
dia

from

e
oore
hing

algo-

m and
known.

in an
e., a text
up
Journal of Discrete Algorithms 1 (2003) 103–110

www.elsevier.com/locate/jda

String matching iñO(
√

n + √
m) quantum time

H. Ramesh∗, V. Vinay

Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, In

Received 16 February 2000

Abstract

We show how to determine whether a given patternp of lengthm occurs in a given textt of lengthn

in Õ(
√

n+√
m) time (wherẽO allows for logarithmic factors inm andn/m) with inverse polynomial

failure probability. This algorithm combines quantum searching algorithms with a technique
parallel string matching, calledDeterministic Sampling.
 2003 Elsevier B.V. All rights reserved.

Keywords:Algorithm; Quantum computing; String matching

1. Introduction

We consider the following problem: given a textt of length n and a patternp of
lengthm, doesp occur int? This question requires�(n + m) time classically, using on
of several known algorithms, e.g., the Knuth–Morris–Pratt algorithm or the Boyer–M
algorithm. Note that the above problem is slightly different from the usual string matc
problem which requires finding all occurrences of the pattern in the text.

We explore the above question on a quantum machine. Our starting point is the
rithm due to Grover [4] which searches for an element in an unordered database in O(

√
n)

time. Boyer, Brassard, Hoyer and Tapp [1] gave a tighter analysis of Grover’s algorith
also showed how to handle the case when the number of items searched for is un
Dürr and Hoyer [3] used Grover’s algorithm to find the minimum in O(

√
n) time.

Finding whether the pattern matches somewhere in the text is akin to searching
unordered database; the only issue is that checking one element of this database, i.
position, for an occurrence of the pattern takes O(m) time. In fact, this can be speeded

* Corresponding author.
E-mail addresses:ramesh@csa.iisc.ernet.in (H. Ramesh), vinay@csa.iisc.ernet.in (V. Vinay).

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S1570-8667(03)00010-8

http://www.elsevier.com/locate/jda

104 H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103–110

to O(
√

m) by viewing the act of checking whether the pattern matches at a particular text
ed

y of
).

arallel

turn

s
stant
al at
of the

. The

n
of

ase,

the

ter or
ble

stant
use
position as the act of finding a mismatch amongstm elements; this search can be perform
in O(

√
m) time with constant failure probability. This gives an overall time complexit

O(
√

nm) (actually, there are additional logarithmic factors, as will be described later
In this paper, we show how this complexity can be improved to

O
(√

n log
√

n/m logm + √
m log2 m

)
,

by combining the above quantum search paradigm with a standard technique from p
string matching, calledDeterministic Sampling, due to Vishkin [5]. Our algorithm will
work with constant failure probability. Thus, if the pattern occurs in the text, it will re
some occurrence of the pattern in the text (or the leftmost occurrence, if needed) in

O
(√

n log
√

n/m logm + √
m log2 m

)

time, with probability which is a constant strictly more than 1/2. And if the pattern doe
not occur in the text then the algorithm will say so with probability which is also a con
strictly more than 1/2. The failure probability can be decreased to inverse polynomi
the expense of further logarithmic factors. Finally, note that the second component
running time above will be due to pattern preprocessing.

2. Preliminaries

We use the following theorem based on Grover’s [4] database searching algorithm
theorem itself is due to Boyer et al. [1].

Theorem 2.1. Given an oracle evaluating to1 on at leastt � 1 of the elements in a
unordered database of sizen, there is a quantum algorithm which returns the index
a random element on which the oracle evaluates to1, with probability at least3/4, in
O(

√
n/t) time and oracle calls.

We will also need the following theorem for finding the minimum element in a datab
due to Dürr and Hoyer [3].

Theorem 2.2. Given a comparison oracle, there is a quantum algorithm which finds
index of the minimum element in an unordered database of sizen, with probability at
least3/4, in O(

√
n) time.

