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Abstract

In this paper, we study asymptotic stability of the zero solution of the second-order linear delay di&erential
equation:

y′′(t) = p1y′(t) + p2y′(t − �) + q1y(t) + q2y(t − �);

where p1, p2, q1, and q2 are constants with p1p2¿ 0 and q1q2¡ 0. Here �¿ 0 is a constant. In proving
our results we make use of Pontryagin’s theory of quasi-polynomials.
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1. Introduction

The aim of this paper is to study asymptotic stability of the zero solution of the delay di&erential
equation

y′′(t) = p1y′(t) + p2y′(t − �) + q1y(t) + q2y(t − �); (1.1)

where �¿ 0 is a constant and p1, p2, q1, and q2 are constants. In particular, we assume that p1p2¿ 0
and q1q2¡ 0. In [7] we showed that if p1p2¿ 0 and q1¿ 0, q2¿ 0, then the zero solution of (1.1)
is not asymptotically stable. Equations of type (1.1) with q1q2¡ 0 appear in many applications. This
problem is of interest in biology in explaining self-balancing of the human body and in robotics
in constructing biped robots. See [21,17]. These are illustrations of inverted pendulum problems.

∗ Corresponding author.
E-mail address: cahlon@oakland.edu (B. Cahlon).

0377-0427/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2003.12.043

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82150126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cahlon@oakland.edu


80 B. Cahlon, D. Schmidt / Journal of Computational and Applied Mathematics 170 (2004) 79–102

A typical example is the balancing of a stick (see [23]). The delay � reGects human reGexes,
and the linearization of the mathematical model leads to an equation of form (1.1) with p1 = 0,
p2¡ 0, q1¿ 0, and q2¡ 0. An other application is in machine tool analysis. An important source
of instability in the cutting process is the so-called regenerative e&ect [22]. It is a “past-e&ect” in
which the cutting force depends on the actual and delayed values of the relative displacement of
the tool and the workpiece. A simple linearized mathematical model of this phenomenon leads to an
equation of form (1.1) with p1¡ 0, p2 = 0, q1¡ 0, and q2¿ 0. Equations of form of (1.1) can be
used as test equations for numerical methods. The authors are not aware of a comprehensive study
of this important equation. In general the study of asymptotic stability of linear delay di&erential
equations is divided in two di&erent approaches; one approach deals with Jnding stability criteria or
regions of stability of the zero solution [9,10,26,5,12,3,7,24]. The other approach is Jnding su)cient
conditions for asymptotic stability of the zero solution [4,11,18]. For other results on asymptotic
stability of second-order delay di&erential equations, see [25,20,15,14,1,16,8]. However, there is no
complete study of stability criteria of (1.1).
In this paper we obtain practical (either easily checked or algorithmically checked) stability criteria

for the zero solution of (1.1) when p1p2¿ 0 and q1q2¡ 0. Note that with �= 0 the zero solution
of (1.1) is asymptotically stable if and only if

P = p1 + p2¡ 0 and Q = q1 + q2¡ 0: (1.2)

We will demonstrate some cases when stability occurs with �¿ 0 and condition (1.2) is not valid.
In other words we expose some rare cases where the delay can stabilize Eq. (1.1).
This paper is organized as follows. In Section 2, we present the tools used in our asymptotic

stability analysis, and we provide some special cases. In Section 3 we give our main results. In
Section 4 we present some examples.

2. Background

In this section, we identify the characteristic function of (1.1) in order to study the asymptotic
stability of the zero solution. We also quote the main results of Pontryagin related to the asymptotic
stability [2, pp. 442–444] and the applications of Pontryagin’s results [19, Sections 13.7–13.9].

The characteristic function of (1.1) is given by

Ĥ (s) = s2 − p1s− p2se−s� − q1 − q2e−s�: (2.1)

Multiplying (2.1) by es� yields

es�Ĥ (s) = es�s2 − p1ses� − p2s− q1es� − q2: (2.2)

Letting s= z=�, we examine the zeros of

H (z) = �2ezĤ
( z
�

)
= z2ez − Azez − Bez − Cz − D; (2.3)

where

A= �p1; B= �2q1; C = �p2 and D = �2q2: (2.4)
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Theorem 2.1. In order that all solutions of (1:1) approach zero as t → ∞ it is necessary and
su3cient that all zeros of (2:1), or equivalently (2:3), have negative real parts.

See [19]. The function (2.3) is a special function, usually called an exponential polynomial or a
quasi-polynomial. The problem of analyzing the distribution of the zeros in the complex plane of
such functions has received a great deal of attention.

De�nition 2.1. Let h(z; w) be a polynomial in the two variables z and w (with complex coe)cients),

h(z; w) =
∑
m;n

amnzmwn (m; n nonnegative integers):

We call the term arszrws the principal term of h(z; w) if ars �= 0, and for each term amnzmwn with
amn �= 0, we have r ¿ m and s¿ n.

Note that H (z) = h(z; ez) where

h(z; w) = wz2 − (Az + B)w − (Cz + D): (2.5)

It is clear from DeJnition 2.1 that h(z; w) of (2.5) has principal term z2w. We now cite two theorems
of Pontryagin, see [2, pp. 442–444, 19].

Theorem 2.2. Let H (z)=h(z; ez), where h(z; w) is a polynomial with a principal term. The function
H (iy) is now separated into real and imaginary parts; that is, we set H (iy)=F(y)+ iG(y). If all
the zeros of the function H (z) lie in the open left half plane, then the zeros of the functions F(y)
and G(y) are real, are interlacing, and

O(y) = G′(y)F(y) − G(y)F ′(y)¿ 0 (2.6)

for all real y. Moreover, in order that all the zeros of the function H (z) lie in the open left half
plane, it is su3cient that one of the following conditions be satis9ed:

(a) All the zeros of the functions F(y) and G(y) are real and interlace, and the inequality (2:6)
is satis9ed for at least one value of y.

(b) All the zeros of the function F(y) are real and for each of these zeros y=y0 condition (2:6)
is satis9ed; that is, F ′(y0)G(y0)¡ 0.

(c) All the zeros of the function G(y) are real and for each of these zeros the inequality (2:6)
is satis9ed; that is, G′(y0)F(y0)¿ 0.

In our case,

H (iy) = (iy)2eiy − (Aiy + B)eiy − (Ciy + D) (2.7)

or

H (iy) =−y2 cosy + Ay sin y − B cosy − D + i(−y2 sin y − Ay cosy − B sin y − Cy)

=F(y) + iG(y); (2.8)
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where

F(y) = −y2 cosy + Ay sin y − B cosy − D (2.9)

and

G(y) = −y2 sin y − Ay cosy − B sin y − Cy: (2.10)

In order to study the location of the zeros of H (z) one has to study the zeros of F and G. To do
so, we need the following result which is useful in determining whether all roots of F and G are
real. Let f(z; u; v) be a polynomial in z; u, and v, which we write in the form

f(z; u; v) =
∑
m;n

zm�(n)
m (u; v); (2.11)

where �(n)
m (u; v) is a polynomial of degree n, homogeneous in u and v, let zr�(s)

r (u; v) be the principal
term of f(z; u; v), and let �∗(s)(u; v) denote the coe)cient of zr in f(z; u; v), so that

�∗(s)(u; v) =
∑
n6s

�(n)
r (u; v):

Also we let

 ∗(s)(z) = �∗(s)(cos z; sin z):

Theorem 2.3. Let f(z; u; v) be a polynomial with principal term zr�(s)
r (u; v). If ! is such that

 ∗(s)(!+ iy) �= 0 for all real y, then in the strip −2"k + !6 x6 2"k + !, z = x+ iy, the function
F(z)=f(z; cos z; sin z) will have, for all su3ciently large values of k, exactly 4sk+ r zeros. Thus,
in order for the function F(z) to have only real roots, it is necessary and su3cient that in the
interval −2"k + !6 x6 2"k + !, it has exactly 4sk + r real roots for all su3ciently large k.

Note that the functions F(y) and G(y) in (2.9) and (2.10) have principal terms −y2 cosy and
−y2 sin y, respectively. We will use Theorems 2.2 and 2.3 to study the asymptotic stability of (1.1).
In the next section we will present the main results of this paper.

3. Main results

In this section we present the main results of this paper. First we start with the case when p1¿ 0,
p2¿ 0, q1¿ 0, and q2¡ 0 which was encompassed in a result of an earlier paper [7].

Theorem 3.1. If p1¿ 0, p2¿ 0, q1¿ 0 and q2¡ 0, then the zero solution of (1:1) is not asymp-
totically stable.

Proof. See [6, Corollary 3.1].
From Theorem 2.2, we have the following necessary condition.

Lemma 3.1. If the zero solution of (1:1) is asymptotically stable, then O(0)=(B+D)(A+B+C)¿ 0.
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We Jrst consider special cases where at least one of the coe)cients p1, p2 of (1.1) is zero. Recall
that in all cases we assume that p1p2¿ 0 and q1q2¡ 0 (or, equivalently, AC¿ 0 and BD¡ 0).
We start with the case p1 = p2 = 0 (or, equivalently, A= C = 0).

Lemma 3.2. Assume that A = C = 0. If B¿ 0 and D¡ 0, then the zero solution of (1:1) is not
asymptotically stable.

Proof. For A= 0 and C = 0, (2.10) yields

G(y) = −(y2 + B) sin y

and thus G has nonreal zeros, ±i
√
B. By Theorems 2.2 and 2.3 the zero solution of (1.1) is not

asymptotically stable.

