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Abstract

Let L be a finite-dimensional simple Lie algebra over an algebraically closed felof
characteristipp > 3 andT a torus of maximal dimension in the-envelope ofL in DerL. In this
paper we describe thE-semisimple quotients of the 2-sectionsofelative toT and prove that if
all 1-sections of. relative toT are compositionally classical or solvable theis either classical or
a Block algebra or a filtered Lie algebra of ty§e
0 2003 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

This is the fourth paper in a series devoted to classifying all finite-dimensional simple
Lie algebras over an algebraically closed fiéldbf characteristipp > 3. As the previous
one it will rely on the terminology and notation introduced in the first two papers of the
series. Unless otherwise stated, all Lieaddgas in this paper are assumed to be finite-
dimensional overF. The classification of simple Lie algebras of absolute toral rank 2
obtained in [10] enables us now to deal witle tjeneral case implementing the programme
successfully completed by the second authorfor 7.

Letg, be ap-envelope of a Lie algebrgand

MT(g,) ;== maxdimt| tis a torusing,}.
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If g is centerless then thabsolute toral rankof g, denotedTR(g) is nothing butMT (G)
whereg is the p-envelope ofg in Derg (if C(g) # (0) the definition is slightly more
complicated).

Given a subspac® in g, we denote by (W) the centralizer oW in g. Given a torus
tin g, and a restricteg,-moduleV, we denote by (V, t) the set ofall weights of
V relative tot. The setl"” (V, t) \ {0} is denoted byl"(V, t). If V=g thenl" =I'(g,t)
is nothing but the set of all roots @f relative tot. If t is a torus of maximal dimension
in g, then the centralizery, (t) is a Cartan subalgebra gf,. The Cartan subalgebrgs
of g, of the formh = ¢4, (t'), wheret’ is a torus of maximal dimension in,, are called
regular. All regular Cartan subalgebras g have the same dimension [5], enjoy various
nice properties (see our discussion below), and play an important role in the classification
theory.

Now suppose that the tordig” g, is such tha = ¢4 () is nilpotent. Then so i§,, the
p-envelope of) in g,,. Lett denote the unique maximal torustif- b, Thencg(t) = h and

g=he > g

yel(g.b

is the root space decomposition gfrelative tot. The subalgebrd is said to act
triangulably on a g-module V if all composition factors ofV viewed as arfj-module
are 1-dimensional. I acts triangulably og, one often says thétis triangulable

Letx € . If r e Nis large enough then”” € t. Thus anyy € I'(g, ) can be viewed as
an F-valued function orf). More precisely, we have that

y(x)="/y(x?) (Vxebh).

If b is triangulable then, of course, any root function is lineah oWe stress, however, that
the triangulability offy is not pre-supposed in this paper, and some of the results we obtain
will be used in our next paper devoted to the case where roots functions are nonlinear.

From now onL will always denote simpleLie algebra overF, and L, will stand
for the p-envelope ofL in DerL. Recall thatL, is a semisimple Lie algebra and any
semisimplep-envelope ofL is isomorphic toL, as restricted Lie algebras (see [22],
for example). Given a torug of maximal dlmenS|on inL,, we setd := ¢, (T) and
H:= cr,(T). We have already mentioned thdtis a Cartan subalgebra @f,. However,

H need not be a Cartan subalgebrd.ofve will see later that it does happen in some very
interesting cases that = (0).

In [25], Wilson proved that fop > 7 all Cartan subalgebras éfare triangulable. This
theorem is so important for the classificatitreory that it was later generalized (by both
of us) in different directions.

In [15], the second author proved that fpr> 7 the Cartan subalgebi of L,is
triangulable. Using the terminology just introduced this result simply says that foi7
all regular Cartan subalgebras @f, are triangulable. It should be stressed, however, that
not all Cartan subalgebras @f, are regular, in general, and there are many examples
of simpleLie algebras whose semisimpjeenvelopes contain non-triangulable Cartan
subalgebras.
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In [7], the first author modified Wilson’s original proof to cover the cages 5 and
p = 7. Again it should be stressed that some simple Lie algebras in characteristic 5 do
possess non-triangulable Cartan subalgebras. So Wilson’s theorem does not generalize
directly in this case. Roughly speaking, the result in [7] says that in characteristic 5 the
failure of H to be triangulable can be detected at the level of 2-sections. In characteristic 7,
Wilson’s result is valid in its original form. In Section 3 of this paper, we prove the
following generalization.

Theorem A. Let L be a finite-dimensional simple Lie algebra over an algebraically closed
field F of characteristicy > 3 and letT be a torus of maximal dimension ih,, the
p-envelope of. in DerL. LetH = ¢, (T) andH = cr,(T). Then the following hold

(1) If p > 5thenH is triangulable.
(2) If p=5andH is triangulable therH is triangulable, too.

