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Abstract: The present paper shows that rational RK-methods  
are not very appropriate to solve stiff differential equations. 
The CA0-stability (i.e. Componentwise contractivity) is defined 
and the non-existence of CA0-stable rational RK-methods  is 
demonstrated.  Furthermore it is shown that the stepsizes which 
can be expected when solving a stiff differential system with a 
rational or with an explicit linear RK-method are of the same 
order of magnitude. 
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1. Introduction 

We consider the system of differential equa- 
tions 

Y' = f ( Y ) ,  y(xo) =Y0, (1.1) 

where Yl, Yo, f (Y)  are elements of R ~ (or C ~). For 
solving this initial value problem numerically, 
Wambecq [5] has proposed rational Runge-Kut ta  
methods. These are nonlinear methods defined by 

Yx = Y0 + wij , 
j= l  ~ bkg k 

k=I (1.2) 

( ) gi=hf  yo + ~.. aijg j , i = 1  . . . . .  s, 

where h is the stepsize and a~j, wij, b k are real 
parameters. With (a, b) the scalar product of two 
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vectors a and b, the product-quotient ab/d is 
defined for complex or real vectors in the follow- 
ing way: 

ab a R e ( b , d ) + b R e ( d , a ) - d R e ( a , b )  
d ( d , d )  

(1.3) 

Further, the conditions 

~ bkg k ~ 0 (1.4) 
k = l  

and 

k b, = 1 (1.5) 
i=1 

will be assumed. (1.4) ensures that the product- 
quotient (1.3) is well defined and (1.5) is chosen in 
order to eliminate the ambiguity of the multiplica- 
tive constant in numerator and denominator of 
(1.2). Moreover, throughout this paper, method 
(1.2) will be supposed to be of order >~ 1, i.e. (see 
[5]) 

i 

k • w,j= 1. (1.6) 
i=1  j = l  

The methods of type (1.2) have been introduced 
for the numerical solution of stiff differential sys- 
tems. Due to the fact that they are explicit and do 
not require the computation and the storage of the 
Jacobian of f ,  they are easy implementable and 
seem to be of great interest. 

The aim of this work is to emphasize that in 
fact these methods are not very appropriate to 
solve stiff systems of differential equations. 

For this purpose, we first motivate the intro- 
duction of a new stability criterion, called CA 0- 
stability (i.e. componentwise contractivity, see Sec- 
tion 2). Then, in Section 3, we show that the 
stepsizes which can be expected when solving a 
stiff differential system with a rational or with an 
explicit linear RK-method are of the same order of 
magnitude. In Section 4 we prove the non-ex- 
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istence of CA 0-stable rational RK-methods of type 
(1.2). Finally, in Section 5, we show that 2-stage 
methods of type (1.2) possess the componentwise 
contractivity property only for non-stiff problems. 

2. The CAo-stability 

In [2] Hairer showed that the stability be- 
haviour of method (1.2) for the linear equation 

y '  =Ay ,  y ( x o )  =Y0, (2.1) 

where A is assumed to be a constant n × n matrix 
reducible to a diagonal form by a unitary transfor- 
mation, is equivalent to its behaviour for the diag- 
onal system 

y '  = A y ,  y ( x o )  =Y0, A = diag()~l . . . . .  2,,). 

(2.2) 
Due to the nonlinearity, applying (1.2) to the 

system (2.2), we get 

YI = Ryo, 

R = diag(r 1 . . . . .  G) = I + diag(q 1 . . . . .  q , ) ,  (2.3) 

where the qi are rational functions depending on 
all the zj .'= hXj and on the initial vector Yo, i.e. 
(with z = (z I . . . . .  z , )  "r) we have 

q, = q,(z; Yo), R = R ( z ;  Yo). (2.4) 

This fact shows that we cannot restrict the stability 
analysis to a scalar test equation and has lead 
Hairer to define the concept of A-stability in the 
following way: 

Definition 2.1. A subset D of the complex plane C 
is called a stability region of the method (1.2) if 
and only if in every dimension n the application of 
(1.2) to a system (2.2) with h)~ i ~ D ,  i =  1 . . . . .  n, 
and an arbitrary initial vector Y0 ~ C" yields a 
numerical solution Yl satisfying/lYlll ~< Ily0ll (in the 
Euclidean norm). 

