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A b s t r a c t - - I n  this paper, we present an efficient numerical algorithm for approximate solutions 
of higher-order boundary value problems with two-point boundary conditions. A modified form of 
the Adomian decomposition method will be implemented to construct such solutions. The approach 
provides the solution in the form of a rapidly convergent series. The analysis is accompanied by 
numerical examples. The obtained results demonstrate reliability and efficiency of the proposed 
scheme. (~) 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

When an infinite horizontal layer of fluid is heated from below and is subject to the action of 

rotation, instability sets in. When this instability sets in as ordinary convection, the ordinary 
differential equation is sixth order [1]. When this instability sets in as overstability, it is modelled 
by an eighth-order ordinary differential equation [1]. 

Now suppose tha t  a uniform magnetic field is also applied across the fluid [1] in the same 

direction as gravity. When instability sets in now as ordinary convection, it is modelled by a 
tenth-order boundary value problem; when instability sets in as overstability, it is modelled by 

a 12 th order boundary  value problem. For more details about  the occurrences of high-order 

boundary  value problems, see [2-4]. An eighth-order differential equation occurring in torsional 

vibrat ion of uniform beams was investigated by [5]. A class of characteristic-value problems of 

high order (as high as 24) are known to arise in hydrodynamic and hydromagnetic stability [2-4]. 

The li terature of numerical analysis contains little on the solution of the high-order boundary  
value problems [3,4]. Research in this direction may be considered in its early stages. Theorems 
which list the conditions for the existence and uniqueness of solutions of such problems are 
contained in a comprehensive survey in a book by Agarwal [6], though no numerical methods are 
contained therein for solving boundary value problems of higher order. 

Recently, the boundary value problems of higher order have been investigated because of 
both  their mathemat ica l  importance and their potential for applications in hydrodynamic and 
hydromagnetic stability. Baldwin [7] applied global phase-integral methods for solving BVPs of 
sixth order. However, numerical methods of solution were introduced implicitly by Chawla and 
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Katti [8], although the authors focused their attention on fourth-order BVPs. Computational re- 

sults have also been obtained by [4] for special nonlinear boundary value problems of order 2m by 

using finite-difference methods. In a later work [I], octic splines solutions of linear eighth-order 

boundary value problems were implemented and the obtained results produced improvements 

over finite differences method. The spline function values at the midknots of the interpolation in- 

terval and the corresponding values of the even-order derivatives are related through consistency 

relations. 

Generally speaking, a considerable amount of interest (l-81 was directed towards the use of 

finite differences methods and the spline solutions to handle boundary value problems of higher 

order. 

The present work is motivated by the desire to obtain numerical solutions to higher-order 

boundary value problems with a better accuracy level. The goal of this study can be achieved 

by implementing a modified form of Adomian decomposition method [9-141. In recent years, the 

Adomian decomposition method has been used in obtaining approximate solutions to a wide class 

of differential and integral equations. The method provides the solution in a rapidly convergent 

series with components that are elegantly computed. The main advantage of the method is that 

it can be used directly without using restrictive assumptions. 

As noted previously, our analysis for this work depends mainly on a modified form of the 

Adomian decomposition method established recently by [ll-131. This newly emerged technique 

will be implemented to higher-order boundary value problems in a straightforward manner. The 

modified technique provides a qualitative improvement over standard Adomian method although 

it introduces a slight change in the formulation of Adomian recursive relation. The reason for 

this improvement rests on the fact that the technique accelerates the convergence of the solution 

and facilitates the formulation of Adomian polynomials. The efficiency of the scheme gives it 

much wider applicability. 

It is worth mentioning that several authors have treated many concepts related to the Ado- 

mian method such as the convergence concept and comparisons with other existing numerical 

techniques. The most significant works about convergence have been carried out by Cherruault et 

al. [15-181 by using fixed-point theorems or by substituting results in function series. Adomian [9] 

discussed the convergence concept on differential and integral equations. Eugene [19] proved the 

convergence by applying the decomposition method to the reaction-convection-diffusion equation 

which characterizes the dispersion of a chemically reactive material. In [20], Tonningen found that 

the decomposition method is easy to program in engineering problems and provides immediate 

and convergent solutions without any need for linearization or discretization. 

