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Abstract

It is an open question whether the smash product of a semisimple Hopf algebra and a semiprime
module algebra is semiprime. In this paper we show that the smash product of a commutative
semiprime module algebra over a semisimple cosemisimple Hopf algebra is semiprime. In particular
we show that the centrd -invariant elements of the Martindale ring of quotients of a module algebra
form a von Neumann regular and self-injective ring whenetes semiprime. For a semiprime
Goldie PIH-module algebra with central invariants we show that# H is semiprime if and only
if the H-action can be extended to the classical ring of quotientsibfind only if every non-trivial
H-stable ideal ofA contains a non-zeré{-invariant element. In the last section we show that the
class of strongly semisimple Hopf algebras is closed under taking Drinfeld twists. Applying some
recent results of Etingof and Gelaki we conclude that every semisimple cosemisimple triangular
Hopf algebra over a field is strongly semisimple.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Itis an important open question in the theory of Hopf algebra actions whether the smash
productA # H of a semisimple Hop#{ and a semiprime lefHH-module algebra, is
semiprime (see [17, Question 4.4.7]).
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Fisher and Montgomery had proved an analogous result for group rings (see [11]) and
Cohen and Montgomery for duals of group rings (see [6]). Attempts had been made to
tackle this question often by restricting the class of Hopf algebras (see for example [18]).

In order to give a partial answer to the semiprimness question, we will restrict the class
of module algebras rather than the class of Hopf algebras. In particular we will show that
the question has a positive answer for commutative module algebras in characteristic 0.
The main step is to show that the subring of centfainvariant elements of the Martindale
ring of quotients is von Neumann regular. The result follows applying a theorem of S. Zhu
which says that a commutative module algebra is an integral extension of its invariants if
the Hopf algebra involved is semisimple and cosemisimple.

In general one might ask what are necessary or sufficient conditions for a smash product
to be semiprime. A very important necessary condition is the existence of non-trivial
H-invariant elements in non-zerH -stable ideals of the module algebra. A sufficient
condition is the ability of extending thH -action on a semiprime Goldie module algebra
to its classical ring of quotients. We will see in Theorem 4.4 that for semiprime Goldie
PI module algebras with central invariants those conditions are equivalent to the smash
product being semiprime. In the final section we show that the class of strongly semisimple
Hopf algebras is closed under Drinfeld twists. Applying finally a recent result of Etingof
and Gelaki, we can also conclude that triangular semisimple cosemisimple Hopf algebras
are strongly semisimple and satisfy the property that their smash product with a semiprime
module algebra is semiprime.

All rings are supposed to be associative and have a unit element unless otherwise stated.
Throughout the texR will denote a commutative ringd a Hopf algebra oveR with
antipodeS, counite and comultiplicationA. We will make use of the so-called Sweedler-
notation A(h) = Z(h)hl ® h for the comultiplication of amh € H. A left H-module
algebraA is an R-algebra in the category of leff-modules. The smash product af
and H is an R-algebra with underlyingk-module A ® g H and denoted by # H. The
multiplication of two elementa #h andb # g in A # H is defined to be equal to

(a#h)(b#g) = Za(hlb) #hog.
(h)

We emphasis thad is a cyclic leftA # H-module and Engls; (A) >~ A™. This allows to
studyA, A” andA # H in module-theoretic terms.

We refer to all unexplained Hopf-algebraic terms to [17] and [20], to all ring-theoretic
terms to [13] and to all module-theoretic terms to [23].

2. Separability of smash products

Many results on group actions are stated in terms of algebras over rings rather than in
terms of algebras over fields. Throughout the paper we will consider Hopf algebras over
a commutative ringk. Just when applying deeper results on Hopf algebras over fields we
will assume thatr is a field. In the case of a base rilgythe adequate analogue of a
semisimple Hopf algebra (over a field) is a Hopf algebra that is separablé&over
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2.1. We will shortly recall the definition of separability in non-commutative ring
extensions (see [12]).

Definition. Let S € T be any ring extensiorf. is calledseparableover S if there exists an
idempotent

n n
W= in ® y; € T®sT such that iny,' =1 and tw=wt
i=1 i=1

holds for allz € T. We refer tow as theseparability idempoterdf T overS.

Here we consideT ®sT as aT — T-bimodule viar(x ® y) =tx ® y and (x ® y)t =
xQytforallreTandx ® y e T®sT.

2.2. Separable extensions are in particular semisimple extensions (see [12]). An
extensionS € T is called semisimple if every exact sequence of fefinodules, which
splits as a sequence of léftmodules, splits. Hence # is a Hopf algebra over some field
k such thak C H is separableH must be a semisimple ring. (Note that ‘semisimple ring’
shall always mean ‘semisimple artinian ring’.) We will see soon that the converse is true
as well.

