Discrete Mathematics 113 (1993) 1–6 North-Holland

Indecomposable triple systems exist for all lambda

Dan Archdeacon* and Jeff Dinitz

Department of Mathematics and Statistics, University of Vermont, **Burlington, VT 05405, USA**

Received 3 December 19Y0 Revised 21 May 1991

Abstruct

Archdeacon, D. and J. Dinitz, Indecomposable triple systems exist for all lamoda. Discret Mathematics 113 (1993) 1-6.

A triple system $(v, 3, \lambda)$ is *indecomposable* if it is not the union of two triple systems $(v, 3, \lambda)$. (v, 3, λ_2) with $\lambda = \lambda_1 + \lambda_2$. A triple system is *simple* if it has no repeated blocks. In this paper we show the existence of simple indecomposable triple systems for all v and λ satisfying the necessary conditions with v large. Specifically, for each λ we show that there is a $v_0(\lambda)$ (where $v_0(\lambda) = O(\lambda^4)$) such that there exists a simple indecomposable triple system (v, 3, λ) for each $v \ge v_0(\lambda)$ with $\lambda v(v - 1) = 0$ (mod 6) and $\lambda (v - 1) = 0$ (mod 2). We then concentrate on the case of $\lambda = 5$ and show that $v_0(5) \le 25$.

1. Introduction

We begin with some standard definitions from design theory. A (v, k, λ) *balanced incomplete block design* $((v, k, \lambda)$ -BIBD or simply a (v, k, λ) design) is a pair (V, \mathcal{B}) where V is a v-element set of *points* and \mathcal{B} is a collection of k-element subsets of *V,* called *biocks, such* that each pair of points appears together in exactly λ blocks. When $k = 3$ the design is a *triple system*. If in addition $\lambda = 1$, then it is a *Steiner triple system*. A design is *simple* if it contains no repeated blocks.

A common way to form a block design with larger λ is to union the sets of blocks of smaller designs sharing a common point-set. In particular, the union of $d(u, k, \lambda_1)$ design with a (v, k, λ_2) design is a $(v, k, \lambda_1 + \lambda_2)$ design. Conversely, suppose that we can partition the blocks of a (v, k, λ) design so that each part induces a triple system with a strictly smaller λ . Then we say that the design is

 \mathbf{I}

Corresponderlce to: Jeff Dinitz, Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405, USA.

^{*} Research partially supported by NSF grant number DMS-YOO750.3.

 $(0.12-365X/93/$06.00)$ $(0.1993 -$ Elsevier Science Publishers B.V. All rights reserved

decomposable; the partition is a *decomposition*. A design with no decompositions is *indecomposable.* Indecomposable block designs form the building blocks for general block designs under block unions.

The main problem. Construct indecomposable simple triple systems for all possible v and λ .

The well-known necessary conditions for the existence of a simple $(v, 3, \lambda)$ -BIBD are:

 $\lambda v(v-1) = 0 \pmod{6}, \qquad \lambda(v-1) = 0 \pmod{2}, \text{ and } \lambda \leq v-2.$

In 1847, Kirkman [9] proved that these conditions are sufficient for Steiner triple systems, $(v, 3, 1)$ designs. Building on the work of others, Dehon [5] proved in 1983 that for every v and λ satisfying the above necessary conditions there exists a simple $(v, 3, \lambda)$ -BIBD (see also Sarvate [14]). Indecomposable simple designs were introduced in 1974 by Kramer [111 who showed that an indecomposable simple $(v, 3, 2)$ design exists for all $v \equiv 0, 1 \pmod{3}$, $v \ge 4$, except $v = 7$. He also showed that indecomposable simple $(v, 3, 3)$ designs exist for all $v = 1 \pmod{2}$, $v \ge 5$. Colbourn and Rosa [4] proved that indecomposable simple (v, 3, 4) designs exist for all $v = 0$, 1 (mod 3), $v \ge 10$. In 1989, Dinitz [6] and independently Milici $[12]$ showed that indecomposable simple $(v, 3, 6)$ designs exist for $v = 8$, 14 and all $v \ge 17$. Thus for $\lambda = 1, 2, 3, 4$ and 6 the necessary conditions for the existence of an indecomposable simple $(v, 3, \lambda)$ are sufficient, except for possibly a few small values of v .