Theorem 3.2. Assume that A=C=0 and D¿ 0. Then the zero solution of (1:1) is asymptotically
stable if and only if B¡ 0, and there exists k ∈Z+ such that

2k"¡
√−B¡ (2k + 1)" (3.1)

and

D¡min(−(2k)2"2 − B; (2k + 1)2"2 + B): (3.2)

Proof. For A= 0 and C = 0, (2.9) and (2.10) yield

G(y) = (−y2 − B) sin y;

G′(y) = −2y sin y + (−y2 − B) cosy

and

F(y) = −y2 cosy − B cosy − D:

We Jrst prove necessity. If B = 0, then O(0) = 0 and by Lemma 3.1 the zero solution of (1.1) is
not asymptotically stable. If B¿ 0, the proof of Lemma 3.2 yields that the zero solution of (1.1)
is not asymptotically stable. Thus it is necessary that B¡ 0. The zeros of G are y = ±√−B and
y = n"(n∈Z). If y is a zero of G, then

O(y) = F(y)G′(y) = [ − y2 cosy − B cosy − D][ − 2y sin y + (−y2 − B) cosy]

and, in particular,

O(−√−B) = O(
√−B) = 2D

√−B sin√−B:
Since D¿ 0, O(−√−B) = O(

√−B)¿ 0 if and only if sin
√−B¿ 0, or equivalently, (3.1) holds

for some nonnegative integer k. At the points y = n" (n∈Z) we have

O(n") = [(−n2"2 − B)(−1)n − D][(−n2"2 − B)(−1)n]

= (n2"2 + B)2 + D(n2"2 + B)(−1)n:



84 B. Cahlon, D. Schmidt / Journal of Computational and Applied Mathematics 170 (2004) 79–102

Thus O(n")¿ 0 if and only if

(n2"2 + B)2¿D(n2"2 + B)(−1)n+1: (3.3)

We distinguish two cases for n.
Case 1: Let n¿ 2k. Thus n"¿ 2k" and 0¡ 2k"¡

√−B¡n", so that (2k)2"2¡ − B¡n2"2,
and therefore n2"2 +B¿ 0. For n even, the right-hand side of (3.3) is negative, and inequality (3.3)
is satisJed. For n odd, (3.3) is equivalent to

n2"2 + B¿D: (3.4)

Observe that (3.4) holds for all odd n¿ 2k if and only if it holds for n= 2k + 1.
Case 2: Let 06 n6 2k. Thus 06 n"6 2k"¡

√−B, and n2"2 + B¡ 0. For n odd, (3.3) is
satisJed. For n even (3.3) is equivalent to

− n2"2 − B¿D: (3.5)

Observe that (3.5) holds for all even n with 0¡n6 2k if and only if it holds for n=2k. Condition
(3.2) results in combining the last two cases. For n negative, no additional analysis is needed since
O is even. For su)ciency, these arguments reverse yielding that G has all real zeros and O¿ 0 at
each of these zeros. Asymptotic stability of the zero solution of (1.1) follows from Theorems 2.1
and 2.2. This proof is now complete.

Now we consider the cases, A= 0 or C = 0 (or, equivalently, p1 = 0 or p2 = 0 and q1q2¡ 0).
Our next special case is A= 0.

Lemma 3.3. Assume that A = 0, BD¡ 0, C �= 0. Necessary for the zero solution of (1:1) to be
asymptotically stable is that

1. 0¡B¡min(−C;−D) and G has two zeros in (2j"; (2j + 1)") (j = 0; 1; : : : ; m+ 1) where m is
the nonnegative integer such that 2m"¡

√
B¡ (2m+ 2)", or

2. B¡min(−C;−D)¡ 0, C¿ 0, G has one zero in (0; ") if m=0, G has two zeros in (2m"; (2m+
1)") if m¿ 0, and G has two zeros in ((2m+1)"; (2m+2)") m is the nonnegative integer such
that 2m"¡

√−B¡ (2m+ 1)", or
3. B¡min(−C;−D)¡ 0, C¡ 0, G has two zeros in ((2m − 1)"; 2m") if m¿ 0, and G has two

zeros in (2m"; (2m+1)") where m is the nonnegative integer such that (2m−1)"¡
√−B¡ (2m+

1)".

Proof. Since A= 0, (2.9) and (2.10) yield

G(y) = −(y2 + B) sin y − Cy; (3.6a)

F(y) = −(y2 + B) cosy − D: (3.6b)

Since C �= 0, the zeros of G are y = 0 and the roots of the equation

cscy = − 1
C

(
y +

B
y

)
: (3.7)



B. Cahlon, D. Schmidt / Journal of Computational and Applied Mathematics 170 (2004) 79–102 85

In each case below, sketches of left- and right-hand sides of (3.7) are useful. In addition, if r is a
zero of G, then (3.6a) and (3.6b) yield that

F(r) = Cr cot r − D: (3.8)

Since

d
dr

(Cr cot r − D) = C
(sin 2r − 2r)

2 sin 2 r
is of a constant sign on each interval (n"; (n + 1)") (n any integer), the function Cr cot r − D is
monotone on this interval and thus can have at most two points of sign changes there. For the
zeros of F and G to interlace, it is thus necessary that G have at most two zeros in each interval
(n"; (n + 1)") (n any integer). Necessary for O(y) �= 0 for all y is that all zeros of G be simple
zeros. Now from Lemma 3.1,

O(0) = (B+ D)(B+ C)¿ 0 (3.9)

is necessary for the asymptotic stability of the zero solution of (1.1).
Assume that B¿ 0. Suppose that C¿ 0. Inside each interval (n"; (n+1)"), the right-hand side of

(3.7) is greater than cscy near both of the endpoints or less than cscy near both of the end points
so that (3.7) has an even number of roots there. Also for k su)ciently large and 0¡!¡"=2, (3.7)
has no roots in (2k"; 2k" + !) and one in (−2k";−2k" + !). It follows that G has 4M zeros in
(−2k"+ !; 2k"+ !) where the 2M is the number of zeros of G in (0; 2k"). Since 4M cannot equal
4k+2, G has nonreal zeros contrary to the asymptotic stability of the zero solution of (1.1). Thus it
is necessary that C¡ 0. (This argument will be repeated in this paper, and we call it the “standard
zero counting argument”.)

With C¡ 0, (3.9) leads us to two cases: (i) B¿−C and B¿−D or (ii) B¡−C and B¡−D.
If B¿−C, or equivalently −B=C¿ 1, then cscy¡− (1=C)(y+B=y) for all positive y su)ciently
near 0. It would then follow that (3.7) has an odd number of roots in (0; "). This and the fact that
in this case (3.7) has one root in (2k"; 2k"+ !) and none in (−2k";−2k"+ !) where k is su)ciently
large would lead to a contradiction as above. The only remaining case is (ii), and it follows that
B¡min(−C;−D) is necessary for the zero solution of (1.1) to be asymptotically stable. In this case,
(3.7) has an even number of roots in (2j"; (2j+1)") and no roots in ((2j+1)"; (2j+2)") (j=0; 1; : : :).
The standard counting method yields that necessary for the zero solution of (1.1) to be asymptotically
stable is that G has precisely two zeros in (2n"; (2n+ 1)") (n= 0; 1; : : :).
Now −(1=C)(y+B=y) is increasing on (

√
B;∞). Choose the integer m so that 2m"¡

√
B¡ (2m+

1)". It follows that if G has two zeros in (2j"; (2j+1)") (j=0; 1; 2; : : : ; m+1), then G has all the
required zeros. The standard counting method reveals that G has now real zeros.

Assume that B¡ 0.
Suppose further that C¿ 0. Again (3.9) leaves cases (i) B+C¿ 0 and B+D¿ 0 or (ii) B+C¡ 0

and B+D¡ 0. The standard zero counting argument allows us to eliminate (i). Thus we have that
B¡min(−C;−D). It follows that −B=C¿ 1, and (3.7) has an odd number of zeros in (0; "). As
well, on (0;∞), −(1=C)(y+B=y) is decreasing with y-intercept

√−B. If 2m"¡√−B6 (2m+2)",
the observation above and the standard counting argument yields that G must have one zero in (0; "),
and two zeros in ((2j + 1)"; (2j + 2)") (j =m;m+ 1; : : :). Since −(1=C)(y + B=y) is decreasing in
(0;∞), it follows that if G has one zero in (0; ") when m=0, two zeros in (2m"; (2m+1)") when
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m¿ 0 and two zeros in ((2m + 1)"; (2m + 2)"), then G has all the other required zeros. (That G
has no more zeros follows from the standard counting argument.)

Suppose now that C¡ 0. By (3.9), B + D¡ 0 and so B¡ − D = min(−C;−D). In this case
−(1=C)(y+B=y) is increasing on (0;∞) with y-intercept

√−B. Let (2m− 1)"¡
√−B¡ (2m+1)

(m=0; 1; : : :). The standard zero counting argument yields that G must have two zeros in ((2j+1)";
(2j + 2)") (j = 0; 1; 2; : : : ; m) and two zeros in (2j"; (2j + 1)") (j = m;m + 1; : : :) in order that G
have all real zeros.

Since −(1=C)(y + B=y) is increasing on (0;∞), it follows that if G has two zeros in
((2m− 1)"; 2m") (an empty condition if m= 0) and two zeros in (2m"; (2m+ 1)"), then G has all
the other required zeros above. (That G could have no more than those follow from the standard
zero counting argument.)

