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ABSTRACT

The class of GM-matrices is defined by requiriug wai » pusitive cycle contain any
negative cycle it intersects. Using the cycie struciure, a canonical form is developed
for irrcducible GM-matrices. Relationships between the signs of the pnnapal inors
and the cycle are derived. In special cases, results are obtained cn the signs of
elements of the inverse of 2 GM-matrix.

1. INTRODUCTION

In [7] James Quirk introduced & Jlass of mairives he called generalized
Metzlerian matrices (or GM-matrices for short). He conjectured that the
CM-matrices are the lasgest class of qualitatively defined matrices having the
property that the hynothesis of Hicksian stability for the matrix implies that it
is stable. We remind the resder that the n X % matrix A =([a,;] is Hicksian
stable if every principal minor of order » has the siga { — 1)¥ ior O<p<gn.

More recently, in [6] Maybee and Wiener introduced the concept of a
matrix having consistently signed principal minors (see Definition 1.2 below).
It turns ou’ *hat 2 GM-matrix has consistently signed principal minors i and
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only if it is Hicksian stable. Quirk did not address the problem of determining
conditions under which a GM-matrix would be Hicksian stable. He used
Hicksian stability as an additional hypothesis. Alsc he failed to prove his
conjecture.

We think that it is of some interest to derive sufficient conditions for a
GM-matrix to be Hicksian stable (have consistently signed principal sub-
matrices). The methods derived in [6] permit us to do this with the help of an
interesting canonical form theorem derived below which shows that very
detailed structural results are obtainable for a class of qualitatively defined
wiatrices. We also show how the results of [6] combined with those of [3] can
be used to obtain some results about the signs of the elements of A~1, It is
our hope that the results we have obtained will provide the additional tools
needed to prove or disprove Quirk’s conjecture, at least under the sufficient
conditions of Sections 5 and 6.

Following Quirk, we consider n X n matrices A =[a,;]. In the usual way,
we associate with A the signed digraph S(A) =(2, &, ¢) defined as follows.
The point set & of S(A) consists of n points labeled 1,2,..., n. The arc set
& of S(A) contains the arc (i, §) if and only if a;; # 0 for i # j. For the arc
(i, j) we have o(i,j)=+ ¥ a,,>0 and a{i, j)= — if a;;<0. Thus
o: & — {+, — }. If o C &, then sign o, is the product of the signs of the
arcs in &, (if 4, =0, sign o, = +). Here &, could be the arc set of a path
or cycle of S(A) so that sign 2/, would then be understood as the sign of the
corresponding path or cycle. (For our work paths and cycles will always be
simple.) It will be convenient to denote by D(A) the underlying digraph of
S(A), ie., D(A)=(2, ).

When &/, C o, we shall denote by P(,) the set of points of S(A)
belonging to the arcs of .o,

We can now define the class of GM-matrices.

DeriniTion 1.1. The real n X n matrix A is a GM-matrix if a, <0,
i=12,...,n, and whenever ¢, is a negative cycle of S(A) and ¢, is a
positive cycle of S(A), then either #(c,)N P(c,) =2 or P(c,) C P(c,).

Observe that the second condition of this definition is purely graph
theoretic. We shall show that we can establish a canonical form for all
matzices satisfying this condition alone. Indeed, this is the main result of the
first portion of our work. Both the result and the methods used in its
derivation are new and different from anything in [7].

 Next let Ic?. We use the notation A[I] to demote the principal
submatrix of A in the rows and columns I, and A(J) to denote the principal
submatrix of A in the rows and column complementary to I.
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DeFintTion 1.2. Suppose A is a real n X n matrix with a,,<0, i=
1,2,...,n. We say that A has consistently signed principal minors if for each
I ¢ @ the principal minor det A[I] satisfies

sgndet A[I]=(-1)", - (1)

where p = |I|, the number of points in I (see [6] for a discussion).

Observe that this definition implies both that A~! exists and that
det A[I]+ O for all I (take det A[I] =1 if I =2). Moreover, by virtue of the
Jacobi identities between minors of a matrix and those of its inverse, each
principal minor of A~ satisfies

sgndet A(I) (-1)"°" _ v
sgn(detA)  (-1)" =(=1)%

sgndet A1[I] =

i.e., the condition (1) is also satisfied for A=Y

In the process of studying GM-matrices we shall relate this class to the
class of purely qualitative matrices, i.e., L-matrices (see [4] and [5]). For this
-purpose we shall define the n X n matrix A to be an L-matrix if a,; <0,
i=1,...,n, and S(A) has only negative cycles. Note that every L-matrix is a
GM-matrix.

