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In the field, close planting inevitably causes mutual shading and depression of leaf photosynthesis. To
clarify the regulative mechanisms of photosynthesis under these conditions, the effects of planting
density on leaf structure, gas exchange and proteomics were carefully studied in field-grown sorghum.
In the absence of mineral deficiency, (1) close planting induced a significant decrease in light intensity
within populations, which further resulted in much lower stomatal density and other anatomical charac-
teristics associated with shaded leaves; (2) sorghum grown at high planting density had a lower net pho-
tosynthetic rate and stomatal conductance than those grown at low planting density; (3) approximately
62 protein spots changed their expression levels under the high planting density conditions, and 22 pro-
teins associated with photosynthesis were identified by mass spectrometry. Further analysis revealed the
depression of photosynthesis caused by mutual shading involves the regulation of leaf structure, absorp-
tion and transportation of CO2, photosynthetic electron transport, production of assimilatory power, and
levels of enzymes related to the Calvin cycle. Additionally, heat shock protein and oxygen-evolving
enhancer protein play important roles in photoprotection in field-grown sorghum. A model for the
regulation of photosynthesis under mutual shading was suggested based on our results.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Photosynthesis is the basis of crop growth and yield formation.
Light not only acts as the driving force of photosynthesis, but also
affects the structure and function of photosynthetic apparatus.
Therefore, light plays an important role in photosynthesis and crop
yield [1,2]. Leaves differ greatly in structure and physiology under
high- and low-light conditions [3,4]. Generally, sun leaves devel-
oped under high light are smaller and thicker, with more developed
palisade tissue, higher stomatal density, and thinner granal stacks
compared to shade leaves [4,5]. In addition to leaf morphology
and structure, the series of physiological and biochemical reactions
are also adjusted considerably [3]. Sun leaves have lower chloro-
phyll content, yet have higher quantities of electron transfer carriers
and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)
than shade leaves based on leaf area [2,3,5,6]. Accordingly, sun
leaves have a higher photosynthetic capacity per leaf area.
Conversely, shade leaves exhibit a lower photosynthetic capacity.

Though light is very important for photosynthesis, too much
light can also damage the photosynthetic apparatus. To avoid the
photodamage caused by high light, plants have developed several
mechanisms to deal with excessive irradiance [7–9]. Among these
photoprotective mechanisms, one of the most important is
thermal dissipation relying on xanthophyll cycle [10]. Despite
the existence of this mechanism for releasing excessive excited
energy, the production of reactive oxygen species is still unavoid-
able during photosynthesis, especially under strong irradiance. To
counteract the toxicity of reactive oxygen species, plants have
developed a highly efficient antioxidant enzymic defense system
[11], mainly comprising superoxide dismutase, ascorbate peroxi-
dase, catalase, peroxidase, and glutathione reductase. Many stud-
ies have proved that sun leaves are insensitive to strong light,
while shade leaves grown under low light have a weak photopro-
tection capacity and enhanced sensitivity to high light [4,9].
However, most of the evidence is derived from simulation exper-
iments, in which there were striking differences in light intensi-
ties between plant growth and treatment. For instance, light
intensity during plant growth was 150 lmol m�2 s�1, while that
used to induce photoinhibition was 1800 lmol m�2 s�1, and so
on [9,11]. Such studies may greatly assist in elucidating photopro-
tective mechanisms under conditions of extremely strong light,
but might not reflect the actual light acclimation strategies of
crops in the field.
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In practice, planting density is very important for crop produc-
tion [12,13]. Close planting of crops always causes mutual shading
among individuals and inevitably a depression in leaf photosynthe-
sis [6]. In this situation, not only the light intensity, but also the
spectrum of light is changed as a result of mutual shading [5,14].
In fact, variations in both light intensity and the spectral compo-
nents have a major influence on photosynthesis [5,15]. However,
most previous studies concerning the response of crops to shading
have mainly focused on artificial shading in the field [1,2]. Artificial
shading with shade nets or screens does not change the compo-
nents of the spectrum [14]. Evidently, there are distinct differences
between artificial shading and mutual shading in the field. There-
fore, the mechanisms of decreases in photosynthesis caused by
mutual shading may be different when it comparing with artificial
shading under field conditions.