Remark 3.1. In each of the cases in Lemma 3.3, G has all real zeros, and their rough locations
are determined. In case 1, for j = 0; 1; : : : ; G has precisely two zeros r2j+1¡r2j+2 in the interval
(2j"; (2j+1)"). The other zeros of G are y=0 and −rn (n=1; 2; : : :). In case 2, G has one zero r1
in (0; "), for j=1; 2; : : : ; m G has two zeros r2j ¡ r2j+1 in (2j"; (2j+1)"), and for j=m;m+1; : : : ; G
has two zeros r2j+2¡r2j+3 in ((2j + 1)"; (2j + 2)"). As in case 1, the other zeros of G are y = 0
and −rn (n=1; 2; : : :). In case 3, for j=1; : : : ; G has two zeros r2j−1¡r2j in ((2j− 1)"; 2j"), and
for j = m;m+ 1; : : : G has two zeros r2j+1¡r2j+2 in (2j"; (2j + 1)"). Again the other zeros of G
are y=0 and −rn (n=1; 2; : : :). In each of the three cases, F(0) =−(B+D)¿ 0. In order that the
zeros of F and G interlace it is necessary that (−1)nF(rn)¿ 0 (n= 1; 2; : : :).

Theorem 3.3. Assume A = 0, BD¡ 0, and C �= 0. Necessary and su3cient for the zero solution
of (1:1) to be asymptotically stable is that the conditions in Lemma 3:3 hold and (−1)nF(rn)¿ 0
(n= 1; 2; : : :).

Proof. Necessity follows from Lemma 3.3 and Remark 3.1 as the interlacing of zeros of F and
G and the fact that F(0)¿ 0 yield these sign changes. We prove su)ciency. We start with the
case 0¡B¡min(−C;−D). Since F(0) = −(B + D)¿ 0, F has at least one zero between 0 and
r1. Also by hypothesis F has at least one zero between rj and rj+1 for j = 1; 2; : : : ; 2m + 3 and
F(r2m+3)¡ 0. The function −(1=C)(y + B=y) is decreasing, and it follows that G has a zero r2m+4

(equivalently, a root of cscy=−(1=C)(y+B=y)) in the interval ((2m+3)"; (2m+3)"+"=2) and a
zero r2m+5 in the interval ((2m+3)"+"=2; (2m+4)"). At r2m+4 the cosine function is negative and
y2+B is positive so that F(r2m+4)=− cos r2m+4(r22m+4+B)−D¿ 0. Now r2m+5¿r2m+3+2" so that
cos r2m+5¿ cos r2m+3¿ 0 and r22m+5 + B¿r22m+3 + B¿ 0. It follows that F(r2m+5)¡F(r2m+3)¡ 0.
Continuation of this argument reveals that G has a zero r2j+4 in ((2j + 3)"; (2j + 3)" + "=2) and
F(r2j+4)¿ 0 and a zero r2j+5 in ((2j+3)"+"=2; (2j+4)") with F(r2j+5)¡ 0 for j=m+1; m+2; : : : .
Recall that G has all real zeros, and they are 0, the rj, and their negatives. As well, F has zeros
interlacing with the zeros of G, and standard zero counting argument reveals that F has all real
zeros and exactly one zero between consecutive zeros of G. Asymptotic stability now follows.

For the case C¡ 0, the su)ciency condition is similar.
In Theorem 3.3 the number of conditions to be examined is inJnite. In the following we will

provide an algorithm to reduce the inJnitely many conditions to a Jnitely many, and thus we obtain
practical implementation of the above theorem.
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We deJne the residue modulo 2" of a number x to be the real number [x] for which 06 [x]¡ 2"
and x − [x] is an integer multiple of 2".

Algorithmic Stability Test I. Assume that A= 0, BD¡ 0, C �= 0. Moreover assume the necessary
conditions of Lemma 3:3 are satis9ed.

In Case 1:
1. If F(r1)¡ 0 and F(r2l+1)¡ 0, for l=1; 2; : : : ; n where n¿m and [r2n+1]¡"=2, then F(r2l+1)
¡ 0, for all l.

2. If F(r2l)¿ 0, for l= 1; 2; : : : ; n, where n¿m and [r2n]¿"=2, then F(r2l)¿ 0 for all l.
Items (1) and (2) imply that the zero solution of (1:1) is asymptotically stable.

In Case 2:
3. If F(r1)¡ 0 and F(r2l+1)¡ 0, for l= 1; 2; : : : ; n where n¿m and [r2n+1]¿ 3

2" then F(r2l+1)
¡ 0, for all l.

4. If F(r2l)¿ 0, for l= 1; 2; : : : ; n, where n¿m and "¡ [r2n]¡ 3
2 ", then F(r2l)¿ 0 for all l.

Items (3) and (4) imply that the zero solution of (1:1) is asymptotically stable.
In Case 3:
5. If F(r1)¡ 0 and F(r2l+1)¡ 0, for l=1; 2; : : : ; n where n¿m and [r2n+1]¡"=2 then F(r2l+1)
¡ 0, for all l.

6. If F(r2l)¿ 0, for l= 1; 2; : : : ; n, where n¿m and [r2n]¿"=2, then F(r2l)¿ 0 for all l.
Items (5) and (6) imply that the zero solution of (1:1) is asymptotically stable. Note that

we automatically have n¿m.

Proof. The proof is based on the monotonicity of [r2l] and [r2l+1] when l¿m. In case 2 for
example [r2l] ↓ " and [r2l+1] ↑ 2" while in case 3 [r2l+1] ↓ 0 and [r2l] ↑ ". In case 1 [r2l+1] ↓ 0
and [r2l] ↑ ". In case 1, if F(r2l+1)¡ 0 when [r2l+1]¡"=2 and [r2l+3]¡ [r2l+1], then cos r2l+1 =
cos[r2l+1]¿ cos[r2l+3] = cos r2l+3¿ 0 and r22l+3 + B¿r22l+1 + B¿ 0 so that

F(r2l+3) = (r22l+3 + B) cos r2l+3 − D¡− (r22l+1 + B) − D = f(r2l+1)¡ 0:

The rest of the proof is easily obtained from Eq. (2.9) and Theorem 3.3.

Now we consider the case C = 0.

Lemma 3.4. Suppose that C = 0, A �= 0, BD¡ 0. Necessary conditions for the zero solution of
(1:1) to be asymptotically stable are A¡ 0 and B+ D¡ 0.

Proof. With C = 0, (2.9) and (2.10) yield

F(y) = −(y2 + B) cosy + Ay sin y − D (3.10a)

and

G(y) = −(y2 + B) sin y − Ay cosy: (3.10b)

The zeros of G are y = 0 and the roots of

cot y = − 1
A

(
y +

B
y

)
: (3.11)
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As before, sketches of the left- and right-hand sides of (3.11) are useful. Now if r is a root of
(3.11), then (3.10a) and (3.10b) yield

F(r) =
Ar
sin r

− D: (3.12)

Observe that

d
dr

(
Ar

sin r − D

)
=
A cos r(tan r − r)

sin2 r
: (3.13)

We Jrst establish that A¡ 0 is a necessary condition. To this end, assume that A¿ 0. By Lemma
3.1, A+B �= 0, and we consider two cases: (i) A+B¿ 0 and (ii) A+B¡ 0. In case (i), −B=A¡ 1,
and thus (3.11) has an odd number of roots in (j"; (j + 1)") for j = 0; 1; : : : . Since A¿ 0, (3.11)
has no roots in (2k"; 2k"+ !) and one root in (−2k";−2k"+ !) for k su)ciently large. Thus for k
su)ciently large, G has 4m zeros in (−2k"+ !; 2k"+ !), and so G has nonreal zeros, a contradiction
to the asymptotic stability of the zero solution of (1.1).
In case (ii), −B=A¿ 1 and so B¡ 0. By hypothesis, D¿ 0, and by Lemma 3.1, B + D¿ 0.

Now (3.11) has an even number of roots in (0; ") and odd number of roots in (j"; (j + 1)") for
j = 1; 2; : : : . If (3.11) has two or more roots in (0; "), then since F(0) =−(B+D)¡ 0, interlacing
of the zeros of G and F would force F and thus the right-hand side of (3.13) to have a change
from positive to negative in (0; "). Thus, (3.13) would assume a negative value in (0; ") which
is false. If (3.11) has no roots in (0; ") and three roots in ("; 2"), then interlacing would force F
and thus the right-hand side would assume values that are positive, negative, and positive at three
values r1¡r2¡r3, respectively, in ("; 2"). It would then follow that (3.13) changes sign from
negative to positive in ("; 2"). However, (3.13) only changes sign from positive to negative there.
For subsequent intervals between consecutive multiples of ", the analysis is similar. We thus have
that G has no zeros in (0; ") and precisely one zero in (j"; (j + 1)"). The standard zero counting
method yields that G has 4k − 2 zeros in (−2k"+ !; 2k"+ !) for k su)ciently large contrary to the
asymptotic stability of the zero solution of (1.1). Thus we have A¡ 0.

Suppose further that A+ B¿ 0. Then −B=A¿ 1. It now follows that (3.11) has an even number
of roots in (0; "), and odd number of roots in (j"; (j+1)") for j=1; 2; : : : , one root in (2k"; 2k"+!)
and no roots in (−2k";−2k" + !) for k su)ciently large. The standard counting argument yields a
contradiction. As well. A + B �= 0 by Lemma 3.1. It follows that A + B¡ 0, and by Lemma 3.1
again, B+ D¡ 0.