2.3. Recall the submodule of left integrals in a Hopf algebra
/:: {te H|Vhe H: ht =&(h)t}.
!

Right integrals are defined analogously. It is known tiiag 0 in caseH is finitely
generated and projective &module (see [19]). The author was unable to find a reference
for the following (maybe known) result which gives a criterium fo# H to be separable
over A. Note that no hypothesis aii as a module over is needed.

Proposition. Let H be a Hopf algebra ovek and let A be a left H-module algebra.
Assume that there exists a left or right integrdh H with ¢(¢)1,4 invertible in A. Then
A # H is separable oveA.

Proof. Letr be aright integral inid such thak(z)14 is invertible inA and letz € A be its
inverse. A straightforward calculation shows thas a centralH -invariant element ofd.
As in [5, Theorem 1.11] one shows that

w ::Z[l#sm)] Qz#t]c A#HHQR4 A#H
)

is a separability idempotent fot # H.
For a left integral with ¢(¢) invertible in A we setr’ := S(¢). Sincer’ is a right integral
ande (') = ¢(¢) we can argue as above and conclude th&tH is separable ovet. O
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2.4. Letting H act trivially on R by settinghar := e(h)r for all h € H andr € R,
R becomes a lefftf-module algebra an® # H ~ H. Proposition 2.3 shows tha is
separable oveR if and only if there exists a left or right integrain H with ¢(¢) invertible
in R. While the sufficiency follows from the proposition, the necessity follows because if
H is separable oveR the H-linear mape : H — R splits as right? -modules. Hence there
exists anH-linearo : R — H such thats(o (1)) = 1. The element := o (1) is our right
integral.

In particularA # H is separable oved for every left H-module algebrad whenever
H is separable oveR Thus for instance whenevéf is a semisimple Hopf algebra over a
field.

Note that this fact holds without assuming any additional hypothesig as a module
over R. On the other hand it is well known that a separa®lalgebraH must be finitely
generated aR-module if H is projective asR-module.

2.5. In case of a group ring/ = R[G] with G afinite group. The submodule of left and
right integrals, is spanned by the element= deag. For anR-algebraA whereG
acts on A #G is equal to the skew group ring df andG. Proposition 2.3 says that# G
is separable ovet provideds(r) = |G| is invertible inA.

2.6. Since separable extensiofis T are semisimple extensions, every [Efmodule
that is projective as lef§-module is also projective as lefi-module (see [24, 28.5]).
In particular any separable extension of a semisimple artinian ring is itself semisimple
artinian. Our next lemma shows that the analogue statement for flat modules and von
Neumann regular rings is also true by [24, 20.12]:

Lemma. Supposd’ is separable over a subrin§. Then every lefi’-module that is flat as
left S-module is also flat as leff-module.

Hence a separable extension of a von Neumann regular ring is itself von Neumann
regular.

2.7. Combining Lemma 2.6 and Proposition 2.3 we get the following important
Corollary which generalises a result of Cohen and Fischman that says\ that is
semisimple whenevet and H are semisimple (see [4, Theorem 6]).

Corollary. Let H be anR-Hopf algebra andA a left H-module algebra, such that there
exists a left or right integrat in H with ¢(¢) invertible in A. If A is von Neumann regular,
thenA # H is von Neumann regular. i is semisimple artinian, theA # H is semisimple
artinian.

2.8. A first application of the corollary above will allow us to show that whenever the
H-action can be extended to the left maximal ring of quotie@ftf%X(A) of a left non-
singularH-module algebral the smash product # H must also be left non-singular and
moreover its left maximal ring of quotients is isomorphioQ{q]ax(A) #H.
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Recall the definition of the left maximal ring of quotients. ISebe any ring and denote
by E(S) its injective hull inS-Mod. Define the left maximal ring of quotients Sfas the
S-submodule

Ohax($) :={m € E(S) |V.f € Ends((S)): £(S)=0= f(m) =0}

of E(S). Let B := Endkngy£(s))(E(S)) be the biendomorphism ring of(S). The
evaluation map? : B — anaX(S) with ¢ — ¢(1) is an isomorphism of abelian groups
and induces a ring structure c@inaX(S). Hence one might identif;Q{,naX(S) with the
biendomorphism ring of the injective hull ¢f

2.9. Recall that a submodul¥ of a moduleM is calleddensevhenever
Hom(L/N,M)=0 forallN CLCM.
0!.ax(S) can also be seen as the maximal extengi@f S such thatS is dense ink.

Lemma. LetS C T be aring extension such thbetomg(7'/S, T) =0 andsT is injective.
ThenT ~ QL _.(S) as rings.