However, relatively few papers deal with the comparison of the Adomian decomposition method 

and other existing numerical techniques. Bellomo and Monaco [21] conducted a useful study 

between the decomposition method and the perturbation algorithm and formally showed the 

efficiency and accuracy of the decomposition method compared to the tedious work required 

by perturbation techniques. In [22], the strong performance of the decomposition method over 

Picard’s method has been emphasized. Recently, a comparison between Adomian decomposition 

method and Taylor series method has been carried out by Wazwaz [23] by using linear and 

nonlinear problems, and the study showed that the decomposition method is easy to use and 

produces reliable results with few iterations, whereas the Taylor series method suffers from certain 

computational difficulties. 

It is interesting to note that the special 2m-order BVP used by [4] contained the boundary 

conditions at even-order derivatives. For comparison reasons, we will apply our technique using 

these types of boundary conditions. In fact, our proposed technique can handle any boundary 

value problem with a set of boundary conditions defined at any order derivatives. 

Without loss of generality, in what follows, we will examine the 2m-order boundary value 

problems with boundary conditions given at even-order derivatives as applied by [4], whereas 

examples of orders 2m and 2m + 1 will be examined in our analysis. 
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2. ANALYSIS OF THE M E T H O D  

Consider the special 2m-order BVP of the form 

y(~m) (x) = f (x ,  y), 0 < x < b, 

681 

(i) 

with boundary conditions 

y(2j')(O) =a2 j ,  y(2J)(1) = J32j, j = O ,  1 , 2 , . . . , ( m - 1 ) .  (2) 

It is interesting to point out that  y(x) and f (x ,  y) are assumed real and as many times differen- 
tiable as reqllired for x C [0, b] and a2j and ~2j, J = 0, 1, 2 , . . . ,  ( m -  1) are real finite constants [4]. 
Moreover, the constants a2j, j = 0, 1 , 2 , . . . ,  (m - 1) describe the even-order derivatives at the 
boundary x = 0. The book by Agarwal [6] contains theorems which explain the conditions 
for existence and uniqueness of solutions of higher-order boundary value problems, though no 

numerical methods are contained therein. 
In an operator form, equation (1) becomes 

Ly = f (x ,  y), (3) 

where the differential operator L is given by 

d2m 
L -  dx2m . (4) 

The inverse operator L -1 is therefore considered a 2m-fold integral operator defined by 

~0 x L- l ( . )  = (.) , . ~  (5) 

(2m) times 
(2m) times 

Operating with L -1 on (3), it then follows 

2m--1 
1 

y ( x ) =  ~_, a j ~ . x  3 + L - l ( f ( x , y ) ) ,  (6) 
j=0 

where a2k+l,k = 0, 1 , 2 , . . . ,  ( m -  1) are constants that  describe the boundary conditions at 
odd-order derivatives, defined by 

al = y'(O), a3 = y'"(O), a5 = y(V)(O),... ,a(2,~-l) = y(2m-1)(0), (7) 

and will be determined later by using the boundary conditions at x = b. The other constants 
ao,a2,  a4, and O~2m- 2 describe the boundary conditions at even-order derivatives and are pre- 

scribed in (2). 
The Adomian decomposition method expresses the solution y(x) of (1) by the decomposition 

series OG 

y(x) = Z (8) 
n=0 

so that  the components yn(x) will be determined recurrently. Moreover, the method defines the 
nonlinear function f ( x ,  y) by an infinite series of polynomials 

oo 

f ( z , y )  = ~ An, (9) 
n~0 
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where An axe the so-called Adomian polynomials that  can be derived for various classes of non- 
linearity according to specific algorithms set by Adomian [9,10]. A new algorithm for calculating 
these polynomials was established by Wazwaz [14]. 

Substituting (8) and (9) into (6) yields 

Z yn(x)= + An . (10) 
n=O j=O n=O 

To determine the components yn(X), n ~> 0, we first identify the zero th component yo(x) by all 
terms that  arise from the boundary conditions at x = 0 and from integrating the source term 
if it exists. Second, the remaining componenbs of y(x) can be determined in a way such that  
each component is determined by using the preceding components. In other words, the method 
introduces the recursive relation 

2m--1 
1 • 

yo (x ) -  E °eJ-~. xa' 
j = 0  

Yk+l(X) = L -1 (Ak), k >_ O, 

(11) 

for the determination of the components yn(X) of y(x). The series solution of y(x) follows 
immediately with the constants a2j+l,  j = 0, 1, 2 , . . . ,  (m - 1) are as yet undetermined. 