Remark 3.2. If the necessary conditions of Lemma 3.4 hold, then G has all real zeros using the
standard counting method. In both cases of the Lemma 3.4 the function G has one zero rj+1 in each
interval (j"; (j + 1)"), j = 0; 1; 2; : : : . In all cases, the standard counting method yields that these
constitute all positive zeros of G. The other zeros of G are 0 and the opposites of these zeros.

Theorem 3.4. Suppose that C = 0, A �= 0, BD¡ 0. The zero solution of (1:1) is asymptotically
stable if and only if the necessary conditions of Lemma 3:4 hold and

1. if B¡ 0,

F(r2k)¿ 0; k = 1; 2; : : : : (3.14)
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2. if B¿ 0,

F(r2k+1)¡ 0; k = 0; 1; 2; : : : ; (3.15)

where r1, r2; : : : are the positive zeros of G given in Remark 3:2.

Proof. The proof of necessity is based on Lemma 3.4 and F(0) = −(B + D)¿ 0. For su)ciency,
observe that when B¡ 0, D¿ 0 the right-hand side of (3.12) is negative on (2j"; (2j + 1)") for
j = 0; 1; : : : . When B¿ 0, D¡ 0 the right-hand side of (3.12) is positive on ((2j + 1)"; 2j") for
j=0; 1; 2; : : : . For k su)ciency large F(2k")=−(2k")2−B−D¡ 0 and F(r2k)¿ 0 so F must have
at least one zero between r2k and 2k". Therefore F has at least 2k + 1 zeros in (0; 2k") and thus
at least 4k + 2 zeros in (−2k"; 2k"). (Recall F is an even function and G is an odd function.) By
Theorem 2.3, F has exactly 4k + 2 zeros in (−2k"; 2k") or exactly one zero between consecutive
zeros of G. Thus F has all real zeros and they interlace with those of G. By Theorems 2.2 and 2.3
the zero solution of (1.1) is asymptotically stable.

Again we provide algorithms to reduce the inJnitely many conditions given in (3.10) and (3.11)
to Jnitely many yielding a practical implementation of Theorem 3.4.

Algorithmic Stability Test II. Suppose that C = 0, A �= 0, BD¡ 0. Moreover assume that the
necessary conditions of Lemma 3:4 are satis9ed:

1. Suppose B¡ 0. If F(r2l)¿ 0, for l=0; 1; 2; : : : ; n, where 3
2"¿ [r2n]¿", and −(r22n+B) cos r2n−

D¿ 0, then F(r2l)¿ 0 for all l.
2. Suppose B¿ 0. If F(r2l+1)¡ 0, for l = 1; 2; : : : ; m, where −(r22m+1 + B) cos r2m+1 − D¡ 0, then
F(r2l+1)¡ 0 for all l.

Proof. The proof is based on the observation that for case 1, [r2l] ↓ " and −(r22l + B) cos r2l +
Ar2l sin r2l − D¿ − (r22l + B) cos r2l − D when "¡ [r2l]¡ 3

2", and for case 2, [r2l+1] ↓ 0 and
−(r22l+1 + B) cos r2l+1 + Ar2l+1 sin r2l+1 −D¡− (r22l+1 + B) cos r2l+1 −D. Note that in the Jrst case
r22n + B¿ 0.

Now we consider Eq. (1.1) with all coe)cients nonzero.

Lemma 3.5. Suppose that A¿ 0, C¿ 0, B¡ 0, and D¿ 0. Let m be the nonnegative integer for
which

√−B∈ (2m"; (2m + 2)"]. Then necessary conditions for the zero solution of (1:1) to be
asymptotically stable are −B¿A+ C and −B¿D. Furthermore,

1. if C¿A, then necessary for the zero solution of (1:1) to be asymptotically stable is that
(i) G has one zero in (0; ") and two distinct zeros in ("; 2") if m= 0 and
(ii) G has one zero in (0; ") and two distinct zeros in (2m"; (2m+ 1)") and two distinct zeros

in ((2m+ 1)"; (2m+ 2)") if m¿ 1;
2. if C¡A, then necessary for the zero solution of (1:1) to be asymptotically stable is that
(i) G has two zeros in (0; "), if m= 0 and
(ii) G has no zeros in (0; ") and three zeros in (2k"; (2k+1)") for some k=1; 2; : : : ; m if m¿ 1;
3. if C = A, then necessary for the zero solution of (1:1) to be asymptotically stable is that
(i) G has one zero in (0; ") and one zero in ("; 2") if m= 0 and
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(ii) G has no zeros in (0; ") ∪ ("; 2") and one zero in (2j"; (2j + 1)") for, j = 1; 2; : : : ; m and
two zeros in (2m"; (2m+ 1)") if m¿ 1.

Proof. From (2.9) and (2.10)

F(y) = −(y2 + B) cosy + Ay sin y − D

and

G(y) = −(y2 + B) sin y − Ay cosy − Cy:

By Lemma 3.1 necessary for the zero solution of (1.1) to be asymptotically stable is that O(0) =
(B+D)(A+B+C)¿ 0 which is equivalent to (a) B+D¡ 0 and A+B+C¡ 0, or (b) B+D¿ 0
and A+ B+ C¿ 0. We start with the case (a).
When C �= A, it is evident that G(y) = 0 if and only if y = 0 or w(y) = )(y) where w(y) =

A cot y + C cscy and )(y) = −(y + B=y).
The function w has rather di&erent forms for the three cases C¿A, C¡A, and C = A. We

establish the necessary and the additional necessary conditions separately for these three cases.
Case 1: Suppose C¿A. In this case, w(y) resembles the cosecant function in that w is an odd

function, has a period 2", is positive valued and concave upward in (0; "), and has limit ∞ at 0
and " when the limit is taken from inside the interval (0; "). With B¡ 0, ) has limit ∞ at 0 taken
from inside (0;∞), is decreasing and concave upward on (0;∞), and has asymptote *= −y. Note
also that )(y)¿ 0 for 0¡y¡

√−B, and )(y)¡ 0 for y¿
√−B.

Suppose that (b) −B¡A+C and B¿−D. Since −B¡A+C, )(y)¡w(y) for y positive and
su)ciently near 0. It follows then that w(y) = )(y) has an even number of roots in each interval
between successive multiples of ". In addition, for 0¡!¡" and k su)ciently large, (2k"− !; 2k")
(and hence (−2k";−2k"+ !)) contains one root of w(y)= )(y) while (2k"; 2k"+ !) does not. Since
0 is a zero of G, we see that for k su)ciently large, (−2k" + !; 2k" + !) contains 4M zeros of G
where 2M is the number of zeros of G in (0; 2k"). This count cannot be equal to 4k + 2, and it
follow that G has nonreal zeros.

Thus the zero solution of (1.1) is not asymptotically stable. Thus we have that (a) −B¿A+ C
and B+D¡ 0. It follows that w(y)=)(y) has an odd number of roots in (0; ") and an even number
of roots in all other intervals between successive multiples of " in (0;∞).

If w(y)=)(y) has three roots in (0; "), then F must have at least three zeros in (0; ") in order that
the zeros of F and G interlace. Now F(0)=−(B+D)¿ 0. If 0¡r1¡r2¡r3¡" are consecutive
zeros of G in (0; "), then interlacing forces F(r1)¡ 0, F(r2)¿ 0, and F(r3)¡ 0. If r is a nonzero
zero of G, it can be shown that

F(r) =
Ar
sin r

(
1 +

C
A
cos r

)
− D: (3.16)

The derivative of the right-hand side of (3.16) is
A

sin2 y

[
sin y

(
1 +

C
A
cosy

)
− y

(
cosy +

C
A

)]
: (3.17)

In the present case, C¿A¿ 0. We show that

sin y
(
1 +

C
A
cosy

)
¡y

(
cosy +

C
A

)
(3.18)



B. Cahlon, D. Schmidt / Journal of Computational and Applied Mathematics 170 (2004) 79–102 91

on (0; "). It is evident that (3.18) holds when 1 + (C=A) cosy6 0. when 1 + (C=A) cosy¿ 0,
cosy¡ 1¡C=A implies (1 − cosy)(C=A− 1)¿ 0, and thus

1 +
C
A
cosy¡ cosy +

C
A
: (3.19)

Since 0¡ sin y¡y and 1 + (C=A) cosy¿ 0, (3.18) follows from (3.19). We thus have (3.18) is
negative on (0; "). This contradicts the fact that the right-hand side of (3.16) is negative at r1 and
positive at r2.

Hence, it is necessary that G has only one zero in (0; ").
If

√−B∈ (2m"; (2m+2)"], G has one zero in (0; ") and at most two zeros in (2j"; (2j+1)") (j=
1; 2; : : : ; m). If G had more than two zeros in one of these intervals, the argument above yields a
contradiction.

Now we have at most two zeros in (2i"; (2i + 1)") for i = 1; 2; : : : ; m. On the other hand G
has at most two zeros in each interval ((2j + 1)"; (2j + 2)") for j = m;m + 1; : : : because of the
opposite concavities of w and ). If in any of the intervals (2j"; (2j + 1)") (j = 1; 2; : : : ; m) or
((2j + 1)"; (2j + 2)") (j =m;m+ 1; : : :), G does not have two zeros, the standard counting method
reveals that G has at most 4k−2 zeros in (−2k"+!; 2k"+!) for k su)ciently large, and asymptotic
stability fails. Case 1 is complete.

Case 2: Suppose that C¡A. In this case, w(y) resembles the cotangent function in that w is
decreasing on (0; ") and has limits ∞ and −∞ at 0 and ", respectively, when the limits are taken
from the inside (0; ").