We will assume a basic oracle which will compare a text and a pattern charac
two pattern characters in O(1) time. Our aim then is to use this oracle to develop suita
oracles which will enable solving the string finding problem inÕ(

√
n + √

m) time. These
new oracles could be probabilistic, i.e., they will give the correct answer with con
probability. We derive the following corollary to Theorems 2.1 and 2.2, in order to
probabilistic oracles. First, we define a probabilistic oracle formally.

H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103–110 105

Probabilistic oracles. These are oracles which evaluate to 1 ongoodelements (i.e., those
th
h

e
bility
ic
imum

laced
stant

on
ll in

fore,
with

,
h

ilis-
h

r-

sing

iodic
which are being searched for) with probability at least 3/4 and to 0 on bad elements, wi
probability at least 3/4. A probabilistic comparison oraclegives the correct answer wit
probability at least 3/4.

Corollary 2.3. Given a probabilistic oracle and a database witht � 1 good elements, ther
is a quantum algorithm which returns the index of a random good element with proba
at least3/4 in O(

√
n/t log

√
n/t) time and oracle calls. Similarly, given a probabilist

comparison oracle, there is a quantum algorithm which finds the index of the min
element with probability at least3/4, in O(

√
n log

√
n) time.

Proof. For the searching problem, each original oracle call in Theorem 2.1 gets rep
by O(log

√
n/t) calls and the majority result is taken. This is to ensure that, with con

probability, none of the original
√

n/t oracle calls returns a 1 on a bad element or a 0
a good element. Similarly, for the minimum finding problem, each original oracle ca
Theorem 2.2 gets replaced by O(log

√
n) calls. ✷

Our algorithm will use oracles whose running time will not be a constant. There
the search time will be obtained by multiplying the time given by the above corollary
the time taken per oracle call.

We will require the following facts about strings.

Periodicity. A stringp, |p| = m, is said to beaperiodicif any two instances of the string
one shifted to the right of the other by at mostm/2, differ in some column. A string whic
is not aperiodic is calledperiodic. A periodic stringp has the formvku, wherev cannot
be expressed as a concatenation of several instances of a smaller string,u is a prefix ofv,
andk � 2. |v| is said to be theperiodof p.

3. The Õ(
√

n
√

m) time algorithm

Consider using Grover’s algorithm in conjunction with the following natural probab
tic oraclef () to solve the string matching problem:f (i) = 1 if the pattern matches wit
left endpoint aligned with text positioni, andf (i) = 0 with probability at least 3/4, oth-
erwise. This probabilistic oracle can be implemented so that it runs inÕ(

√
m) time as

follows.
The idea is to implement the oraclef (i) using Grover’s algorithm itself, using a dete

ministic oracleg(i, j) which looks for a mismatch at locationj . g(i, j) = 1 if and only
if the pattern with left endpoint aligned witht[i] mismatches at locationp[j]. By Theo-
rem 2.1, such a location, if one exists, can be found in O(

√
m) time with probability at

least 3/4. We setf (i) = 0 if Grover’s algorithm with oracleg(i, j) succeeds in finding
a mismatch, andf (i) = 1 otherwise. Using Corollary 2.3, the time taken to search u
oraclef (i) is O(

√
n

√
m log

√
n) and the success probability is at least 3/4.

Next, we give the faster algorithm, first for aperiodic strings and then for per
strings.

106 H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103–110

4. The Õ(
√

n + √
m) time algorithm: aperiodic patterns

ver,
wed by

ch
bilistic

o
atch

ing
ate
p

the

tances
t

,

stabs
move
dered.

ill de-

o-
y
ck
The above oraclef (i) was too expensive to get añO(
√

n+√
m) bound. A faster oracle

will clearly improve the time. We do not know how to get a faster oracle directly. Howe
we reorganize the computation as described below and then use a faster oracle follo
a slower one, speeding up the algorithm on the whole.