2. SOME USEFUL PRELIMINARY RESULTS

It turns out that the GM-condition forces us to examine the way in which
various cycles intersect. Thus it will be convenient to have at hand a little
special terminology as well as some basic facts about cycles in strongly
connected digrephs.

First let H and K be subdigraphs of the digraph D = (£, &¢). We call H
and K disjoint (otherwise intersecting) if P(H)N P(K)=0. We call them,
respectively, tangent or adjacent if |P(H)N P(K)j=1or if HN K (graph
theoretic intersection) is a path in D. In the last situation, the path HNK
will be called the path of adjacency of H and K. Finally, K covers H means
P(H) c P(K).

Lenva 2.1.  Let H be a strong subdigraph of the strong digraph D. If
the arc (h, k) is tangent ¥ H, then there exists a cycle ¢, containing (h, k),
which is either tangent or adjacent to H.
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Proof. Suppose h € P(H). Since D is strong, (k, k) is an arc of some
cycle b. If b is tangent to H, then let ¢ = b. If b is not tangent to H, then
(h, k) is contained in a unigque subpzth py(h — h') of b where £(p;)N
P(H)= {h, h’}. [The argument is virtually identical if instead k € #{H).]
Since H is strong, there exists a path py(h'—h) in H. Thus Z@(p,)N
P(py) = { h, h’}, and we can define a cycle ¢ = py(h — h')py(h’' = h). [ ]

CoroLLARY 2.2. If the strong digraph D conigins o vroper strong
subdigraph H, then there exists a cycle ¢ tangent or adjacent to H with
P(c)—P(H)+2.

Proof. Since H is a proper subdigraph and D is strong, there exists an
arc (h, k) tangent to H, ie., h € $(H) and k & P(H). Let c be the cycle
from Lemma 2.1. [ ]

CoroLLARY 23. Let D=(2P, o) be strong. If the cycle b is such that
P(b) is a proper subset of P, then there exists a cycle ¢ tangent or adjacent
to b with P#(c)— P(b)+2.

Proof. Let H=b in Coroliary 2.2. ]

We will now impose the GM-condition on the strong, signed digraph S.
We call such graphs GM-graphs for short.

TaeoweMm 24. Suppose S=(P, «,0) is a GM-graph. Then, i S con-
tains a positive cycle, every point in P belongs to a positive cycle of S.

Proof. Let &P, be the subset of points of S belonging to positive cycles.
By hypothesis 2, #@. If &, is a proper subset of 2, there exists an arc
(h, k)€ o with h & P, and k & &,. Thus (h, k) is tangent to some positive
cycle ¢, where h € #(c). Applying Lemma 2.1, we find a cycle b containing
(h, k). Since #(b)N P(c) +2 and P(c) 2 P(b), the GM-condition implies
that b must be a positive cycle. But then #(b)C P, and so kE P, a
contradiction. Thus #= P, 2

The next lemma points out the special situation occurring when a
negative cycle and a positive cycle share an arc. It will be convenient to
denote by ¥_(S) the set of negative cycles and by %, (S) the set of positive
cycles of the GM-graph S.
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Lemma 2.5. Let S be a GM-graph with a € €_(S) ard be €. (S). If a
and b have a common arc (i, k), then any path p(i — k), other than the arc
(4, k) itself, must contain a point from the set P(b(k - 1)) — {i,k}. Thus b
is the unique cycle of S coinciding with the path b(k — ).