Suppose that (b) −B¡A+C. The number of zeros of G in (0; ") as well as in all other intervals
between consecutive multiples of " is odd. In the intervals (−2k";−2k"+ !) and (2k"; 2k"+ !) for
k su)ciently large and 0¡!¡", G has one and no zeros, respectively. As in case 1, G has 4M
rather that 4k+2 zeros in (−2k"+ !; 2k"+ !) for k su)ciently large. Thus G has nonreal zeros, and
by Theorems 2.2 and 2.3 the zero solution of (1.1) is not asymptotically stable. Thus it is necessary
that −B¿A+ C for the zero solution of (1.1) to be asymptotically stable.
It now follows that G has an even number of zeros in (0; ") and an odd number of zeros in

every other interval between consecutive multiples of " in (0;∞). This yields a minimal count of
zeros of G in these intervals: none in (0; ") and one in each interval (j"; (j + 1)") (j = 1; 2; : : :).
This minimal count (accounting for y=0 as a zero of G and these being one and no zeros of G in
(−2k";−2k"+ !) and (2k"; 2k"+ !), respectively) leads to 4k−2 zeros in (−2k"+ !; 2k"+ !) for k
su)ciently large. Thus a further necessary condition for the zero solution of (1.1) to be asymptoti-
cally stable is that (0; ") contains two zeros of G or that (j"; (j+1)") contains three zeros of G for
some j=1; 2; : : : : To complete the proof of case 2, we rule out the cases when j is odd or greater
than 2m.

Recall that if r is a nonzero zero of G, then

F(r) =
Ar
sin r

(
1 +

C
A
cos r

)
− D: (3.20)

The facts that 0¡C¡A and D¿ 0 show that the right-hand side of (3.20) is negative in
(j"; (j + 1)") when j is odd. As such, if G had three zeros in (j"; (j + 1)"), then the zeros of F
could not interlace with these zeros.
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Suppose that G has three zeros in (2k"; (2k + 1)") when k ¿m. On this interval )¡ 0, and
thus w(r)¡ 0 for each zero r of G in (2k"; (2k + 1)"). Thus these zeros of G lie in the interval
(s; (2k + 1)") when w(s) = 0 and s¿ 2k"+ "=2.
Observe that the derivative of the right-hand side of (3.20) is

A csc r + C cot r − r csc rw(r) =
A

sin r

(
1 +

C
A
cos r

)
− r csc rw(r): (3.21)

Now 1 + (C=A) cos r ¿ 0, w(r)¡ 0, and A=sin r ¿ 0 so that (3.21) is positive. Thus three zeros of
G in (s; (2j + 1)") cannot interlace with the zeros of F . Case 2 is complete.

Case 3: Suppose that C = A. In this case y = 0 is a zero of G as are all the odd multiples of "
and the roots of )(y) = w(y). In this case, w is decreasing on (0; ") and has limits ∞ and 0 at 0
and ", respectively, taken from inside the interval (0; "). Also for "¡y¡ 2", w(y)=−w(2"−y).
Observe that if

√−B were an odd multiple of ", then the determinant O would be zero at this
point. So necessary for the zero solution of (1.1) to be asymptotically stable is that

√−B is not an
odd multiple of ".

Suppose that (b) −B¡A + C. In this case G has an odd number of zeros in (0; ") ∪ ("; 2").
Also, for n = 1; 2; : : : ; (2n"; (2n + 1)") ∪ ((2n + 1)"; (2n + 2)")) contains an odd number of zeros
of G. As in the previous case y = 0 is a zero of G as are all odd multiples of ". In the intervals
(−2k";−2k" + !) and (2k"; 2k" + !) for k su)ciently large G has one and no zeros, respectively.
Using the standard counting method the number of zeros of G in (−2k" + !; 2k" + !) is 4M , and
thus G has nonreal zeros. By Theorems 2.2 and 2.3, the zero solution of (1.1) is not asymptotically
stable.

Thus we have that −B¿A+C and B+D¡ 0. It follows that )(y) =w(y) has an even number
of roots in (0; ") ∪ ("; 2") and an odd number of roots in (2n"; (2n + 1)") ∪ ((2n + 1)"; (2n +
2)") (n=1; 2; : : :). The standard zero counting method yields that in order for G have all real zeros
it is necessary that )(y)=w(y) has two roots in (0; ")∪ ("; 2") or three roots in (2n"; (2n+1)")∪
((2n+1)"; (2n+2)") for some n=1; 2; : : : : From (3.16), for every root r of )(r)=w(r), we have
that

F(r) =
Ar
sin r

(1 + cos r) − D: (3.22)

In each interval ((2n+1)"; (2n+2)"), the right-hand side of (3.22) is negative, and thus for the
zeros of F and G to interlace, G can have at most one zero in ((2n + 1)"; (2n + 2)"). By (3.17)
the derivative of the right-hand side of (3.22) is

w(r) − r csc rw(r) =
w(r)
sin r

(sin r − r): (3.23)

Now (3.23) is negative throughout each interval (2n"; (2n+1)") (n=0; 1; 2; : : :). For the zeros of F
and G to interlace, it is then necessary that G have at most two zeros in (2n"; (2n+1)") (n=1; 2; : : :).
Furthermore, F(0) = −(B+ D)¿ 0. If G had two zeros in (0; "), say r1¡r2¡", then interlacing
would force F(r1)¡ 0¡F(r2) and it would then follow that (3.23) is positive somewhere in (0; ").
To summarize, if G has more than the minimal count of zeros in (2n"; (2n+2)"), then G must have
zeros in (2n"; (2n+1)") and in ((2n+1)"; (2n+2)"). That is, ) must change sign in (2n"; (2n+2)")
so that m= n. The proof is now complete.

Remark 3.3. If the necessary conditions of Lemma 3.5 hold, then G has all real zeros.
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Suppose C¿A. Then G has one zero r1 in (0; "), two zeros r2j ¡ r2j+1 in (2j"; (2j + 1)") for
j=1; 2; : : : ; m, and two zeros r2j+2¡r2j+3 in ((2j+1)"; (2j+2)") for j=m;m+1; : : : (the second
designation is empty when m= 0).

Suppose C¡A. If
√−B∈ (0; 2"), then G has two r1¡r2 zeros in (0; ") and one zero rj+2 in

(j"; (j + 1)") for j = 1; 2; : : : : If
√−B∈ (2m"; (2m+ 2)") for some m¿ 1, then there is a k with

16 k6m such that G has no zeros in (0; "), one zero rj in (j"; (j+1)") for j=1; : : : ; 2k, three zeros
r2k+1¡r2k+2¡r2k+3 in (2k"; (2k+1)"), and one zero rj+2 in (j"; (j+1)") for j=2k+2; 2k+3; : : : :
Here k6m is described in Lemma 3.5.

Suppose C =A. If
√−B∈ (0; 2"), G has one zero r1 in (0; ") and one zero r2 in ("; 2") and one

zero r2j in ((2j− 1)"; 2j") (j= 2; 3; : : :). The zeros of G include r2j+1 = (2j+ 1)" for j= 1; 2; : : : :
If

√−B∈ (2m"; (2m+2)") where m¿ 1, then G has no zeros in (0; ")∪ ("; 2") and one zero r2j in
(2j"; (2j+1)") for j=1; 2; : : : ; m− 1, and two zeros r2m¡r2m+1 in (2m"; (2m+1)") and one zero
r2j+3 in ((2j + 1)"; (2j + 2)") for j¿m. In this case, the odd multiple of " are also zeros of G,
and we label them as r2j+1 = (2j+1)" (j=0; 1; : : : ; m− 1) and r2j+2 = (2j+1)" (j=m;m+1; : : :).

In all cases, the standard counting method yields that these constitute all positive zeros of G. The
other zeros of G are 0 and the opposites of these zeros.

Theorem 3.5. Suppose that A¿ 0, C¿ 0, B¡ 0, D¿ 0. If C¿A or C¡A, the zero solution of
(1.1) is asymptotically stable if and only if the necessary conditions of Lemma 3.5 hold and

(−1)kF(rk)¿ 0; k = 1; 2; : : : ; (3.24)

where r1; r2; : : : are the positive zeros of G given in Remark 3.3.
If C=A, the zero solution of (1.1) is asymptotically stable if and only if the necessary conditions

of Lemma 3.5 hold and

1. if
√−B∈ (0; 2") then F(r1)¡ 0, and "2 + B− D¿ 0, and

2. if
√−B∈ (2m"; (2m + 2)"), then ((2m − 1)")2 + B − D¡ 0 and F(r2j)¿ 0, j = 1; 2; : : : ; m,

F(r2m+1)¡ 0, and ((2m+ 1)")2 + B− D¿ 0.