Proof. Let L be an S-submodule ofT containing S. By injectivity of T, every
homomorphismy : L/S — T can be extended to an homomorphigmZ /S — T which

is zero by hypothesis. Thusis dense inT. By [13, 13.11] there exists an injective ring
homomorphisng : T — QﬁnaX(S) such thatg(s) = s for all s € §. Henceg is left S-linear
and by injectivity of 7, Im(g) is a direct summand oQ{naX(S) containing the essential
submoduleS. Thusg must be surjective and must be an isomorphism of rings.

2.10. In the following theorem we will apply Corollary 2.7 and Lemma 2.9 to show
that Q. (A #H) ~ QL ..(A) # H is von Neumann regular. Using Johnson’s Theorem
that states that a rin§ is left non-singular if and only if its left maximal ring of quotients
0 .(S) is von Neumann regular we can conclude that H is left non-singular.

Theorem. Let H be a Hopf algebra oveR with Hy finitely generated and projective.
Let A be a left H-module algebra, such that there exists a left or right integral H
with ()14 invertible in A. Assume that théf-action extends to the left maximal ring
of quotientsQinaX(A). If A is left non-singular, thend # H is left non-singular and
Ohax(A#H) >~ QL (A #H.

Proof. By hypothesisA is left non-singular. Hence by Johnson’s Theorem the maximal
ring of quotientsQ := QﬁnaX(A) of A is von Neumann regular and equdigA) the
injective hull of A. In particularQ is injective asA-module. The invertibility ofe(z) in

A (and hence inQ) implies the separability o # H over Q by Proposition 2.3. From
Corollary 2.7 we know thaD # H is von Neumann regular. Applying the exact functor
— ®r H to the exact sequence

0-A—-Q0—>0Q/A—0
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we getQ#H/A#H ~ (Q/A) ®r H as leftA-modules. Sincg H is a direct summand
of a free moduleR* with k£ > 1 and sinced is dense inQ, we get:

Homusn (Q#H/A#H, Q#H) C Homy—((Q/A) ®r H, Q ®r H)
< Homy—((Q/A), 0*) =0.

Hence Homuxy (Q#H/A# H, Q#H) =0. SinceA # H is separable ovet, we can also
conclude tha # H is an injective leftA # H-module, asQ and Q # H are injective left
A-modules. By Lemma 2.§Q’maX(A #H) ~ Q # H and by Johnson’s Theorem (see [13,
13.36])A # H is left non-singular. O

2.11. The question whether th-action of a semisimple Hopf algebra can be extended
to the maximal ring of quotients of a module algebra is still open. A claim that this is
always possible was made in [22] but its proof is not complete as was confirmed by the
author of [22].

3. Commutative semiprime module algebras

Consider the subring/y (A) of Endg (A) generated by thé&/-action onA and by the
left and right multiplications of elements df:

Mp(A):=({La, Ra, Ly |a € A, h € H}) CEndg(A),

whereL, andR, denotes the left and right multiplication withe A, respectively, and.;,
denotes thed -action of the elemernit on A. A is a cyclic faithful My (A)-module whose
submodules are precisely tté-stable two-sided ideals oA. If A is commutative then
My (A) ~ A#H /AnNgzp (A).

3.1. A module algebra is called H-semiprimef A does not contain any non-trivial
nilpotentH -stable ideals.

Lemma. The following statements are equivalent for Hnstable ideall of an H-semi-
prime module algebrat.

(@) Lann (1) =0;
(b) I is an essentiaM g (A)-submodule ofi;
(c) IisadenseMy(A)-submodule ofA.

Proof. (a) = (b). LetJ be anH-stable ideal ofA. Since the left annihilator of is zero,
JNI2JI#0showsthaf is essentiaMy(A)-submodule ofd.

(b) = (c). LetJ be anH -stable ideal ofA containing/ and letf:J — A be My (A)-
linear such thaf € Ker(f). Thenk := f(J)N I is nilpotent since

K%< f(HI=f)=0.
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As A is H-semiprimeK = 0 and adl is essentialf = 0. Hence Hory, 4)(J/1,A) =0
shows thatl is dense imA.

(c) = (a). LetJ denote the left annihilator af. Since forallh € H,x € J andy € I
we have:

(hx)y = hi(x(S(h2)y)) =0,
(h)

J is anH -stable ideal ofA. SinceA is H-semiprime/ NJ =0. Letr :J & I — J be the
projection, therr € Homyy, 4y ((J @ 1)/1, A) = 0. Hencel has zero left annihilator. O

3.2. Recall that a moduleV is called M-generated if it is an epimorphic image of
a direct sum of copies oM. The self-injective hulld of a moduleM is the largest
M-generated submodule of its injective hull(M). The endomorphism of the self-
injective hull of a module whose essential submodules are dense is known to be von
Neumann regular and self injective (see [24, 11.2]). Applying this module-theoretic fact
to our situation Lemma 3.1 shows that the endomorphism¥irg the self-injective hull
A of A asMy (A)-module is von Neumann regular and self-injective. We will construct an
isomorphism betweefi and the subring of centrdl -invariant elements of the Martindale
ring of quotients ofA.

