ! 
8 i 
| I I 

I I | 
I /  
i ;  

| 
I i  

Fxo. 4. A G M - ~  ~ e~o~cal ~orm, 



GM-MATRICES AND TREIP. LNVERSES 231 

From the above, we see that the maximal point ~ts of a nondegenerate 
GM-graph S [ ~  into two ~tegofies, depending upon whether or not they 
contain a cycle b ~ ~', (S). 

The following example illustrates all of the res~ts wv have obtained. 

~ u ~  3.10. Observe that, in the diagraph shown in Figure 4 we have 
max/real point sets I , =  (L2,3,4) ,  I~= {5,6,7,8}, 13= {9,I0,11,Io.,13}, 
and we have K = {14,i5,i6). The entrance points are 1,5,9, and the exit 
points 4,8,13. I~ and Ig do not cover a positive cycle, bu t / 3  does. 

4. CANONICAL FORM FOR A GM-MAT'nIX 

We can now summar~  all of our results and classify GM-ma~ces. Let A 
be an irreducible GM-n~W~. We identify four subclasses. Note that in this 
section we make use of the hypothesis a ,  < 0 ior ~ e  first ~ e .  

I. ? n  cycles ~f S(A) are negative. Then A ~ ~ irred,aC.~l.,.e L m a ~ .  
This is a widely studied class, and we shall not discuss it h n ~ e r  here. 

If. All cycles of S(A) are positive. In this case we can ~ d  a signature 
m ~  D, i.e., D-diag[dt,...,d,] with each d~---~1. ~w~ that D-'AD 
has nonnegative off-diagonal elements. Therefore, - D - l A D  is a Z-matrix 
and h~s consistently signed principal minors if and only if it is an M-matrix. 
Sinco these matn2~ have also been "~dely studied, we shall also not discuss 
them hn~er  here (see [1] and [8]). 

HI. S(A) is a degenerate GM-graph with [~f+(S)[ >f 1 and [~f_($)[ >i L 
IV. S(A) is a nondegenerate GM-graph with 1 and 

1. 

The ~ m ~ d e r  of ~xr wo~ win _he concerned_ with ma~ees in ~l~_asses III 
and IV. In particular, we now can write a canonical fo..,~., for nona:~genvmte 
GM-matfiees having both positive and negative cycles. 

Let Ip I2,...,I , be maxin~ point sets of S(A) not containing any 
posit_re cycles, and |et .L~ .. I.+~ . . . . .  I.+: be m~Au~.~ poiut ~ts  of S(A) 
each containing a unique l~,-~Ative cycle c~, k - I , . . . ,  ~, with the length of c~ 

~o IJr~+k[. Finally let g = {1,~,. n } _ n  ,,+~ Now suppose ~ ~ 
permutation matrix pe~ut~_ag the se~ ~ into {1,~,...,1I~i}, ~ into {1~[+ 
L . , . ,  II l+ ii=!}, etc. Without loss of generality we may s'uppo~ j~ = 1, 
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I g p, q g r + s + 1, where the ioHox, ang con~bons hold on the blocks: 

(1) Each block Ap,, p ffi 1,2,...,  r, is a square irreducible, lower 
Hessenberg L-matr~. 

(2) Each block App, p -'- t" + 1 , . . . ,  ~" + 8~ ~ a s ~ ~  lower H e ~ ? ~ : ~ g  
matrix with negative elements on the princips] diagonal. If we wr~te t~m 

k k block in the form A ~  ffi [a~j], I ~< i, j < II~l ( ffi II ,+~,  we have c~ = a ~ a ~  
• -. ~'~ -'~ and all Other cycles ate ~m~,---~. Moreover, the block ~11~1-1,11~1~11.1,1 , 
obtains] fr6m App by setting ap,,I,~: 0 is in'educible. 

(3) Each block: A pq with p ~ q and 1 ~ p, q <~ r + s is a ~ r o  block 
except possibly for a nonzero entry in the first column and_ ~ row. 

(4) Each block A~.,+,+~ is a ~ block except possibly for nonzero 
entries in the last row. 

(5) Each block A,+:+!.q is a zero block except po~zsibly for nonzero 
entries in the first column. 

(6) The block A,+,+~.,+,+ t is ~Ja.,e with negative principal diagona] 
and all positive cycles. As not:~l above, we may mppese it has nonnegative 
elem~.nts a,'.~ *+ ~ for i ~ j. Thus we may mppese this block is a Minkowski 
ram. ix  p] or 

Now .A itself must be irreducible. Let D(.A) be the digraph with point set 
V -- { 1, 2 , . . . ,  r + s + 1 } and an arc (p,  q) if A~q # 0, ~ # q. Then, under the 
hypothesis that Aa,+~+I.,+,+I is ,~-.~u L.,-red~_,,c~le, . . . . .  A is L_rred_ucible if and 
only if D(.A) is strongly connected. Observe also that the set K may be 
empty, in which ,case r + s >I 2. On the other hand, in ~ IV we m ~ t  
always have ~ + s >i I. 

