New subclasses of bi-univalent functions

B.A. Frasin ${ }^{\text {a }}$, M.K. Aouf ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan
${ }^{\text {b }}$ Department of Mathematics, Mansoura University, Mansoura 35516, Egypt

ARTICLE INFO

Article history:

Received 2 October 2010
Received in revised form 24 March 2011
Accepted 28 March 2011

Keywords:

Analytic and univalent functions
Bi-univalent functions
Starlike and convex functions
Coefficients bounds

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathcal{U}=\{z:|z|<1\}$. Further, by $\&$ we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}.

Ding et al. [1] introduced the following class $Q_{\lambda}(\beta)$ of analytic functions defined as follows:

$$
Q_{\lambda}(\beta)=\left\{f \in \mathcal{A}: \operatorname{Re}\left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)>\beta, \beta<1, \lambda \geq 0\right\}
$$

It is easy to see that $Q_{\lambda_{1}}(\beta) \subset Q_{\lambda_{2}}(\beta)$ for $\lambda_{1}>\lambda_{2} \geq 0$. Thus, for $\lambda \geq 1,0 \leq \beta<1, Q_{\lambda}(\beta) \subset Q_{1}(\beta)=\{f \in \mathcal{A}$: $\left.\operatorname{Ref}^{\prime}(z)>\beta, 0 \leq \beta<1\right\}$ and hence $Q_{\lambda}(\beta)$ is univalent class (see [2-4]).

It is well known that every function $f \in \&$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in u)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

[^0]A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U.
Let Σ denote the class of bi-univalent functions in U given by (1.1). For a brief history and interesting examples in the class Σ, see [5].

Brannan and Taha [6] (see also [7]) introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $\delta^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike and convex functions of order $\alpha(0 \leq \alpha<1)$, respectively (see [8]). Thus, following Brannan and Taha [6] (see also [7]), a function $f \in \mathcal{A}$ is in the class $\delta_{\Sigma}^{*}[\alpha]$ of strongly bi-starlike functions of order $\alpha(0<\alpha \leq 1)$ if each of the following conditions is satisfied:

$$
f \in \Sigma \text { and }\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left(\frac{z g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U),
$$

where g is the extension of f^{-1} to U. The classes $\delta_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$ of bi-starlike functions of order α and bi-convex functions of order α, corresponding (respectively) to the function classes $\delta^{*}(\alpha)$ and $\mathcal{K}(\alpha)$, were also introduced analogously. For each of the function classes $s_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$, they found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (for details, see [6,7]).

The object of the present paper is to introduce two new subclasses of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ employing the techniques used earlier by Srivastava et al. [5].

In order to derive our main results, we have to recall here the following lemma [9].
Lemma 1.1. If $h \in \mathcal{P}$ then $\left|c_{k}\right| \leq 2$ for each k, where \mathcal{P} is the family of all functions h analytic in u for which $\operatorname{Reh}(z)>0$ $h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots$ for $z \in U$.

2. Coefficient bounds for the function class $\boldsymbol{B}_{\Sigma}(\alpha, \lambda)$

Definition 2.1. A function $f(z)$ given by (1.1) is said to be in the class $\mathfrak{B}_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and }\left|\arg \left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \lambda \geq 1, z \in u) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \lambda \geq 1, w \in U) \tag{2.2}
\end{equation*}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2.3}
\end{equation*}
$$

We note that for $\lambda=1$, the class $\mathscr{B}_{\Sigma}(\alpha, \lambda)$ reduces to the class $\mathscr{H}_{\Sigma}^{\alpha}$ introduced and studied by Srivastava et al. [5]. We begin by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathscr{B}_{\Sigma}(\alpha, \lambda)$.

Theorem 2.2. Let $f(z)$ given by (1.1) be in the class $\mathcal{B}_{\Sigma}(\alpha, \lambda), 0<\alpha \leq 1$ and $\lambda \geq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda+1)^{2}}+\frac{2 \alpha}{2 \lambda+1} . \tag{2.5}
\end{equation*}
$$

Proof. It follows from (2.1) and (2.2) that

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=[p(z)]^{\alpha} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)=[q(w)]^{\alpha} \tag{2.7}
\end{equation*}
$$

where $p(z)$ and $q(w)$ in \mathcal{P} and have the forms

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots \tag{2.9}
\end{equation*}
$$

Now, equating the coefficients in (2.6) and (2.7), we get

$$
\begin{align*}
& (\lambda+1) a_{2}=\alpha p_{1} \tag{2.10}\\
& (2 \lambda+1) a_{3}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.11}\\
& -(\lambda+1) a_{2}=\alpha q_{1} \tag{2.12}
\end{align*}
$$

and

$$
\begin{equation*}
(2 \lambda+1)\left(2 a_{2}^{2}-a_{3}\right)=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{2.13}
\end{equation*}
$$

From (2.10) and (2.12), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\lambda+1)^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.15}
\end{equation*}
$$

Now from (2.11), (2.13) and (2.15), we obtain

$$
\begin{aligned}
2(2 \lambda+1) a_{2}^{2} & =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
& =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2} \frac{2(\lambda+1)^{2} a_{2}^{2}}{\alpha^{2}} .
\end{aligned}
$$

