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Abstract

Features of the nuclear isothermal incompressibilignd adiabatic incompressibilityy are investigated. The calculations
are done at zero and finite temperatures and non-zero entropy and for several equations of state with a long range attraction and
short range repulsion. Itis shown thgj decreases with increasing entropy while the isothernmia¢reases with increasirig.
A duality is found between the adiabatig and theT' = 0 isothermak. The effect of correlations onis studied. A peak ir
can occur from attractive scattering correlations in various two-nucleon spin—isospin channels. The second virial coefficient or
p2 term in P versus density parallels a result that appears in the theory of superconductivity.
0 2005 Elsevier B VOpen access under CC BY license.

The behavior of nuclear systems at moderately fermionic systems. For example, strongly correlated
high temperature and density is of current interest for fermionic systems are of interest in condensed matter
several reasons. Such studies are important for un-physics and the physics of the quark—gluon plasma.
derstanding features of current medium energy col- This Letter focuses on an important quantity for un-
lisions [1], for future RIA experiments, and for nu- derstanding properties of these systems which is the
clear astrophysics as in supernovae explosions. Thenuclear incompressibility. While the nuclear incom-
equation of state (EOS) of pressure versus density pressibility at zero temperature has been studied for
and temperature and its associated incompressibilities,an extended periof8—5], it is only relatively recently
isothermal and adiabatic, are important in understand- that its temperature dependence has been of concern.
ing flow produced in nuclear collisions as reviewed See, for example, the quantum Monte Carlo results of
in Ref. [2] and, in general, these quantities appear Ref.[6]. Ref.[6] shows a peak in the incompressibility
in the description of the thermodynamic properties of coefficient and in the specific he@l,. This increase

in Cy is also seen in Ref7] using a totally differ-
ent approach based on recursive methods to obtain
E-mail address: sjlee@physics.rutgers.e¢8.J. Lee). the finite temperature partition function of hadronic
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matter. Here, we will study the effect of two nucleon 7 dS — P dV variations of the energy witly at con-
correlations on the EOS. Our approach is similar in stantS bear a similar relation to variations of the
spirit to electron pairing in superconductivity as will Helmholtz free energy with/ at constantl” where
be pointed out below. dF =—S8dT — P dV. Thus the adiabatic incompress-
In this Letter we will study the behavior of the ibility of Eq. (1) can go to zero for a Skyrme in-
isothermal incompressibility witlf and properties of  teraction as we shall see. The minimum point (also
the equation of state (EOS) at higher than normal den- maximum point) in the energy occurs at zero pressure
sity. As a baseline, we will begin with a mean field sincedE/dV at constant entropy is-P. Therefore,
discussion of its behavior witli to see how large the  E at constanf§ has the same maximum and minimum
incompressibility can become without correlations. points with variations inV or R or density asF at
First, we define a quantity, the incompressibility =~ constantl’ since both derivatives are P which is set

coefficient, as to 0. The behavior of the adiabatic incompressibility is
2 linked to a phase change. As we shall see, the behavior
2 d°(E/A) . ) o .
k =k% of the isothermal incompressibility may be associated

dkl%" with the appearance of a strongly correlated fermionic

_ 9p2d2(E/A) _ _9V2d2(E/A)‘ B system at high deneity an<_j temperature. _
dp? dv?2 Our mean field discussion is based on a Skyrme in-

teraction which shares some features with a van der
Walls interaction with a long range attraction and a
short range repulsion. To keep the discussion simple,
we consider uncharged symmetric nuclear matter with
Bl A no surface energy terms. The Skyrme interaction en-
m- ergy is then

This quantity is evaluated at the saturation density
whereE /A has a minimum. The giant monopole res-
onance energy is then

Eo=

If the temperature is kept constant in the above deriv- U 1ta
atives we have the isothermal incompressibitifyand R L 2)
if the entropy is held fixed, the result is the adiabatic Theao term gives a medium range attraction while the
incompressibilitycp. Thex andk are equal al’ =0 aq term is a short range repulsion.

only. The quantity defined above is not the isother- At T = 0, the kinetic energ¥x /A = (3/5)Er(p)
mal compressibility defined in thermal physics as with the Fermi energy

__ (v 12 2 23
with T held fixed and hereP is the pressure. Since
P=—dF/dV,we have The coefficientsip anda, are fixed to give a binding
1 1 energy per particlé€Eg /A = 16 MeV at densityp =
K = V <m) . PO = 0.15 fm_3, which giVeSbO =agpo = 37+ 23/(1

and b, = aap3+“ = 23/a in MeV. The incompress-
AtT =0,F=E—TS=E,and thusc =9/(poK). ibjlity coefficient« at 7 = 0 is then
This reciprocal connection betweeti and « is no
longer true at finiteT'. Besides the isothermal com- Ex 1+a