Proof. Suppose P(p)N{P(b(i > k)) — (i, k}} =@. Then we can de-
fine the cycle ¢ = p(i — k)b(k —» i). Clearly ¢ # b, since p(i - k) = b(i = k).
Moreover, Z(p)— #(b) + ¢, so P(c)Z P(b). Hence c is a positive cycle
by the GM~condition. Also by the GM-condition, P(a) C #(b), so F{p)n
P(a)= {i,k} and we can define another cycle d = p(i - k)a(k — i). Again
2(d) ¢ #(b), so d is a positive cycle. Calculating the sign of the product
of the arcs of ¢ and d and of ¢ and b, we see that § <sgnc-sgnd =
sgn (i — k) sgn b(k — i) sgn p(i = k)sgna(k = i), so sgncsgnd =
sgn bk - i)sgna(k = i). Now 0> sgna-sgnd = sgn b(k — i)sgna(k — i),
¢ # b, since p(i — k), since ¢ and b have the common arc (i, k). Therefore
we have both sgncsgnd = —sgnasgnb and sgncsgnd = sgncsgn b, a con-
tradiction. Hence p must intersect the path h(k — ) as required. 8

In a GM-graph §, is it possible that #(c) > #(b) where c € €_(S) and
b € €, (5)? Clearly if the negative cycle spans S, the answer is yes. The next
theorem shows that the converse also holds.

Tueorem 2.6.  Let S be a GM-graph and a € €_(8). The following are
equivalent:

i) P(a)> P(b) for some b € €,(S) (so actually P(a) = P(b));
(ii) #(a)=2;
(i) P(a)> P(b) for all b’ €€, (S).

Proof. Clearly it suffices to show that (i) implies (ii). Let b € €, (S) with
P(b)yc P(a). It P(a)+ P, let ¢ be the cycle of Corollary 2.3. Since ¢
intersects ¢ and P(c) ¢ P(a), the GM-condition implies ¢ € €, (S), hence
P(c) D P(a). Thus c is adjacent to a. Let a(k — i) =c(k — i) be the path
of adjacency of a and c. Since P(c(i —k))N P(a)= {i,k} and P(a)C
P(c), we must have P(a(k = i)) = Pla)N P(c(k = i)). Thus a=
(4, k)a(k = i).

By the GM-<ondition %(a)= P(b). Consequently P(c(i — k)N
F(b)= {i,k}, and we can define the cycle d =c(i = X)b(k — i). Again
P(d) & P(b), since P(c(i —> k)) contains points not in . Thus d € €, (S)
and P(a) C P(d). It follows that P(b) C $(d), so P(b) = P(b(k — i)) and

b= (i, k)}k — i).
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We thus have shown that @ and b have the are (§, Fk) in common. By
Lemma 2.5, b is then the unique cycle containing the path 5{k -» {). But, by
construction, d is another such cycle. This contradiction forces us to con-
clude that P{(a) = P ]

degenerate if every positive cycle ¢ satisfies

. A nondegenerate GM-gmpb contains at least one ncmnning
positive cycle. A GM«mtﬁx A will be called degene: ondegeners
according as &ajwmmmdemmihmanzG@vethmmt
conditions for degeneracy. We close with still another condition and an
examnple.

Corotrary 2.7.  Let S be @ GM-geaph with |P) = n, and let a € €_(5).
If |P(a)l=n—1, then S is degenerate.

Proof. Supcse b= ¥, (S). Then [P(D)]|> 2, so P(e)NF{b}+2 Thus
P{a) C F(5) by the GM-condition. By Theorem 2.8, $(a) = #(b) is impos-
szbﬁe,fcreﬂ.erwxse.?(a, P. contradicting the fact that [P{a)l=n —1 and
{#| = n. Thus F(a) is a proper subset of P(b), so |P(b)|= n. @

The matrix A satisfying

- 0 -
0

—

|
S

| &S

Sgn A=

leoeo |

| +o0o i +

+ o0+ |
oo+ |
e |

-+
- 0

is a degenerate GM-matvix. The digraph S(A) has two spanning positive
cycles, namely (154326) and (162345), and the spanning negative cycle
(123456). All other cycles are negative,

XIMAL POINT SETS AND CANONICAL FORM
OF GM-GRAPHS

The initial ideas in this section apply to an arbitrary signed digraph S. we
shall define an equivalence relation on the cycles of §.
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Derovmion 3.1, Let ¢,b€ (S, Then @ ~ b means there exists a
sequence of cycles ¢,€¥_(5), i€igm, such that e=¢,, b=¢,, and
Ple)NP e, )#D,1€i<m— 1L

It is clear that ~ gives an equivalence relation on ¥_(8). It makes no
difference whether the sequence of ¢,’s is one of distinct cveles or not;
transitivity follows easily and the equivalence classes are the same under
either definition.