5. DEGENERATE GM-MATBICES 

For the degenerate GMoms~ices we consider conditions under which 
they ~ be consbten~ly ~gned. 

If I is a proper subset of {1,2,..., n }, then the principal submatrix A[I]  
hm the p~per ty  ~ t  S(A[I]) has only nega_~ve cycles, i.e,, A[I]  is an 
L-ma~ix. ]t f0]]ows that every principal minor or order less than n of a 

consider det A itself. 
Since a tt < 0 for i---1,2,..., n, we may conveniently think of $(A) as 

being enha~c~c] by a loop at each point. Thus any |aetor f of $(A) will, in 
genera, e o n ~  of a spanning set of disjoint cycles inc|uding ]cops. Every 
~actor of S(A) co~e~--pon~ to a term in the e ~ ~ o n  cf det A having sign 
( ~  1) n e x i t  for Lhose factors co~L~L~-~g of • b'm~c ~ i ~ v e  cycle (of 
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length n)  of S(A). They e ~ h  contribute a term to the e ~ ~ o n  of det A 
having o-ee- ( ~ " "  - !) ~+~. Now, in gen_erai, if ~-~A) __has the 1-factors f~ = 
{ c~, c~9,..., ca=t }, k = 1,2,..., q, then we have 

q 

d e t A = ( -  I)" E ( -  I)'"Atc~]A[c~] *-A[c~.,] 

see #at ~ ~ | e  f211 ~ A r- i ;.~'~--~--~" t i 
sponding to the cycle c~ in D(A) [:,r in S(A)]. Observe that when m~ > i, 
each of the factors A[ctj ] -- - IA[c~] l  and the sign of the term is t - I)" as 
cited above. But when m ~ -  1 and-A[c~] > 0 we have sign ( -  1) "+t as 
asserted. 

Let us write (1) in the form 

det A--- ( - I)"+'A + + ( -  I ) " E (  - 1)'n*A[c~,]A[c~] ...A[c~,.,], 
k 

where the ~-~o~nd term ranges over all k such that m k > i. [Note that such 
terms exist by virt~te d the ~ m~"~-" ~ :  < 0, i = i ,2 , . . . ,  n, and [~' _~IS~',, ~ _1 
by hypothesis.] Thus we have 

det A -- ( - I)" ;tA + + ( - 1)" E [A[ck,]... [ctm,] [. 
mt;~ 2 

It follows that signdet A ffi s ign( -  1) n if and only if 

)-: jA[ctl]A[ckg] ""A[ck.~] [>  A.  +, 
k 

mk~9- 

where A + is the sum of the values of the positive cycles (all of length n) of 
A. Thus the- degenerate G M - m a ~  has comistently signed principa] minors if 
and o~y  if the above inequa]i~ holds. 

6. CONSIS_TEI~Y SIGNED NONDEGENERATE GM-MATRICES 

For GM-mattices in the ~wm r~ we ~nan me the concepts introduced in 
[6]. T ~  involves ~.v c~if icat ion of the elements of the m a ~  A into 
friendly, m ~ e n & y ,  and neu~d elemen~ ~ d  the in.~,,~uction of the matrix 
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In ~aeh of the first r dJ~gon~ blocks d A the nn]y elements belonging to 
positive cycles are those above the pxhieipal diagonal. But all d t h e ~  
elements aJso beiong to "-~" ~--~" . . . . . . . .  ' t~, , ~ ,  one) .._~-~-~,,*- ~ cvcles:. . hence they are neuw-~ 
elements. S ~ l y  the elements above the princi~.r~ diagonal in the block 
App for p ffi t + k ,  k ffi 1,. . . ,  s, a~ ~. all neutral. For p ffi i , . . . ,  r, all nonzero 
elements below the ..... " ' ~" p r ~ ¢ ~  ~ g o ~  d Am, o_,'e ~ n d l y ,  ~ we can take 
A~ .m~  for p ffi 1 ,2 , . . . , r ,  to be the matrix with first s'aperd~agonal and 
principal diagonal elements the same as those of A and all other elements 
equal to zero. For p ffi r + I , . . . ,  r + s we can define Ap~,m ~ in exactly the 
same way except for the element in the last row and column, which is also 
~ c  as the conesponding - ' -  ^"* Thus we may take Amin as ....*~'nc e i e m ~ ,  of  App. 
h a ~ n g  the form 