An important  point to be made here is that  we can elegantly determine the components y~ (x) 
as far as we like to enhance the accuracy of the approximation. The n-term approximant 

n - 1  

¢" = Z Yk (12) 
k=0 

can be used to approximate the solution. 
As noted previously in the Introduction, a reliable modified form to the decomposition method 

has been introduced recently by [11-13]. The modified technique proposes a slight change in the 
definition of the components yo(x) and Yl (x) in (11). While thi s slight variation is rather simple, 
it produces a remarkable tool for numerical applications. 

The variation we propose in [11-13] is that  only a part of yo(x) in (11) be assigned to yo(x), 
whereas the remaining part of yo(x) in (11) be assigned to the component yl(x) among other 
terms. As a result, we formulate a new recursive relation, to replace relation i l l ) ,  given in the 
form 

y0(z)  = a0 ,  
2 m - 1  

1 
yl(z) = E aJ - z j  + L-I(Ao), (13) 

j = l  (J)!  

yk+l(x) = L -1 (Ak), k > 1. 

The main reason for this modification is that Adomian polynomials AN depend heavily on yo(x). 
The choice of yo(x) to contain minimal number of terms has a strong influence on facilitating the 
computational behavior of AN. 

Relation (13) will enable us to determine the components yn(x), n > O, recurrently, and as a 
result, the series solution of y(x) is readily obtained with the constants oe2j+l, j = O, 1 , 2 , . . . ,  
( r n -  1) are as yet undetermined. It is interesting to note that  the accuracy of the approximation 
can be dramatically improved by simply determining the components yn(X) as far as we like. The 
n-term approximant 

n--1 

= yk ( 1 4 )  
k=O 
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can be used to approximate the solution. As stated before in the Introduction, the convergence 

concept has been established by many studies in [15-20]. 

Our aim now is to determine approximations to a2k+l, k = 0, 1 , 2 , . . . ,  (m - 1). Imposing 
the boundary conditions at x = b on the approximant Cn leads to an algebraic system of 
equations. This system needs only be solved to obtain approximations to the constants a2k+l, 
k = 0, 1 , 2 , . . . ,  ( m -  1). Having determined these constants, the numerical solution of the 2m- 
order boundary value problem follows immediately upon substituting the resulting components 
in (8). 

3. N U M E R I C A L  RESULTS 

In the examples that  follow, the modified technique will be tested by discussing three boundary- 
value problems of ninth-order, tenth-order, and 12th-order, respectively. In the first example, 

boundary conditions at any-order derivative are used. However, boundary conditions at even- 
order derivatives are given in the last two examples. 

EXAMPLE 1. We first consider the linear ninth-order BVP 

y(~)(x) = -9e  x + y(x), 0 < x < 1, (15) 

subject to the boundary conditions 

y(J)(O) = (1 - j ) ,  

y(J)(1) = - j e ,  

j = O, 1, 2, 3, 4, 
(16) 

j = 0 ,1 ,2 ,3 .  

The theoretical solution for this problem is 

y(x )  = (1 - x ) e  x (17) 

In an operator form, equation (15) becomes 

Ly = -9e  x + y(x), O < x < 1. (18) 

Applying L -1, a nine-fold integral operator, on both sides of (18), and using the boundary 
conditions at x = 0, yields 

1 6  1 C x 7  + _~ DxS Y(x) = l - ~ x 2  - 1 x a  - l x4  + ~ A x 5  + ~. B x  + 7 .  . 

- g L  -1 (e x) + L- l (y (x) ) ,  
(19) 

noting that  

A = y(V)(0), B = y(Vi)(O), C = y(Vi~)(0), D = y('iii)(0) (20) 

are constants that  will be approximated later by using the boundary conditions at x = 1. Sub- 
stituting the decomposition series (8) for y(x) into (19) gives 

1 2 1 3 1 4 1 5 _~.Bx6 1 C x T + _ ~ D x S  ~--~ y,~(x) = l -  ~ x  - - ~ x  - -~x + ~ A x  + + 7. 8. 
n = 0  (21) 
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As stated before, the modified decomposition technique admits the use of the newly developed 
recursive relation 

y0(x) = 1, 

This gives 

1 3 1 4 1 A x 5 + l B x 6 + ~ C x T +  1 8 
yl(X) = --~.TX 2 ~X ~X ~- 5. 6. - - . ~ D x  

- 9L-X(e x) + L-l(yo(x)), 

yk+l(x) = L-l(yk(x)), k >_ 1. 

yo(x) = 1, 

1 7 + 1DxS 1 2 1 3 1 4 :,, ,,, 1-~AxS+ 1-~Bx6+~.. Cx 
yl (x )  = - ~ x  - ~ z  - ~ x  + 5. 6. 8. 