. . =—-2— 491+ =165+207. (3
pressibility, an adiabatic compressibility “ A (1 a)adapg v (3

1/dV Fora =1/3, k =234 MeV. Smaller values af lead
= __<_>S to softer equations of state and lowerIn the limit

V\dP
. . a — 0, logarithmic terms appear in ER) coming
can be obtained by keeping the entropy constant. Thefrom the presence of a factor

reciprocal is related te, the adiabatic incompress-
ibility as «p = 9/(poKp). Since the natural vari-

X
—(1—x%) = —xlog(x).
ables for energy are entropy and volume fraii = a( x%) = —xlog(x)



A.Z Mekjian et al. / Physics Letters B 621 (2005) 239-245

The x = p/po = (Ro/R)® with RS = A/(po4r/3).
Thea — 0 limitis the softest EOS allowed by E@),
and this limit gives from Eq(3) a value ofx =
165 MeV. A stiff EOS hasy = 1 andx = 372 MeV.
Recent calculations done &t= 0 [8—10]have a value
of x = 210-270 MeV and suggest a valueoof 1/3
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new minimum and can be found by making a Taylor
expansions around @y. The newx is

Kk =Ko+ R? Ex H—ZR Ex /—R Ex) Sk
A A A) ko

(6)

in a Skyrme type approach. A larger range of values The various quantities are evaluatedratand eacH

of k, from 211 to 350 MeV, were reported in REEL].
Because of these uncertaintiescdnfrom more realis-
tic forces, we will present results for various values
ofa, froma~0toa=1.

At non-zeroT <« EF, the kinetic energy ifl2]
Ex 3

72712
A 5T A Es
The energy per particle is

E 72 T2

=21x%3 4 — box + byx1Te.

140x2/3 “)

The value ofx that minimizesE /A is x,, and satisfies
the equation:

2 2
1+o ne T

14()@3,/3 _ x;l"l"l‘a) — bo(xm — X, ) = 2_10%
Xm

Then thex =« (T) is given by

K (T) = —42x2/® +0.70572/x2/3
+ 90 (14 a)byx 1. (5)

At T =25,5,and 7.5 MeV, and far = 1/3, the val-
ues ofx are 242, 265 and 302 MeV, respectively. The
corresponding values of,, are: 1.011, 1.043, 1.091.
WhenT is replaced with entropy per partictg A then
this T dependent term becomes

Er(S)*_35(5" 2

2\a) T z2\a) "

since S = (72/2)TA/Er at low T. This S/A term
can simply be added to the first term on the right side
of Eq. (4) since both have the samé’3 dependence.

If the corrections to the nuclear matter incompress-
ibility at T = 0 from finite temperature terms are

small, then these corrections can be obtained by using

the following method. LetEq(R) be the nuclear mat-

ter energy per particle EOS and which has a minimum

at Rg and an incompressibilityg. If we add to this a
termE,(R), so thatE(R) = Eg(R) + E,(R) then the
minimum shifts to a new poink,, = Rp + AR,. The

represents one derivative wRt. Corrections tac in-
volving the skewnes$k = R3(Eo(R)/A)” or third
derivative of the energy were pointed out in Refs.
[4,5]. Ellis et al.[13] used the correlation between
compression modulus and skewness coefficient to ex-
amine the implications in a relativistic Hartree—Fock
approximation where thé&, is the Coulomb interac-
tion. The above expression is a modified version of
their result. Eq.(3) gives an expression for the in-
compressibility at = 0. This will be kg = xo() in

Eq. (6). The skewness is

() = —3(509+ 828« + 207x?)

in MeV. ComparingX with « of Eq. (3) we see that
the ratio ofSk/«g is of the order of 10 and somewhat
insensitive tax.

At low T, taking E, (R, T) = 0.0517T2R?/A%/3,
we obtain thex (¢ — 0) = 165+ 1.16T2, k(a =
1/3) = 234+ 1.32T2 andk (@ = 1) = 373+ 1.617°2.
Thus we see that the first term is very sensitive tmt
the finite temperature correction is somewhat insensi-
tive to «. At fixed entropy, the second derivative of
E(R)/A has a very different behavior than at fixé&d
Namely, it decreases witl§f/A. This can easily be
seen by noting thak, (R, S) = 4.836(5/A)2A%/3/ R?
compared t&E, (R, T) = 0.0517T2R?/ A%/3. We have
the following final results (in MeV):

Ko (a — 0) = 165—30(S/A)?,
Ko (a =1/3) = 234— 38(S/A)?,
Kko(a =1) =373—53(5/4)2

At higher T, the nearly degenerate Fermi gas ki-
netic energy term is replaced by a virial expansion in
p23, where

_ [2mh

“VomT
is the quantum wavelength. Namely,
Ex 3

5o ot
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with coefficients arising from antisymmetrization that
are

1
C]_:ﬁ:()l??,

12 i
C2=§—ﬁ2—33xlo ,

c3=111x 1074,

[12,14] Since thec,’s become small rapidly, we will
keep terms up toz. Thenk is given by

k(T)=—=27T (A3po/4)2czxi 4+ 9o (1+ ot)bax,}f“.

