Available at

Www.MATHEMATICSwEB.ORG JOURNAL OF
POWERED BY SCIENCE @DIRECTo DlSCRETE

e e ALGORITHMS
ELSEVIER Journal of Discrete Algorithms 1 (2003) 103-110
www.elsevier.com/locate/jda

String matching iD(y/7 + /m) quantum time
H. Ramesh, V. Vinay

Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India
Received 16 February 2000

Abstract

We show how to determine whether a given patjeotlengthm occurs in a given textof lengthn
in 6(ﬁ+¢n_1) time (Where(~) allows for logarithmic factors im andn /m) with inverse polynomial
failure probability. This algorithm combines quantum searching algorithms with a technique from
parallel string matching, callebeterministic Sampling
0 2003 Elsevier B.V. All rights reserved.

Keywords:Algorithm; Quantum computing; String matching

1. Introduction

We consider the following problem: given a textof lengthn and a patterrp of
lengthm, doesp occur int? This question require® (n + m) time classically, using one
of several known algorithms, e.g., the Knuth—Morris—Pratt algorithm or the Boyer—Moore
algorithm. Note that the above problem is slightly different from the usual string matching
problem which requires finding all occurrences of the pattern in the text.

We explore the above question on a quantum machine. Our starting point is the algo-
rithm due to Grover [4] which searches for an element in an unordered databasgnn O
time. Boyer, Brassard, Hoyer and Tapp [1] gave a tighter analysis of Grover’s algorithm and
also showed how to handle the case when the number of items searched for is unknown.
Durr and Hoyer [3] used Grover's algorithm to find the minimum i@) time.

Finding whether the pattern matches somewhere in the text is akin to searching in an
unordered database; the only issue is that checking one element of this database, i.e., a text
position, for an occurrence of the pattern takgs:Qtime. In fact, this can be speeded up

* Corresponding author.
E-mail addressesamesh@csa.iisc.ernet.in (H. Ramesh), vinay@csa.iisc.ernet.in (V. Vinay).

1570-8667/$ — see front mattét 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S1570-8667(03)00010-8

http://www.elsevier.com/locate/jda

104 H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103-110

to O(,/m) by viewing the act of checking whether the pattern matches at a particular text
position as the act of finding a mismatch amomg&lements; this search can be performed
in O(y/m) time with constant failure probability. This gives an overall time complexity of
O(/nm) (actually, there are additional logarithmic factors, as will be described later).

In this paper, we show how this complexity can be improved to

O(v/nlogy/n/mlogm + /mlog?m),

by combining the above quantum search paradigm with a standard technique from parallel
string matching, calledeterministic Samplingdue to Vishkin [5]. Our algorithm will

work with constant failure probability. Thus, if the pattern occurs in the text, it will return
some occurrence of the pattern in the text (or the leftmost occurrence, if needed) in

O(v/nlogy/n/mlogm + /mlog? m)

time, with probability which is a constant strictly more thaf21And if the pattern does

not occur in the text then the algorithm will say so with probability which is also a constant
strictly more than 12. The failure probability can be decreased to inverse polynomial at
the expense of further logarithmic factors. Finally, note that the second component of the
running time above will be due to pattern preprocessing.

2. Preliminaries

We use the following theorem based on Grover’s [4] database searching algorithm. The
theorem itself is due to Boyer et al. [1].

Theorem 2.1. Given an oracle evaluating t@ on at leastt > 1 of the elements in an
unordered database of size there is a quantum algorithm which returns the index of
a random element on which the oracle evaluated tavith probability at least3/4, in
O(4/n/t) time and oracle calls.

We will also need the following theorem for finding the minimum element in a database,
due to Dirr and Hoyer [3].

Theorem 2.2. Given a comparison oracle, there is a quantum algorithm which finds the
index of the minimum element in an unordered database ofnsizgth probability at
least3/4, in O(y/n) time.

We will assume a basic oracle which will compare a text and a pattern character or
two pattern characters in(@) time. Our aim then is to use this oracle to develop suitable
oracles which will enable solving the string finding problenﬁ@/ﬁ + /m) time. These
new oracles could be probabilistic, i.e., they will give the correct answer with constant
probability. We derive the following corollary to Theorems 2.1 and 2.2, in order to use
probabilistic oracles. First, we define a probabilistic oracle formally.

H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103—-110 105

Probabilistic oracles. These are oracles which evaluate to Jgoondelements (i.e., those
which are being searched for) with probability at least and to 0 on bad elements, with
probability at least 4. A probabilistic comparison oraclgives the correct answer with
probability at least 4.

