The research of wind loads on buildings and structures with increased level of responsibility

Pavel Churina*, Vladislav Pomelova, Olga Poddaeva

*Moscow State University of Civil Engineering (National Research University), 26 Yaroslavskoye Shosse, Moscow, 129337, Russia

Abstract

The article investigates the impact of wind on building construction-increased degree of responsibility. List the main methods for studying of wind loads applied to the present problem. The article describes experimental studies of wind loads on an object located in the complex of chemical production. The object is an outer construction with platforms with a technological equipment. The features of the layout and fabrication of the experiment in a special wind tunnel architectural and construction type. The results of investigations.

1. Introduction

In accordance with GOST 27751-88 "Reliability of building structures and foundations" should be taken an increased level of responsibility for buildings in which the failure of the work can lead to serious economic, social and environmental consequences (tanks for petroleum and petroleum products with a capacity of 10,000 m and more, chemical industry facilities, pipelines, industrial buildings with spans of 100 m and more, communication facilities with high of 100 m and more and unique buildings and structures).

Formulation “construction of high level of responsibility” was included in the section “Wind Effects” acting SP 20.13330.2011 “ Loads and effects” relatively recently. According to paragraph, 11.1.7 aerodynamic coefficients for
such constructions must be taken based on the results of purging of models of structures in wind tunnels or on the recommendations, which have been developed by specialized organizations.

Currently, there are two most common method for determining wind loads on constructions: numerical simulation of fluid dynamics in specialized packages and experimental modeling in wind tunnels of architectural and construction type [1]. In this article we will look at the method of experimental modeling of wind effects on the complex of chemical production.

2. Formulation of the problem

The complex of chemical production is a complicated object, which includes a large number of production floors, pipelines, technological platforms, transport galleries, stack, flyover and etc. (Fig. 1)

![Fig. 1. Complex of chemical production](image)

The two methods for determining wind loads work equally well for classical buildings and structures of simple shape: numerical simulation works provided with verification experimental results [2,3]. However, for permeable structures (stack and flyover) efficiently conducting experimental modeling only. Primarily this associated with labor intensity and terms of calculations in the software systems: a large number of elements of permeable structures requires a substantial increase in the number of cells of the computational grid. This increases the power requirements of the cluster on which the calculations are carried out and increases the time commitment [5,7].

3. Conducting the tests

We chose the stand of a synthesis for the research. This stand provides to the complex for the production of carbamide (Fig. 2). The object is a outer construction with platforms with a technological equipment. This arrangement has sizes 26.0x37.0 m. Construction has a complicated configuration and is composed of several tiers. Maximum height is 58.97 m. In the layout design stage details that do not affect the aerodynamics of the design, have been eliminated. Scale layout was chosen by the best possible conditions of flow blockage given the size of the wind tunnel: 1:100 [2,6].
Breadboard model was made of steel studs, which simulate the column, and of Plexiglas, which simulates the overlapping and cross beams. Large simplified model production capacities that affect the aerodynamics are made of metal. At the stage of manufacturing a layout 6-component force-torque sensors were built into the research object. These sensors are used for measuring the resultant forces and moments of the aerodynamic. The sensor is attached to a rigid plate in the bottom of the layout.

Specialized wind tunnel of Educational, scientific and industrial laboratory for aerodynamic and aeroacoustic tests of building structures MGSU are used for aerodynamic experimental studies. This installation has a closed circulation loop and modular fan unit that consists of nine units. Length of closed-loop axis is 96 m. the length of the working area of the pipe is 18.9 m. The length of the working area allows you to simulate the surface layer of the atmosphere under various conditions.

The basic measurement cycle performed at a flow rate $V_\infty = 16.7$ m/s. This value is $Re = 0.38 \times 10^6$. The value of Re is in the self-zone [1,4]. The dimensionless aerodynamic coefficients of a scale model, which are obtained during the aerodynamic experiments, should be identical to the corresponding values in natural conditions.
4. The results of tests

The table contains a summary of all the experimental data on the aerodynamic coefficients C_x, C_y, C_z, C_{mx}, C_{my}, C_{mz} with changing the angle of attack of air flow β (0° - 360°) with steps 22.5°. The graph of aerodynamic coefficients C_x, C_y, C_z, C_{mx}, C_{my}, C_{mz} with changing the angle of attack of air flow (0° - 360°) is on the Fig. 4. Maximum loads arise at angles blowing 0° and 180° ($C_v = 0.439$ and $C_y = -0.379$, respectively).

Table 1. The summary of all the experimental data on the aerodynamic coefficients C_x, C_y, C_z, C_{mx}, C_{my}, C_{mz} with changing the angle of attack of air flow β (0° - 360°) with steps 22.5°

<table>
<thead>
<tr>
<th>Young</th>
<th>C_x</th>
<th>C_y</th>
<th>C_z</th>
<th>C_{mx}</th>
<th>C_{my}</th>
<th>C_{mz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.060155</td>
<td>0.439094</td>
<td>0.008518</td>
<td>-0.17866</td>
<td>0.024045</td>
<td>-0.09448</td>
</tr>
<tr>
<td>22.5</td>
<td>-0.05471</td>
<td>0.420647</td>
<td>0.05838</td>
<td>-0.18508</td>
<td>-0.02226</td>
<td>-0.10737</td>
</tr>
<tr>
<td>45</td>
<td>-0.14536</td>
<td>0.263625</td>
<td>-0.06196</td>
<td>-0.11755</td>
<td>-0.07077</td>
<td>-0.08818</td>
</tr>
<tr>
<td>67.5</td>
<td>-0.17257</td>
<td>0.090005</td>
<td>-0.09551</td>
<td>-0.04514</td>
<td>-0.1001</td>
<td>-0.0462</td>
</tr>
<tr>
<td>90</td>
<td>-0.18647</td>
<td>-0.01774</td>
<td>-0.11092</td>
<td>0.011583</td>
<td>-0.12341</td>
<td>0.008849</td>
</tr>
<tr>
<td>112.5</td>
<td>-0.20084</td>
<td>-0.11286</td>
<td>-0.0982</td>
<td>0.056379</td>
<td>-0.1192</td>
<td>0.04138</td>
</tr>
<tr>
<td>135</td>
<td>-0.14821</td>
<td>-0.26194</td>
<td>-0.08868</td>
<td>0.124545</td>
<td>-0.08446</td>
<td>0.079654</td>
</tr>
</tbody>
</table>
Fig. 4. Graph of aerodynamic coefficients C_x, C_y, C_z, C_{mx}, C_{my}, C_{mz} with changing the angle of attack of air flow ($0^\circ - 360^\circ$)

Determination of wind loads in the design phase on buildings and structures with increased level of responsibility, such as objects of chemical, nuclear and other industries, is an extremely important task related to the security of a large number of people. Incorrect assessment of the load on such buildings and structures in addition to the threat of destruction of the investigated object can lead to environmental disaster. In this connection, it is necessary to develop and distribute a variety of methods for determining wind loads.

Acknowledgements

This work was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of the state order to MGSU №2014/107 project "Fundamental studies of wind effects (including extreme) to the unique building and bridge structures”

References
