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The change in climate has led to an interest in how this will affect the energy consumption in buildings.
Most of the work in the literature relates to offices and homes. However, this paper investigates a super-
market in northern England by means of a multiple regression analysis based on gas and electricity data
for 2012.

The equations obtained in this analysis use the humidity ratio derived from the dry-bulb temperature
and the relative humidity in conjunction with the actual dry-bulb temperature. These equations are used
to estimate the consumption for the base year period (1961–1990) and for the predicted climate period
2030–2059.

The findings indicate that electricity use will increase by 2.1% whereas gas consumption will drop by
about 13% for the central future estimate. The research further suggests that the year 2012 is comparable
in temperature to the future climate, but the relative humidity is lower. Further research should include
adaptation/mitigation measures and an evaluation of their usefulness.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

With the founding of the IPCC in 1988 [1] the idea of anthropo-
genic climate change really entered the scientific arena so that,
currently, the vast majority of researchers working in this area
believe that the climate is changing and that this is fundamentally
man-made [2]. That the issue of global warming has also reached
politics is evident by the coming into force of the UN framework
convention on climate change [3] in 1994 [4]. All of this has added
to the interest in assessing the impact of climate change on various
aspects of society, including on energy consumption in buildings.

Some of those assessments examine specific countries such as
the UK. Jenkins et al. [5], for example, use a software model of a
four-story office building to investigate five locations in the UK
to see how the change in climate will affect the energy demand
for heating and cooling in 2030. These researchers find that the
energy demand, although in part location dependent, is primarily
heating dominated. Their study also includes the assumption that
office equipment and lighting will be more efficient (so producing
less waste heat) in the future which will increase the demand for
heating. However, they conclude that the temperature increase
due to climate change will mitigate this to a degree. Gupta and
Gregg [6] evaluate the effect of climate change on four types of
dwelling located in Oxford, UK, by means of the simulation soft-
ware IES. They find that thermal discomfort will rise significantly
with climate change, especially in flats.

A number of other studies are summarized by Li et al. [7] who
point out the two main approaches: the degree-day method and
simulation techniques. Most of the papers in that review study
office buildings and homes. The authors find that the predicted
warming will result in a reduced heating load and an increased
cooling load. This translates into a reduction in energy use for
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colder climates and an increase in electricity consumption for war-
mer climates.

In addition to the degree-day method and simulation, other
approaches have been used. One example is the paper by Schrock
and Claridge [8] in which the authors use a simple regression
model of the ambient temperature to investigate a supermarket’s
electricity use. The use of multiple linear regression analysis allows
the inclusion of any desired variable. This technique is used by Lam
et al. [9] who study office buildings in different climates in China.
These researchers include 12 input variables covering building
parameters, building loads and the HVAC system in their regres-
sion model and find that predictions largely agree with building
software simulation. Another example is Chung et al. [10] who
investigate the energy use intensity of supermarkets by means of
such diverse variables as operational schedule, number of custom-
ers, lighting control, employee behaviour and maintenance factors,
but explicitly exclude outdoor climate. Braun et al. [11] employ
multiple regression analysis to investigate timer settings, night
cover effectiveness together with indoor and outdoor temperature
and humidity on the electricity consumption of a supermarket. The
more complex principal component analysis is used by Lam et al.
in [12] for office buildings. This technique allows the same flexibil-
ity as multiple regression analysis, but is not restricted by its
underlying assumptions (for more details see 2.3 Multiple linear
regression analysis).

Owing to their refrigerated shelves, supermarkets are quite dif-
ferent from other commercial buildings. Consequently, there are a
number of documents published relating to modelling their energy
consumption. One example is Suzuki et al. [13] who model the
refrigeration system and energy flow of heat sources of a super-
market in Japan for one-hour increments. The authors find that
the refrigeration equipment accounts for about 60% of the total
energy demand and that the air leakage of the open refrigerated
shelves has a considerable effect on this demand. The paper by
Arias and Lundqvist [14] presents their software CyperMart which
focuses on different refrigeration systems. Although the software
uses also climate data as inputs, the intended users are not those
researching climate change impact, but designers and technicians.
The work of Bahman et al. [15] uses a moisture balance equation
and the humidity ratio w to infer the indoor relative humidity in
a supermarket. This, in turn, is used to simulate the energy use.
Their results suggest that the indoor relative humidity is strongly
correlated with the total energy consumption, i.e. the lower the
indoor humidity, the lower the total energy use.