)
The x,, is again the minimum oE /A, but now eval-
uated with the new kinetic energy. Thg is affected
by both thec; andc, terms at temperatures wharge
dominants. A limiting value ok can be obtained by
taking T very large where:; term leads a minimum

@ bo

Xxm given by
=——|1
T A @b, (
In this highT limit « is given by the second term on
the right side of Eq(7) and is

3 1 ,00)"3 1+1/a
= . (8

27 by 4

and goes to its saturation value
bo

1/
1+ a)by )
with a T dependence of/A/T. We note that the sign

K(T z 10 Me\/) = Ksat<1

Ksat= 901b0<

of ¢1 determines whether it approaches from above or

below. For purely antisymmetric correlatiotsis pos-
itive because of the statistical repulsion of fermions.
If ¢; becomes negative as will be discussed below it
would approach from above. At infinite for o« =1,
k = 704 MeV withx,, = 1.304 or a minimum density
om = 1.304p9 and fora =1/3, « = 468 MeV with
xm =153 or p,, = 1.530g. In the limit« — 0, k =
380 MeV with x,, = ¢'¥2% = 1.84 or p,, = 1.84po.
These are the limiting values ferandx,,.

We can also include an effective mass in our results.
If we parameterize it as
m* 1

m  1+r(p/po)’
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then at zero temperature ti#g A will simply read

E E
- _CK.23
A A
For generakr andm™/m:

ko, r)= 3(55+ 6% + 7r[3y — 1]([3)/ —1]1- 3a))

9)
Fory =1/3 or fora =y — 1/3 this « is r inde-
pendent. When we parametrize*/m with y =1,
for a =1/3, k =234+ 42 and forr=1/2, k =
255 MeV. Fora =1, k = 372— 42r — 351 MeV at
r =1/2. The details and othér dependences will be
given in a future papgd5].

Before discussing how a peakinmmay arise in our
approach, we briefly investigate the case of constant
entropy in the ideal gas limit using the Sackur—Tetrode
law [16]:

S

E
+ rTsz/3+V — box + bextte,

2 i3
1= 3 In(k p/4).

This law connectd to p or V asT = Csp?/3. Here

27 (fic)? 2s 5
=——7exp =—— = |.
(mc?) |:3 A 3i|

The resultingE (R)/ A has a structure similar to the re-
sult for a degenerate Fermi gas since both hawé'
dependence for the kinetic energy term but with dif-
ferent coefficients. This feature and a similar result at
lower T' suggests a duality in the energy per particle
EOS at constant entropy and its associatgdnd the
T =0 EOS and its associated constdhk. We also
note a parallel betweeR as a function off and V
andFE as a function of§ and V.

We now turn to the issue of clusters or more pre-
cisely correlations at moderately high and high
p > po. We study the corrections to the ideal gas law
using the virial expansion

P =pT (L+c1(pr®/4) + c2(pr3/4% + ).

Our results are thus restricted to valuespofind T
where this expansion is valid and the gas is nearly non-
degenerate. This also insures that the fermions have
not “quenched out” the dynamical correlations, i.e.,
the N—N scattering cannot occur into final states that
are already occupied. If antisymmetry effects are the
only corrections, the coefficients can be calculated by
following a procedure in Ref$17,18]and are the co-
efficients already given before E(Y). This procedure
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is an extension of our fragmentation model by sim- x4 will have terms from the antisymmetry of mono-

ply noting that a cycle of length is analogous to a
cluster of sizek with a weight functionx;. The grand
canonical partition function is log = Y xze?#** and
the mean number of cycles g;) = xie?** [19]. The
pressure is

PV
T = IOgZ = Zxkeﬂﬂk.