Dermvimion 3.2, If 1 is an equivalence class of _(S) under ~, then we
call 1= P(I) a maximal point set of S.

TagoreMm 3.3, For any signed digraph 5, the maximal poin sels form a
pastition of P(€_(8)), and P(S) can be expressed as a disjoint union:

PS)=LU---ULUK=P(F_(S)juK

wheve each I, is a maximal point set, and K is the set of all points of S not
contained in any negative cycle.

Levma 34,  If I is a maximal point set of S, then for each pair of points
i,k &1, there exists a path p(§ — k), all of whose arcs belong to negative
cycles of S.

Proof. Since I corresponds to an equivalence class, there exist ¢, b € €_
(S) =i that { € P(a), ’: € P(b), and a ~ b. Let c,,..., ¢, be a sequence of
cycdes satisfying the definition of ~. Assume m is minimal and use induc-
tion.

Form=1, wehavea banda(i-’k)isthereqmredpath.

J

g EWY

#lati= ) !Qf(c,) - (i)

By induction, there ir a path m{i — k), all of whose arcs belong to negative
cycl&s of S. The definition f~; asswes Wt p; is tangent at a. 'E"hus

o = a{é = §)p(j = k) is a path havmg the required property.

Remarz, We shall refer to I as a subdigraph of S with points {p:p€l}
&xdams Ha.ﬂ (i, He¥_(S)}.
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Fic. 1.

Let (1) indicate the subdigraph of S generated in the usual way by the
point set I and all arcs of S joining these points. Thus /(1) = L ({i))N
(€ _(S)). Lemma 3.4 implies that I is a strong subdigraph (and so is (I)
for that matter). The following example should clarify the distinction we want
to make.

Exanmpre 3.5. In the GM-graph shown in Figure 1, I={2,3,4} is a
meximal point set. The solid lines in the figure stand for positive arcs,
whereas broken lines stand for negative arcs. The subdigraph I bas an arc set
{(23),(32),(34),(43)} because arc (42) does not belong to any negative cycle.
Of course, the subdigraph (i) would include the arc (42}.

We now invoke the GM-condition for the further study of maximal point
sets. This will lead us to a canonical form for GM-graphs. An example
(Example 3.10) illustrating all of the ideas appeais later, in Figure 4. The
reader is invited to refer to it beforeband in order to see the ideas more
concretely.

Lemma 3.8. Let I be a maximal point set of 2 GM-graph S, and ¢ a
cycle of S. If INP(c)+3, then:

@) ce?_(5) = P(c)c;
(i) c€%,(S)=1Ic P(c).

Proof. (i): Simce the equivalence classes form a pariition of ¥_(8S),
P(c)c L

(ii): Let I be the equivalence class corresopnding to I. Since I N Pc) +
@, there is 2 negative cycle a € [ such that #(e)c I and P(c)n @(a) 0.
By the GM-condition, £(a) € #(c). Now choose any b € I. Because a ~ b,
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there exists (negative) cycles c,;,..., ¢, satisfying the intersection properties
ir Definition 3.1. By the GM-condition, if #(c,) < #(c), ther H(¢;, ) C
P(c), i <i<m. Thus P(c,;)= P(a) C P(c) implies P(L) = P(c,,) < P(c),

and I € #{¢). 2

We come now to a result of fundamental importance.

TreoreM 3.7. If the GMi-graph S ie not a maximal noint sot, then for
each maximal point set I of S, there exist i, j € I such that:

(1) there is e unique path p(§ — i) in S from j to i;
(2) for all b € €.(S) which cover I, P(b(j - i))=L.

Proof. (1): We first construct a cycie b€ ¥, (S) and find points i, j € I
for which 2(b(j — i))=I. Then we will show that b(j -» ) is the unigue
path in (1), from which (2) readily follows.

Since I, by the remark above, is a strong, proper subdigraph of S, we can
use Corollary 2.2 to find a cycle b which is adjacent to I and not covered by
I. Thus Lemma 3.6 implies that b € ¥ (S) and b covers I. Let b(j — i) be
the path of adjacency, whsh obviously gives F(o(j — i))  i. By definition
of adjacency, P(b(i — j)NI= (i, j}, so I C P(b) forces I C P(b(j — i)).
Therefore, P(b(j — i)) = 1. Note also that #(b(i —» j)) - [ #0.