We partition the text into blocks of lengthm/2 and use Grover’s algorithm to sear
for a block which contains an occurrence of the pattern. This is done using a proba
oracleh(i) (to be described later), which evaluates to 1 with probability at least 3/4 if
block i has a match of the pattern (with left endpoint starting in blocki), and evaluates t
0 with probability at least 3/4, otherwise. Note that by aperiodicity, the pattern can m
with left endpoint at most one text position in blocki. h(i) will take O(

√
m logm) time. It

follows from Corollary 2.3 that the time taken for searching with the oracleh(i) will be

O
(√

n/m
√

m log
√

n/m logm = √
n log

√
n/m logm

)

and the success probability is a constant.
The oracleh(i) itself will run in two steps. The first step will use deterministic sampl

and will takes O(
√

m logm) time with constant success probability. This step will elimin
all but at most one of the pattern instances with left endpoint in blocki. The second ste
will check whether this surviving instance matches the text using theg() oracle defined in
Section 3; this will take O(

√
m) time with constant success probability. We describe

two steps next.

4.1. Step 1: deterministic sampling

The oracle is based on the following theorem due to Vishkin [5].

Theorem 4.1 (The Deterministic Sampling Theorem).Let p be aperiodic. Considerm/2
instances ofp, with successive instances shifted one step to the right. Let these ins
be labelled from1 to m/2, from left to right. Then there exists an instancef , and a set of a
mostO(logm) positions inp, called thedeterministic samplewith the following property:
if all positions corresponding to the deterministic sample in instancef of p match the text
then none of the other instances ofp above can possibly match the text.

Proof. By aperiodicity, there is a column which contains two distinct characters and
all the pattern instances; pick any character in that column which is not in majority. Re
all pattern instances which do not have this character in the column being consi
Repeat O(logm) times until only one pattern instance remains. Thenf is the label of the
instance which remains and the columns chosen give the deterministic sample.✷

Assume that a deterministic sample for the pattern has been precomputed. We w
scribe this precomputation later.

We now describe the first step inh(i), wherei is a block number. We use Grover’s alg
rithm in conjunction with the deterministic oraclek(i, j) which evaluates to 1 if and onl
if the j th instance of the pattern (amongst those instances with left endpoint in bloi)

H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103–110 107

matches the text on its deterministic sample. Clearly,k(i, j) takes O(logm) time. The
in-
le

ot in-
ing

e

ding a

t will
r in
st

ng the

and the

in
e,
opies
ges.
take
ccess

ongst
have
ters in
search usingk(i, j) takes O(
√

m logm) time by Theorem 2.1. This search returns an
stancej of the pattern with left endpoint in blocki which has its deterministic samp
matching the text (if such an instance exists), with probability at least 3/4.

4.2. Step 2: direct verification

Next, we use another application of Grover’s search to determine whether or n
stancej determined above in blocki matches the text; this is done as in Section 3 us
the deterministic oracleg(). It succeeds with probability 3/4, and takes time O(

√
m).

Thus,h(i) returns a 1 with probability at least 3/4 if block i contains a match of th
pattern, and 0 with probability at least 3/4, otherwise. The time taken to search usingh(i)

is O(
√

n log
√

n/m logm), as claimed above, and the success probability is at least 3/4.
Once a blocki is found in whichh(i) evaluates to 1, a search using oraclek(i, j)

on blocki gives the unique pattern instancej with left endpoint ini whose deterministic
sample matches; the success probability is at least 3/4. Another search using the oracleg()

determines if this pattern instance mismatches the text; the success probability (in fin
mismatch, if any) is again at least 3/4. Thus, the total time taken is O(

√
n log

√
n/m logm),

and the probability of success is as follows.
If the pattern occurs in the text, then with probability 3/4, the search withh() will return

a block containing a match of the pattern; subsequently, with probability 3/4, the search
with k(i, j) will return a matching pattern instance, and the last search withg() will not
discover a mismatch with probability 1. Thus an occurrence of the pattern in the tex
be found with(3/4)2 > 1/2 probability, as claimed. And if the pattern does not occu
the text, then the last search withg() will determine a mismatch with probability at lea
3/4> 1/2, as required.