A constraint exists{A) = Y k(nx) = A which deter-
mines the fugacity = ¢#* in a power series i by
inverting the series. Then we arrive at
PV —X2 4x2 — 2x1x3
T =4+ —2“‘2 + 274‘43
T x5 x]
N —ZOxS’ + 18x1x0x3 — Bxf)u

6
X1

A*4 ... (10)

Substituting

gives the desired power series im/V)x3/4 for

fermions[17,18] The factor of 4 is spin and isospin

mers from cycles of length 4, from symmetrization
of dimers and from clusters of size 4. Once thés

are given the canonical partition function can be gen-
erated by a recurrence relati¢t9,23] A factor 1/4
appears from spin—isospin degeneracy which has been
included. The internal partition

Zint(k) = Zg(Ej)eﬁEj(k)
L Ly @IADereD

T T
J,T

ds
X / ie_’SEdE.
dE

The sum is over bound state; which have degen-
eracyg(E;) andé, 7 is the phase shift in channel of
spin J and isospin?. A similar result, excluding the
isospin indexl’, appears in the theory of superconduc-
tivity in Ref. [24]. There the electrons are correlated
into pairs, while here, because of the two types par-
ticles, neutrons and protons, more possibilities exist
in spin and isospin. These phase shifts include effects
from both attractive and repulsive interactions. Using
nucleon—nucleon phase shifts the continuum contri-

degeneracy. The same procedure applies for bosonsyytions[25] reduces the bound state contribution by

with x; = (V/23)/k%?. For fragmentation in the
Boltzmann limit the

v
= )\.3(]() |nt( )_ )\.3(k)

Xk efe/T

’

where F; is the internal free energy of a cluster of

sizek andA(k) = A/k¥/2. The effect of antisymme-
try for oddk clusters and symmetry for evérclusters

about 50% for moderate temperatuf@ { 20 MeV)
and less for low temperatures because of the Boltz-
mann weight factor in the integral. At infinitd&,

Zint — 0 since the continuum exactly cancels that
bound states by Levinson’s theord25]. As an ini-

tial example forZint(2)2%2 we will consider

13,372, k517

can be included. The grand canonical ensemble repre-2 4

sents a system of fermions (odd cluster sizes) obeying g see how it compare with/25/2: 1/2 is for the con-

FD statistics and bosons (even cluster sizes) obeyinginuum reduction, 3 is for the spin degeneracy of the
BE statistics. The constraint of chemical equilibrium ¢ _ 1 7 _ 0 channel. TheS = 1. T = 0 channel in

Mk = k1 OF pg =z, +n i, iS imposed which deter-
mines the fugacity from the constraint. In themodel

free space has a bound state, which is the deuteron.
In a medium, theS =1, T =0 channel may appear

of Refs.[19-22]this amounts to having various terms 55 5 metastable resonance or attractive correlation. If
in x; that represent both cycles and clusters. For ex- \ye neglect the Boltzmann factor in the binding or res-

ample,
%
Xlzﬁ,
1V V Zint(2
Xp= — —— 3/2 Y mt()

C 2523 PERV I
1 v 3/212int(3)

W=t T

onance energy, then we have 1.06. To reduce 1.06
to 1/2%2 we would need a reduction factor of @
Also other spin—isospin channels incredg. Thus

c¢1 can easily become minus. For a negatiyethe

is above its saturating value and approaches it from
above asT~%/2. At low T, « is below its saturating
value and initially increases & because the Fermi
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sea blocks excitations or “quenches out” dynamical
scattering correlations. This behavior automatically
implies a peak irnc. The Monte Carlo resul5] has

a peak behavior ik with a peak ofx = 1500 MeV

at T ~ 14 MeV. Higher orderk = 3,4,5, ... terms
represent higher order correlations of fermions in var-
ious J, T channels. For examplé,= 3 can represent
J=1/2,T =1/2 correlations.

In this Letter we investigated the behavior of the in-
finite nuclear matter incompressibility at finite temper-
ature and entropy using a mean field theory and also
considering the role of correlations. Various forms of
the EOS are studied using a Skyrme parametrization.
Both the isothermal (constant temperature) and adia-

A.Z. Mekjian et al. / Physics Letters B 621 (2005) 239-245

isospin channels and compared to the statistical repul-
sion term at high". We noted that a strong two nu-
cleon correlation of paired fermions in a high density,
but also high temperature, medium can account for the
existence of a peak. The detailed structure of the peak
is related to the presence of strongly correlated fermi-
ons in pairs, triplets, and higher order correlations.
Questions related to strongly correlated fermions are
of interest in other areas of physics such as condensed
matter physics and in quark—gluon plasma, the latter
occurring at a much higher density and or temperature
than thep andT considered here.

batic (constant entropy) incompressibilities are found Acknowledgements

to be sensitive to the choice of the Skyrme repulsive
parameterx which gives the power of the density in-
volved in the repulsive term. These two incompress-
ibilities have very different behaviors. The isothermal
incompressibility increases with initially as 72 until

a saturation value is reached while the adiabatic in-
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eventually goes to zero. In a mean field approxima-
tion, the isothermal incompressibility approaches its
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isothermal incompressibility by looking at coefficients
in the virial expansion, and in particular, we investi-
gated the second virial coefficient calleghere. Our
results only apply in this nearly non-degenerate limit.
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appears in the theory of superconductivity, where cor-
relations arise from the pairing of electrdg]. Here,
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