There are two documents which relate to the carbon footprint
of supermarkets in the UK. The first is a report by ENDS Carbons
[16], which looks at supermarkets as a whole, from direct to indi-
rect CO2 emissions. However, it does not quantify the impact of cli-
mate change on supermarkets. The second document is a paper by
Jenkins [17] in which the author uses a software model to evaluate
different carbon-saving measures of a ‘‘standard UK supermarket’’.
This research does not explicitly model the refrigeration systems
which may have the effect of insufficiently capturing the main dif-
ference between supermarkets and other retail buildings.

The review above suggests that there will be an impact of the
changing climate on the energy consumption of supermarkets
and that relative humidity is likely a parameter which needs
including in addition to outside temperature (see for instance
[15,18]). Although some researchers examined supermarkets’ CO2

emissions, none have reported on the impact of future climate on
their energy use. Therefore this paper focuses on predicting the
change in energy consumption of a grocery supermarket for the
2040s by using the outside temperature and relative humidity data
to perform a multiple regression analysis. The 2040s (rather than
the end of the century) were chosen because (a) the lifespan of a
refrigeration system is typically 15–20 years and (b) this research
is aimed to be relevant to present day strategic decision makers
in designing and operating current and prospective supermarket
buildings and systems, and whose own lifetime might very well
include the 2040s.
2. Study method

The supermarket studied and the methodology of the analysis
and modelling is detailed in this section. As Fig. 1 indicates, this
assessment is based on the actual consumption data, dry-bulb
temperature and relative humidity records for 2012. This data
was divided into two data sets to be used in a multiple linear
regression analysis to generate two equations, one for electricity
and one for gas. Thereafter these equations were used to estimate
the consumption for the base period (1961–1990) which then was
compared with the estimated consumption for the future period
(2030–2059, also called the ‘2040s’).

The study method used here may have certain limitations
because it does not consider any other weather parameters, such
as solar radiation or wind, or any future technical advances and
building improvements. Furthermore it assumes that any change
in footfall is negligible. Notwithstanding that, this method yields
meaningful results in an easily realisable way.

2.1. Supermarket

The supermarket (see Fig. 2), which opened in July 2010, is
located in the UK Yorkshire and Humber region, close to the city
of Hull. It is at the larger end of the mid-range store size with a
sales area of 1266 m2 (see also Table 1) and an electric energy
use density for 2012 of about 460 kW h/m2 pa which, according
to Tassou et al. [19], is about half the expected value. The super-
market sells mainly food and some general merchandise. In addi-
tion, it also has a café/restaurant and a small bakery.

The main energy consumers are the 240 kW condensing gas
boiler (which serves the cold aisle heating, the general heating
and the hot water system) and the two remote refrigeration
R404/CO2 plants of nominally 80 kW and 60 kW cooling capacity.
These two plants are responsible for refrigerating about one third
of all the shelves on the sales floor and the cold room. The three
freezer cabinets in the sales area are self-contained and the freezer
room is connected to two small freezer units outside.

The breakdown of electricity use in Fig. 3 is based on the con-
sumption data from sub-meters for the first half of 2012 and is typ-
ical for supermarkets [20,21]. This figure shows that about half of
the electricity consumption is made up of essentially weather
independent loads such as lights (lights are also fitted to the refrig-
erated shelves). The consumption of the other half, i.e. HVAC and
refrigeration packs, is more directly related to the weather.

2.2. Weather and consumption data

The datasets for the regression analysis are based on consump-
tion and weather data for the whole year 2012. The temperature
and relative humidity was downloaded in 15-min increments from
a sensor situated on the north side of the supermarket. The gas and
electricity consumption for the whole supermarket was readily
available from the company’s energy website. This data was down-
loaded in hourly readings and then summed for each week.

The temperature and humidity data for the base year was
downloaded from the MET office website [22]. These values are
monthly, long term averages for the period of 1961 to 1990 for
the 25 km square containing Hull. The same two weather variables
were also obtained for the same square from the UKCP09 website
[23] by downloading monthly predictions for the high emissions



Fig. 1. Method flowchart of main steps.

Fig. 2. Supermarket for case study.