3.3. Let F denote the set of ideals of with zero left and right annihilator. Theéght
Martindale ring of quotientsf A is

0(A) :=lim{Hom_A(1, A) | I € F}.

Alternatively one might construcD (A) as follows: define an equivalence relation on
U erHOM_4 (1, A) by letting f:1 — A to be equivalent tgg:J — A if there exists
a K e F such thatk €I NnJ and fix = gix. Note that the equivalence class of the
zero map contains all mapg that vanish on some ideal ifi. Addition is defined by
[f1+[gl:=[f+g:INJ — Alwhile multiplication is setto bef1[g] :=[fg:JI — A]
where fg denotes the composition map— f(g(a)).

In order to extend theH-action on A to some subring ofQ(A), Miriam Cohen
considered the subsgly of H-stable ideals belonging t6 and constructed the following
ring:

Qo(A) :=lim{Hom_4(I, A) | I € Fy}.

We will refer to the elements ado(A) as equivalence classes in the above sense. Moreover
Qo(A) is a subring ofQ(A). The H-action onA extends toQg(A) by letting an element
he Hactonf:1— Aby(h- f):1 - Awith

(h- f)(x):= Zhlf(S(hz)x) forall x € I.
(h)
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One checks as in [3, Theorem 18] thag(A) becomes a left -module algebra with this
action.

3.4. Itis well know that the extended centroid of a semiprime algebra is a von Neumann
regular self-injective ring (see [23, 32.1(2)]). We are now in position to show that the
subring of centraH -invariant elementZ (Qo)” := Z(Qo) N Qf of the right Martindale
ring of quotients of a semiprime module algebra is von Neumann regular and self-injective.

Proposition. Let H be a Hopf algebra over and letA be a left H-semiprime module
algebra with right Mg\rtindale ring of quotient®g. Let T be the endomorphism ring of
the self-injective hull of A as My (A)-module. Assume that

e A is commutative, or
e A is semiprime, or
e H has a bijective antipode.

Then
VT — Z(Qo)"  with f > [f:1; — Al

is a ring isomorphism wheré; := f~1(A) N A. MoreoverZ(Qo)* is a von Neumann
regular self-injective ring.

Proof. Let A denote the self-injective hull oA as My (A)-module and letl’ denote
the endomorphism ring ok as My (A)-module. For each endomorphisfne T define
Ir := f~1(A) N A. Since pre-images of essential submodules are essehtias an
essentialM y (A)-submodule ofA. By Lemma 3.1,/ has zero left annihilator. If is
commutative or semiprimés has also zero right annihilator and belongsAg. If the
antipode ofH is bijective then the right annihilatof of I, is also anH -stable ideal since
forallh € H,x € J andy € Iy we have:

x(hy) = th((S*l(hl)x)y) =0.
()

As Iy N J is a nilpotentH -stable ideal and a4 is H-semiprimel ; N J must be equal to
the zero submoduléd being an essentialf ; (A)-submodule implies that is zero. Thus
also in this casd; belongs taFy .

We will show thaty is a ring homomorphism. Lef, g € T. Note that/ I, € 7y and
Iel, C Iyg. Thus

VOV =1f1y—> Allg:Ig > Al=[fg:1rlg > Al=[fg: Ig > Al=¥(fg).
This shows thaty is a ring homomorphism. Assumg(f) = 0 for somef € T. Then

there exists aiy € Fy with J C Iy and f(J) = 0. Hencef € Homy,, (4 (I¢/J, A) =0
asJ is dense by Lemma 3.1. This shows thjats injective. On the other hangl is also
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surjective. Letlg: 1 — A] € Z(Qo)". First note thay; is My (A)-linear: Leta € A then
[q1[La] = [L4]lq] implies the existence of an idedle Fy with J C I and

q :=qL,—Lag eHOM_4(1/J, A).
SinceJ has zero left annihilator ang(//J)J = 0 we can concludg’ = 0. This shows

qlax)=qL,(x)=Lsq(x)=aq(x)

forall x € I. Hencey is a left A-linear.
Note that sincey € Qff forallh e H: h-q =¢(h)q. Leth € H. Forallx € I we have:

q(hx) =y e(h1)q(hax) =Y h1-q(hax) =Y _h1g(S(h2)h3x)
Q) Q) Q)

= [Z hle(hz)}qu) = hq (x).
(h)

This shows thed -linearity of g. Sincey is by definition rightA-linear we have shown that
g isanMpy(A)-linear map.