Definition 2.2. A method (1.2) is Ao-stable if and 
only if ( x  E R Ix ~< 0} is a stability region, A-sta- 
b& if and only if (z  ~ C IRe(z) ~< 0) is a stability 
region. 

Within this frame, a complete characterization 
of the A-stability of methods (1.2) with s = 2 has 
been given by Calvo and Mar-Quemada [1]. For 
instance, they have proved that the method 

Yl =Y0 "~ 

g, =hf(yo), 
is A-stable. 

But, due to 
property 

IIR(z; Yo)Yofl <~ Ilyol[ 

is not sufficient to ensure 

IlR( z; yo)[l <~ l. 

gl gl 

2gl - g2 ' 

g2 = hf(yo + g, ), 

(2.5) 

the dependence of R in Y0, the 

(2.6) 

(2.7) 

To illustrate this, we consider (2.5) applied to the 
two-dimensional system 

y '  = A y ,  Y0 = (1, 10-t*) T, 

A = d i a g ( -  1, )~z), (2.8) 

with stepsize h = 1. As a first example, we take 
~'2 = - 4  and /~ = 1. This leads to the numerical 
solution YI = (0.59, 0.11) T, i.e. r l =0.59 and r 2 = 
1.1. The second example is obtained by setting 
~k 2 ~--- - -  106 and # = 7. In this case we obtain Yl = 
(0.999998, 0.999995 10-s)  x, r 1 = 0.999998 and r 2 
= 99.9995. Besides the fact that (2.7) is not satis- 
fied though the method is A-stable, we observe 
here that the component of the solution corre- 
sponding to the smallest eigenvalue (i.e. hE) is 
increasing instead of decreasing faster as the other 
component as is the case for the exact solution. 

The major consequence of this lack of compo- 
nentwise contractivity is that the numerical solu- 
tion of (2.2) can possess completely wrong compo- 
nents despite of the A-stability of the applied 
method. However this bad property can not only 
be 'catastrophic' for the accuracy of the numerical 
solution but also for the automatic error estimate 
and consequently for the automatic stepsize ad- 
justment, since the usual algorithms are based on 
the components of the local truncation error and 
of the solution yl. 

For these reasons, we think it is crucial that a 
nonlinear method possesses the componentwise 
contractivity property. 

Definition 2.3. A method (1.2) is called CAo-stable 
if and only if in every dimension n the application 
of (1.2) to a system y ' =  Ay ,  A = diag()h, . . . , )~,)  
with hX i ~ (x  ~ R Ix ~< 0} and an arbitrary initial 
vector Y0 ~ C" yields rational functions ri satisfy- 
ing IrA ~ 1, i = 1 , . . .  ,n. 

Observe that CA0-stability implies A0-stability. 
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3. Numer ica l  behaviour  

Before we study the CA0-stability of rational 
RK-methods, we want to point out some experi- 
mental results. 

For the numerical tests, we have used the 2-stage 
Ao-stable method of order 2 embedded in a method 
of order 3 given by Hairer [2] and the A-stable 
method (2.5) of order 1 embedded in a method of 
order 2 (a method which has been derived in the 
same way as Hairer's method). Though it has no 
influence on the next developments, we have to 
remark here that the embedding used in these two 
cases was not very appropriate because of the 
different behaviour of the stability functions R (h X; 
Y0) and R(hk;  Y0) (computed for y ' =  Xy) when 
hA tends to infinity. The algorithm used for the 
automatic stepsize control is described in [2]. All 
the computations have been done on the IBM 
370-168 of the University of Heidelberg using 
double precision arithmetic. 

The problems used in most of the tests we have 
done are the pure diffusion (c = 0) and the diffu- 
sion-convection ( c = 2 5 )  problem (Hindmarsh-  
Byrne [3]) 

Ou 32u Ou 
c.  0~<x~<l , t>~0 ,  

0t 0x 2 ~ x '  

u(0, t) = 1, a~-~(1, t ) =  0, t > 0 ,  (3.1) 

u (x ,  0) = 0, 0 < x < l .  

The stepsizes chosen by these programs are 
always very small and comparable with the step- 
lengths which would have been chosen l~y a pro- 
gram using an explicit linear RK-method. The 
only exception we have found is when the sta- 
tionary solution has nearly been attained and these 
observations completely agree with the results of 
Hairer-Wanner  mentioned in [2]. 