Table 1
Supermarket dimensions.

Area name Width (m) Length (m) Area surface (m2)

Total area of building 32 57 1824
Sales area (incl. café/restaurant) 32 40 1266
Café/restaurant 7 16.5 115.5

Remarks: sales area has a small recess.
Estimated height: 8 m at sides, 10 m in middle.
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scenario for the 2040s (i.e. the period from 2030 to 2059). After
that the 10th, 50th and 90th percentile were extracted so that
not only the central estimate (50th percentile) but also lower
and upper limits could be calculated. These monthly values were
Fig. 3. Breakdown of elec
entered as the central week in their respective month of 2012.
The values in between were generated by the Matlab [24] interp1
function using the spline option, obtaining the smooth graphs
shown in Fig. 4.

Actual weather data can be split into two components: deter-
ministic (periodic) and stochastic (random) [25]. From the graphs
in Fig. 4, it can be seen that only the actual weather traces include
a random component, but not the weather for the base and pre-
dicted future climate years. This is particularly apparent in the
left-hand panel for temperature, in which the actual temperature
trace follows the central estimate trace quite well – being some-
times below and sometimes above it. The notable exception is
when the actual temperature dips and rises quite sharply from late
January to mid February. In the right-hand graph the actual relative
humidity does not follow any of the other curves, but stays below
them with only a modest amount of variation due to seasonality.
Fig. 4 is also interesting from the data coverage point of view
because it shows that the required temperature range for forecast-
ing is being covered by the actual temperature, but not by the rel-
ative humidity. The ramifications of this will be discussed later.

As relative humidity is also a function of the dry-bulb tempera-
ture, it was transformed into a value which is directly meaningful
without reference to the dry-bulb temperature. According to Law-
rence [26] relative humidity is commonly thought of as either the
ratio of actual water vapour pressure to the saturation vapour
pressure or as the ratio of the air humidity ratio w to the saturation
tricity consumption.



Fig. 4. Temperature and relative humidity plots.

Table 2
Correlation coefficients for electricity dataset.

Electricity # #2 w w2

Electricity 1

# 0.784 1
#2 0.860 0.982 1
w 0.842 0.968 0.971 1
w2 0.884 0.947 0.971 0.992 1
#�w 0.875 0.975 0.994 0.989 0.991
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mixing ratio ws at a given temperature and pressure (also called
the ‘degree of saturation’ [27]). He also points out that these two
definitions are not interchangeable. Here, the second definition is
assumed to be correct (for another example see [15], Fig. 5, where
the authors calculate relative humidity from the humidity ratio
and ambient temperature). An equation for the saturation mixing
ratio ws was derived from Table 2 on page 6.3 in [27] by fitting
an exponential function to the values for ws for the temperatures
between 0 �C and 35 �C.

2.3. Multiple linear regression analysis

Multiple linear regression analysis seeks to establish a
relationship between a dependent variable (in this case the energy
consumption) and two or more independent variables (the
predictors) in the form:

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn þ e

In this equation b0 . . . bn are the regression coefficients to be esti-
mated based on a record of observations. This is normally done by
curve fitting based on the least square method with the aim of
Fig. 5. Scatter plot matrices for or
minimizing the difference between the observed and estimated val-
ues. The predictors should have little or no correlation with each
other (i.e. the correlation coefficient should be less than 0.7 [28])
to avoid problems caused by multicollinearity. The last term in
the equation, e, is referred to as the residual (or fitted error) and
is used for testing the overall significance (F-test) of the equation
and the significance of each regression coefficient (t-test). In order
to obtain valid results from these tests the residual e has to be nor-
mally and independently distributed, with a mean of zero and a
constant variance of r2 [29]. This is verified by what is called a
iginal gas and electricity data.



M.R. Braun et al. / Applied Energy 130 (2014) 305–313 309
residual analysis. This analysis may also lead to the elimination of
data outliers.

Another important indicator is the coefficient of determination,
R2, which not only indicates the goodness of fit, but can also be
interpreted as the amount of variation of the dependent variable
explained by the regression equation [28].