By injectivity of A, ¢:1 — A can be extended to al (A)-linear mapg € T. This
extension is unique since Ham 4)(A/1, A) = 0. Moreovery (§) = [¢] as! < I; and
g1 = q. This shows that) is surjective and we have established an isomorphism of
rings betweerZ (Qo)” and T which is von Neumann regular and self-injective by [24,
11.2]. O

3.5. Our main result follows now easily from the preceding paragraphs.

Theorem. Let H be a Hopf algebra oveR such thatHy is flat and letA be a commu-
tative semiprime leff/-module algebra. Assume that there exists a left or right integral
0+t € H suchthat(¢) is not a zero divisor iMA. ThenA # H is semiprime provided is
integral overA™.

Proof. Denote byQq the right Martindale ring of quotients of the module algebra
Assumez(7) is invertible inA. Let A := (A, Qg) C Qg be the subalgebra @ generated
by A and QS’. Obviously A is a left H-module algebra. Sinca is a subalgebra of the
right Martindale ring of quotient® of A which is commutative and semiprime, aldéds
commutative and semiprime. By hypothediss an integral extension of. HenceA is
integral overQSI. To see this note that? C Qg and letag € A. There exists a monic
polynomial

fX) =) "rix"eA"[x]

i=0
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with f(a) = 0. Define the monic polynomial

fOO =) rig" X" € 01X,

i=0

Then f(aq) = f(a)g™ = 0 shows that every element of the form of A is integral over
Qg. Since the set of integral elements is closed under sums, we igéntegral overQS’.

By Proposition 3.4Q5’ is von Neumann regular. Recall that a commutative ring is von
Neumann regular if and only if it is semiprime and every prime ideal is maximal. Since
0l c Ais an integral extension, the height of a prime idBah A is equal to the height
of the prime idealP N Q{,’ (see for example [8, 9.2]) every prime ideal &fis maximal
and thereforet is von Neumann regular.

Sincee(t)14 is invertible inA, it is also invertible inA. By Corollary 2.7,A # H is von
Neumann regular. Let C A # H be an ideal withi2 = 0. Then! := I(QS’ #1) is anideal
of A#H. SinceQ} #1is central inA # H we get/2=0. As A # H is von Neumann
regular, hence semiprime, we hale= 0. Sinceg H is flat, A # H is a subring ofA # H
and thus/ = 0. This showsA # H does not contain a non-trivial nilpotent ideal and must
be semiprime.

In cases(t)14 is not invertible inA but a non-zero divisor, we can localigeby the
powers ofs(r)14 and obtain a semiprime commutative module algebia(r)~1]. Thus
Ale() " Y|#H = A# H[e(r)~1 #1] is semiprime and so must be aldct H. O

3.6. S. Zhu showed that a commutati¥&-module algebra is an integral extensions
of its invariants wheneveH is a finite dimensional Hopf algebra over a figluch that
chai(k) { dim(H) and $? = id (see [26, Theorem 2.1]). Etingof and Gelaki proved in [9]
that a finite dimensional Hopf algebra satisfies chak) + dim(H) ands? =id if and only
if H is semisimple and cosemisimple. Combining Zhu’s and Etingof and Gelaki’s result
with Theorem 3.5 we obtain the following corollary.

Corollary. Let H be a semisimple cosemisimple Hopf algebra over a field and tet a
commutative semiprimé -module algebra. Thend # H is semiprime.

It is well known, that a semisimple Hopf algebra over a field of characteristic O is also
cosemisimple.

4. Semiprime Goldie Pl module algebras

Assume that the smash produt# H of a module algebra and a semisimple Hopf
algebraH is semiprime. Then every non-zekb-stable left ideal ofA contains a non-zero
H-invariant element. In this section we will show that this necessary condition is also a
sufficient condition for semiprime Goldie Pl module algebras with central invariants. More
generally we will show that théf -action on such a module algebra can be extended to its
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classical ring of quotients in case every non-zérestable left ideal contains a non-zero
H-invariant element.

4.1. A module M is calledretractableif Hom(M, N) = 0 for all non-zero submodules
N of M (see [25]). Recall that one has &dlinear isomorphism 7 ~ Homyxy (A, I) for
all H-stable left ideald of A. Hence the existence of non-trivial-invariant elements in
non-zeroH -stable left ideals can be expressedidseing a retractabld # H-module.

Lemma. Let M be a retractable leftR-module whose endomorphism ring is semisimple.
ThenM is a semisimple artiniaR-module. If moreoveRr is a PI-ring, thenM is finitely
generated over its endomorphism ring.

Proof. Let N be a non-zero submodule af. By hypothesis there exists a non-trivial
idempotent € S := Endg (M) such that Homp(M, N) = Se. ThusM = Me ® M(1—¢)
impliesN = Ne® (NN M(1—e)). Hence

Homg (M, N N M(1—e)) =Homg(M, N) N Homg (M, M(1—¢))
=SenS(1—-e)=0

implies by hypothesisv " M (1 —¢) =0, i.e., N is a direct summand a¥/. This shows
that M is a semisimpleR-module. As EndM) is artinian,M is artinian.