Sorghum, a typical C4 plant, is one of the most important crops
globally, with a very high photosynthetic rate and large biomass
production. To clarify the regulative mechanisms of photosynthe-
sis in the field, the effects of mutual shading among individuals
on gas exchange, chlorophyll fluorescence, leaf structure and pro-
teomics were carefully investigated. This study provides new
insight into photosynthetic regulation in field.
2. Materials and methods

2.1. Plant growth and experiment design

The experiment was conducted at the Botanical Institute of
Chinese Academy of Sciences, Beijing (39�280–41�250N and
115�250–117�300E), in 2012–2013, in a semi-humid, continental,
and monsoon climate. Sorghum (Sorghum bicolor L. cv ‘Liaoza 12’)
seeds were imbibed on wet paper for 1 day and the germinated
seeds were sown in columniform downspouts (0.16 m in diameter
and 0.75 m in height) filled with culture media (peat:loess = 1:1;
the mixed soil in each downspout contained 360 g moderate
organic manure and 1.43 g available N), at the beginning of May,
2012 and 2013. The bottom of each columniform downspout was
sealed with a nutrition bowl and embedded in the field under
Fig. 1. Experimental design in the field.
one of two planting densities (5 and 36 plants m�2). There was
one seedling per downspout, as shown in Fig. 1. Nutrition and
water were supplied in sufficient quantities per plant throughout
the experiment; therefore, avoiding potential nutrient and drought
stress. During the experiments, plots (2 m � 2 m) were selected
randomly. The fifth leaf (from top to bottom) was used for all mea-
surements in this study.

2.2. Measurement of plant growth

Plant height, stem diameter, length and width of each leaf (ten
replicates for each planting density) were determined using a
straightedge rule and vernier caliper. Leaf area was measured using
a leaf area meter (AM100; ADC, UK). Specific leaf weight was cal-
culated based on leaf area and leaf dry weight.

On a clear day, the diurnal variations in light intensity and air
temperature were obtained using a quantum meter (QMSS; Photo-
synthetic Photo Flux, USA) and thermometer, respectively.

2.3. Measurement of gas exchange

Gas exchange analysis was performed in a leaf chamber with a
CO2 concentration of 380 lmol mol�1, 80% relative humidity under
an irradiance of either 600 or 1200 lmol m�2 s�1, using a gas
exchange system (CIRAS-2; PP-Systems, UK). Net photosynthetic
rate (Pn) and stomatal conductance (Gs) were determined before
11:00 on a sunny day. The Pn and Gs were recorded when CO2

uptake was steady and ten leaves were measured for each planting
density.

2.4. Measurement of chlorophyll a fluorescence

Chlorophyll a fluorescence was measured using a fluorimeter
(Handy PEA; Hansatech, UK). Fully dark-adapted leaves (10 h)
were used to determine Fv/Fm (where Fv is the variable and Fm is
the maximum Chl fluorescence yield) at 06:00. After the initial
Chl fluorescence yield (Fo) was measured, a 1-s pulse of saturating
red light (3500 lmol m�2 s�1) was applied to obtain Fm. The result
for Fv/Fm was calculated as (Fm–Fo)/Fm, in which Fv is defined as
Fm–Fo [16]; Fv/Fm was also determined at 14:00 and 18:00 after
dark adaption for 20 min of 20 leaves measured in each treatment.

2.5. Measurement of chlorophyll content

Twenty leaf discs (5.652 cm2) were cut from the middle part of
each leaf lamina with a puncher (6 mm in diameter). Samples for
chlorophyll pigment analysis were extracted using 80% acetone,
and absorbance measurements were made using a spectrophotom-
eter (UV-8000S; China) at 663 nm and 646 nm. Chlorophyll con-
tent was calculated according to the method of Porra et al. [17];
five replicates were measured for each treatment.