- 9 L - l ( e  z) + L-l(yo(z)) 

-~ -~x2 - 3x3 - 1 x 4  ~- l.-~--Ax5 -~- l---~-Sx6 -Jw l----~Cx 7 -.}.. 411-~ Dx 8 
120 720 5040 0320 

45360 x9 -- ~07200 xl0  ~ x l l  -- 4435200 
y2(x)=L-I(yl(x)),  

1 = -- X 11 
39916800 

y3(x) = n-l(y2(x)) 

= -~1 X13 + . . .  
13! 

1 12 .gr_ 
239500800 x " " ,  

In view of (23), the approximation of y(x) is given by 

(22) 

1 12+ (23) 
53222400 x "", 

1 2 1 3 1 4 ~ 1 7 y(x)= l - ~ x  --~x --~x + Ax ~ + 1---~Bx6 + 720 5---~ Cx 

- ~ x  0 .  . . ' 

(24) 

where the constants A, B, C, and D are as yet undetermined. This can be achieved by imposing 

the boundary  conditions at x = 1 on the four-term approximant ¢4 where 

to obtain the system 

1 

4! 

1 

3I 

1 

-2! 

Solving this system gives 

1 1 1 1 

5I 6I 7! 8! 

1 1 1 

5! 6! 7I 

1 1 1 

4! 5! 6! 

1 1 1 

3I 4! 5! 

k=3 

¢4 = E Yk, 
k=0 

i] 
2849503 

68428800 

9072821 
- - e + - -  

3628800 
5445427 

- 2 e  + - -  
1209600 

259883 
- 3 e  + - -  

51840 

A = -3.999992, 

B = -5.00017, 

C = -5.9985, 

D = -7.005. 

( 2 5 )  

(26) 

( 2 7 )  
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Consequently, the series solution is given by 

1 1 4  
y ( x )  = 1 - x 2 - ~ x  3 - -~x - 0.03333326667x 5 - 0.006944680556x 6 

__9x,0 - 0.001190178571x 7 - 0.000173735119x s - _~x 9 _ (28)  
9 ~  10! 

As s tated before, the series solution (42) is convergent. In addition, using the ratio test  implies 

tha t  the series converges for every x. 

Table 1 below shows the numerical results for Example 1. Examining the errors obtained by 

using the proposed modified decomposition method [11-13] shows the high accuracy obtained. 

X 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

Table  1. Numer ica l  resul ts  for Example  1. 

Ana ly t ica l  Solut ion Numer ica l  Solut ion Errors* 

1.00000000 1.0000000000 0.000000 

0.99465383 0.9946538264 - 2 . 0 E - 1 0  

0.97712221 0.9771222066 - 2 . 0 E - 1 0  

0.94490117 0.9449011654 - 2 . 0 E - 1 0  

0.89509482 0.8950948186 - 2 . 0 E - 1 0  

0.82436064 0.8243606355 - 2 . 0 E - 1 0  

0.6 0.72884752 

0.7 0.60412581 

0.8 0.44510819 

0.9 0.24596031 

1.0 0.00000000 

0.7288475206 

0.6041258131 

0.4451081876 

0.2459603145 

0.O000000000 

* error  = analy t ic  solut ion - numer ica l  solution.  

E X A M P L E  2 .  W e  next consider the nonlinear tenth-order BVP 

- 6 . 0 E -  10 

- 1 . 0 E - 9  

- 2 . 0 E - 9  

- 3 . 4 E - 9  

0.000000 

y ( X ) ( x ) = e - X y 2 ( x ) ,  0 < x < 1, 

subject to the boundary  conditions 

y(2i)(0) = 1, 

The  exact solution for this problem is 

(29) 

y ( x )  = e ~. (31) 

Equation (29) may be writ ten in an operator form by 

L y  = e - X y 2 ( x ) ,  0 < x < 1. (32) 