Cramm.  B(j—i) is a path in the subdigraph 1, i.e., each arc of
b(j — i) belongs iv some negative cycle a, which necessarily has its point set
in I by the GM-condition.

Let u(j — i) be a path of the type specified in Lemma 3.4. If b(j — i) #
u(j — i), then let k+ i be the first point in b(j — {) for which b(j — k)=
u(j > k), but (k,k))cb and (k,ky)Cu with k #k, Thus o=
u(j — ky)b(ky — i) is a path from j to i (Figure 2).
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Moreover, ¢ =b(i — j)o(j —~ 1) is a cycle not covered by I, since
Pb(i—>§)—1+0. Again, by Lemma 36, ICP(c) and thus IC
P(v(j —>i)). But k, & P(o(j~ i)). However, k+i and (k,k;)C b imply
k; € I. This contradiction proves the claim.

The claim has established only that b(j — i) is the unigue path in the
subdigraph I from j to 4, but not yet in S. The existence of other paths in S
from j to { must next be eliminated.

Let w(j— i) be a path in S. If b(j— i)+ u(j— i), then as was done
above, we define the points k, k,, and k,. Again k, €1, since k=i We
consider several cases.

Case 1I: ky€1. As in the proof of the claim, we derive a contradiction
from the cycle ¢ = u(j — ky)&{ky — §).
Case z: ko€l Define (€1 by Puik = i)ni= {k,1}. Let
T =2(b(i = §))N P(u(k — 1)). There are two possibilities:
W T—{k,1}=0. In this situation, c=u(k > )b{I-k) is a
cycle not covered by I, so I € @(c), whence k, € #(c). The
definition. of I forces k; to be a point in the path b(I - k).
Since (k, k,) is an arc of b, it follows that k,=1, ie., (k,I) is
an arc of b. By the claim, (k,) is thus an arc of a negative
cycle. Since it is also an arc of the positive cycle ¢, we can
apply Lemma 2.5, which leads to the contradiction that T —
{k,1}#2.
(@) T~ {&,1} +#¢. Define k; as the first point along b(i - §)
such that P(b(i — kz))N P(u(k — 1)) = {k,). (See Figure 3)
Then v=">b(i - k,)u(k,— 1) is a path such that P(v)NI=
{i,1} and P(v)—~I+0. Thus the cycle ¢ = wi—-=>DE(l—i)
is not covered by 1. As before, I C F{c), but since k & (),
we have a contradiction.

In conclusion, u(j — #)=b(j — i), and b(j — {) is the unique path in §
from i to i.
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(2): Let c€ €, (S) cover 1. Then i, j € P(c), and &(j —i)isa pathin §
from j tc z By ), c(j > i)=>b(j— i), wherefore P(c(j->i))=
P(b(j—i)= =

We point out here the relationship between the class of nondegenerate
GM-graphs and the restricted class of the last result.

CoroLLary 3.8. Let S be a GM-graph, and suppose |4,.(5)i> 1. Then S
is degenerage (every positive cycle ¢ has P(c) = P) if and only if Z(5) is a
maximal point set.

Proof. I S is itsclf a maximal point set, then S is clearly a degenerate
CM-graph, So let I be a maximal point set of S, and suppose that #(S) —
I+3. Let b,c € ¥,(S) with b # c, and assume both b and ¢ span S.

By Theorem 3.7, b(j—ﬂ) c(j—>4) for some i,j€I such that
P(b(j—i))=1I. So if b+ c, there exists key(b(i-bj)) {j} such that
b(i = k)= c(i — k) with (k, k,) an arc of b, (k, k) an arc of ¢, and k, + k.

Define the cycle d = c(i — ky)b(ky — i). Then k, & $(d), so d does not
span S. Also ko & 1,50 I  P(d). Thus signd = + and § is not degenerate. B

We note that by removing arc (4,2) from the digraph in Figure 1 we
obtain a degenerate GM-graph with maxunal point set {2,3,4} Z #(S).

With reference to the decomposition of #(5) in terms o‘ its maximal
point sets as given by Theorem 3.3, we see that iu a nondegenerate
GM-graph, either (a) ¢ > 1 or (b) t =1 with K + 2 (and at least two positive
cycles). The remaining results will then be phrased in terms of nondegener-
acy of S, and any previous result requiring, equivalenily, that S not be a
maxdmal point set will be invoked without further mention of Corollary 3.8.