To explain these small stepsizes, consider the 
system 

y' = Ay ,  A = diag(X 1, ~k2) , 

withXl,X 2 ~ R  and X l < < x  2 < 0  (3.2) 

and let (Y,)~I be the sequence of numerical solu- 
tion obtained from Yo ~ R2 by iteration of a ra- 
tional RK-method with a fixed stepsize h. Observe 
that the sequence of quotient Y2JY~i can converge 
to a constant value which can be interpreted as a 

fix-point of the iteration 

Y2,i+l = r2( h~l, h~2; Yli, Y2i) Y2i 
• - -  (3 .3 )  

Yl.i+l rl(hXx,hX2;Yli,Y2i) Yxi' 

where r I and r 2 are the stability functions of the 
method (see Section 2) and the quotient 

r2( hXl, ha2; Yl,, Y2i) (3.4) 
rl(hX1,  hX2; Yli, Yzi) 

in fact only depends of hX 1, hX 2 and of the 
quotient (y2Jyli) 2 (see Section 5). In consequence, 
after a minimum number of iterations, the two 
components of the numerical solution converge to 
zero with the same rate of convergence (Y2i/Yai = 
const.). (Observe that this is not the case for the 
true solution!). This implies that the two compo- 
nents of the numerical solution at each iteration 
play a role in the estimation of the error until we 
can neglect them• 

Thus, for reasons of accuracy, the steplength is 
forced to stay small. We remark that we have here 
an inconvenience comparable to the condition 

hi'i[ < const, i =  1 . . . .  ,n, (3.5) 

which forces hX i to stay in the stability region in 
the case of an explicit linear RK-method. 

It seems that a possibility to eliminate this 
inconvenience is to rescale at each step the system 
we integrate, i.e. to replace y by Dy where D is a 
diagonal matrix such that all the components of 
Dy o are of the same order of magnitude (unless the 
null ones). But now the problem is that the reduc- 
tion to diagonal form by a unitary transformation 
of a scaled (non-diagonal) problem yields a non 
scaled problem in general. And, consequently, we 
cannot reduce the stability analysis of this algo- 
rithm to diagonal scaled systems. 

4. Rat ional  R K - m e t h o d s  are not  CAo-s table  

For reason of convenience, we now shall use the 
matrix 

Z ,= diag(z 1 . . . . .  z , )  = ha (4.1) 

instead of the vector z. 
Using this notation, we have: 

Lemma 4.1. The application of (1.2) to the problem 
(2.2) yields the following expressions ]or the vectors 
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gi and b ".= E~i= abigi: 

g, = P , (Z )yo ,  b = P ( Z ) y  o, (4.2) 

where 

i 
P , ( z )  = E  ;zJ, i= 1 . . . . .  s, 

, - 1  (4.3) s 

p(  z )  = E  jzJ, 
j = l  

and 

~J = E ail,alll2 "'al, 21, , 
.12 ..... 6-, (4.4) 

f o r j  = 2 . . . . .  s and i = j  . . . . .  s, 
otherwise, 

tlJj= k bicI)j ( 4 . 5 )  
i=1 

(with a 0 = O fo r j  > i). 

Proof. The result is obtained by a simple induction 
argument. [] 

Remark. The readers who are familiar with the 
trees introduced by Butcher in the case of linear 
methods will observe that ~j is simply the poly- 
nomial of degree 1 in b i a n d j  - 1 in aik associated 
with the only tree of o rde r j  without ramifications. 

From now on, we shall suppose Z real. 
We have already seen in Section 2 that the 

numerical solution of (2.2) obtained by the use of 
(1.2) is of the form 

Yl = R (  Z; Yo) Yo, (4.6) 

where 

R = diag( q . . . . .  r, ) 

with ri( Z; Yo) = 1 + qi( Z; Yo). (4.7) 

Lemma 4.2. The rational function qj( Z; Yo) defined 
in (4.7) is given by 

E(Z;yo) 
q j ( Z ; y o )  D ( Z ; y o )  , (4.8) 

where 

Yo) z f ,  (4.9) 
K = I  

D ( Z ;  Yo) = ( P ( Z ) Y o ,  P ( Z ) Y o ) ,  (4.10) 

and 

M = I  i=1 j = l  

--{~K ~ k ~ Wij~iM~L-M ( 4 . 1 1 )  
M ~ I  i=1 j = l  

( with wij = 0 for j > i). 