2.6. Measurement of stomatal density and leaf anatomical structure

Stomatal density was measured followed the method of Coupe
et al. [18]. Nail polish was applied to dental imprints to obtain a
replica of the leaf surface. The replica was observed under a light
microscope (Nikon-E800; Japan), and photographed using a digital
camera (BH-2; Olympus, Japan). The number of stomata was
counted in 20 fields of view using six marked leaves from each
treatment.

As described by Jiang et al. [4], a leaf segment (2 mm � 2 mm)
without major veins was fixed at 4 �C in 3% glutaraldehyde in
0.1 M cacodylate buffer (pH 7.2), and then treated with 1% osmium
tetroxide overnight at 4 �C. The fixed segment was dehydrated in a
graded acetone series and embedded in Spurr’s resin (Ladd). Light
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microscopy (Nikon-E800; Japan) was carried out with a 1-lm thick
transverse section of the leaf cut with a glass knife on an ultrami-
crotome (Leica Ultracut R, Germany) and stained with 0.5%
toluidine blue. Light micrographs were obtained using a digital
camera (BH-2; Olympus, Japan). Measurements of leaf thickness,
cross-sectional area of the vascular bundle, and contact area of
the bundle sheath cells [19] were obtained using Photoshop soft-
ware; 20 different positions were measured in each segment.

2.7. Proteomic determination

2.7.1. Preparation, extraction, and quantitation of total protein
Leaf samples were immediately weighed and immersed in

liquid nitrogen, and stored at �80 �C for proteomic analysis at
Beijing Protein Innovation Co., Ltd. (Beijing Genomics Inst.; BGI).
A leaf sample (1 g) from each replicate was ground into a fine pow-
der with 10% (w/v) polyvinylpolyrrolidone (PVPP) and liquid nitro-
gen in a pre-chilled mortar. The powder was then incubated in a
pre-chilled centrifuge tube to extract protein using the TCA/
acetone method [20]. After vacuum drying, the resulting proteins
were dissolved in a lysis buffer (7 M urea, 2 M thiourea, 2% (w/v)
CHAPS, 20 mM Tris–HCl, pH8.8), and then subjected to ultrasound
for 5 min in an ice bath (pulse on 2 s, pulse off 3 s, power 180 W).
The supernatant was collected by centrifugation at 20,000�g for
30 min at 15 �C. The protein standard curve was derived by using
the 2-D Quant-kit method to quantify protein; the protein concen-
tration was determined [21].

2.7.2. Two-dimensional polyacrylamide gel electrophoresis and gel
scanning

The proteins extracted from the sorghum leaves were diluted
with a 450 ll rehydration buffer containing 50 mM DTT and 0.8%
(v/v) immobilized pH gradient (IPG) buffer [22], and was then
mixed thoroughly and centrifuged at 20,000�g for 10 min at
10 �C. The samples were prepared three times using two-dimen-
sional electronphoresis; isoelectric focusing was performed using
an IEF-strip holder of 24 cm length, pH4–7. After electrofocusing,
each sample was equilibrated in 1% DTT and 2.5% iodoacetamide
equilibrium buffers for 15 min for 15 min, respectively. The strips
were then immediately used to perform second-dimension separa-
tion in 12.5% gel and SDS–PAGE procedure at 20 �C, until the bro-
mophenol turned blue, as an indicator that the gel was
completely depleted. Gels were stained with Coomassie Brilliant
Blue G-250. Subsequently, images were obtained by scanning the
stained gels and saved as a TIF image for further analysis (Image
Master 2D platinum 5.0).

2.7.3. Image analysis, protein identification, and database search
Proteins were analyzed according to the methods of Fan et al.