Write M = EBf.‘zl El.”" with pairwise non-isomorphic simpl&-modulesE; and k,
n; > 1. SetP; := Anng(E;). ThenS = @f:l My, (A;) where A; = Endg(E;). Assume
that R is a PI-ring. By Kaplansky’'s Theorem (see [16, 13.3.8]) there existz 1 such
that R/ P; is isomorphic to the full matrix ring,,; (4;) and E; is a finite-dimensional
A;-vector space. Hencg;" and alsoM are finitely generated over their endomorphism
rings. O

4.2. Applying the above lemma to the module algebra situation we will see, that the
H-action on a semiprime Goldie Pl module algebra whose non-zesiable ideals
contain non-zero centrd -invariant elements can be extended to its ring of quotients.

Proposition. Let H be a Hopf algebra over with Hg finitely generated and leA be a
semiprime Goldie PH-module algebra with classical ring of quotient&;(A). If every
non-zeroH -stable ideal ofA contains a non-zero centrdl -invariant element, then the
H-action onA can be extended t@(A) and Q¢ (A) is equal to the central localisation
A[C~1] of regular element§ of the subringZ (A4) of A.

Proof. Let Z(A)" := Z(A) N A" and letC denote the set of regular elementsZfd ) .
The elements of’ form an Ore set inA and are also regular elements af since
Anny (¢)f! = 0 implies Anny (¢) = 0 for all ¢ € C. Denote byA := A[C~1] the localisation
of A by C. Note thatA is a subring ofA and the mag +— (I N A) from ideals ofA to
ideals ofA is injective. In particulard is semiprime. Sincel is a central extension of the
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Pl-ring A, A is Pl by [16, 13.1.11]. By [21, 6.1.1}4 ® A°Pis a PI-ring and hence its factor
ring

A® A%/ Anng iop(A) >~ M(A) :=({L,. R\ | x € A}) S Endg(A)

is a PI-ring. TheH -action onA extends trivially toA by letting an element € H acton
an elementic™* as(h - a)c™*. SinceH is finitely generated ag-module, My (A) is a
finite extension ofV/ (A) and therefore also a PI-ring by [16, 13.4.9]. Note that

EndMH(A)

" H -
(A) = Z(A)" =z [ ~ 0a(z(A)H)
is semisimple artinian. Moreover létbe a non-trivialH -stable ideal ofdA. Then/ N A
is a non-trivialH -stable ideal ofA and contains a non-trivial centrél-invariant element.
Using the isomorphism

Hom,, (4. 1)=1nz(A)"#0

we see thatd is a retractable module over the PI-riddy (A) having a semisimple
artinian endomorphism ring isomorphic#(A)" . By Lemma 4.1A is finitely generated
over Z(A)" and is therefore left and right artinian. Being semiprime artinian makes
a semisimple artinian ring and sineeis a left order inA we can conclude thad is
equal to the classical ring of quotients 4f Thus Q¢(A) = A is finitely generated over
Z(Qa(AN?. O

Examples off -module algebrad with the property that every non-zefp-stable ideal
contains a non-zero central-invariant element are Hopf-Galois extensions with central
invariants (see [7]). If the extensiot/ A is H*-Galois thenA is a generator i # H*-
Mod. Hencel # ~ Homyuy+ (A, I) # 0 for all H-stable left ideald of A. So-called Hopf
Pl triple considered in [2] are examples of Hopf—Galois extensionse lbet a primitive
[th root of unity of 1 and letd = O (SLx(C)) be the quantized coordinate ring 8> (C)
as defined in [2]. Then there exists Badimensional Hopf algebra@ such thatH is a
left H*-module algebra. The subring of invariatis:= H?" = O(SL»(C) is central and
H/Zqis a Hopf—Galois extension (see [2, 111.4.6]).

4.3. In case there do not exist non-trividf -stable ideals we obtain the following
corollary from the previous proposition.

Corollary. Let H be a Hopf algebra oveR with Hg finitely generated. Any semiprime
Goldie P1 H-module algebra that i# -simple is finite dimensional ovér(A) and equals
its classical ring of quotients.

Proof. SinceA is H-simple Z(A)" is a field. Thus by Proposition 4.2)¢(A) = A and
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4.4. Assume thatl is a semiprime Goldie PH-module algebra with central invariants.
We can now prove the main result of this section showing that the ability of extending the
H-action to the classical left ring of quotients of a semiprime Goldi&Phodule algebra
A with central invariants is equivalent tb# H being semiprime.

Theorem. Let H be a Hopf algebra oveR with Hy finitely generated and projective.