Proof. Simple calculations taking into account 
Lemma 4.1. [] 

This allow us to prove the main result: 

Theorem 4.3. There exists no CAo-stable rational 
RK-methods of type (1.2). 

Proof. Choosing n = 2 and Y0 = (0, 1) T, (4.9) and 
(4.10) become: 

N 1 ( Z ; Y o ) =  E aKLZ2 c Zl K (4.12) 
K=I \ L=2 / 

and 

D( Z; yo) = __ ~jz~ (4.13) 
j = l  

Suppose now that the method is CA0-stable. 
This implies that 

- 2 D ( Z ;  Y0) ~< N,(  Z; Yo) <~ 0 

for all ~a l  negative z I and z 2 . (4.14) 

But since, for our particular choice, D(Z;  Yo) is 
independent of z 1 and NI(Z; Y0) is a polynomial in 
z~ without constant term, (4.14) is equivalent to 

N , ( Z ; y o ) = O  Vz, ~ 0, Vz2 ~ 0. (4.15) 

Therefore we must have (see (4.12)): 

aXL = 0 VK,  L. (4.16) 

Observing now that, because of (1.5) and (1.6), 

412 = 1 (4.17) 

we have obtained the contradiction. [] 

5. 2-stage rational RK-methods and CAo-stability 

In this section we want to show that 2-stage 
rational RK-methods are componentwise contrac- 
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tive only when the problem to be integrated is 
non-stiff.  For  this study, we need the following 
general result: 

Lemma 5.2. I f  (5.1) is CAo-stable, then ~ <~ 1 

The  main result is now: 

Proposition 5.1. Let  Z be a real diagonal n X n 
matr ix  and y o ~  R " \ ( 0 ) .  Let Pkj be the permu- 
tation matrix which exchange the kth and j th  col- 
umns (or rows). Then 

qk( Z;  Yo) = q j (  P,  jZPk j ;  PkjYo) .  

Proof.  This result is easily seen by  combining (1.2) 
with (4.2) and (4.3) or f rom (4.9), (4.10) and (4.3). 
[] 

We shall now restrict our considerations to 
consistent 2-stage rational RK-methods ,  i.e. meth- 
ods wi ths  = 2, b 1 + b 2 = 1 and wal + w21 + W2z = 1. 
Without  restriction of the generality, we can sup- 
pose a n ~ 0 (otherwise we have the explicit Euler 
method:  1-stage and linear!). 

Only methods of the form 

gag1 
Yl =Y0 q b ig  1 + b2g 2 , 

ga = h f ( Y o ) ,  g 2 = h f ( y o + a 2 , g , )  (5.1) 

with b l + b 2 = 1 and (/)2 = b2a21 ~ O, 

can be CA0-stable (since CA0-stability implies 
Ao-stability, this is a consequence of [2, Proposi- 
t ion 4] for b 2 4: 0; the case b 2 = 0 can be eliminated 
by  showing that a necessary condit ion for CA 0- 
stability is then w H + w:~ + w22 = 0). 

We shall also restrict the study of the stability 
of methods  of the form (5.1) to two-dimensional  
differential systems of the form (2.2) (i.e. n = 2). In 
this case we get a rational function qa(Z; Yo) (or 
equivalently r i (Z;  Yo)) given by (see Lemma 4.2): 

N a ( Z ; Y ° )  (5.2) 
D ( Z ;  yo) ' 

ql(  Z;  Yo) 

where 

N 1 ( Z ;  Yo) = y~oZ3(1 + "2z1)  

+y]oz ,z~[1 + " 2 ( 2 z 2 -  z , ) ] ,  (5.3) 

D ( Z ;  Yo) = Y~0Z~( 1 + *2z l )  2 

+y]oz22(1 + "2z2)  2. (5.4) 

We have the following necessary condit ion for 
CA0-stability (i.e. the condit ion for scalar equa- 
tions; compare  with [2]): 

Theorem 5.3. Let  n = 2, let a be a real positive 
number and 

( 1 0 )  
Z , = z l  0 a " 

Suppose (/)2 <~ - ½. Then ((o o) ) 
(i) r I z: ;Y° = 1  

for  a l l y  o ~ R e \ ( 0 }  and all real z 2 < 0, 

(ii) I r l (Z, ;  Y0)l ~< 1 for  all Yo ~ R 2 \ {  0} and all 
real z I < 0 i f  and only if  a = 0 or a >1 ½. 