Proof. When C �= A, the proof of necessity and su)ciency is essentially the same as the proof of
Theorem 3.3.
We now consider the case C=A. First we prove necessity. In (1), F(0)=−(B+D)¿ 0 and from

Lemma 3.5, r1 ∈ (0; "). If F(r1)¿ 0, then interlacing fails. Now F(r2) = F(") = "2 + B−D¿ 0 in
order that interlacing holds. In (2), F(0) =−(B+D)¿ 0 and by Lemma 3.5 it is necessary that G
has no zeros in (0; ") ∪ ("; 2"). Thus it is necessary that F(") = "2 + B − D¡ 0, F(r2)¿ 0, and
F(3")= (3")2 +B−D¡ 0. We continue until we have two zeros in (2m"; (2m+1)"). In order for
interlacing to hold it is necessary that F(r2m)¿ 0, F(r2m+1)¡ 0, and F((2m+1)"=((2m+1)")2 +
B− D¿ 0.
For su)ciency, we only need to show that F strictly alternates in sign at the zeros of G. We

consider case (1). We have that F(0)=−(B+D)¿ 0 (by Lemma 3.5) and F(r1)¡ 0 by hypothesis.
Now F(r2) = F(") = "2 + B − D¿ 0 by hypothesis, and for j¿ 1, F(r2j) = F((2j + 1)") = (2j +
1)2"2 + B−D¿"2 + B−D¿ 0. For j odd and greater than 1, r2j ∈ (j"; (j + 1)") and F(r2j)¡ 0
follow from (3.16). The proof of case (2) is similar.
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In the following we will provide algorithms to reduce the inJnitely many conditions given in
(3.19) to a Jnitely many conditions, and thus we obtain practical implementations of the above
theorem. Note that in the case A=C the number of conditions is Jnite and an algorithmic stability
test is not needed.

Algorithmic Stability Test III. Suppose that A¿ 0, C¿ 0, B¡ 0, D¿ 0 and C¿A. Moreover
assume the necessary conditions of Lemma 3:5 are satis9ed:

(i) If F(r2l)¿ 0, for l=0; 1; 2; : : : ; v, where v¿m, [r2v]¡ 3"=2, −r2v cos r2v ¿A+ (−B+D)=r2v,
then F(r2l)¿ 0 for all l.

(ii) If F(r2l+1)¡ 0, for l=0; 1; 2; : : : ; n, n, where n¿m and [r2n+1]¿ 3"=2, then F(r2l+1)¡ 0 for
all l.

Items (i) and (ii) imply that (3.24) holds for all l.

Proof. Observe that [r2l] ↓ " and [r2l+1] ↑ 2" when l¿m. For (ii), if l¿ n¿m and [r2n+1]¿ 3"=2,
then [r2l+1]¿ 3"=2, and thus F(r2l+1)¡ 0. For (i)

F(r2v+2) = r2v+2(−r2v+2 cos r2v+2 + A sin r2v+2) − B cos r2v+2 − D

¿−r2v+2(cos r2v + A sin r2v+2) − B cos r2v+2 − D

¿r2v+2(A+ (−B+ D)=r2v + A sin r2v+2) − B cos r2v+2 − D¿ 0:

Note also that

−r2v+2 cos r2v+2¿A+ (−B+ D)=r2v+2:

Algorithmic Stability Test IV. Suppose that A¿ 0, C¿ 0, B¡ 0, D¿ 0, and A¿C. Moreover
assume the necessary conditions of Lemma 3.5 are satis9ed:

(i) Suppose
√−B∈ (0; ") so that G has two zeros r1¡r2 in (0; ") and F(r1)¡ 0 and F(r2)¿ 0.

If F(r2j)¿ 0; j = 1; 2; : : : ; n, when [r2n]¿"=2, and −cos r2n(r22n + B) − D¿ 0, then (3.24) is
satis9ed for all l.

(ii) Suppose
√−B∈ (2m"; (2m + 2)"), m¿ 1, so that G has no zeros in (0; ") and three zeros

in ((2k)"; (2k + 1)"), for some 16 k6m. If F(r2k)¿ 0, F(r2k+1)¡ 0, F(r2k+2)¿ 0 and if
F(r2l)¿ 0, l = 1; 2; : : : ; n that is, (3.24) holds for all r2l+1 smaller than (2m + 2)" where
r2n ¿

√−B and [r2n]¿"=2, −cos r2n(r22n + B) − D¿ 0, then (3.24) holds for all k.

Proof. First recall that

F(r) =
Ar
sin y

(
1 +

C
A
cos r

)
− D¡ 0;

where r is a zero of G in any interval ((2i+ 1)"; (2i+ 2)"), i= 0; 1; 2; : : : : In addition [r2l] ↓ " in
both cases. The rest of the proof obtained easily from Eq. (2.9) for F(y).
We also obtained the following nonasymptotic stability result.
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Theorem 3.6. Assume that A¡ 0, C¡ 0, B¿ 0, D¡ 0, B + D¿ 0, and B¿ − A − C. Then the
zero solution of (1.1) is not asymptotically stable.

Proof. We will consider three cases −C¿ − A, −C = −A and −C¡ − A. In all cases we will
show that G has nonreal zeroes, and by Theorems 2.2 and 2.3, the zero solution of (1.1) is not
asymptotically stable.

(i) Assume that −C¿− A. Eq. (2.9) yields

G(y) = −y2 sin y − Ay cosy − B sin y − Cy: (3.25)

Evidently that G(y) = 0 if and only if y = 0 or w(y) = )(y) where w(y) = −A cot y − C cscy
and )(y) = y + B=y. In this case w(y) resembles the cosecant function in the same sense as in the
proof of Lemma 3.5. Since B¿ − A − C, w(y) = )(y) has an odd number of zeros in (0; ") and
an even number of zeros in each (2l"; (2l+ 2)"). Also y = 0 is a zero of G and for k su)ciently
large G has a zero in (2k"; 2k" + !) and no zeros in (−2k" + !;−2k"). Thus the total number of
zeros in (−2k"+ !; 2k"+ !) is 4M where M is a positive integer. Since G has 4k + 2 zeros in the
strip −2k"+ !6Re z6 2k"+ ! for k su)ciently large, G has nonreal zeros.
(ii) Assume that −A¿−C. Again the zeros of G are y=0 and the roots of w(y)= )(y). In this

case, w(y) resembles the cotangent function in the same sense as in the proof of Lemma 3.5, and
w = ) has an even number of zeros in (0; ") and odd number in every interval (l"; (l + 1)") with
l¿ 1. Also y = 0 is a zero of G and for k su)ciently large G has a zero in (2k"; 2k"+ !) and G
has no zeros in (−2k";−2"k+ !). If w= ) has no zeros in (0; ") and one zero in each (l"; (l+1)")
interval then the total number of zeros in (−2"k + !; 2"k + !), is 4k, and G has nonreal zeros. If
w = ) has two zeros in (0; "), then G has 4k + 4 zeros in (2k" + !; 2k" + !) which is impossible.
By the same argument if w = ) has three zeros in any (l"; (l + 1)") ( l¿ 1), then G would have
too many zeros.

(iii) Assume that −A= −C. In this case y = 0 and the odd multiples of " are zeros of G. Also
the roots of w(y) = )(y) are the zeros of G. In the interval (0; 2"), w = ) has an even number of
zeros, and w = ) has an odd number of zeros in every (2l"; (2i + 2)"), l¿ 1. For k su)ciently
large G has a zero in (2k"; 2k"+ !) and G has no zeros in (−2k";−2"k + !). If w= ) has no zeros
in (0; 2") and one zero in every interval (2l"; (2l+ 2)"), l¿ 1, then the total number of zeros of
G is 4k. As before if w= ) has two zeros in (0; 2") or three zeros in any interval (2l"; (2l+ 2)"),
l¿ 1, then G has at least 4k + 4 which is impossible. Thus G has nonreal zeros. By Theorem 2.3
the zero solution of (1.1) is not asymptotically stable.
Recall that if A �= C, then G=0 if and only if y=0 and w(y)=)(y) where w(y)=−C cscy−A cot y

and )(y) = y + B=y. Recall also that G is an odd function.

Lemma 3.6. Assume A¡ 0, B¿ 0, C¡ 0, D¡ 0, and −C = −A. Then necessary conditions for
the zero solution of (1.1) to be asymptotically stable are B+ D¡ 0 and B¡− A− C.

Proof. The proof is straightforward from Lemma 3.1 and the standard counting technique. We
omit it.

Remark 3.4. The zeros of G are real, and they include the odd multiples of ", denoted r2j=(2j−1)",
j = 1; 2; 3; : : : : In each interval (2j"; (2j + 1)") j = 0; 1; 2; : : : ; G has one zero denoted r2j+1. The
other zeros of G are 0 and the opposite of these zeros.
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Lemma 3.7. Suppose that A¡ 0, B¿ 0, C¡ 0, D¡ 0, and −C¡−A. Then necessary conditions
for the zero solution of (1.1) to be asymptotically stable are B+ D¡ 0 and B¡− A− C.

Proof. The proof is straightforward from the standard counting technique, and we omit it.

Remark 3.5. In each interval ((j− 1)"; j") j= 1; 2; : : : ; G has one zero denoted rj. The other zeros
of G are 0 and the opposite of these zeros.

Theorem 3.7. Suppose that A¡ 0, B¿ 0, C¡ 0, D¡ 0, and −C6−A. The zero solution of (1.1)
is asymptotically stable if and only if B+ D¡ 0, B¡− A− C and

1. if −C = −A
F(r2j+1)¡ 0; (3.26)

where j = 1; 2; : : : ; r2j+1 are the positive zeros of G given in Remark 3.4, and
2. if −C¡− A

F(r2j+1)¡ 0; (3.27)

where j = 0; 1; 2; : : : ; r2j+1 are the positive zeros of G given in Remark 3.5.

Proof. Note that in this case for −C = −A, F((2j + 1)") = (2j + 1)2"2 + B− D¿ 0. For the case
−C¡ − A at r2j the value of F(r2j) = Ar2j=sin r2j(1 + (C=A) cos r2j) − D¿ 0, j = 1; 2; : : : : The
remainder of the proof of this theorem is very similar to the proof of Theorem 3.5. We omit it.