Coroallary 2.3. Given a probabilistic oracle and a database witk: 1 good elements, there

is a quantum algorithm which returns the index of a random good element with probability
at least3/4 in O(4/n/tlog./n/t) time and oracle calls. Similarly, given a probabilistic
comparison oracle, there is a quantum algorithm which finds the index of the minimum
element with probability at leagy/4, in O(/nlog./n) time.

Proof. For the searching problem, each original oracle call in Theorem 2.1 gets replaced
by O(log./n/t) calls and the majority result is taken. This is to ensure that, with constant
probability, none of the original/n/t oracle calls returns a 1 on a bad element or a 0 on

a good element. Similarly, for the minimum finding problem, each original oracle call in
Theorem 2.2 gets replaced byl@gy./n) calls. O

Our algorithm will use oracles whose running time will not be a constant. Therefore,
the search time will be obtained by multiplying the time given by the above corollary with
the time taken per oracle call.

We will require the following facts about strings.

Periodicity. A string p, |p| = m, is said to baperiodicif any two instances of the string,
one shifted to the right of the other by at mest2, differ in some column. A string which
is not aperiodic is callegeriodic. A periodic stringp has the formv*u, wherev cannot
be expressed as a concatenation of several instances of a smallensisiagprefix ofv,
andk > 2. |v] is said to be th@eriodof p.

3. The 5(ﬁﬁ) timealgorithm

Consider using Grover’s algorithm in conjunction with the following natural probabilis-
tic oracle f () to solve the string matching probleryi(i) = 1 if the pattern matches with
left endpoint aligned with text positioh and f (i) = 0 with probability at least 24, oth-
erwise. This probabilistic oracle can be implemented so that it ru@®(igin) time as
follows.

The idea is to implement the oracf&i) using Grover’s algorithm itself, using a deter-
ministic oracleg(i, j) which looks for a mismatch at locatioh g(i, j) = 1 if and only
if the pattern with left endpoint aligned wittii] mismatches at locatiop[j]. By Theo-
rem 2.1, such a location, if one exists, can be found (/@) time with probability at
least 34. We setf (i) = 0 if Grover’s algorithm with oracleg (i, j) succeeds in finding
a mismatch, and (i) = 1 otherwise. Using Corollary 2.3, the time taken to search using
oraclef (i) is O(y/n /mlog./n) and the success probability is at leagt 3

Next, we give the faster algorithm, first for aperiodic strings and then for periodic
strings.

106 H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103-110

4. The O(J/n + /m) time algorithm: aperiodic patterns

The above oracl¢ (i) was too expensive to get ﬁ(ﬁ+ +/m) bound. A faster oracle
will clearly improve the time. We do not know how to get a faster oracle directly. However,
we reorganize the computation as described below and then use a faster oracle followed by
a slower one, speeding up the algorithm on the whole.

We partition the text into blocks of length /2 and use Grover’s algorithm to search
for a block which contains an occurrence of the pattern. This is done using a probabilistic
oraclei(i) (to be described later), which evaluates to 1 with probability at lepétif3
blocki has a match of the pattern (with left endpoint starting in blg¢lkand evaluates to
0 with probability at least B4, otherwise. Note that by aperiodicity, the pattern can match
with left endpoint at most one text position in block: (i) will take O(/m logm) time. It
follows from Corollary 2.3 that the time taken for searching with the ora¢lg will be

O(y/n/m «/mlog/n/mlogm = /nlog/n/mlogm)
and the success probability is a constant.

The oracle: (i) itself will run in two steps. The first step will use deterministic sampling
and will takes @./m logm) time with constant success probability. This step will eliminate
all but at most one of the pattern instances with left endpoint in blodlke second step
will check whether this surviving instance matches the text using theracle defined in
Section 3; this will take @,/m) time with constant success probability. We describe the
two steps next.

4.1. Step 1. deterministic sampling
The oracle is based on the following theorem due to Vishkin [5].

Theorem 4.1 (The Deterministic Sampling Theorenbet p be aperiodic. Considei: /2
instances ofp, with successive instances shifted one step to the right. Let these instances
be labelled froni to m /2, from left to right. Then there exists an instanteand a set of at
mostO(logm) positions inp, called thedeterministic samplevith the following property

if all positions corresponding to the deterministic sample in instafoé p match the text,

then none of the other instancespabove can possibly match the text.

Proof. By aperiodicity, there is a column which contains two distinct characters and stabs
all the pattern instances; pick any character in that column which is not in majority. Remove
all pattern instances which do not have this character in the column being considered.
Repeat Qlogm) times until only one pattern instance remains. Tlfeis the label of the
instance which remains and the columns chosen give the deterministic sarmple.

Assume that a deterministic sample for the pattern has been precomputed. We will de-
scribe this precomputation later.