[23]; only those spots that reproducibly changed in abundance
Fig. 2. Effects of planting density on diurnal variations of PPFD and
by more than twofold and passed the significance test (p 6 0.05)
were termed differentially expressed proteins and selected for
protein identification. Each spot to be analyzed was excised from
a gel, placed into a 1.5 ml centrifuge tube, and numbered. After
proteolysis, the spots were tested using MALDI TOF/TOF. After
the first mass-spectrometry, three precursor ions were selected
for a second quassation. Some broken fragments were observed
at the top of the marked mass spectrum, and its mass-to-charge
ratio was shown in the second mass-spectrometry; this could then
be submitted to MASCOT (Matrix-Science, London, UK) server for
the search. According to the score, results for the E value, protein
sequence coverage, peak intensity of matching peptides, experi-
mentally calculated PI, relative molecular weight, and other factors
were retrieved and analyzed.
2.8. Statistics

Data were compared with the Independent-Samples T test
using SPSS (version 11.5), at the 0.05 and 0.01 significance levels.
The graphics program SigmaPlot (version 10.0) was used to create
artwork.
3. Results

3.1. Effects of mutual shading on light intensity and air temperature

On sunny days, the maximum light intensity value was approx-
imately 1343 lmol m�2 s�1 at low planting density, while at high
planting density it only reached 390 lmol m�2 s�1 at noon
(Fig. 2A). The daily changes in temperature within the population
were consistent with light intensity (Fig. 2B). The maximum
temperature under the low and high planting densities occurred
at 14:00, and was 36.3 �C and 32.8 �C, respectively. Light intensity
and temperature within the sorghum population were clearly
lowered significantly by mutual shading under close planting.
3.2. Effects of mutual shading on plant growth and leaf structure

Compared with sorghum grown at a low planting density, sor-
ghum at a high planting density had a higher plant height, while
the stem diameter, leaf area of plant, single leaf area, and specific
leaf weight were lower (Table 1). Moreover, the stomatal density
of leaves grown at the high planting density decreased significantly
compared with leaves at low planting density.

In order to further analyze the effects of mutual shading on
photosynthetic organs, leaf structure was also studied (Fig. 3,
Table 1). Under high planting density, mutual shading caused a
marked reduction in leaf thickness, the cross-sectional area of
air temperature within the population in field-grown sorghum.



Table 1
Effects of planting density on plant growth and leaf structure.

Trait High density Low density

Plant height (cm) 160.3 ± 1.26596aA 141.9 ± 2.14832bB
Stem diameter (cm) 1.5733 ± 0.0434bB 2.055 ± 0.03662aA
Leaf area of plant

(cm2)
3700.5155 ± 172.0550bB 4588.1748 ± 85.28308aA

Single leaf area
(cm2)

325.7009 ± 16.8854bB 417.1068 ± 7.75301aA

Specific leaf weight
(g m�2)

39.146 ± 2.13284bB 45.9726 ± 0.72344aA

Stomatal density
(No. mm�2)

193.2401 ± 12.6657bA 234.2975 ± 5.2047aA

Leaf thickness (lm) 120.0838 ± 0.54171bB 143.3209 ± 0.7385aA
Cross section area

of vascular
bundle (lm2)

1859.8887 ± 136.37233bB 2535.3780 ± 104.10333aA

Contact area of
bundle sheath
cell (lm lm�1)

4.0170 ± 0.04779bA 4.1497 ± 0.02868aA

Chlorophyll
content
(mg m�2)

558.2788 ± 6.95045bB 516.4952 ± 4.9053aA
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the vascular bundle, and contact area of the bundle sheath cells,
when compared to low planting density. Therefore, these changes
in the morphological and anatomical structure indicated that sor-
ghum grown at a high planting density developed typical features
of shade plants.