In Section 4 of this paper, we investigate the 2-sectiond. ofelative to 7. Let
a,p € I'(L,T) be two roots such that the 2-sectidric, ) :== H @ }_; jcr, Lia+js
is nonsolvable, and let rad.(«, 8) denote the maximal -invariant solvable ideal of
L(a, B). PutL[e, B]:= L(a, B)/radr L(e, B) and letS = S[e, B] denote theT-socle of
Lla, B], the sum of all minimall-invariant ideals ofL[«, B]. ThenS = @leﬁ» where
eachs; is a minimalT -invariant ideal ofL[«, 8]. Let L(«, 8), denote thep-envelope of
L(a,p) in L,. Itis easily seen thal' + L(«, 8), C L, acts onL[«, 8] as derivations
and preserveE. We thus have a natural restricted homomorphism L(«, 8) , — DerS
which we call, g. We identify L[«, 8] with ¥, g(L(«, B)) and denote the torug, g(7')
by T.

By Block’s theoremg,» =S ® A(m;; 1) wheresS; is a simple Lie algebra and; € Np.

It is shown in Section 4 that < 2 and the equality = 2 implies that eact$; is one of
s[(2), W(1; 1), H(2; 1)@. Moreover, ifr = 1 thenS = S ® A(m; 1) whereS is a simple
Lie algebra withTR(S) < 2. According to [10, Theorem 1.1} is either classical or of
Cartan type or isomorphic to the restricted Melikian algefifia 1) (in which casep = 5).

Our next result generalizes and strengthens [2, Theorem 9.1.1], an important intermedi-

ate result of the Block—Wilson classification.

Theorem B.
(i) If r =2thenthere argu1, u2 € I'(L, T) such that

Lipal® @ Lipu2l™® ¢ Lla, B1 € LIp1l @ Lipuzl.

(i) If r=1and TRS)=2thenSis S|mple and the following hoid
Q) If S is restricted therL[«, B] =
(2) If S is non-restricted thel§ ¢ L[a BICS+T =S5, unlessS = H(2; (2,1))@
in which casef (2; (2,1))® C Lla, B C H(2; (2, 1)) .
(iiiy If r =1and TRS) = 1 then one of the following occurs
(1) L[a, B]= L[u] for someu. Moreover,S = L[]V anddimT = 1.
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(2) S=H2;1)®@ and L[«, 8] = H(2; 1)@ @ FD where eitherD =0 or D =
Dy (xf’lxé”l) or p=>5andD = x}3,. MoreoverdimT = 2.

(3) S =S ® A(1; 1) where S is one ofsl(2), W(1;1), H(2;1)@. Moreover,
Lia, Bl C (DerS) @ A(1: 1) andT = (Fho® 1) @ (FId ® (1+ x)d) wherehg is
a nonzero toral element ifi.

(4) S =S ® A(m; 1) whereS is one ofsl(2), W(1; 1), H(2; 1)@ andm > 0. There
exists a classical root: such that

Lla, Bl=S ® A(m; 1) + Lla, Bl(1);
Liu,v1=g(l,1) forsomevel'(L,T).

(5) S =S ® A(1; 1) whereS is one ofs((2), W(1;1), H(2; 1)@, andL[e, B] is a
subalgebra inDerS) ® A(1; 1) + 1d ® W(1; 1) such that

Lla, 1= S® A(L; D) + (Lle, B1) (1),

wherey is a Witt root.
(6) S =S ® A(2; 1) whereS is one ofsl(2), W(1; 1), H2; 1)@, andL[a, B] is a
subalgebra inDerS) ® A(2; 1) + Id ® W(2; 1) such that

L, B1=S® A2, D) + (L[, B1) (),
whereu is a Hamiltonian root.

Section 5 extends the results of [17] to the case whete5. Section 6 deals with
the simple Lie algebrag whose all 1-sections relative t are solvable. This is a very
difficult, isolated case and the results we established so far (in [8—10]) do not really help
here. Our arguments in Section 6 rely on several subsidiary results established in [20] (and
valid for p > 3). However, our approach differs from that in [20] which allows us to shorten
the proof even in the case whepds large. Our main result is identical to the one obtained
in [20], the only difference being that it now holds fpr> 3.

Theorem C. Let L be a finite-dimensional simple Lie algebra over an algebraically closed
field F of characteristicp > 3 and suppose that thg-envelope of. in DerL contains

a torus T of maximal dimension such that for every raote I'(L, T) the 1-section
L(w) is solvable. Then the set:= I"(L, T) U {0} is an F,-subspace irf"* and either
L= Sm;n; ®(r))?P for somem >3 andn € N or L is isomorphic to a Block algebra
L(A,0, f) for somel ,-bilinear mappingf:A x A — F. In all cases, eaclL(x) is
abelian andc; (T) = (0).