We now describe the first stepfrii), wherei is a block number. We use Grover's algo-
rithm in conjunction with the deterministic oradt€i, j) which evaluates to 1 if and only
if the jth instance of the pattern (amongst those instances with left endpoint in §lock

H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103—-110 107

matches the text on its deterministic sample. Clealy, j) takes Qlogm) time. The
search using(i, j) takes Q./mlogm) time by Theorem 2.1. This search returns an in-
stance; of the pattern with left endpoint in blockwhich has its deterministic sample
matching the text (if such an instance exists), with probability at leakt 3

4.2. Step 2: direct verification

Next, we use another application of Grover’s search to determine whether or not in-
stance; determined above in blockmatches the text; this is done as in Section 3 using
the deterministic oraclg(). It succeeds with probability/3, and takes time Q/m).

Thus,a(i) returns a 1 with probability at least/8 if block i contains a match of the
pattern, and O with probability at least8 otherwise. The time taken to search usirid)
is O(4/nlog./n/mlogm), as claimed above, and the success probability is at lgdst 3

Once a blocki is found in whichi(i) evaluates to 1, a search using orakig j)
on blocki gives the unique pattern instangevith left endpoint ini whose deterministic
sample matches; the success probability is at least/Bnother search using the oragle)
determines if this pattern instance mismatches the text; the success probability (in finding a
mismatch, if any) is again at least® Thus, the total time taken is(Qn log «/n/m logm),
and the probability of success is as follows.

If the pattern occurs in the text, then with probabilit43the search with () will return
a block containing a match of the pattern; subsequently, with probabjlity tBe search
with k(i, j) will return a matching pattern instance, and the last search g(ittwill not
discover a mismatch with probability 1. Thus an occurrence of the pattern in the text will
be found with(3/4)2 > 1/2 probability, as claimed. And if the pattern does not occur in
the text, then the last search wigli) will determine a mismatch with probability at least
3/4>1/2, as required.

Finally, note that the leftmost occurrence of the pattern can be determined using the
minimum finding algorithm in Corollary 2.3 to first find the leftmost block witti) eval-
uating to 1, and subsequently, searching within that block as above. The time taken and the
success probability are as in the previous paragraphs.

5. Pattern preprocessing for aperiodic patterns

We show how to determine the deterministic sample iy/@ log? m) time.

Determining the deterministic samplelmaginem /2 copies of the pattern placed as in
Theorem 4.1. Determining the sample will proceed ilo@m) stages. In each stage,
some column and a character in that column will be identified; all surviving pattern copies
which do not have this character in this column will be eliminated from future stages.
This will continue until only one pattern copy remains uneliminated. Each stage will take
O(/mlogm) time and will have a constant success probability (where we count a success
if the surviving pattern copies halve in cardinality).

A stage proceeds as follows. First, a column containing two distinct characters amongst
the surviving pattern copies is found, with constant probability. This column will also have
the property that all surviving pattern copies are stabbed by it. Two distinct characters in

108 H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103-110

the above column are also identified. One of these two characters is chosen at random as
the next character in the sample. Clearly, the number of stagedag®) with inverse
polynomial (inm) failure probability because the probability of the number of surviving
pattern instances halving in a stage is at least a constant.

It remains to describe how a column containing two distinct characters amongst the sur-
viving pattern copies is found, with constant probability. Before describing this we need to
mention how to find the leftmost and rightmost surviving patterns in a stage. This is done
using the minimum finding algorithm of Dirr and Hoyer in conjunction with an oracle
which indicates which pattern copies are consistent with the already chosen determinis-
tic sample points; this oracle takegl@ym) time per call, giving an Q/mlogm) time
algorithm for finding the leftmost/rightmost surviving pattern copy, by Theorem 2.2. The
success probability is at least® Now, we can describe the algorithm for finding a column
with two distinct characters.

First, the leftmost and rightmost surviving pattern copies are found as above. Then a
column in which these two copies differ is found using Grover’s algorithm in conjunction
with a suitable oracle in Q/m) time; this step succeeds with probability at leagt.3
Given a column, this oracle determines whether or not the two pattern copies above differ
in this column. By Theorem 2.1, searching for a column with two distinct characters using
this oracle takes Q/m) time and succeeds with probability8

Thus, in time Q./m logm), a column containing two distinct characters and stabbing
all surviving pattern copies is found, with constant probability; it is easily seen that two
distinct characters in this column are also found in this process.

The total time taken in determining the deterministic sample is thug@og? m).

6. Handling periodic patterns

We sketch briefly the changes required to the above algorithm in order to handle periodic
pattern.