For the general case of $\lambda > 6$, Colbourn and Colbourn [3] constructed a single indecomposable simple $(v, 3, \lambda)$ -BIBD for each odd λ . As they noted in their paper, their technique does not extend to even λ . Shen [15] used the Colbourn and Colbourn result and some recursive constructions to prove that the necessary conditions are asymptotically sufficient. Specifically, if λ is odd, then there exists a constant v_0 depending on λ with an indecomposable simple (v, 3, λ) for all $v \ge v_0$. satisfying the necessary conditions. This result was proved using Wilson's Theorem and so the value of v_0 was not specified.

In this paper we show that for each λ the necessary conditions are sufficient except for finitely many small values of *u.* In fact. in Section 2 we give a specific upper bound for $v_0(\lambda)$ such that if $v > v_0(\lambda)$ and v satisfies the necessary conditions, then there exists a simple indecomposable triple system $(v, 3, \lambda)$. In Section 3 we will consider the remaining small case $\lambda = 5$. We show that that there exists an indecomposable simple (v, 3, 5) for all $v \ge 25$, $v = 1$, 3 (mod 6).

2. _Main **results**

A $(v, 3, \lambda)$ *partial triple system* (denoted $(v, 3, \lambda)$ -PTS) is a pair (V, \mathcal{B}) , where \mathcal{B} is a collection of triples from a point set V such that each pair occurs at most λ

times. A subset of the blocks in a triple system forms a partial triple system, but it is not the case that every $(v, 3, \lambda)$ -PTS completes to a triple system $(v, 3, \lambda)$.

A partial triple system *(V,* \mathcal{B} *)* is λ *-indecomposable* if there is no partitioning of the triples \mathcal{B} into sets \mathcal{B}_1 , \mathcal{B}_2 such that for $i = 1, 2$, (V, \mathcal{B}_i) is a $(v, 3, \lambda_i)$ -PTS with $\lambda_i > 0$ and $\lambda_1 + \lambda_2 = \lambda$. Note that indecomposability depends on the value of λ for partial triple systems. For suppose that (V, \mathcal{B}) is a partial triple system in which no pair occurs more than *k* times. Then *(V, 2%)* is also a partial triple system for any value of $\lambda' \ge k$. But for $\lambda' \ge k + 1$ it always decomposes into a partial triple system with $\lambda = k$ (containing all of the blocks) and a partial triple system with $\lambda = \lambda' - k$ (containing no blocks).

If a partial triple system P is contained in a triple system T , then a decomposition of T induces a decomposition of P . The contrapositive is stated in the following lemma.

Lemma 2.1. *A triple system* $(v, 3, \lambda)$ *which contains a* λ *-indecomposable* $[w, 3, \lambda]$ -*PTS is itself indecomposable.*

We next construct a single λ -inC.composable partial triple system for each λ .

Theorem 2.2. *For each a there exists a simple A-indecomposable partial triple system* (*v*, 3, λ)-PTS with $v = \lambda(\lambda + 2)$.

Proof. We begin with a chain of triples shown as triangles in Fig. 1. Specifically, our point set is $V = \{1, 2, ..., \lambda\} \cup \{a, b\}$. The triples are $\{i, a, b\}$ for $1 \le i \le \lambda$, $\{i, i+1, b\}$ for odd *i*'s between 1 and $\lambda - 1$, and $\{i, i+1, a\}$ for even *i*'s in this range. The triples with both *a* and *b* are called *white,* the remaining triples are called *black.*

We modify this partial configuration by 'blowing up' each point λ times. Our new point set is $V \times I_\lambda$, where $I_\lambda = \{1, 2, ..., \lambda\}$ and we will say that a point $(v, i) \in V \times I_{\lambda}$ lies *above* the point $v \in V$. Similarly, the triangles in our derived partial triple system lie *above* triangles in the base PTS. Specifically, above each black triple $\{i, i+1, x\}$ (where $x \in \{a, b\}$) we put every triple $\{(i, k_1), (i+1, k_2), (i+1, k_3), (i+1, k_4)\}$ 1, k_2), (x, k_3) }, except the one with $k_1 = k_2 = k_3 = 1$. Above each white triple we put in a single triple $\{(i, 1), (a, 1), (b, 1)\}$. These new triples are colored black and white, depending on the color of the corresponding triples in the base design. Let P denote the resulting partial triple system.

It is straightforward to show that P is simple, that no pair occurs more than λ times, and that λ is the smallest such value. We need only show that P is **R-indecomposable .**

Let t_i denote the *i*th white triple, $\{(i, q), (a, 1), (b, 1)\}$. Color the edges lying above $(1, b)$ red, and those above $(2, b)$ blue. Note that every black triple above $(1, 2, b)$ contains one red and one blue edge. Moreover $t₁$ is the only triple with a red but not a blue edge, and t_2 is the only triple with a blue but not a red edge.