Let A be a semiprime Goldie Pl -module algebra with central invariants such that there
exists a left or right integrat with (z)14 invertible in A. Then the following statements
are equivalent

(a) Every essential left ideal of contains a regulaif -invariant element.
(b) TheH-action onA extends to the classical left ring of quotiens|(A).
(c) A#H is semiprime.

(d) EveryH -stable left ideal ofA contains a non-zerdf -invariant element.

Then Qu(A) = A[C™1] and Qu(A# H) = A# H[C1 # 1], whereC denotes the set of
regular elements oA 7.

Proof. LetC denote the set of regular elements4df .

(a) = (b). ConsiderA := A[C~1] and let/ be an essential left ideal of. Thenl N A
is an essential left ideal of and contains an element6f Hencel = A shows thatA has
no proper essential submodules and must be semisimple artinian.ASisceright order
in A we obtain thatd = Q¢ (A). The H-action can be extended trivially té.

(b) = (c). Let D denote the set of regular elementsAfThe H-action onA can be
extended to the classical left ring of quotiends|(A) = A[D™1] by hypothesis. Since
A is a semiprime Goldie Pl-algebr@(A) is semisimple artinian. By Corollary 2.7,
QcI(A) # H is semisimple artinian sincs(r)1p,(4) is invertible inQc(A). As A is a left
and right order inQ¢ (A) every element oD (A) can be written in the forrd—1a with
d € Danda € A. HenceA # H is a left order inQ¢(A) # H. Thus by Goldie’s Theorem
A# H is semiprime an@q(A# H) >~ Qc(A)#H.

(c) = (d). Note thata > a #¢ is an injectiveA # H-linear map fromA to A#H.
Assume thatA # H is semiprime and lef be a non-zerdd -stable left ideal ofA. Then
04 (I#0)2=1(t-I)#t showsI” D¢.1+£0.

(d) = (a). By Proposition 4.24 = A[C~1] equalsQ¢(A) and is semisimple artinian.
Let / be an essential left ideal @f. Then/[C~1] is an essential left ideal of the semisimple
ring A and therefore improper. Thu$C—1] = A implies that there exist € I andc € C
such thatze~1 = 1. Equivalentlyz = ¢ € I NC shows thatl contains a regulaH -invariant
element. O

4.5. Note that condition (d) of 4.4 says that for every left idéain the filter 7 of
essential left ideals oA and for everyh € H there exists an essential left idedle F
such thathI’ C I. Montgomery had termed -actions with this propertyF-continuous
and had shown in [17] that this condition is sufficient for extending&haction to the
ring of quotients with respect to the filt¢f. We see that under the assumptions of 4.4 the
F-continuity of theH -action is also a necessary condition.
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4.6. Combining Theorems 3.6 and 4.4 we obtain the following corollary for Hopf
actions on integral domains.

Corollary. Let H be a semisimple, cosemisimple Hopf algebra over a fiedohd let A

be a left H-module algebra that is an integral domain. Then the quotient f@ldf A
equalsA[C~1] whereC := A \ {0}. The H-action extends t@ and 0 c Q is a finite
field extensionA # H is a semiprime Goldie Pl-algebra with classical ring of quotient
isomorphictoQ # H.

4.7. A classical result of Bergman and Isaac asserts, that a4imgth group action
G suchA is |G|-torsionfree is nilpotent whenever® is nilpotent. As a kind of Hopf-
algebraic analogue Bahturin and Linchenko showed in [1] that everjfleftodule algebra
A (possibly without unit) is nilpotent whenever? is nilpotent if and only if every left
H-module algebrad (possibly without unit) is Pl whenevet’ is Pl if and only if
T(H)/(J,) has finite dimension, whet# is a finite dimensional Hopf algebra over a field
of characteristic 07 (H) denotes the tensor algebra &f and (/,) the ideal of T'(H)
generated by the left integrals #f. They also show that under those equivalent conditions
aboveH must be semisimple. Whether every semisimple Hopf algebra fulfills one of the
above properties is still open.

Combining Bahturin and Linchenko’s result with Theorem 4.4 we can conclude the
following: If H is a finite dimensional Hopf algebra over a fiéldf characteristic 0 such
that7T (H)/(J,) is finite dimensional and il is a semiprime Goldie lefi-module algebra
with central invariants then one can extended th@ction toQ¢(A), Q¢ (A) is equal to
the localisation ofd by the regular elements af” andA # H is semiprime with classical
ring of quotients equal t@¢(A) # H.

5. Drinfeld twists of strongly semisimple Hopf algebras

We finish the paper by showing that Cohen’s question has a positive answeisif
semisimple cosemisimple triangular.

Definition. A Hopf algebraH over R is called strongly semisimpleif for every H-
semiprime leftd -module algebra the smash product # H is semiprime.