Before a regression model is selected, it is advisable to look at a
scatter plot matrix of the dependent variable and predictors to see
if linear regression is appropriate and, if so, what model should be
adopted. Fig. 5 shows such matrices for the original data sets. The
left-hand panel, which displays the scatter plots for electricity,
temperature and humidity ratio, indicates that electricity use is
quite stable for the first two thirds before it starts to rise. Here
the incorporation of higher order terms seems advisable. The
right-hand panel is for the gas consumption dataset. It shows a
more linear relationship between the independent variables and
the gas consumption. Here a linear equation might be sufficient,
but to take care of any curvature a second order term was incorpo-
rated. Both scatter plot matrices also indicate a strong correlation
between the independent variables and the possibility of outliers.

Based on the reasoning above, the following second-order
model with interaction was adopted:

yelectricity or gas ¼ b0 þ b1#þ b2#
2 þ b2wþ b4w2 þ b5#wþ e

Another preparatory step is to test the predictors for multicollinear-
ity by, for instance, calculating their correlation coefficients R. This
has been done and is summarized in Tables 2 and 3. Both tables
show a very high level of correlation between all predictors so that
it is expected that only one or two predictors remain after the mul-
tiple regression analysis.

The actual regression analysis was performed iteratively with
the software package IBM SPSS Statistics, version 21 [30]. The
option chosen for both datasets was stepwise (inclusion p-
value = 0.50 and exclusion p-value = 0.55). During these iterations,
outliers of the residual terms were eliminated, because the statis-
tics calculated during the linear regression analysis rely on a nor-
mal distribution of these error terms. The extent to which these
terms were eliminated is indicated in Fig. 6 of the standardized
error terms. There the left-hand side displays the distribution with
the outliers and the right-hand panel without them. The outliers
included data points for holidays, such as the Christmas period
when the store has irregular opening hours and staff work over-
night. When examining the residuals for the gas data set, autocor-
relation of the error for the first half of 2012 was noticed. As this
also indicates a violation of the underlying assumption of linear
regression [29] it was reduced as much as possible, by deleting a
limited number of data points at the beginning of the year. After
treating the data this way, 44 data points in the electricity data
set and 39 in the gas consumption data set remained.

These treated data sets yielded the following equations:

ŷelectricty
t-statistics:

¼ 13030:1
ð33:7Þ

�841262:5w
ð�7:8Þ

þ54348895:8w2

ð6:8Þ
þ13157:1# �w

ð3:7Þ

Statistics : R ¼ 0:976;R2
adj ¼ 0:949; F ¼ 268;

Durbin�Watson ¼ 1:733
Table 3
Correlation coefficients for gas dataset.

Gas # #2 w w2

Gas 1

# �0.919 1
#2 �0.924 0.988 1
w �0.929 0.959 0.971 1
w2 �0.910 0.936 0.962 0.994 1
#�w �0.927 0.975 0.992 0.991 0.988
and

ŷgas
t-statistics:

¼ 17315:2
ð25:7Þ

�1424062:7w
ð�15:4Þ

Statistics : R ¼ 0:930;R2
adj ¼ 0:864; F ¼ 236;

Durbin�Watson ¼ 1:179

The residual analysis showed that:

– For electricity the error was normally distributed and had
constant variance. The Durbin–Watson statistic suggested that
the errors were not autocorrelated.

– For gas the error was normally distributed and had constant
variance. The Durbin–Watson statistic suggested that the error
terms may have been autocorrelated.

As Tables 2 and 3 indicate, there are close correlations between
the predictors, which means that just using temperature could also
yield acceptable equations. For instance, a regression equation
using the first and second order temperature terms for electricity
consumption gives an R = 0.958 (R2

adj ¼ 0:918). The t-statistics
show that both predictors are significant. However, the Durbin–
Watson statistic (=1.167) is not as good as for the equation given
above. A gas equation based on temperature alone performs best
with just a square term (R = 0.926, R2

adj ¼ 0:854). Here the t-statis-
tics suggest that the linear term is not significant. Also in this case
the Durbin–Watson statistic (=0.857) was not as good as for the
equation above. This drop in R and the increased autocorrelation
leads to the conclusion that the equation including humidity ratio
terms perform better, especially if one considers that [29], page
476, states that autocorrelation indicates the presence of an omit-
ted predictor variable.
2.4. Model evaluation

Fig. 7 compares the predicted values of the regression analysis
with the actual values from the datasets and shows that both equa-
tions perform satisfactorily. This figure can also be interpreted as
the visualisation of the value R given above.