Algorithmic Stability Test V. Suppose that A¡ 0, C¡ 0, B¿ 0, D¡ 0. Moreover assume the
necessary conditions of Lemmas 3.6 and 3.7 are satis9ed:

(i) Suppose −C=−A. If F(r2j+1)¡ 0, j=0; 1; 2; : : : ; n, when [r2n]¡"=2, and −cos r2n(r22n+B)−
D¡ 0, then F(r2l+1)¡ 0 for all l.

(ii) Suppose −C¡−A. If F(r2j+1)¡ 0, j=0; 1; 2; : : : ; n, when [r2n]¡"=2, and −cos r2n(r22n+B)−
D¡ 0, then F(r2l+1)¡ 0 for all l.

Proof. In both cases [r2l+1] ↓ 0. The rest of the proof obtained easily from Eq. (2.9).

Lemma 3.8. Suppose that A¡ 0, B¿ 0, C¡ 0, D¡ 0, and −C¿−A. Then necessary conditions
for the zero solution of (1.1) to be asymptotically stable are B+D¡ 0, and B¡−A−C, and G
has two zeros in (2j"; (2j + 1)") for j = 0; 1; 2; : : : ; m+ 1 where

√
B∈ (2m"; (2m+ 2)").

Proof. From Lemma 3.1, O(0) = (B + D)(A+ B + C)¿ 0, and from Theorem 3.6, it is necessary
that A+ B+ C¡ 0 and B+ D¡ 0: The zeros of G are y = 0 and the roots of w(y) = )(y) where
w(y)=−A cot y−C cscy and )(y)=y+B=y. When −C¿−A, w(y) resembles the cosecant function
as previously described. With B¿ 0, ) has limit ∞ at 0 taken from inside (0;∞), is decreasing on
(0;

√
B) and is increasing on (

√
B;∞) and concave upward on (0;∞), and has asymptote *(y) = y.

Note also that w(y)=)(y) has even number of zeros on each interval (2l"; (2l+1)") for l=0; 1; : : : :
We claim that G cannot have four or more zeros in any of these intervals.
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Consider the interval (2l"; (2l+1)"). At every nonzero zero of G, (3.16) holds, and since −C¿−
A¿ 0 (3.18) holds on (2l"; (2l + 1)") and thus the derivative of the right-hand side of (3.16) is
positive on (2l"; (2l + 1)"). In order that interlacing holds, G can thus have at most two zeros in
(2l"; (2l+ 1)").
That G has precisely two distinct zeros in each (2l"; (2l + 1)") follows from the standard zero

counting method.

Remark 3.6. If the necessary conditions of Lemma 3.6 hold, then G has all real zeros. Since )
is increasing on (

√
B;∞), G has two zeros in all of the intervals (2l"; (2l + 1)"). The standard

counting method yields that these constitute all of the positive zeros of G. The other zeros of G are
0 and the opposite of these zeros.

Theorem 3.8. Suppose that A¡ 0, B¿ 0, C¡ 0, D¡ 0, and −C¿−A. The zero solution of (1.1)
is asymptotically stable if and only if the necessary conditions of Lemma 3.8 hold and

(−1)kF(rk)¿ 0; k = 1; 2; : : : ; (3.28)

where r1; r2; : : : are the positive zeros of G given in Remark 3.6.

Proof. The proof of this theorem is similar to the proof of Theorem 3.5. We omit it.

There are an inJnite numbers of conditions in (3.28), and we reduce this to a Jnite number of
conditions.

Algorithmic Stability Test VI. Suppose that A¡ 0, C¡ 0, B¿ 0, D¡ 0 and −C¿−A. Moreover
assume the necessary conditions of Lemmas 3.8 are satis9ed:

(i) If F(r2j+1)¡ 0, j=0; 1; 2; : : : ; u when [r2u+1]¡"=2, u¿m and −(r22u+1 + B)cos r2u+1 −D¡ 0
then F(r2l+1)¡ 0 for all l.

(ii) If F(r2j)¿ 0; j = 0; 1; 2; : : : ; u when [r2u]¿"=2, u¿m, and −cos r2u(r2u) + A sin r2u ¿ 0, then
F(r2l)¿ 0 for all l.

Proof. Observe that [r2l+1] ↓ 0 and [r2j] ↑ " . The rest of the proof obtained easily from Eq. (2.9)
for F(y).

Lemma 3.9. Assume A¡ 0, B¡ 0, C¡ 0, D¿ 0, and −C¿− A. Then necessary conditions for
the zero solution of (1.1) to be asymptotically stable are

1. B+ D¡ 0,
2. if

√−B∈ (0; "), then G has two distinct zeros in (0; ") and
3. if

√−B∈ ((2m − 1)"; (2m + 1)") for m positive integer, when G has two distinct zeros in
((2j − 1)"; 2j"), j = 1; 2; : : : ; m and two distinct zeros in (2m"; (2m+ 1)").

Proof. From Lemma 3.1 O(0)= (B+D)(A+B+C)¿ 0. Since A+B+C¡ 0, it is necessary that
B+ D¡ 0: From (2.9) and (2.10)

F(y) = −(y2 + B) cosy + Ay sin y − D
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and

G(y) = −(y2 + B) sin y − Ay cosy − Cy:

The zeros of G are y=0 and the roots of )(y)=w(y) where )(y)=y+B=y and w(y)=−A cot y−
C cscy. When −C¿−A, w(y) resembles the cosecant function as previously described. With B¡ 0,
) has limit −∞ at 0 taken from inside (0;∞), is increasing and concave downward on (0;∞), and
has asymptote *(y) = y. Note also that )(y)¡ 0 for 0¡y¡

√−B and )(y)¿ 0 for y¿
√−B.

If
√−B∈ (0; "), then w(y) = )(y) has two or zero roots in (0; ") due to the opposite concavities

of w and ) there. If w(y)= )(y) has no roots there, the standard zero counting argument yields that
G has 4k or fewer zeros in (−2k" + !; 2k" + !) for k su)ciently large. Thus G has nonreal zeros.
Thus (2) is necessary for the zero solution of (1.1) to be asymptotically stable.

Suppose
√−B∈ ((2m−1)"; 2m"] for m a positive integer. Consider the interval ((2m−1)"; 2m").

G has an even number of zeros in this interval since w has limit −∞ as y approaches (2m− 1)"
or 2m" from inside the interval ((2m − 1)"; 2m"). If G has four zeros in ((2m − 1)"; 2m"), let s
be the point in ((2m − 1)"; 2m") where 1 + (C=A) cosy = 0. In the interval (s; 2m") the function
w is decreasing while ) is increasing, and therefore w = ) has one zero there. Now in the interval
((2m− 1)"; s), the function G must have three zeros. From (3.16) at any zero r of G, we have that

F(r) =
Ar
sin r

(
1 +

C
A
cos r

)
− D:

On the interval ((2m − 1)"; s), 1 + (C=A) cos r ¡ 0, A sin r ¿ 0 and −D¡ 0. Thus F(r)¡ 0, and
if G has three zeros in ((2m − 1)"; s), interlacing fails. Similarly in each interval ((2j − 1)"; 2j")
for j = 1; 2; : : : ; m, if G has four zeros there, interlacing fails. Thus G must have two zeros there.
In addition, in each interval (2k"; (2k + 1)"), for k = m;m + 1; : : : because of opposite concavities
of w and ) G can have two zeros only, and if G has two in (2m"; (2m + 1)"), then due to the
monotonicity of ), G has two zeros in every (2k"; (2k+1)"), for k=m+1; m+2; : : : : If G has no
zeros in (2m"; (2m+ 1)"), then G has at most 4k zeros using the standard counting method. Thus
conditions (3) is necessary.

Remark 3.7. If the necessary conditions of Lemma 3.9 hold, then G has all real zeros, using the
standard counting method.

If
√−B∈ (0; "), then G has two zeros r1¡r2 in (0; ") and two zeros r2j+1¡r2j+2 in (2j"; (2j+

1)") for j = 1; 2; : : : : If
√−B∈ [(2m − 1)"; (2m + 1)") for m a positive integer, then G has two

zeros r2j−1¡r2j, in ((2j−1)"; 2j"), j=1; 2; : : : ; m and two zeros r2m+1¡r2m+2 in (2m"; (2m+1)")
and two zeros r2k+1¡r2k+2 in (2k"; (2k + 1)") for k = m+ 1; m+ 2; : : : :

In all cases, the standard counting method yields that these constitute all of the positive zeros of
G. The other zeros of G are 0 and the opposite of these zeros.

Theorem 3.9. Suppose that A¡ 0, B¡ 0, C¡ 0, D¿ 0, and −C¿−A. The zero solution of (1.1)
is asymptotically stable if and only if the necessary conditions of Lemma 3.6 hold and

(−1)kF(rk)¿ 0; k = 1; 2; : : : ; (3.29)

where r1; r2; : : : are the positive zeros of G given in Remark 3.7.

Proof. The proof of this theorem is similar to the proof of Theorem 3.5. We omit it.
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In the next test we will replace the inJnite number of conditions (3.29) by Jnitely many conditions.

Algorithmic Stability Test VII. Assume that A¡ 0, B¡ 0, C¡ 0, D¿ 0, and −C¿−A and that
the necessary conditions of Lemma 3.9 hold:

1. Suppose that
√−B∈ (0; ").

2. If F(r2j+1)¡ 0, j = 0; 1; 2; : : : ; n when [r2n+1]¡"=2, and −cos r2n+1(r22n+1 + B) − D¡ 0, then
F(r2l+1)¡ 0 for all l.