Criterions for a Hopf algebra to be strongly semisimple are given in [18] but those
criterions are hard to verify. Over a field, every commutative or cocommutative semisimple
Hopf algebra is strongly semisimple. Moreover Montgomery and Schneider showed, that
every semisimple Hopf algebra that admits a normal setfiewhose quotient$d; 1/ H;
are either commutative or cocommutative, is strongly semisimple (see [18, 8.16]). Those
Hopf algebras are called semi-solvable.

We will show that the class of strongly semisimple Hopf algebras is closed under
Drinfeld twists. Applying a theorem of Etingof and Gelaki, that classifies all triangular
semisimple cosemisimple Hopf algebras as Drinfeld Twists of group algebras, we
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can conclude that all triangular semisimple cosemisimple Hopf algebras are strongly
semisimple.

5.1. Recall the definition of Drinfeld twists for a Hopf algebra.

Definition. Let H be an Hopf algebra oveR. A Drinfeld Twistfor H is an invertible
element/ € H ® H, such that

(DA’ =1’ )1 )W), 1)
e@D()=1=>1A18e)) )

holds. We write formally/ =: " J1® J2and/ 1= 0 =Y 0'® Q2.

If H is a Hopf algebra oveR with comultiplicationA and antipodes, then A’ :=
JAJ~1 defines a new comultiplication oF with A7 (h) := JA(h)J L forall h e H.
Let U := Y J1s(J?) andU~t =3 5(Q1)Q? and define a new ma§’ := USU ! by
S7(h):=US(h)U~Lforall h € H. Then it has been shown in [14, 2.3.4] thaf and S/
define a new Hopf algebra structure Brkeeping the same multiplication, unit and counit.
We denote the obtained Hopf algebraBy . ObviouslyA” (h)J = JA(h) forall h € H.

Moreover it is not difficult to see that ! is a Drinfeld twist forH” .

5.2. Having ‘twisted’ the comultiplication o we can also ‘twist’ the multiplication
of a left H-module algebral such thatd becomes a leftf /-module algebra.

Definition. Let A be a leftH -module algebra with multiplication and letJ be a Drinfeld
twist for H. We define a new multiplication”’ : A ® A — A on A with

a-b:=p(a®b) ::Z(Ql-a)(QZ-b) foralla,be A.
It had been shown in [14, 2.3.8] that’ with multiplication 1.7 is a left H’-module
algebra. Moreover the smash produdt# H and A’ # H” are isomorphicR-algebras.

This follows from a more general theorem by Majid (see [15, 2.9]).

5.3. Note that for every two elements b € A we have:

ab:Z(]l-a) -J (Jz-b).

In particular take anyd”’-stable ideall of A7, then! is also anH-stable ideal ofA.
Moreover if I is nilpotent as an ideal of/, then it is also nilpotent as an ideal af This
showsA” is H”/-semiprime whenevet is H-semiprime. By the same argument applied
to A = (A’)? " we obtainA is H-semiprime whenevet” is H”-semiprime.
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5.4. Combining the results of the last two paragraphs we can prove that the class of
strongly semisimple Hopf algebras is closed under Drinfeld twists.

Corollary. The class of strongly semisimple Hopf algebras is closed under Drinfeld twists.

Proof. Let H be a strongly semisimple Hopf algebra andJdbe a Drinfeld twist forH .
Let A be a leftH’-module algebra, then’ " is a left H-module algebra by [14, 2.3.8].

If Ais H-semiprime, them”’ " is H-semiprime by 5.3. As noticed in 5.2 from [15, 2.9]
follows

_ _ -1
AT #E =AY e H!  ~AnH,

SinceH is strongly semisimpled’ " # H and thereforet # H” is semiprime. Hencél’
is strongly semisimple. O

5.5. AHopfalgebrais callettiangular, if there exists an invertible elemeRte H ® H
with

(A®D(R)=TRi3Ros, (1® A)(R) =RizRi2,
AP=RAR™L and R 1=1(R)

wherer : H® H — H ® H is the isomorphism ® y — y ® x. FOrR =) a; ® b; we set
R131=Zai®1®bi, R231=Zl®ai®bi, R122=Zai®bi®l.

P. Etingof and S. Gelaki classified in [10] semisimple cosemisimple triangular Hopf
algebras over algebraically closed fields as Drinfeld twists of group rings. From this we
obtain as a corollary:

Corollary. All triangular semisimple cosemisimple Hopf algebras over an algebraically
closed field are strongly semisimple.

Proof. Let H be a semisimple cosemisimple triangular Hopf algebra over an algebraically
closed fieldk. By Etingof and Gelaki’s result [10, Corollary 6.2] there exists a gréup
and a Drinfeld twist/ € k[G] ® k[G] such thatH ~ k[G]’ as Hopf algebras. Ab[G] is
strongly semisimple als#l is strongly semisimple by 5.4.0
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