Note tha t  the inverse operator  L -1 here is a tenfold integral operator.  Operat ing with L -1 on 

both sides of (32), and using the boundary conditions at x = 0 yields 

1 1  
y(x)=l+Ax+2 X2+a  X3+ + + + 

(33) 

9. 

where the constants 

A = y'(0),  B = y(iii)(0), C = y(V)(0) ,  D = y ( ' ~ ) ( 0 ) ,  E = y( iX)(0)  (34) 

y(2~)(1) = e, i = o, 1 , 2 , 3 , 4 .  (3o)  
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are to be determined. Substituting the decomposition assumption (8) for the solution y(x) and 
the polynomials representation (9) for the nonlinear term y2(x) into (33) gives 

o o  

1 2 ~ B x 3  1 4 1 5  1 6 ~ D x 7  E yn(X) = I + Ax + ~..x + + ~ x + ~ C x  + ~ z  + 
n = O  " " " 

+ -~..X + EX 9 + e -~ An 
9. 

n=0 2 

(35) 

where An are the so-called Adomian polynomials that represent the nonlinear term y2(x). We 
point out that  Adomian polynomials can be generated for all classes of nonlinearity according 
to specific formulae set by [9,10]. A new algorithm for calculating Adomian polynomials for 
nonlinear operators has been established recently by [14]. 

To determine the components yn(x), n >_ O, the modified decomposition method [11-13] intro- 
duces the recursive relation 

yo(x) = 1, 

1 2 1  ~4 1-~0 1 6 1 7 1 8 1 9 y l ( x ) = A x + - ~ x  + B x  3+ x 4+ Cx 5 + - ~ 6 x  + 5 - ~ D x  +~..x + ~ . E x  

+ L -1 (e-XAo), 

yk+l(x) = L-l(e-XAk),  k > 1. 

(36) 

It is useful to list the first few Adomian polynomials An for the nonlinear operator F(y) = y2(x). 
Following the analysis of [9] or [14] yields 

Ao = F(yo) 

= y~,(x), 

A1 = yl(x)F'(yo) 

= 2y0(x)yl(x),  

Y21 F" " 
A2 = y2F' (yo) + ~. (Yo j 

= 2yo(x)~2(x) + y~(x), 

(37) 

and so on for other polynomials. 
Inserting (37) into (38) yields 

yo(x) = 1, 

1 1 x3 ~4x4 1 5 1 6 5_~_ 4 1 S E 9 yl(x) = Ax + z 2 +-~B + + ]'~6Cx +"~6x + Dx 7 + ~ x  + 
o ~ z  

+ L-l(e-XAo) 

1 2 1 1 4 1 5 1 6 1 7 
= d x + - ~ x  + u S x 3 + ~  x +i5-6 Cx +~-~6 ~ +5--6-£6 D* 

1 8 1 9 11.._xIO l___xl 1 + 1 ~12 
+ ~ x  + ~ E x  + 10! - 11! ~.~x + . . . ,  

y2(z) = L-I(e-XA1) 

= 11! x 239500800 + " ' '  

y3(x) = L-a(e-XA2) 

1 _13 = ~.vx + " ' .  

(38) 
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Consequently, the approximation of y(x) is given by 

1 4 1 5 1 6  1 7 1 2 1 B x 3 + ~ . x  +~..Cx +~..x +~..Dx y(x) = l + Ax + ~ x  +3. 

1 9 1 - ' ° (  1 1 ) x l l  
+ .xS+~.Ex +-~.x + 19958400 A 39916800 (39) 

+ ( _  1 A 1596~7200) x12 + . . .  119750400 + 

It remains to determine approximations to the constants A, B, C, D, and E. This can be achieved 
by imposing the boundary conditions at x = 1 on the four-term approximant ¢4 derived from (39). 
Accordingly, we obtain the algebraic system 

23950081 
23950080 

1 
226800 

1 
0 

3360 
1 

0 
9O 
1 

0 
3] 

Solving this algebraic system gives 

1 1 1 1 246379361- "e 
3! 5! 7! 9! 

1 1 1 
1 

3! 5! 7! 
1 1 1 
3! s! 

1 
o 1 ~., 

0 0 1 

A = 1.00001436, 

B =  0.999858964, 

C =  1.001365775, 

D= 0.987457318, 

E =  1.093279434. 