3. If F(r2j)¿ 0, j=0; 1; 2; : : : ; n when [r2n]¿"=2, and −cos r2n(r2n)+A sin r2n ¿ 0, then F(r2l)¿ 0
for all l.

4. Suppose
√−B∈ ((2m− 1)"; (2m+ 1)") for m positive integer and suppose that (−1)jF(rj)¡ 0

for j = 1; 2; : : : ; 2m+ 1.
5. If F(r2j+1)¡ 0, j=m;m+1; : : : ; k, and r22k+1 +B¿ 0, [r2k+1]¡"=2, and −cos r2k+1(r22k+1 +B)−
D¡ 0, then F(r2l+1)¡ 0 for all l.

6. If F(r2l)¿ 0, l=m;m+1; : : : ; n when [r2n]¿"=2 and −cos r2n(r2n)+A sin r2n ¿ 0, then F(r2l)¿ 0
for all l and conditions (3.29) are satis9ed.

Proof. The proof is easily obtained from Eq. (2.9) of F(y) and the observation that [r2l] ↑ " and
[r2l+1] ↓ 0.

Lemma 3.10. Suppose that A¡ 0, B¡ 0, C¡ 0, D¿ 0, and −C¡−A. Then G has all real zeros.

Proof. The proof is straightforward from the standard counting technique, and we omit it.

Remark 3.8. In each interval ((j − 1)"; j") j = 1; 2; : : : ; G has one zero denoted by rj. The other
zeros of G are 0 and the opposite of these zeros.

Theorem 3.10. Suppose that A¡ 0, B¡ 0, C¡ 0, D¿ 0 and −C¡ − A. The zero solution of
(1.1) is asymptotically stable if and only if B+ D¡ 0 and

F(r2k)¿ 0; k = 1; 2; : : : ; (3.30)

where rk , k = 1; 2; : : : ; are the positive zeros of G given in Remark 3.8.

Proof. The proof of this theorem is very similar to the proof of Theorem 3.5. We omit it.

In the next test we will replace the inJnite number of conditions (3.30) by Jnitely many conditions.

Algorithmic Stability Test VIII. Suppose that A¡ 0, B¡ 0, C¡ 0, D¿ 0 and −C¡ − A. If
F(r2l)¿ 0, for l = 0; 1; 2; : : : ; n, r22n + B¿ 0, where [r2n]¡"=2 and −cos r2n(r22n + B)¡D, then
F(r2l)¿ 0 for all l= 0; 1; : : : :

Proof. The proof is similar to previous cases, and we omit it.

Lemma 3.11. Suppose that A¡ 0, B¡ 0, C¡ 0, D¿ 0, and −C =−A and
√−B �= (2n− 1)" for

all n= 1; 2; : : : : Then G has all real and distinct zeros.
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Proof. Note that if −C=−A then all the odd multiples of " are zeros of G. The other zeros of G are
zero and the roots of w(y)=)(y) where )(y)=y+B=y and w(y)=−A cot y−C cscy. If

√−B is not
an n odd multiple of ", then w= ) has one root in each set (2k"; (2k+1)")∪ ((2k+1)"; (2k+2)")
for k=0; 1; 2; : : : : The rest of the proof is straightforward using the standard counting technique.

Remark 3.9. If
√−B∈ (0; "), then in each interval (2j"; (2j+1)"), j=0; 1; 2; : : : ; w=) has one root

denoted by r2j+1. In addition, all odd multiples of " are zeros of G. We also denote r2j=(2j− 1)",
j=1; 2; : : : : The other zeros of G are 0 and the opposite of these zeros. If

√−B∈ ((2m−1)"; (2m+
1)") for a Jxed positive integer m, then in each interval ((2j − 1)"; 2j"); j = 1; 2; : : : ; m, w = ) has
one root denoted r2j, and in each interval (2k"; (2k + 1)"), k = m;m + 1; : : : w = ) has one root
r2k+1 again the odd multiples of " are zeros of G. We denote r2j−1 = (2j− 1)", j= 1; 2; : : : ; m, and
r2k = (2k + 1)", k = m;m+ 1; : : : : The other zeros of G are 0 and the opposite of these zeros.

Theorem 3.11. Suppose that A¡ 0, B¡ 0, C¡ 0, D¿ 0, and −C = −A. Then the zero solution
of (1.1) is asymptotically stable if and only if B + D¡ 0,

√−B �= (2n − 1)" for all n = 1; 2; : : : ;
and

1. if
√−B∈ (0; "), then "2 + B− D¿ 0;

2. if
√−B∈ [2m"; (2m+1)") for m a positive integer, then (2m−1)2"2+B−D¡ 0, (2m+1)2"2+

B− D¿ 0 and

F(r2j)¿ 0; j = 1; 2; : : : ; m: (3.32)

Proof. If
√−B is an odd multiple of ", then G would have a double root and so O = 0 there. If√−B∈ (0; "), then (3.16) yields that F(r2j+1)¡ 0 for all j=0; 1; : : : : Also F(r2j)=(2j−1)2"2+B−D

will be positive for all j = 1; 2; : : : if "2 + B− D¿ 0. The proof of (2) is analogous.
Note that Theorem 3.11 requires checking a Jnite number of conditions for the roots r2j−1;

j = 1; 2; : : : in both cases.

4. Examples

The main results of this paper give a complete characterization of the asymptotic stability of the
zero solution of Eq. (1.1) when p1p2¿ 0 and q1q2¡ 0 which has not previously been accomplished.
To determine the asymptotic stability one needs to know the values of p1, p2, q1, q2, and �. In all
cases either the zero solution is not asymptotically stable or one has to determine if the given values
are in the region of stability or to check Jnite number of conditions. In the cases where stability
criteria was given via inJnite number of conditions, we determine asymptotic stability by using one
of the Asymptotically Stability Tests, which are practical and easy to use.

Example 4.1. Consider (1.1)

y′′(t) = p1y′(t) + p2y′(t − �) + q1y(t) + q2y(t − �) (4.1)

with

A= �p1 = 0:3; C = �p2 = 0:6; B= �2q1 = −11; D = �2q2 = 1:
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In this example we apply Algorithmic Stability Test III. We found that r1 = 2:84, r2 = 3:67, and
r3 = 6:07. We evaluated F(r1) = −3:56, F(r2) = 0:58 F(r3) = –26:68. Also [r3]¿ 1

2", −r2 cos r2 +
A sin r2 = 3:02¿ 0, and r2(−r2 cos r2 + A sin r2) −D= 10:07¿ 0. By Algorithmic Stability Test III,
the zero solution is asymptotically stable. With �= 0 the zero solution is not asymptotically stable.
This is one of the cases where the delay has a stabilizing e&ect.

Example 4.2. Consider (1.1)

y′′(t) = p1y′(t) + p2y′(t − �) + q1y(t) + q2y(t − �) (4.2)

with

A= �p1 = 0:6; C = �p2 = 0:3; B= �2q1 = −2; D = �2q2 = 1:

In this example, we apply Algorithmic Stability Test IV. We found that G has two zeros in (0; "),
r1 = 1:15, and r2 = 3:02 and F(r1) = −0:09, F(r2) = 6:27. We also found that r3 = 6:13, r4 = 9:39
and [r4]¿"=2. Moreover, −cos r4(r24 + B) − D = 85:17¿ 0. By Algorithmic Stability Test IV, the
zero solution is asymptotically stable. With �= 0 the zero solution is not asymptotically stable.

Example 4.3. Consider (1.1)

y′′(t) = p1y′(t) + p2y′(t − �) + q1y(t) + q2y(t − �) (4.3)

with

A= �p1 = 0; C = �p2 = 2; B= �2q1 = −3; D�2q2 = 1:

In this case, G has one zero in (0; ") and two zeros in ("; 2"). The zero in (0; ") is r1 = 0:49. We
have F(r1)=0:49 and since F(r1)¿ 0. By Lemma 3.3 the zero solution of (1.1) is not asymptotically
stable. Without delay the zero solution is also not asymptotically stable since C¿ 0.

Example 4.4. Consider (1.1)

y′′(t) = p1y′(t) + p2y′(t − �) + q1y(t) + q2y(t − �) (4.4)

with

A= �p1 = 0; C = �p2 = 1; B= �2q1 = −3; D = �2q2 = 1:

In this case G also has one zero r1 =1:29, but in this example F(r1)=−0:63¡ 0. Here we continue
to Jnd more zeros of G. We found r2=3:52 and F(r2)=7:74, r3=6:10 and F(r3)=−34:71, r4=9:53
and F(r4)=86:37, r5 = 12:48 and F(r5)=−153:35. It is clear that [r5]¿ 3

2" and "¡ [r6]¡ 3
2" and

by Algorithmic Stability Test I the zero solution of (1.1) is asymptotically stable. With � = 0 the
zero solution is not asymptotically stable.

One can write the second-order delay di&erential equation as a system of Jrst-order delay dif-
ferential equations. Since in all the examples the zero solution is not asymptotically for � = 0 the
results for systems given by Yuanhong [26] cannot be applied. Also the results given in [8] cannot
easily be applied to our examples. Also the results in [13] cannot be applied (the spectrum is not
negative). The results in [6] are not algorithmic type and are not applied to our examples. Since
p2 �= 0 the results in [22] cannot be applied. As a system we also cannot applied the results in [3]
because of the type of the system. Since A+ C¿ 0 the results in [11] also cannot be applied.
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