Therefore, we have

$$
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)} .
$$

Applying Lemma 1.1 for the coefficients p_{2} and q_{2}, we immediately have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}}
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (2.4).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.13) from (2.11), we get

$$
\begin{equation*}
2(2 \lambda+1) a_{3}-2(2 \lambda+1) a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}-\left(\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}\right) \tag{2.16}
\end{equation*}
$$

It follows from (2.14)-(2.16) that

$$
2(2 \lambda+1) a_{3}=\frac{\alpha^{2}(2 \lambda+1)\left(p_{1}^{2}+q_{1}^{2}\right)}{(\lambda+1)^{2}}+\alpha\left(p_{2}-q_{2}\right)
$$

or, equivalently,

$$
a_{3}=\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(\lambda+1)^{2}}+\frac{\alpha\left(p_{2}-q_{2}\right)}{2(2 \lambda+1)}
$$

Applying Lemma 1.1 once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda+1)^{2}}+\frac{2 \alpha}{2 \lambda+1}
$$

This completes the proof of Theorem 2.2.
Putting $\lambda=1$ in Theorem 2.2, we have

Corollary 2.3 ([5]). Let $f(z)$ given by (1.1) be in the class $\mathscr{H}_{\Sigma}^{\alpha}(0<\alpha \leq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{2+\alpha}} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)}{3} . \tag{2.18}
\end{equation*}
$$

3. Coefficient bounds for the function class $\boldsymbol{B}_{\Sigma}(\beta, \lambda)$

Definition 3.1. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{B}_{\Sigma}(\beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and } \operatorname{Re}\left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)>\beta \quad(0 \leq \beta<1, \lambda \geq 1, z \in U) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)>\beta \quad(0 \leq \beta<1, \lambda \geq 1, w \in U), \tag{3.2}
\end{equation*}
$$

where the function g is defined by (2.3).
We note that for $\lambda=1$, the class $\mathscr{B}_{\Sigma}(\beta, \lambda)$ reduces to the class $\mathscr{H}_{\Sigma}(\beta)$ introduced and studied by Srivastava et al. [5].
Theorem 3.2. Let $f(z)$ given by (1.1) be in the class $\mathscr{B}_{\Sigma}(\beta, \lambda), 0 \leq \beta<1$ and $\lambda \geq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2 \lambda+1}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(\lambda+1)^{2}}+\frac{2(1-\beta)}{2 \lambda+1} . \tag{3.4}
\end{equation*}
$$

Proof. It follows from (3.1) and (3.2) that there exist p and $q \in \mathcal{P}$ such that

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (2.8) and (2.9), respectively. Equating coefficients in (3.5) and (3.6) yields

$$
\begin{align*}
& (\lambda+1) a_{2}=(1-\beta) p_{1}, \tag{3.7}\\
& (2 \lambda+1) a_{3}=(1-\beta) p_{2}, \tag{3.8}\\
& -(\lambda+1) a_{2}=(1-\beta) q_{1} \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
(2 \lambda+1)\left(2 a_{2}^{2}-a_{3}\right)=(1-\beta) q_{2} . \tag{3.10}
\end{equation*}
$$

From (3.7) and (3.9), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\lambda+1)^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{3.12}
\end{equation*}
$$

Also, from (3.8) and (3.10), we find that

$$
2(2 \lambda+1) a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right)
$$

Thus, we have

$$
\left|a_{2}^{2}\right| \leq \frac{(1-\beta)}{2(2 \lambda+1)}\left(\left|p_{2}\right|+\left|q_{2}\right|\right)=\frac{2(1-\beta)}{2 \lambda+1}
$$

which is the bound on $\left|a_{2}\right|$ as given in (3.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.10) from (3.8), we get

$$
2(2 \lambda+1) a_{3}-2(2 \lambda+1) a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right)
$$

or, equivalently,

$$
a_{3}=a_{2}^{2}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2(2 \lambda+1)}
$$

Upon substituting the value of a_{2}^{2} from (3.12), we obtain

$$
a_{3}=\frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(\lambda+1)^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2(2 \lambda+1)}
$$

Applying Lemma 1.1 for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(\lambda+1)^{2}}+\frac{2(1-\beta)}{2 \lambda+1}
$$

which is the bound on $\left|a_{3}\right|$ as asserted in (3.4).
Putting $\lambda=1$ in Theorem 3.2, we have the following corollary.
Corollary 3.3 ([5]). Let $f(z)$ given by (1.1) be in the class $\mathscr{H}_{\Sigma}(\beta),(0 \leq \beta<1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3}} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)}{3} \tag{3.14}
\end{equation*}
$$

Acknowledgements

The authors would like to thank the referees for their helpful comments and suggestions.

References

[1] S.S. Ding, Y. Ling, G.J. Bao, Some properties of a class of analytic functions, J. Math. Anal. Appl. 195 (1) (1995) 71-81.
[2] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962) 532-537.
[3] M. Chen, On the regular functions satisfying $\operatorname{Re}(f(z) / z)>\alpha$, Bull. Inst. Math. Acad. Sinica 3 (1975) 65-70.
[4] P.N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62 (1977) 37-43.
[5] H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) $1188-1192$.
[6] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77.
[7] T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.
[8] D.A. Brannan, J. Clunie, W.E. Kirwan, Coefficient estimates for a class of starlike functions, Canad. J. Math. 22 (1970) 476-485.
[9] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.

[^0]: * Corresponding author.

 E-mail addresses: bafrasin@yahoo.com (B.A. Frasin), mkaouf127@yahoo.com (M.K. Aouf).