3.3. Effects of mutual shading on photosynthetic function

To further explain the leaf responses to mutual shading, we
measured chlorophyll content, gas-exchange, and chlorophyll fluo-
rescence. At high planting density, chlorophyll content distinctly
increased because of severe mutual shading (Table 1). Values for
Pn and Gs at irradiances of 600 and 1200 lmol m�2 s�1 are shown
in Fig. 4. Both Pn and Gs decreased significantly at high compared
to low planting density. At the same time, sorghum growing at
high planting density exhibited slight photoinhibition at noon
(Fig. 5). The serious decline of Fv/Fm in sorghum at low planting
density was observed, which mainly due to the depression of Fm

and increase in Fo.
Fig. 3. Light micrographs of cross-sections of leaves gr
3.4. Effects of mutual shading on leaf proteome

To examine changes in the proteome profiling of sorghum
leaves subjected to mutual shading, we performed a 2-D gel
analysis. Fig. 6 shows the 2-DE profiles of the proteins, of which
62 protein spots showed a significant difference in expression level
(p < 0.05). A total of 52 proteins were successfully identified by
MALDI TOF/TOF from all the differentially expressed proteins
(DEPs), and 22 proteins associated with photosynthetic light
acclimation are listed in Table 2. These identified proteins could
be classified into four categories according to the classification of
Fan et al. [23] and Li et al. [22]: light reaction, carbon metabolism,
photoreceptor proteins, and photoprotection.

The first category is the light reaction of photosynthesis
(Table 2), which is related to electron transport and the forma-
tion of assimilatory power. The abundances of putative NADH-
plastoquinone oxidoreductase subunit K isoform 1, ferredoxin-
NADP reductase (FNR), ferredoxin (Fd), oxygen-evolving enhancer
protein 1, and ATP synthase beta subunit were all upregulated in
leaves grown at low planting density, but downregulated in leaves
at high planting density.

The second category is correlated with carbon metabolism
enzymes. Table 2 shows that the abundance of malate dehydroge-
nase, ribulose-1,5-bisphosphate carboxylase/oxygenase small
subunit, triosephosphate isomerase, phosphoribulokinase, sedo-
heptulose bisphosphatase1 (SBPase), sucrose synthase (SS), and
granule-bound starch synthase I (GBSS) were all upregulated in
leaves grown at low planting density, but the expression abundance
of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit
was downregulated (Table 2).

The third category is related to photoreceptor proteins. Of these,
cryptochrome 2 was upregulated in leaves grown at low planting
density, while the expression of phytochrome C was downregu-
lated (Table 2).

The fourth category comprises proteins associated with photo-
protection. The abundances of chloroplast heat shock protein 70
and oxygen-evolving enhancer protein 1 were both upregulated
in leaves grown at low planting density, but downregulated in
leaves grown at high planting density (Table 2). Furthermore, the
abundance of oxygen-evolving enhancer protein 1 at low planting
density was over six times as high as at high planting density
(Table 2).
ew under low (L) and high (H) planting densities.



Fig. 4. Effects of planting density on net photosynthetic rate (Pn) and stomatal conductance (Gs). Measurements were made in a leaf chamber with CO2 concentration of
380 lmol mol�1, 80% relative humidity under irradiance of 600 and 1200 lmol m�2 s�1. Values are means ± SE, capital and lowercase letters represent the statistically
significant differences at P < 0.01 and P < 0.05 level, respectively, similarly hereinafter.

Fig. 5. Effects of planting density on chlorophyll fluorescence. Chlorophyll fluores-
cence was determined after dark adaption at 6:00, 14:00 and 18:00, respectively.
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4. Discussion

4.1. Effects of mutual shading on photosynthetic capacity

In this study, close planting of sorghum caused severe mutual
shading, as reflected in the striking decline of irradiance within
populations (Fig. 2A). Therefore, sorghum grown at a high planting
density developed shade leaves (Fig. 3 and Table 1). We know that
leaf morphological characteristics and anatomical structure play
key roles in the regulation of photosynthetic capacity, providing
a structural framework for the diffusion of gases and the optimiza-
tion of the photosynthetic function [4,18,24]. Theoretically, higher
stomatal density and thicker leaves, as well as a more rapid metab-
olite transfer between the mesophyll and bundle sheath cells, tend
to favor a higher photosynthetic rate [25]. Accordingly, under
mutual shading the decreased stomatal density, leaf thickness,
cross-sectional area of the vascular bundle, and contact area of
the bundle sheath cells, all features of morphology and anatomical
structure of leaves (Table 1), may be partially responsible for
depressing photosynthetic capacity.