Moreover, Irl(Z~; Yo)l > 1 / f 0  < a < ½, 

z 1 < [ ( / )2(1-  2 a ) ] - 1  

and 

a2y]o > Y12o (1 + . 2 z l ) / ( ( 1  - 2 a ) * 2 z  1 - 1). 

Before proving Theorem 5.3, we want  to state 
its main consequence,  Corol lary 5.4 (also see Fig. 
1). 

Corollary 5.4. Let  n = 2, a > 0 and 

Za = zl 0 a " 

Suppose (/)2 <~ - ½. Then, with the notations of  (4.1) 
and (4.6) we have: 

(i) [ IR( / ;  Y0)l[ = 1 for  a l l y  o ~ R 2 \ ( 0 )  and all 

%z 2 

:: :" .f;-,..-. :,..::, 

:')"5:;'",':" 

Fig. I. The set described in Corollary 5.4 (tg y = ½). 

- - - ~ Z  1 
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diagonal matrices Z such that z 1 ~ 0, z 2 <~ 0 and 
Z 1 • Z 2 ~ O ,  

(ii) IIR(Z,; Y0)ll ~ 1 for ally o e R 2 \  {0} and all 
real z 1 < 0 if and only if  ½ < a < 2. 

Proof. Simple application of Theorem 5.3 and 
Proposition 5.1. [] 

Thus for non-scalar two-dimensional problems 
of the form (2.2) with negative real eigenvalues Xi, 
the method (5.1) is componentwise contractive for 
all h > 0 if and only if ½ ~< )~2/XI < 2, i.e. essen- 
tially when the problem is non-stiff. 

We now give the proof of Theorem 5.3. 

Proof of Theorem 5.3. From (4.6), (4.7), (5.2), (5.3) 
and (5.4) we easily obtain assertion (i) and asser- 
tion (ii) for the case a = 0. 

Now suppose z 1 < 0 and a > 0. Then (5.3) and 
(5.4) become 

NI(Z~; Yo) = z3{ Y•o( 1 + 42zt) 

+y2oa211 + 4 2 ( 2 a -  1)zl] }, (5.5) 

D(Z,,;  yo) = Zl~{ y•o(1 + 42zl) 2 

+y~oa2(1 + 42az~) z} (5.6) 

and we see, since 42 ~< - ½: 

q,( Z,,; Yo) <~ 0 

for al ly o ~ R2\{O} and allz I < O i f a  >_- ½, 

qt(Z,,; Yo) > 0 

i f O < a  < ½,z, < [42(1 - 2a)] - '  

and a2y2 o > y?o(1 + 42zt ) / ( (1  - 2a)42z,  - 1). 

It remains therefore to prove 

ql(Z~; yo)>~ --2 

for al ly o ~ R2\{0}  and allz 1 < 0 i f a  > ½. 

But ql(Z~; Yo)>-- - 2  is equivalent to 

y2o(1 + 42zl)[2 + (1 + 242)zt] 

+y~oa 2 [2 + (442a + 1)z~ 

+ (24za 2 + 2 a -  1)42z~] >10. 

Sincez 1 < 0 , a > I ½  and • 2 ~ < - ½ , w e h a v e  

(1 + 42z,)[2 +(1 + 242)z,]  > O, 

4 4 2 a + 1 ~ 0  and 242a 2 + 2 a - 1 ~ < 0 ,  

which completes the proof. [] 

To conclude, we mention that, for two-dimen- 
sional problems of the form (2.2) with negative 
real eigenvalues, a 3-stage method (1.2) is compo- 
nentwise contractible for all h > 0 only if )~2/~,t 
belongs to [½, 2] (i.e. again when the problem is 
non-stiff). The proof, though more technical, is 
similar to the proof given in this section for 2-stage 
methods and is available in [4]. 
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