Amin-'-[Apq, min], 

where 

(a )  App.m ~ has been defined above for I ~ p ~ r + s, and 
(i~) A p ¢ . ~  ~- Apq for all other values d p, q, 

since all of these bl~.~ks contain only unfriendly elements. 
in  summary, then, all d the elements on the lu~L'~--~ supe~,Aagonal ~ of . ~ ,  

within the b ! o ~  A~_ ~ . . ~ ,  p ffi 1,2, . . . ,  r + s, are neutral elements. The 
r e m ~ g  nonzero elements d -Am'" not on the^pfinAcipa! ,i~ .~gonal  are all 
unfriendly elements. Of course, all elements d A -  A~_.~ are friendly eie- 
~',-~......,~ of .~.. ~hus_ -_. we have completely class~ed the dements  oi . 

Now by Theorem 3 d [6], A is consistently signed ff A,i~ is consistently 
signed. Also, by Theorem 4 d [6], ff Am~, is diagonally dominant, it is 
consistently signed. Thus we have simple conditions for A to be consistently 
signed. 

To investigate the matter more closely, let us denote the e a t  points of the 
diagonal ~]ocks by il, ig , . . . , i~+ s, respectively. Let K = { n - i ¢ + s ,  
i ,+, + I , . . . ,  n }, a~¢l consider ",he s~t Yo -- { i~,i~,..., ~,+~ + I, i,+~ + 2 , . . . ,  n }. 
It  sa~fies 

l < i l < i ~ < . . -  < i , + ~ < i , + , + l < - - -  < n .  

Now for j ~ I o the d~" gonal d o ~ ~  condi~on is 

- a j j  > l a i , ! ÷ , i o  



GM-MATPJCES AND TBEIB INVEBSES 235 

On the other hand, for j ¢ I o the condition takes the form 

- a ~  > E [asst. 

Here ilj; >~ 2 and ~y ~h: ( j ' '  J~"'"' j '+' '  i,÷, + 1,..., n ), where jp is the 
entrance point of diagonal block for p = 1,2,..., r + s. (Note that 
j l  ffi I a~d 

j , < h < ' . .  < i , + ,< j ,÷ ,+~ .  < - . - < n . )  

Now it ~is clear that, if the set I is disjoint from Io, then the principal 
minor det A[I ] is qualitatively consistently signed. But we can say more. If 

(i) I n I ,+ ,+  l ~ O ,  
(fi) I does not contain lq for q ffi r + I , . . . ,  r + s, and 
(iii) I contaim at most one of the sets lq for q = 1 , . . . ,  r, 

then det ,~ [I] is also qualitatively consistently signed. 
Finally, the following interesting feet is worth noting. For the diagonal 

submatrices --~n,,mm,A ~. - r  + !, . . . ,  r + s, we have that det App.m ~ ~11 be 
consistently signed if and only if the product of the absolute values of the 
diagonal elements is larger than the value of the (unique) positive cycle in 
App.m ~. In general, this condition may differ from the diagonal dominance 
condition applied to this submatrix. 

7. II~'EBSES 

"@'e ~ suppose now that the GM-nmtrix in class IV has comistently 
signed principal minors. The paper [6] contains a theorem about the inverse 
of ~,:,ch a ]-aahix in general. From that result we obta~ the following 
information about inverses of G M-matriees of class IV. 

If we partition A- t  m the ~__,~.e u,~,, no A :~o~IC ~cn" 

(i) Each ~ g o n a l  b|ock Ap"p t, p ffi 1,..., r + s, has all elements on and 
above the principal diagonal nonzero and with qv~tatively detc~fined signs; 
all elements on the first subdiagonal have indeterminate sims; and all other 
e|emen~ a~j below the princil~ diagonal have ~ t a t i v e | y  de tem~ed  signs 
ff and only ff i and j do not both be|ong to the same negative cycle of I~. 

(fi) The nolo,zero elements of A~-~, :.~÷,÷ l arc an nega~vc. 
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(iii) H symme~caay p]aced ~|ements in any diagonal block of A - l  are 
both sign determined, they will- l.,,_.~v~ . . . .  the same sign, and if the Mock A p, 
~a t~es  the condition ~ a t  a~. 4:0 fnr all i > ], then A ~ has an e~ements j . . . .  p - -  

below the pdndpal  diagonal With undeterminate signs. 
(iv) F~ch of ~ e  blocks A~q~ fer ~ ~ q, 1 ~ p , q  ~ r + ,~, is a quasi- 

Mofishima matrix in normal form [3] and with all elements different from 
z e r o .  

(v) The elements in -x A,+,+ l,q vary in sign only with q, and those of 
- 1  A p, r+8+ l vary only with p, and at] elements in each block are nonze~ and 

have the same sign. 
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