In addition, decreased photosynthesis was found not only to
result from significant changes in the morphological characteris-
tics and anatomical structure, but also in functional proteins
(Table 2). Generally, CO2 enters the mesophyll through stomata
on the surfaces of leaves, which is highly sensitive to the light envi-
ronment. In the present study, mutual shading under conditions of
high planting density led to a significant decrease in stomatal den-
sity and Gs (Fig. 4 and Table 1). Therefore, the exchange of CO2

through stomata may be restricted. For a typical C4 plant, such
as sorghum, ambient CO2 is initially fixed as a four-carbon acid
(malate, Mal) in mesophyll cells through PEPCase. The malate is
then transferred into the bundle sheath cells. Thereafter, decarbox-
ylation of malate through a decarboxylating enzyme yields a high
concentration of CO2 around Rubisco that facilitates its assimila-
tion via the Calvin cycle. The decreased abundance of malate dehy-
drogenase in plants grown at high planting density indicated that
the rate of CO2 released into the bundle sheath cells via malate
decarboxylation might have been slowed down. Mutual shading
therefore resulted in a decrease in the uptake and transportation
of CO2 in photosynthesis.

Additionally, although a distinct increase in chlorophyll content
was observed due to mutual shading (Table 1), the proteins associ-
ated with photosynthetic pigments were clearly not upregulated
for several folds in abundance (Table 2). Therefore, we concluded
that the light-harvesting complex might not be the main regula-
tory site for leaf photosynthesis under mutual shading in the field.
We know that oxygen-evolving enhancer protein 1 is an important
component of the oxygen-evolving complex in PSII [26,27]. In this
study, we observed that the abundance of oxygen-evolving enhan-
cer protein was significantly downregulated because of mutual
shading in the field (Table 2). It is probably disadvantageous to
the stability of PSII and activity of the oxygen-evolving complex.
At the same time, abundances of Fd, FNR, and putative NADH-plas-
toquinone oxidoreductase subunit K isoform 1 were all downregu-
lated in plants grown under close planting conditions (Table 2),
which may result in a decrease in the electron transport rate. Addi-
tionally, mutual shading also caused the downregulation in the
expressions of ATP synthase and FNR (Table 2), which may limit
the production of NADPH and ATP to a certain extent. Therefore,
the low-light environment caused by mutual shading at high
planting density caused a decline in the electron transport rate



Fig. 6. Representative 2-D gels of proteins extracted from sorghum grew at the low (L) and high (H) planting densities. An equal amount of total proteins was loaded on each
gel strip of 24 cm (pH 4–7). SDS–PAGE gels were used for second dimension separation after isoelectric focusing. Protein spots were visualized using coomasie brilliant blue
staining. There was significant difference (p < 0.05) in the intensity of protein spots which were identified by MALDI Tof/Tof and the results were shown in Table 2. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Changes in the expression level of proteins classified into the functional categories as light reaction, carbon metabolism, photoreceptor and photoprotection.

Spot
no.

Accession no. Protein name Plant species Theoretical
Mw/pI

Experimental
Mw/pI

Cellular
location

Fold
change

Light reaction
5 gi|414870040 TPA: putative NADH-plastoquinone oxidoreductase

subunit K isoform 1
Zea mays 43/5.27 48.4/4.79 Chloroplast 2.4375"

118 gi|342316341 Photosystem I subunit VII (PSI iron-sulfur center) Wolffiella lingulata 10/4.67 9.3/5.65 Chloroplast ;
366 gi|225431122 PREDICTED: ferredoxin-NADP reductase, leaf isozyme,

chloroplastic isoform 1
Vitis vinifera 36/5.15 41/8.91 Chloroplast "

368 gi|162458489 ferredoxin Zea mays 35/5.1 41/7.5 Chloroplast 2.7084"
392 gi|397702103 ferredoxin-NADP reductase Saccharum hybrid

cultivar GT28
38/6.32 40.5/7.53 Chloroplast 2.56617"