For periodic patterns, the above preprocessing algorithm will not terminate with a single
pattern copy but rather with several copies shiftgdsteps to the right successively. When
a stage is reached when the only surviving copies are the periodically shifted copies above,
then the search for a heterogeneous column in the®érigm) stages will fail. Note that
for aperiodic patterns this behaviour happens with low, i.e., inverse polynomial probability.

At this point, we determine the peridd| using two instances of the minimum finding
algorithm. The first instance finds the leftmost surviving copy and the second the sec-
ond leftmost; the difference of their offsets is the period. This takegiogm) time,
using the oracle which checks for consistency with the deterministic sample and also com-
pares offsets. Given the peri¢a, the following changes now need to be made to the text
processing part.

Recall the oraclé (i) from Section 4; this oracle determines whether there is a pattern
instance with left endpoint in blockwhich matches, first on its deterministic sample, and
then on the whole. This oracle is modified as follows.

h(i) will first determine the leftmost and the rightmost pattern instances with left end-
points ini which match on their respective deterministic sample points; this is done using

H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103—-110 109

the minimum finding algorithm and takes((m logm) time with success probability at
least 34 (see Theorem 2.2, this success probability can be made arbitrarily close to 1 by
repeating). Let these two instance have left endpoints at text posttiamd/ respectively.

Next, (i) finds the longest substring (with length at magtstarting at the right bound-
ary of text blocki which is consistent with the pattern instance starting at text podition
(and therefore consistent with the pattern instant starting at text pogiisrwell); this is
done using the minimum finding algorithm and takes/@:) time with constant failure
probability. Similarly,. (i) finds the longest substring (with length at mast2) ending at
the right boundary of text blockwhich is consistent with the pattern instance starting at
text positionk.

Finally, using these two substrings(i) can determine in @) time, whether there
exists a pattern instance with left endpoint in blaakhich matches the text. If the length
of the two substrings is less thanthen there is no such pattern instance; otherwise, all
instances of the pattern which occur completely within these two substrings and starting
at shifts of integer multiples ofv| from k are complete matches (heng is the pattern
period).

Thus,k (i) determines whether or not the pattern occurs in bidokO(,/m logm) time,
with failure probability a constant. This failure probability can be made arbitrarily close to
0 by repetition. Note thai(i) can determine the leftmost pattern occurrence in bloak
well, if required, within the same time bounds.

The rest of the algorithm stays the sameé) is used to find a block containing an
occurrence of the pattern and subsequently, an occurrence of the pattern in this block is
found using the above method.

7. Conclusionsand open problems

We have shown how one occurrence or the leftmost occurrengerof can be found
in O(4/n + /m) time, with constant two-sided failure probability. We also note that an
approximate count of the number of occurrences (within a multiplicative constant factor)
can also be determined @(,/n + 4/m) using the approximate counting algorithm of
Brassard, Hoyer and Tapp [2], adapted appropriately (the ofg€lemust now return a
count of the number of matches rather than just the indication of a match). Finally, using the
same algorithm, the total number of occurrences ofin be determined ®(/nt + /)
time, where is the number of occurrences.

One open problem would be whether string matching with don’t cares can be performed
in the same time bounds as above. The main challenge here to implement convolution using
Fast Fourier Transforms i@(4/n) time. It is not obvious how this can be accomplished.

References

[1] M. Boyer, G. Brassard, P. Hoyer, A. Tapp, Tight bounds on quantum searching, in: Proceedings of 4th Work-
shop on Physics and Computation-PhysComp, 1996, pp. 36—43.

[2] G. Brassard, P. Hoyer, A. Tapp, Quantum counting, in: Proceedings of 25th International Colloquium on
Automata, Languages and Programming, 1998, pp. 820-831.

110 H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103-110

[3] C. Durr, P. Hoyer, A quantum algorithm for finding the minimum, Quantum Physics E-Print Ardftiye/
xxx.lanl.gov/quant-ph/9607014.996.

[4] L. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of 28th ACM Sympo-
sium on Theory of Computing, 1996, pp. 212-219.

[5] U. Vishkin, Deterministic sampling: A new technique for fast pattern matching, SIAM J. Comput. 20 (1991)
22-40.

http://xxx.lanl.gov/quant-ph/9607014
http://xxx.lanl.gov/quant-ph/9607014
http://xxx.lanl.gov/quant-ph/9607014

	String matching in O(n+m) quantum time
	Introduction
	Preliminaries
	Probabilistic oracles.
	Periodicity.

	The O(nm) time algorithm
	The O(n+m) time algorithm: aperiodic patterns
	Step 1: deterministic sampling
	Step 2: direct verification

	Pattern preprocessing for aperiodic patterns
	Determining the deterministic sample.

	Handling periodic patterns
	Conclusions and open problems
	References

