A Note on Minimal Polynomials

MICHAEL HEYMANN and JOHN A. THORPE
Mobil Research and Development Corporation
Central Research Division Laboratories
Princeton, New Jersey

Communicated by Hans Schneider

It is a standard theorem in linear algebra that, given a finite dimensional vector space V and a linear operator L on V with minimal polynomial ψ, there exists a vector $v \in V$ such that the monic polynomial φ of smallest degree such that $\varphi(L)(v)=0$ is precisely ψ. However, the standard proofs of this theorem (see e.g. 2) do not indicate how much freedom one has in choosing the vector v. The theorem below, which is useful in the theory of dynamical systems (see [l]), implies that, except for the case when the underlying field is finite, such a vector: can be found in the linear rpan of any subset S of V with the property that the minimal $!$-invariant subspace of V containing S is V itself.

Given a linear operator $L: V \rightarrow V$ and a subset S of V we shall denote by ψ_{s} the monic polynomial φ of smallest degree such that $\psi(L)(S)=\mathbf{0}$. Thus ψ_{s} is the minimal polynomial of the restriction of L to the L-invariant subspace of V generated by S. For $v \in V$ we shall denote $\psi_{n, r}$ by ψ_{r}. For $S \subseteq V, \mathscr{L}(S)$ will denote the linear span of S.

Theorem. Let V be a finite dimensional vector space outer an infinite field F, let L be a linear operator on V, and let S be a subset of V. Then there cxists $v \in \mathscr{L}(S)$ such that $\psi_{r}=\psi_{s}$.

This theorem is an immediate consequere of the following two lemmas.
Lemma 1. Let V be a finite dimensional eector space over an arbitrary field, let $L: V \rightarrow V$ be linear, and let $S \subseteq V$. Then

$$
\left\{v \in \mathscr{L}(S) \mid \psi_{v} \neq \psi_{s}\right\}
$$

(1) American Elsevier Publishing Company, Inc, 197:
is a union of k proper subspaces of $\mathscr{L}(S)$, where k is the number of distinct prime factors in ψ.

Proof. Let $\psi_{s}=\prod_{j=1}^{k} p_{j}{ }^{r}$ be the prime decomposition of ψ_{s}. Letting $W=\mathscr{L}(S), \psi_{W}=\psi_{s}$. Hence, for each $v \in W, \psi_{v}$ divides ψ_{s}, i.e. $\psi_{v}=$ $\prod_{j=1}^{k} p_{j}^{s_{j}(v)}$ where $s_{j}(v) \leqslant r_{j}$ for all j. For each $j(1 \leqslant j \leqslant k)$ let

$$
W_{j}=\left\{v \in W \mid s_{j}(v)<r_{j}\right\} .
$$

Clearly $\psi_{v} \neq \psi_{s}$ if and only if $v \in \bigcup_{j=1}^{k} W_{j} . W_{j}$ is a subspace of W because, for $v, w^{\prime} \in W_{j}, \psi_{\{v, w\}}$ is the least common multiple of ψ_{v} and ψ_{w}. Similarly, $W_{j} \neq W$ since $\psi_{W_{j}}$ is the least common multiple of $\left\{\psi_{v} \mid \boldsymbol{v} \in W_{j}\right\}$.

Lemma 2. Let W be a aector space over an infinite jield IF. Then IV is not a finite union of proper subspaces.

Proof. It is clearly enough to prove the lemma for subspaces of codimension 1. In this case, the result is given by 3 , Lemma 2 or Lemma 3].

Remark. That the theorem above is not valid over finite fields is illustrated by the following example. Let V be a vector space over Z_{2} of dimension at least 4. Let c_{1}, \ldots, e_{4} be linearly independent in V and let $L: V \rightarrow V$ be such that $L e_{1}=e_{2}, L e_{2}=e_{1}+e_{2}, L e_{3}=e_{3}$, and $L e_{4}=0$. Let $S=\left\{v_{1}, i_{2}\right\}$ where $i_{1}=e_{1}+i_{3}$ and $i_{2}=i_{3}+i_{4}$. Then $\psi_{S}=X(X+1)\left(X^{2}+X+1\right)$ but the only nonzero vectors in $\mathscr{L}(S)$ are v_{1}, v_{2} and $v_{3}=v_{1}+v_{2}=e_{1}+e_{4}$ with $\psi_{v_{1}}=(X+1)\left(X^{2}+X+1\right)$. $\psi_{r_{2}}=X(X+1)$ and $\psi_{v_{3}}=X\left(X^{2}+X+1\right)$.

REFERENCES

1 M. Heymann, On the input and out rut reducibility of multivariable linear systems, IEEE Trans. Aut. Control AC15(1)?0), 563-569.
\because N. Jacobson, Lecture: in Abstrat Algebra, Vol. II, Van Nostrand, Princeton. N. J. (1453).

3 E. C. Ponner and H. Schneider, Hyperplanes and prime rings. Arhii. Math. 11(1960), 322-326.