11 gi|321373501 ATP synthase beta subunit Pleurozia purpurea 34/5.04 45.1/4.84 Chloroplast "
232 gi|17224753 ATP synthase beta subunit Tacca palmata 26/4.72 52.8/5.08 Chloroplast 2.01646"
246 gi|357133129 PREDICTED: ATP synthase subunit beta, chloroplastic-

like
Brachypodium
distachyon

27/4.76 50.6/5.2 Chloroplast 3.69059"

320 gi|57868948 ATP synthase beta subunit Empetrum
Hermaphroditum

31/5.73 53/5.76 Chloroplast 2.12516"

473 gi|150035723 ATP synthase beta subunit Phragmites australis 59/4.66 51.1/5.20 Chloroplast "

Carbon metabolism
376 gi|40068128 Ribulose-1,5-bisphosphate carboxylase/oxygenase

large subunit
Valeriana dioica 32/5.28 51/6.04 Chloroplast 2.19223;

274 gi|195605636 Triosephosphate isomerase Zea mays 29/5.49 27.3/5.53 Cytosolic 3.76662"
398 gi|195645472 Phosphoribulokinase Zea mays 39/5.11 46.1/5.75 Chloroplast "
492 gi|226506366 Sedoheptulose bisphosphatase1 Zea mays 72/4.63 42.3/6.08 Chloroplast 2.30201"
480 gi|237652074 Sucrose synthase Vigna luteola 61/5.27 21/5.82 Chloroplast "
371 gi|361738615 Granule-bound starch synthase I, partial Solanum loxophyllum 36/5.18 37/6.33 Chloroplast "
397 gi|320449084 Malate dehydrogenase Zea mays 39/6.23 36/5.76 Cytoplasmic 3.90755"

Photoreceptor proteins
349 gi|78217443 Cryptochrome 2 Nicotiana sylvestris 35/4.64 73.0/5.72 Nucleus 3.03321"
372 gi|377823248 Phytochrome C, partial Pereskiopsis gatesii 32/4.43 42/6.45 Cytosol ;

Photoprotection
55 gi|226499860 Stromal 70 kDa heat shock-related protein Glycine max 73/4.6 74/5.2 Chloroplast 2.80742"
483 gi|145388994 Chloroplast heat shock protein 70 Cenchrus americanus 62/5.4 73/5.23 Chloroplast "
263 gi|195619530 Oxygen-evolving enhancer protein 1 Zea mays 28/4.7 34/5.59 Chloroplast 6.69626"

Changes in the protein expression levels are shown as fold change (" and ;) of the low planting density relative to the high planting density. The large changes of protein
expression are indicated in " (elevated) and ; (decreased). The number and the names of the proteins which were identified successfully are listed and classified by the
function of proteins.
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and formation of assimilatory power, indicating that these two fac-
tors may be important regulatory sites for photosynthesis under
mutual shading conditions in the field.

The Calvin cycle is a chain reaction, constituted of numerous
enzymes. In this study, many enzymes associated with the Calvin
cycle, such as triose phosphate isomerase, SBPase, and phosphori-
bulokinase were all downregulated in plants grown under close
planting conditions (Table 2). It is well known that RuBP reacts
with CO2 to produce PGA catalyzed by Rubisco. Later, PGAld is
formed in the presence of ATP and NADPH, and PGAld is then
transformed into RuBP in the Calvin cycle. Our data indicated that
the reproductive phases of RuBP may slow down in leaves grown
under close planting conditions. The decline in the photosynthetic
rate could therefore be partially attributed to depression of RuBP