The attempt to access data for 2013 to compare the actual con-
sumption with the predicted energy use proved only partially suc-
cessful. It was found that the data for the onside temperature and
humidity sensor was only available from the middle of October
2013 onwards. In addition to this, technical problems with the
gas boiler meant that it was replaced with a more modern, higher
capacity boiler which made it impossible to use the available data
for validating the gas consumption equation. The comparison of
the actual and predicted electricity consumption proved more suc-
cessful and is summarized in Table 4. As other researchers have
done before (e.g. [31]), here also the two error statistics NMBE
(Normalised Mean Biased Error) and CVRMSE (Coefficient of Vari-
ation of the Root-Mean-Square Error) have been calculated based
on Table 4. The NMBE is �2.6% and indicates that the estimated
values are, on average, slightly too low. The CVRMSE is just below
3.8%, suggesting that the estimation equation presented above
works reasonably well over the considered period.

The error estimate based on error propagation is quite difficult
to do because some of the information is missing. For instance, no
information regarding the error of the actual consumption data
and the weather sensor was available. For the base year period,
the Met Office gave an RMSE of 0.94 �C [32]. An error for the
relative humidity was not given. To estimate the error introduced
by the regression prediction the formula in [29], page 99 was
implemented in Matlab and the error for the yearly electricity
consumption was found to be less than 3% and for gas use 4.6%
or less (at a 95% confidence level).
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Fig. 6. Box plot for standardized error terms.

Gas Electricity 

Fig. 7. Comparing prediction with actual values.

Table 4
Comparing actual electricity consumption with predicted consumption.

W/C Actual consumption (kW h) Estimated consumption (kW h) Difference (kW h)

14/10/2013 11,180 11129.1 �50.95
21/10/2013 11,443 11387.8 �55.19
28/10/2013 10,782 10812.1 30.11
04/11/2013 10,686 10672.6 �13.44
11/11/2013 10,938 10755.7 �182.35
18/11/2013 10,669 10698.9 29.89
25/11/2013 10,968 10709.2 �258.79
02/12/2013 11,042 10754.3 �287.74
09/12/2013 11,662 10712.5 �949.48
16/12/2013 Christmas period (disregarded)
23/12/2013
30/12/2013
06/01/2014 11,301 10694.1 �606.94
13/01/2014 11,130 10652.1 �477.93
20/01/2014 11,303 10644.4 �658.59
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To find out whether the change in relative humidity or in tem-
perature was more important, a sensitivity analysis was performed
which is summarized in Table 5. This table indicates that the
temperature has a far greater influence on both gas and electricity
consumption than humidity.
3. Results

After establishing that both equations perform reasonably well,
they were used to estimate the consumption for the base year and
for the 2040s (central estimate, the 10th and 90th percentile). The



Table 5
Sensitivity analysis.

#10% #50% #90% |Difference|

Electricity (kW h) RH10% 570,284 595,235 24,951
Gas (kW h) 433,528 328,719 104,809
Total (kW h) 1,003,812 923,954 79,858
Electricity (kW h) RH50% 580,431
Gas (kW h) 380,922
Total (kW h) 961,353
Electricity (kW h) RH90% 576,038 599,339 23,301
Gas (kW h) 389,404 316,328 73,076
Total (kW h) 965,442 915,667 49,775
Electricity (kW h) |Difference| 5754 4104
Gas (kW h) 44,124 12,391
Total (kW h) 38,370 8287

Fig. 8. Electricity and gas consumption.

Fig. 9. Summary plot.
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results are plotted in Fig. 8. In both panels the base year and the
graph for the 10th percentile are very close together. This can be
explained by examining Fig. 4 which shows that the base year tem-
perature is below the 10th percentile temperature, but that the rel-
ative humidity for the base year is considerably higher. The
estimated consumption graphs in the left-hand plot are very close
together during the winter and early spring months and fan out
afterwards when the temperature increases. This may be due to
the square term in the electricity equation. The right-hand plot
shows a relatively constant distance between all estimate graphs.