159667200 
5599523 

e 
3628800 
20737 
13340 

123 
e - -  - -  

8O 
35 
24 

(40) 

(41) 

This results in the series solution 

y(x) =1 + 1.00001436x + lx2  + 0.1666431607x 3 + l x 4  

1 6 + 0.008344714791x 5 + ~.x + 0.000195924071x 7 
(42) 1 

+ *--.x s + 3.013 x 10-6X 9 
~18. 

+ l---x1° + 2.51 x 10-Sx 11 - 2.087 × 1 0 - 9 x  12 + . . .  
10! 

Using the ratio test implies that  the series converges for every x. 
Table 2 below shows the exact values, numerical solutions, and the errors obtained by using the 

modified decomposition method. Table 2 also provides some numerical evidence which suggests 
that  the performance of the modified decomposition method is promising. 

We close our analysis by discussing a twelfth-order boundary value problem where the 
12th-order is a function of a lower-order derivative. 

EXAMPLE 3. Finally, we consider the nonlinear 12th-order BVP 

y(X~O(z) = 2eXy2(x) + y'"(x), 0 < z < 1, (43) 

subject to the boundary conditions 

y(:~)(O) = 1, y(20(1) = e -1, i = o, 1 ,2 ,3,4,5.  (44) 
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The exact solution 

X 

0.O 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

A.-M. WAzwAz 

Table 2. Numericalresults ~ r  Example 2. 

AnalyticalSolution Numerical Solution Errors* 

1.000000000 1.000000000 0.00000 

1.105170918 1.10517233 - 1 . 4 1 E - 6  

1.221402758 1.221405446 - 2 . 6 9 E - 6  

1.349858808 1.349862509 - 3 . 7 0 E - 6  

1.491824698 1.49182905 - 4 . 3 5 E - 6  

1,648721271 1.648725849 - 4 . 5 8 E - 6  

1.822118800 1.822123158 - 4 . 3 6 E - 6  

2.013752707 2.013756415 - 3 . 7 1 E - 6  

2.225540928 2.225543623 - 2 . 6 9 E - 6  

2.459603111 2.459604528 - 1 . 4 2 E - 6  

2.718281828 2.7182830 2.00E-9 

• error = analytical solution - numerical solution 

for this problem is 

y(x) = e -x.  

Proceeding as before, we set 

(45)  

where the constants 

A = y'(0), B = y(~i~)(0), C = Y(v)(0), 
(48)  

D = E = F = y(x i ) (0)  

are to be determined. Substituting the decomposition assumption (8) for the solution y(x) and 
the polynomials representation (9) for the nonlinear term y2(x) into (47) gives 

oo 1 2 1 1 4 1 5 l x 6 + l D x T +  l x s Eyn(x)=l+Ax+~x +-~.Bx3+--~.x +~.Cx. +6.~1 71 ~ I .  8. 
ricO 

"t- ---~Ex 9 T l x l °  + 1 F x l l  (49) 
• 10[  11! 

( ) +5 -1 ~-'~ yn'tt(X) -~-i -1 2 e X E  An , 
n=0 k n=0 

where A,~ are Adomian polynomials as described above. 
The components yn(x), n > 0 can be elegantly determined by using the recursive relation 

yo(x) = 1, 
1 1_ 1 6 1 D x 7  1 s 4 ~ C x  ~ + ~.x + "71 + ~ x  Y l ( x ) = A x + ~ . . x 2 + ~ . B x 3 + ~ .  x + 5 .  7. 

(50)  
+ ~-~I. Ex9 T ~ 0 I x  10 -~- 1-~-Fll! x l l  _{_ L - i  (y0 , , )  + L-l(2eXAo) 

yk+l(X) = L -1 (Yk'") + L -1 (2eXAk), k > 1. 

Ly  = y'"(x) + 2eZy2(x), 0 < x < 1. (46) 

Note that  the inverse operator L -1 here is a 12-fold integral operator. Operating with L -1 on 
both sides of (46) gives 

1 1 1 6 1 Dx 7 I s 3 X 4 ~ Cx  5 + ~.x + + ~.x y(x) = l + Ax + ~ x  2 + ~ B x  + ~. +5 .  
(47) 

+ ~Exl 9 + -~-~.xl _1o +. lj-Fz1111! + L-1  (y'"(x)) + L -1 (2e~y2(x)), 
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Using An as derived in (37) and proceeding as discussed above, we find 

yo(x) = 1, 

1 4 ~Cx5 ~.xa ~.Dx7 + + + 

1 xl  2 (51) 1 s 1 9 l x l 0  + 1 F a l l  + +... 
+ -~.x + -~.Ex + 1 0 !  11! 239500800 ' 

. I B  12 ~ 2 ( x ) = ~ .  • + ' " .  