Let I be 2 maximal point set of a nondegenerate GM-graph S. We denote
by I{j, k) the unique path of S from § to ¢, where i, j are as in Theorem 3.7.
'This path makes I a linearly ordered set with minimum element j and
maximusn element i. It follows that for k, kX’ € I with k <&’ {in thec ordering
of I), there exists a unique path from k to k' in S, nsmely the subpaih
I(k, k') of the path I{j, ).

Every positive cycle properly covering I must leave I at ¢ and enter [ at
- Thus ¢ is the unique exit vertex of I, and a is the unigue enirence vertex
of L

We next describe ths structure of 2 negative cycle of S reiative to the
maximal point set to which it belongs.

Cororrary 39. Let ac¥_(S) and o=l If S nondegenerale
Chi-graph, then there exist unique I <k in I such that a = (k DKL k).
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Proof. By Theorem 3.7, I is linearly ordered. Let k be the maximum
point of #{a) in the Iordering. Then I <k, and a = (k, )I(], k). B

We can now describe the canonical form for a nondegenerate GM-
graph S.

Denote the maximal point sets of § by I, 1<p<¢?, and label their
entrance and exit points, respectively, as j,,i,. All arcs emanating from
kel,— {i,} must belong to a negative cycle of I,. For arcs of the form
(é,, k) there are several possibilities:

(@ k&1, Then either k€K or k= j, for some g+ p.

M) kel, I k+j, then (i, k) belongs to a negative cycie of I, If
k = j,, then there are two subcases:

) (i, §,) is en arc of the digraph I, only. Then (i, j,)(j,.i,) is a
negative cycle covering I,,.

@) (i, §,) is not an arc of I, only. Then (i, j,1i(jpi,) is a positive
cycie covered by 1. A similar anulysis can be made for arcs of the
form (k, j,)-

,——_-w-‘
S

O

Fic. 4. A GM-gragh in cononical form.
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From the above, we see that the maximai point sets of a nondegenerate
GM-graph § fall inioc two categories, depending upon whether or not they
contain a cycle b€ €, (S).

The following example illustrates all of the results we have obtained.

ExampLE 3.10. Observe that, in the diagraph shown in Figure 4 we have
maximal point sets I,={1,2,3,4), I,={5,6,7,8}, I,={9,10,11,12,13},
and we have K = {14,15,16). The entrance points are 1,5,9, and the exit
points 4,8,13. I, and I, do not cover a positive cycle, but I, does.

4. CANONICAL FORM FOR A CM-MATRIX

We can now summarize all of our results and classify GM-matrices. Let A
be an irreducible GM-matriz. We identify four subclasses. Note that in this
section we make use of the hypothesis a,; <0 for the first time.

I. Al cycles of S(A) are negative. Then A is an irreducible L-matrix,
T‘hiswamdelystudledclass and we shall not discuss it further here.

IL. All cycles of S{A) are positive. In this case we can fird a signature
mauix D, ie, D=diag[d,,...,d,] with each d,= +1. sucls that D~ !AD
has nonnegative off-diagonal elements. Therefore, - D~'AD is a Z-matrix
and has consistently signed principal minors if and only if it is an M-matrix.
Since these matrices have also been widely studied, we shall also not discuss
them further here (see [1] and [8]).

III. S(A) is a degenerate GM-graph with |€,(S)|>1 and |€_(S)j>1.

IV. S(A) is a nondegenerate GM-graph with |€,(S)]>1 and
|_(8)|=1.

The remainder of our wark will be concerned with matrices in classes Il
and IV. In particular, we now can write a canonical form for nondegenerate
GM-matrices having both positive and negative cycles.

Let I,,I,,...,I, be maximal point sets of S{(A) not contammg any
positive cycles, a..d let I....1..,.....1. .. be maximal point scts of S{A)
each oontammg a unigue pmhve cycie ck k - 1,..., 5, with the length of ¢,
equal %o |I,, .} Finally let K= {1,2,.. (UII'?I Now suppose &£ is 2
permutation matrix permuting the set Il mto {1,2,...,|L;}}, I into {}I,j+

eees JI3|+ Hai}, etc. Without loss of generality we may suppose j=1,
=L}, fo=1L;|+1, ig=|I}|+ |Lg}.... . We may then assert that the irreduci-

ble nondegenerate GM-matrix A = PTAP has the form
A=[A,]

pgy°
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1< p,q <r+s+1, where the following conditions hold on the blocks:

(1) Each block A,,, p=1L2,...,r, is a square imreducible, lower
Hessenberg L-matrix.