Fig. 7. Network model for photosynthesis regulation in field-grown sorghum. A: absorption and transportation of CO2; B: electron transport and production of assimilatory
power; C: enzymes related to carbon assimilation; D: photoprotective mechanisms. Abbreviations (Gs: stomatal conductance. MDH: malate dehydrogenase. PQ:
plastoquinone. FNR: ferredoxin-NADP reductase. RuBP: ribulose-1, 5-bisphosphate. PGAld: 3-phosphoglyceraldehyde. SBPase: sedoheptulose-1, 7-bisphosphate phosphatase.
Rubisco: RuBP carboxylase/oxygenase. GBSS: granule-bound starch synthase. SS: sucrose synthase. Hsp: heat shock protein. Pn: photosynthetic rate).
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regeneration under mutual shading conditions. In addition, SS and
GBSS may also be important regulatory sites for photosynthesis,
reflected in the clear downregulation of their abundance under
close planting conditions (Table 2). In contrast, Rubisco is com-
monly regarded as a key enzyme in photosynthesis [28,29]. How-
ever, the changes in Rubisco content have been controversial in
previous studies. On one hand, there is a positive correlation
between the Rubisco content and photosynthetic rate [29,30]. On
the other hand, Ray et al. found rice to have high Pn with a low
Rubisco content [31]. Recently, Li et al. report that Suaeda salsa
seedlings maintained a high photosynthetic rate under salt stress,
while Rubisco abundance was significantly downregulated [22].
Rubisco, in fact, also serves as an important storage protein [32].
In the present study, a decline in the photosynthetic rate with
upregulation of Rubisco was observed under close planting condi-
tions (Table 2). Accordingly, we concluded that Rubisco, which
serves as an important functional and storage protein, may not
be the rate-limiting photosynthetic step under mutual shading
conditions.

Though the process of photosynthesis has been extensively
studied, most previous studies have mainly focused on a few reg-
ulatory steps of light acclimation and did not reveal the potential
regulatory network. In this study, under mutual shading condi-
tions, the reduction of photosynthesis in sorghum was found to
involve the regulation of leaf structure, absorption and transporta-
tion of CO2, electron transport, assimilatory power formation, and
enzymes associated with the Calvin cycle. On the basis of our
results, a possible regulatory network for photosynthesis under
mutual shading conditions is proposed in Fig. 7.
4.2. Effects of mutual shading on photoprotective mechanisms

Although the maximum light intensity was approximately
1343 lmol m�2 s�1 at low planting density (Fig. 2A), the expres-
sion of proteins associated with the xanthophyll cycle and antiox-
idant enzyme defense system was not upregulated. Therefore,
regulation of protein abundance may not be the main light accli-
mation mechanisms in the field for the xanthophyll cycle and anti-
oxidant enzyme defense system. Probably, the regulation of
enzyme activities might be more important. Additionally, our data
proved that the abundance of heat shock protein (Hsp) and oxy-
gen-evolving enhancer protein were both downregulated at high
planting density (Table 2). Moreover, accumulating evidence indi-
cates that chloroplast Hsp is important in PSII thermotolerance,
which could protect PSII and oxygen-evolving complex proteins
from being damaged under heat stress [7]. At the same time, oxy-
gen-evolving enhancer proteins are favorable to maintaining the
stability of the oxygen-evolving complex [26], and its stability also
plays a crucial role in protecting PSII against high temperature
[27]. In our study, not only light intensity, but also air temperature,
were markedly enhanced at low planting density (Fig. 2). The
upregulation of Hsp and oxygen-evolving enhancer protein were
clearly observed (Table 2), thus alleviating photoinhibition and
photodamage. Generally, in order to improve the acclimation of
crops to strong light and high temperature in the field, greater
attention than previously has been paid to strengthening the xan-
thophyll cycle and antioxidant enzymic defense system. However,
our results indicate that Hsp and oxygen-evolving enhancer pro-
tein may both play very important roles in improving strong light
and high temperature tolerance in the field.

5. Conclusions

Taken together, the depression of photosynthesis in sorghum
under mutual shading involves the regulation of leaf structure,
absorption and transportation of CO2, photosynthetic electron
transport, production of assimilatory power, and levels of enzymes
related to carbon assimilation. Additionally, heat shock protein and
oxygen-evolving enhancer protein may play important roles in
photoprotection in field-grown sorghum.
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