Finally, note that the leftmost occurrence of the pattern can be determined usi
minimum finding algorithm in Corollary 2.3 to first find the leftmost block withh(i) eval-
uating to 1, and subsequently, searching within that block as above. The time taken
success probability are as in the previous paragraphs.

5. Pattern preprocessing for aperiodic patterns

We show how to determine the deterministic sample in O(
√

m log2 m) time.

Determining the deterministic sample.Imaginem/2 copies of the pattern placed as
Theorem 4.1. Determining the sample will proceed in O(logm) stages. In each stag
some column and a character in that column will be identified; all surviving pattern c
which do not have this character in this column will be eliminated from future sta
This will continue until only one pattern copy remains uneliminated. Each stage will
O(

√
m logm) time and will have a constant success probability (where we count a su

if the surviving pattern copies halve in cardinality).
A stage proceeds as follows. First, a column containing two distinct characters am

the surviving pattern copies is found, with constant probability. This column will also
the property that all surviving pattern copies are stabbed by it. Two distinct charac

108 H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103–110

the above column are also identified. One of these two characters is chosen at random as

ing

e sur-
ed to
done
cle

rminis-

The
mn

hen a
tion

differ
using

ing
t two

riodic

single
en
above,
t
bility.
g
sec-

com-
text

ttern
nd

end-
using
the next character in the sample. Clearly, the number of stages is O(logm) with inverse
polynomial (inm) failure probability because the probability of the number of surviv
pattern instances halving in a stage is at least a constant.

It remains to describe how a column containing two distinct characters amongst th
viving pattern copies is found, with constant probability. Before describing this we ne
mention how to find the leftmost and rightmost surviving patterns in a stage. This is
using the minimum finding algorithm of Dürr and Hoyer in conjunction with an ora
which indicates which pattern copies are consistent with the already chosen dete
tic sample points; this oracle takes O(logm) time per call, giving an O(

√
m logm) time

algorithm for finding the leftmost/rightmost surviving pattern copy, by Theorem 2.2.
success probability is at least 3/4. Now, we can describe the algorithm for finding a colu
with two distinct characters.

First, the leftmost and rightmost surviving pattern copies are found as above. T
column in which these two copies differ is found using Grover’s algorithm in conjunc
with a suitable oracle in O(

√
m) time; this step succeeds with probability at least 3/4.

Given a column, this oracle determines whether or not the two pattern copies above
in this column. By Theorem 2.1, searching for a column with two distinct characters
this oracle takes O(

√
m) time and succeeds with probability 3/4.

Thus, in time O(
√

m logm), a column containing two distinct characters and stabb
all surviving pattern copies is found, with constant probability; it is easily seen tha
distinct characters in this column are also found in this process.

The total time taken in determining the deterministic sample is thus O(
√

m log2 m).

6. Handling periodic patterns

We sketch briefly the changes required to the above algorithm in order to handle pe
pattern.

For periodic patterns, the above preprocessing algorithm will not terminate with a
pattern copy but rather with several copies shifted|v| steps to the right successively. Wh
a stage is reached when the only surviving copies are the periodically shifted copies
then the search for a heterogeneous column in the next�(logm) stages will fail. Note tha
for aperiodic patterns this behaviour happens with low, i.e., inverse polynomial proba

At this point, we determine the period|v| using two instances of the minimum findin
algorithm. The first instance finds the leftmost surviving copy and the second the
ond leftmost; the difference of their offsets is the period. This takes O(

√
m logm) time,

using the oracle which checks for consistency with the deterministic sample and also
pares offsets. Given the period|v|, the following changes now need to be made to the
processing part.

Recall the oracleh(i) from Section 4; this oracle determines whether there is a pa
instance with left endpoint in blocki which matches, first on its deterministic sample, a
then on the whole. This oracle is modified as follows.

h(i) will first determine the leftmost and the rightmost pattern instances with left
points ini which match on their respective deterministic sample points; this is done

H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103–110 109

the minimum finding algorithm and takes O(
√

m logm) time with success probability at
o 1 by

-
ion

g at

th
, all
tarting

se to

n
lock is

t an
ctor)
of

ng the

ormed
n using
d.