Suppose that P were decomposable into partial triple systems P_1 , P_2 with multiplicities λ_1 , λ_2 , where $\lambda_1 + \lambda_2 = \lambda$. Each red edge (and similarly each blue edge) appears in exactly λ triples in P. Hence it appears in exactly λ_i triples in P. It follows that the total number of red edges appearing in triples of P_i is the same as the total number of blue edges in triples of P_i , namely $\lambda_i \lambda^2$. Each black triple of P either adds 1 to both sums or adds 0 to both sums. Suppose without loss of generality that $t_1 \in P_1$. Then there is one more red edge than blue edge in P_1 . For the sums to equate there must be a triple with a blue but not a red edge. The only such triple is t_2 . Summarizing, in any λ -decomposition the part with the triple t_1 must contain the triple t_2 .

A similar argument shows that the part with triple t_2 also contains t_3 . Inductively, we can conclude that one part contains each t_i , $1 \le i \le \lambda$. But these white triples contain the edge $\{(a, 1), (b, 1)\}\$ a total of λ times, so $\lambda_1 = \lambda$. It follows that the decomposition is trivial, and that P is λ -indecomposable. \square

We next complete this λ -indecomposable partial triple system to a triple system using a theorem of Rodger [13]. Our systems are simple, so here $\alpha = 0$.

Theorem 2.4 (Rodger). A partial triple system $(n, 3, \lambda)$ -PTS with α repeated *triples can be embedded in a (v, 3,* λ *) triple system with* α *repeated triples, for some* $v \leq 3(2|\lambda/2| + 1)((3\lambda + 2)n + 1)$.

Combining Lemma 2.1, Theorem 2.2 and Theorem 2.4 we get the following.

Theorem 2.5. For each $\lambda \ge 1$ *there exists an indecomposable simple* $(v, 3, \lambda)$ *triple system. Furthermore* $v \leq 3(2|\lambda/2| + 1)((3\lambda + 2)\lambda(\lambda + 2) + 1)$.

To prove our main theorem we will now embed this indecomposable simple triple system of order v into a simple triple system of order w for every $w \ge 2v + 1$. This will produce an indecomposable simple triple system $(w, 3, \lambda)$ for all w larger than some specified value (roughly $18\lambda^4$). We need only apply a new and powerful result of Shen [161 which is an analogue of the Doyen-Wilson theorem [7] for higher λ .

Theorem 2.6 (Shen). A simple triple system $(v, 3, \lambda)$ can be embedded in a simple *triple system (w, 3,* λ *) for every w* $\geq 2v + 1$ *satisfying the necessary conditions.*

Using Theorems 2.5, 2.6 and Lemma 2.1 we **have our main theorem.**

Theorem 2.7. An indecomposable simple triple system $(v, 3, \lambda)$ exists for all $v \ge v_0(\lambda)$ satisfying the necessary conditions where $v_0(\lambda) \le 6(2|\lambda/2| + 1)((3\lambda +$ $2(\lambda(\lambda + 2) + 1) + 1$.

The bound in Theorem 2.7 can be improved for odd λ by roughly a factor of $9\lambda^2$ if the triple systems constructed are not necessarily simple. Konig [10] gives examples of λ -regular graphs on $\lambda(\lambda + 2) + 1$ vertices without any regular factors (Hoffman, Rodger, and Rosa [8] show that these graphs are the smallest possible). Colbourn [2] shows that these graphs are the neighborhood of a point in a (not necessarily simple) triple system on $\lambda(\lambda + 2) + 2$ points. We now use the theorem of Stern $[17]$ to embed this triple system in one of order v for all $v \ge 2\lambda(\lambda + 2) + 5$ which satisfies the necessary conditions.

3. Indecomposable triple systems with $\lambda = 5$

In this section we consider the case $\lambda = 5$. The necessary conditions for the existence of a (v, 3, 5) triple system are $v = 1$, 3 (mod 6). We use the computer to construct several small examples of indecomposable simple $(v, 3, 5)$ designs and then again appeal to Shen's Theorem (Theorem 2.6) to complete the spectrum.

In [18], an extremely effective hill-climbing algorithm for finding Steiner triple system is discussed. It is straightforward to modify that algorithm to find simple triple system with higher λ . It is also an easy modification to the algorithm to fix a set of blocks that must occur in the final triple system. This is done by beginning with this set of blocks and then hill-climbing, never allowing any block from the initial set to be deleted.