Combining the components computed in (51) gives the approximation 

1 4 ~..Cx5 lx6+~-~Dx7 y ( x ) = l + A x + ~ . . x 2 + ~ . . B x 3 + ~ x  + +6. . 

1 8 ~ ± x 1° + ! F x "  (52) + ~ x  + Ex9 -~ 10[ 11! 

+ f f , + ~  + . - - .  

We then follow the approach used before to .evaluate the constants A, B, C, D, E,  and F.  Using 

the boundary  conditions at x = 1 on the three-term approximant ¢3 derived from (52) gives the 

79833601 1 1 1 1 
algebraic system 

1 

0 

0 

0 

0 

0 

I t  follows tha t  

479001600 5! 7[ 9[ 11! 

3628801 1 1 1 1 

3628800 3[ 5! 7! 9! 

1 1 1 1 
8~ 1 3! 5! 7-~ 

1 1 1 

6~. 0 1 3-~ 55 
1 1 
4~ 0 0 1 ~. 

1 

2~ 
0 0 0 1 

-A 1 
B 

C 
D 

E 

. F .  

-e_ 1 369569047- 
239500800 

1399883 e-1 
907200 

31109 e-1 
20160 

139 e - l _ _  
90 

19 e - 1  
12 

e -1 - 2  

(53) 

A = -0.9999983604, 

B = -1.000016174, 

C = -0.9998407313, 

D = -1.001558298, (54) 

E = -0.9851011393, 

F = -1.132112472. 

The series solution is therefore given b y  

y(x) = 1 - 0.9999983604x + x 2 - 0.1666693624x 3 + x 4 

- 0.008332006094x 5 + ~ z  6 - 0.0001987218845x 7 
(55) 

1 s + ~ x  - 2.715 x 10-6x 9 

+ ~1x1°  - 2.836 x 10-Sx n + 2.087 x 10-9x 12 + . . .  
10! 

The series solution converges for every value of x in a parallel manner to tha t  discussed in the 
preceding examples. 

In Table 3, we show the results o f  the calculations and the errors obtained by using the 
approximant  of (55). 
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X 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

• error = 

A.-M. WAZWAZ 

Table 3. Numericalresults ~r  Example 3. 

Analytical Solution Numerical Solution Errors* 

1.000000000 1.000000000 0,00000 

0.904837418 0 . 9 0 4 8 3 7 5 7 9  -1.61E-7 

0.818730753 0 . 8 1 8 7 3 1 0 6 0  -3.07E-7 

0.740818221 0 . 7 4 0 8 1 8 6 4 3  -4.22E-7 

0.670320046 0 . 6 7 0 3 2 0 5 4 3  -4.97E-7 

0.606530659 0 . 6 0 6 5 3 1 1 8 2  -5.22E-7 

0.548811636 0 . 5 4 8 8 1 2 1 3 3  -4.97E-7 

0.496585304 0 . 4 9 6 5 8 5 7 2 6  -4.22E-7 

0.449328964 0 . 4 4 9 3 2 9 2 7 1  -3.07E-7 

0.406569659 0 . 4 0 6 5 6 9 8 2 1  -1.61E-7 

0.367879441 0.367879441 

analytical solution - numerical solution. 

2.00E-10 

4. C O N C L U D I N G  R E M A R K S  

The computa t ions  associated with the examples discussed above were performed by using 

Maple V. The  existence and uniqueness  of the solut ion is guaran teed  according to a comprehensive  

analysis  by Agarwal 's  book [6]. The  proposed algori thm produced a rapidly convergent  series. 

There  are two impor t an t  points  to make here. First ,  unlike the t rad i t iona l  techniques used by 

other  numerica l  algori thms, where the solution y(x)  is defined at  grid points  only, the  solut ion 

here is given in a series form. Second, the approach is implemented  direct ly in a s t ra ightforward 

m a n n e r  wi thout  using restrictive assumpt ions  or l inearization.  We believe t ha t  the efficiency of 

the decomposi t ion method  gives it much wider applicability. 
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