Work-

um on
least 3/4 (see Theorem 2.2, this success probability can be made arbitrarily close t
repeating). Let these two instance have left endpoints at text positionsk andl respectively.

Next,h(i) finds the longest substring (with length at mostm) starting at the right bound
ary of text blocki which is consistent with the pattern instance starting at text positl
(and therefore consistent with the pattern instant starting at text positionk as well); this is
done using the minimum finding algorithm and takes O(

√
m) time with constant failure

probability. Similarly,h(i) finds the longest substring (with length at mostm/2) ending at
the right boundary of text blocki which is consistent with the pattern instance startin
text positionk.

Finally, using these two substrings,h(i) can determine in O(1) time, whether there
exists a pattern instance with left endpoint in blocki which matches the text. If the leng
of the two substrings is less thanm then there is no such pattern instance; otherwise
instances of the pattern which occur completely within these two substrings and s
at shifts of integer multiples of|v| from k are complete matches (here|v| is the pattern
period).

Thus,h(i) determines whether or not the pattern occurs in blocki in O(
√

m logm) time,
with failure probability a constant. This failure probability can be made arbitrarily clo
0 by repetition. Note thath(i) can determine the leftmost pattern occurrence in blocki as
well, if required, within the same time bounds.

The rest of the algorithm stays the same:h(i) is used to find a block containing a
occurrence of the pattern and subsequently, an occurrence of the pattern in this b
found using the above method.

7. Conclusions and open problems

We have shown how one occurrence or the leftmost occurrence ofp in t can be found
in Õ(

√
n + √

m) time, with constant two-sided failure probability. We also note tha
approximate count of the number of occurrences (within a multiplicative constant fa
can also be determined iñO(

√
n + √

m) using the approximate counting algorithm
Brassard, Hoyer and Tapp [2], adapted appropriately (the oracleh(i) must now return a
count of the number of matches rather than just the indication of a match). Finally, usi
same algorithm, the total number of occurrences ofp can be determined iñO(

√
nt +√

m)

time, wheret is the number of occurrences.
One open problem would be whether string matching with don’t cares can be perf

in the same time bounds as above. The main challenge here to implement convolutio
Fast Fourier Transforms iñO(

√
n) time. It is not obvious how this can be accomplishe

References

[1] M. Boyer, G. Brassard, P. Hoyer, A. Tapp, Tight bounds on quantum searching, in: Proceedings of 4th
shop on Physics and Computation-PhysComp, 1996, pp. 36–43.

[2] G. Brassard, P. Hoyer, A. Tapp, Quantum counting, in: Proceedings of 25th International Colloqui
Automata, Languages and Programming, 1998, pp. 820–831.

110 H. Ramesh, V. Vinay / Journal of Discrete Algorithms 1 (2003) 103–110

[3] C. Dürr, P. Hoyer, A quantum algorithm for finding the minimum, Quantum Physics E-Print Archive,http://

ympo-

991)
xxx.lanl.gov/quant-ph/9607014, 1996.
[4] L. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of 28th ACM S

sium on Theory of Computing, 1996, pp. 212–219.
[5] U. Vishkin, Deterministic sampling: A new technique for fast pattern matching, SIAM J. Comput. 20 (1

22–40.

http://xxx.lanl.gov/quant-ph/9607014
http://xxx.lanl.gov/quant-ph/9607014
http://xxx.lanl.gov/quant-ph/9607014

	String matching in O(n+m) quantum time
	Introduction
	Preliminaries
	Probabilistic oracles.
	Periodicity.

	The O(nm) time algorithm
	The O(n+m) time algorithm: aperiodic patterns
	Step 1: deterministic sampling
	Step 2: direct verification

	Pattern preprocessing for aperiodic patterns
	Determining the deterministic sample.

	Handling periodic patterns
	Conclusions and open problems
	References