Using these two modifications of Stinson's algorithm we found triple systems T with $\lambda = 5$ which contain the simple 5-indecomposable partial triple system P described in Theorem 2.2, so by Lemma 2.1 we h;.ve constructed a simple indecomposable triple system $(v, 3, 5)$. Note that P contains 35 points, so that necessarily T must contain at least 35 points. In fact, we were surprised to find a $(39,3,5)$ simple indecomposable triple system which contained P. Using this modified algorithm, we also found $(v, 3, 5)$ simple indecomposable triple system for all $v=1, 3 \pmod{6}$, $39 \le v \le 49$. These triple systems are given in [1].

Using a smaller simple 5-indecomposable partial triple system and the aforementioned modification to Stinson's algorithm, Colbourn (personal communication) has constructed simple indecomposable triple systems $(v, 3, 5)$ for $v = 25$, 27, 31, 33 and 37.

We have the following theorem for $\lambda = 5$.

Theorem 3.1. *A simple indecomposable triple system* (v, 3, 5) exists for all $v \equiv 1, 3 \pmod{6}$, $v \ge 25$.

Proof. Assume $v = 1, 3 \pmod{6}$. If $25 \le v \le 49$, then a simple indecomposable triple system (v, 3, 5) exists by the above computer constructions. If $v \ge 51$, then **a simple indecomposable triple system (v, 3, 5) exists by Theorem 2.6 and the** existence of a simple indecomposable $(25, 3, 5)$ triple system. \Box

The values of v for which the existence of a simple indecomposible (v, 3, 5) design remains open are $v = 13$, 15, 19, and 21.

cknowtedgment

The authors thank Charles Colbourn for helpful discussions on this material.

References

- [1] D.S. Archdeacon and J.H. Dinitz, Small indecomposable triple systems with $\lambda = 5$, Department of Mathematics, Research Report 90-06.
- *[2]* C.J. **Colboum, Simple neighbourhoods** in triple systems, J. Combin. Theory Ser. A 52; 10-19.
- [3] C.J. Colbourn and M J. Colbourn, The computational complexity of decomposing block designs, Ann. Discrete Math 26 (1985) 345-350.
- [4] C.J. Colbourn and A. Rosa, Indecomposable triple systems with $\lambda = 4$, Studia Scientiarum Mathematicarum Hungarica 20 (1985) 139-144.
- [5] M. Dehon, On the existence of 2-designs $S_{\lambda}(2, 3, v)$ without repeated blocks, Discrete Math. 43 (1983) 155-171.
- [6] J.H. Dinitz, Indecomposable triple systems with $\lambda = 6$, J. Combin. Math. Combin. Comput. 5 (1989) 139- 142.
- (71 J. Doyen and R.M. Wilson, Embeddings of Steiner triple systems, Discrete Math. 5 (1973) 229-239.
- [8] D.G. Hoffman, C.A. Rodger and A. Rosa, Maximal sets of 2-factors and Hamiltonian cycles, J. Combin. Theory Ser. B. to appear.
- [9] T.P. Kirkman. On a problem in combinations. Cambridge and Dublin Math. J. 2 (1847) 191-204.
- [10] D Konig, Theorie der endlichen und unendlichen Graphen; Kombinatoris de Topologie der Streck-enkomplexe. (Chelsea Pub. Co.. New York, 1950).
- [11] E.S. Kramer, Indecomposable triple systems, Discrete Math. 8 ($10^{\circ} + 17^{\circ} 180$.
- [12] S. Milici, Indecomposable $S_6(2, 3, v)$'s, J. Combin. Theory Ser. \triangle :5 ($_1$ 991) 15-26.
- [13] C.A. Rodger. Triple systems with a fixed number of repeate 1 ' pres. J. Austral Math Soc. Ser. A 41 (1986) 180-187.
- [14] D.G. Sarvate, All simple BIBD's with block size 3 exist, Ar. Combin. 21-A (1986) 157-270.
- [15] H. Shen, Indecomposable triple systems without repeated blocks, preprint.
- [16] H. Shen. Embeddings of simple triple systems, preprint.
- f17) G. Stem. Triplesysteme mut untersystemen, Arch. Math (Basel) 33 (1979) 204-208. ;nx; **2.k. bi 3SO!l. F-'i'l- J:! :'!>i.T,** Lrgorithms for the cc,nstrur*ion of ci)mbinatorial '&I,\$, Am,.
- C.IN: SHIBOH, IATLES (198₆₎ C.BOK
Discrete Math. 36 (1985) 331-334.