(2) Each block A, p=r+1,...,v +s, is a square, lower Hessonbary
matrix with negative elements on the principa! diagonal. If we write this
block in the form A, = [ak], 1<i, j <|L,} (=|L,.4D, we have ¢, =a},aj;
oo afl,,l— L m“fl ,1» and all other cycles are megative. Moreover, the block
obtained from A,, by setting ), =0 is irreducibie.

(3) Each block A,, with p#q and 1<p,g<r+s is a zero block
except possibly for a nonzero entry in the first column and last row.

{(4) Each block A, ..., is a zerc block except possibly for nonzero
entries in the last row.

(5) Each block A,,,,,, is a zero block except possibly for nonzero
entries in the first column.

(6) The bk)ﬁk Ar+9+l,r+s+i is square ‘.Uiﬂi negaﬁve principal diagona}
and all positive cycles. As noted above, we may suppose it has nonnegative
elements a}**! for i # j. Thus we may suppose this block is a Minkowski
matrix (see {1} or [8]).

Now A itself must be irreducible. Let D(A) be the digraph with point set
v={L2,...,7+s+1)} and an arc (p, q) if A,,+#0, p+# q. Then, under the
hypothesis that A, ., 1,441 IS itscl irreducible, A is irreducible if and
only if D{A) is strongly connected. Observe also that the set K may be
empty, in which case r+ s> 2. On the other hand, in case IV we must
always have v + s> 1.

5. DEGENERATE GM-MATRICES

For the degenerate GM-matvices we consider conditions under which
they will be consistently signed.

If I is a proper subset of {1,2,...,n}, then the principal submatrix A[I]
has the preperty that S(A[I]) has only negative cycles, ie., A[I] is an
L-matrix, It follows that every principal minor or order less than n of a
degenerate GM-matrix is consistently signed qualitatively. Thue it remains to
consider det A itself.

Since a;, <0 for i=12,...,n, we may conveniently think of S(A) as
being enharnced by a loop at each point. Thus any factor f of $(A) will, in
general, consist of a spanning set of disjoint cycles including loops. Every
factor of S(A) corresponds to a term in the expansion of det A having sign
(= 1)* except for those factors consisting of a single positive cycle (of
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length n) of S(A). They each contribute a term to the expansion of det A
having sign (—1)"*". Now, in general, if D{A) has the lfactors f,=
{CrsCheseeesCum, ) k=1,2,..., q, then we have

detA=(- l)né:l( - l)mkA{"kl]A{‘}kz] . -A[ck,,,*],

(see, for example, [2]). Here Alc,,] ic the product of elements of A corre-
sponding to the cycle ¢;; in D{A] {sr in S{A)]. Observe that when m, > 1,
each of the factors A[e; ;] = —|A[c,,]| and the sign of the term is { — 1)" as
cited above. But when m; =1 and A[c,] >0 we have sign (—1)"*! as
asserted.

Let us write (1) in the form

detA=(-1"*AF +( —1)");( ~D)™Aley]Alcis] -+ Alckm, ],

where the sacond term ranges over all k such that m,; > I. [Note that such
terms exist by virtue of the fact tiat 7,,<0, i=1,2,...,n,and |¥ _(8)|>1
by hypothesis.] Thus we have

det A=(-1)""A} +(-1)" ¥ |Alcu] - [exm]]-

my > 2

It follows that signdet A = sign( — 1)" if and only if

2 i&{"u]ﬁi"kz] Tt A[ckm,,] | >A,,

k
my>2

where A} is the sum of the values of the positive cycles (all of length n) of
A. Thus the degenerate GM-matrix has consistently signed principal minors if
and onily if the above inequality hoids.