Fig. 9 summarizes all the results on a yearly basis. It shows that
the temperature in 2012 is already at the level expected for the
2040s, but that the relative humidity is about 12% below the cen-
tral estimate. It also shows that the average temperature in 2012
was about 3 �C above the long term average from 1961 to 1990.
Comparing the electricity consumption of the base year with the
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2040s, one finds that the central estimate is a 2.1% increase with
only a slight increase (0.4%) at the lower limit and a rise of 5.5%
as an upper limit. For the gas use, one finds a decrease ranging
from about 1% to about 28% with about 13% being the central
estimate.
4. Discussion and conclusions

This work describes how the energy consumption of a super-
market in northern England is expected to change for the period
from 2030 to 2059 (the ‘2040s’). The basis for this assessment
was the gas and electricity consumption as well as the outside
temperature and relative humidity data for 2012. The regression
equation derived from this data was used to estimate the con-
sumption based on the long-term averages from 1961 to 1990,
which then was compared with predictions for the 2040s. Based
on this, the electricity consumption is thought to rise by up to
5.5% with 2.1% being the central estimate. The gas consumption
is estimated to fall by up to 28% (13% central estimate). This is in
line with results reported in [7] where the reviewers found studies
for central and northern Europe suggesting that a decrease in heat-
ing would dominate there.

The results are based on two equations from a multiple regres-
sion analysis which make use of the air humidity ratio w. This
approach is similar to the one used in [15] because in that study
this ratio is also derived from temperature and relative humidity
data and then used to estimate the energy consumption of a super-
market. The regression equation derived above can explain about
95% of the variation of the electricity demand and 86% of the gas
use. If only temperature terms were allowed, this would drop,
albeit only slightly, to 92% and 85%. This and the increase in auto-
correlation can be used to argue that the equations applied in this
work have a higher explanative power and are to be preferred to
temperature terms only.

The equation for electricity incorporates w, w2 and w�# terms.
The coefficient for w is negative whereas the coefficients for the
other two terms are positive. When examining their individual
contribution to the overall response, it can be found that the
influence of the linear term diminishes with increasing w. Thus
the virtually flat part of the predicted electricity consumption at
the beginning, gives way to a steeper rise for higher values of the
humidity ratio w. This mimics the dependency of the electricity
use on w very effectively, as seen in the left-hand panel in Fig. 5.
The same scatter plot matrix also shows a close relationship
between w and # so that it may be said that the linear term in
the electricity equation is related to the heating effort which
decreases as temperature increases. The other terms may capture
the relationship between the cooling load and the increase in tem-
perature. The regression equation for gas uses only a linear term of
w with a negative coefficient. This is also consistent with the right-
hand panel of Fig. 5 and captures the decreasing heating demand
with rising temperature.

Comparing the climate variables, one finds that the yearly
temperature average of the actual measurements is over 30% (or
3.12 �C) higher than the base year. Notwithstanding that, almost
the whole temperature range of future climate values is covered.
On the other hand, the yearly relative humidity average
(negatively) deviates by only about 13% from the base year, but
the actual relative humidity does not cover the range of the base
and future humidity estimates. Consequently the consumption
estimates are based on extrapolating their relationship with rela-
tive humidity (and therefore may introduce unknown errors).
The actual temperature data indicates that the year 2012 was war-
mer than average, which would be consistent with a lower than
average relative humidity because warmer air can hold more
moisture. Generally speaking, the UKCP09 estimates predict a cli-
mate which is warmer than the base year but with a similar rela-
tive humidity.

The work presented here will be expanded by, for instance,
researching other supermarkets throughout Britain. The selection
of locations could be modelled on the approach in [5] where the
researchers studied one location in Scotland, three in England
and one in Wales. Such a study could also explore whether includ-
ing other predictors, such as other weather parameters and footfall,
reduces autocorrelation. It might also be worthwhile to explore
different modelling techniques using, say, principal component
analysis (as in [12]) which offers the advantage of not requiring
normally distributed error terms. Another approach could be the
software modelling mentioned in [7] because this could also be
used to examine energy saving options which would be of interest
to supermarket companies. Finally, the impact of the recently pub-
lished IPCC WG 1 report [33], on this work should be assessed in
future research.
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CVRMSE: coefficient of variation of the root-mean-square error
NMBE: normalised mean biased error
R2: coefficient of determination
R: coefficient of correlation
RH: relative humidity (%)
RMSE: root-mean-square error
w: humidity ratio
ws: saturation mixing ratio
b: regression coefficient
e: residual
r2: variance
#: outdoor dry-bulb temperature (�C)
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