€. CONSISTENTLY SIGNED NONDEGENERATE GM-MATRICES

For GM-matrices in the ciass IV we shaii use the concepts introduced in
[6]. This involves the classification of the elements of the matriz A into
friendly, unfriendly, and neutral elemerts and the introduction of the matrix
A
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In each of the first r diagonal blocks of A the only elements belonging to
positive cycles are those above the principal diagonal. But all of these
elements aiso beiong to {at least one) nesative cycles; hence they are neutsal
elements Similarly the elements above the princiral diagonal in the block

o for p=r+k, k=1,...,s, are ail nentral. For p=1,...,7, all nonzero
elements below the principal diagonal of A are friendly, so we can take
A,y mn for p=12,...,7, to be the matrix with first superdiagonal and
principal diagonal elements the same as those of A and all other elements
equal to zero. For p=r+1,...,r+s we can define A, ., in exactly the
same way except for the element in the last row and column, which is also
the same as the corresponding element of A . Thus we may take A
having the form

"

A= [qu_m],

where

(@) A, i has been defined above for L<p<r+s, and
(B) A,y in= A, for all other values of p,q,

since all of these blocks contain only unfriendly elements. )

in summary, then, all of the elements on the first superdiagonal of A,
within the blocks A _ ., p=12,...,r+s5, are neutral elements. The
rema:zing nonzero elements of A not on the principal diagonal are all
unfnendly elements. Of course, a!l elements of A — A, are friendly ele-
ments of A. Thus we have completelv ciass:iied the elements ot A.

Now by Theorem 3 of [6], A is consistently signed if A consistently
signed. AEso by Theorem 4 of [6], if A min IS dlagonally domma.nt it is
consistently signed. Thus we have simple conditions for A to be consistently
signed.

To investigate the matter more closely, let us dencte the exit points of the
diagonal kiocks by i,, i2, s z,+,, respecnvely Ilet K={n—-i,,
ir4s T Lo, n), and consider the st Ty = {idg, ... d,,, + L4, ,+2,...,n).
It satisﬁes

1<ij<ig<-c- <i,  <i,  +l<-:--<n,
Now for j & I, the diagonal dominance condition is

a;; > !a;,g+1|-
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On the other hand, for j € I, the condition takes the form

kel

Here |.ij|/a and I;C J;= {1, jos-++> frisrbrss +1....,n}, where jp is the
entrance point of the pth diagonal block for p=1,2,...,7 +s. (Note that
ji=1laad

jl<j2< ce e <‘if+3<jf+3+3‘< ec e <n.)

Now it is clear that, if the set I is disjoint from I, then the principal
minor det A{I } is qualitatively consistently signed. But we can say more. If

(@) Iﬁ‘ln'+.c+1"'z
(ii) I does not contain I, for g=r+1,.. ,r+s,and
(iii) I contains at most one of the sets I, for g=1,.

then det A[I] is also qualitatively consistently signed.

Finally, the following interesting fact is worth noting. For the diagonal
submatrices A, ., p=r+L,...,r+s, we have that det A, . will be
consistently signed 1f and only 1f the product of the absolute valu&c of the
diagonal elements is larger than the value of the (unique) positive cycle in
A, mine In general, this condition may differ from the diagonal dominance
condition applied to this submatrix.

7. INVERSES

We shail suppose now that the GM-matrix in class IV has consistently
signed principal minors. The paper [6] contains a theorem about the inverse
of such a matrix in general. From that result we obtain the following
information about inverses of GM-matrices of class IV.

If we partition A~! in the same way as A itsclf, then:

(i) Each diagonal block A;,,, p=1,...,r+s, has all elements on and
above the principal diagonal nonzero and with qualitatively detcrmined siguns;
all elements on the first subdiagonal have indeterminate sigas; and all other
elements a;; below the principal diagonal have qualitatively determined signs
if ancd only 1§ i and ] do not both belong to the same negative cycie of I,

(ii) The nonzero elements of A, ,.,., are all negative.
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(iii) If symmetrically placed elements in any diagonal block of A~! are
both sign determined, they will have the same sign, and if the block A,
catisfies the condition that af; #0 for all i> j, then A_J has all ciements
helow the principal diagonal with undeterminate signs.

(iv) Each of the blocks A} for n#gq, 1<p,q<r+y, is a quasi-
Morishima matrix in normal form [3] and with all elements different from
Zero.

(v) The elements in A}, vary in sign only with ¢, and those of
Ajl,, . vary only with p, and all elements in each block are nonzero and
have the same sign.
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