Note that each Block algebia A, 0, f) is known to be of typed . The Cartan type Lie
algebrasS(m; n; @ ()) with m > 3 andn € N can be described as follows [20]: let
M be anm-dimensional vector space over and letA be an additive subgroup i * of
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orderp” such thai
copy of kerx. Give

wea Kera = (0). Fora € A, we setM,, := {«} x kere, an isomorphic

V(M,A):= EB M,

acA\{0}

an algebra structure by settifi@r, u), (8, v)] = (o + B, a(v)u — B(u)v) for all nonzero
a, B € A and allu € kerae andv € kerg. It is known thatV (M, A) is a simple Lie algebra
isomorphic to one o (m; n; ®(t))Y with N =" n;. Conversely, eacl(m; n; ®(r))®
is isomorphic to one oV (M, A)’s for a suitable choice of C M*.

Recall that a root € I'(L, T) is calledsolvable(respectivelyclassica) if L(§) is
solvable (respectively.(8§)/radL(8) = sl(2)). Section 7 deals with the case where all
roots inI"'(L, T) are either classical or solvable, and at least one classical root occurs.
Our argument here relies on Theorem B and several subsidiary results obtained in [16]
(and valid forp > 3). Itis slightly shorter than the original argumentin [16]. As expected,
the result we obtain is identical to the one proved by the second authprfof.

Theorem D. Let L be a finite-dimensional simple Lie algebra over an algebraically closed
field F of characteristicp > 3 and assume that thg-envelope ofL. in DerL contains

a torus T of maximal dimension such that all roots (L, T) are either solvable or
classical. Assume further that at least one roofi(L, T) is classical. TheMd. is a classical

Lie algebra, that is there exists a simple algebraic gra@f adjoint type overF such
that L = (Lie G)®. In particular, L is restricted.

We mention for completeness that if the groGgs not of type A,_1 then LieG is
simple (recall thap > 3). In this caseL = Lie G (and one can also replace the adjoint
groupG by its simply connected cover). & is of type A1 thenG = PGL,(F) and
L= (pgl, (F))'™ = psly, (F).

We would like to finish the introduction by announcing that our next paper will
investigate the simple Lie algebraswith the property thatl = ¢, (T') is non-triangulable
for at least one torug of maximal dimension irL, C DerL. It will be proved in our next
paper that. is then isomorphic to one of the Melikian algebgas:, n) where(m, n) € N2.

Given a Cartan type Lie algebfd, not necessarily simple, we denote M, the kth
component of the standard filtration &f.

2. l-sectionsin Hamiltonian algebras

This section is of preliminary nature and aims at gathering some missing information on
root space decomposition in non-restricted H#amian algebras of absolute toral rank 2.
The results we obtain here will be used in Sections 3 and 4. They refine [2, Lemmas 10.1.3,
11.1.3]and [18, Sections VI, VIII].

Given a subalgebra of a Lie algebraf we denote by nil the largestideal off acting
nilpotently onM.
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Proposition 2.1. Let S = H(2; (2,1)) and S = H(2; (2,1))®. LetS, and S, be thep-
envelopes of and S in Ders, respectively. Leg be a Lie subalgebra QS’ containings,

t be a2-dimensional torus mS,, satisfying[t, g] C g, andb = cg(t). Then the following
are true

1) S, =t+S.
(2) f « € I'(g, t) is such thatx(h) #0 thenS(a) H(2; 1) andradg(«) = (0).

Proof. Recall thatSp =S® FD” is isomorphic to a restricted subalgebra in the
envelope ofW(2; (2,1)) in DerA(2 (2,1)) and S(q) |s a restricted subalgebra Lﬁp
Moreover, DeiH (2; (2,1))® = F(x1D1 + x2D2) @ S, is isomorphic to a restricted
subalgebra in Det(2; (2,1)) (see [2, Proposition 2.1.8(vii)], for example). Since
DerA(2; (2,1)) = W(3; 1) possesses a 3-dimensional toral Cartan subalgebra, we have
MT(S,) = MT(DerH (2; (2,1))?) — 1< 2 (by [19, Lemma 1.6(2)] and the main result of
[5]). On the other handvIT(§p) > 2 (by [18, Section VI] for example). Thereforeis a

torus of maximal dimension ifi,.

(@) Sincet C 5,, and 5,,/5,, is p-nilpotent we have C S, =S & FD{7 (by Jacobson’s
formula, the subalgebra on the right is restricted). Asdin® this implies thatN S # (0).
Supposet C S. Since §/S) is a 2-dimensional module oves /S = sl(2), each
nonzero elementitN S acts invertibly onS /S ). SotN S(g) # (0) would implyt C Sq).
But thent would inject intoSg)/S(1) = sl(2) which is impossible. Thus under our present
assumption ort we must have that N S = (0). This forcesS = t + S(). But thent
must contain a toral element of the forn®1 + x with a € F* andx € S(q). SinceS(g) is
restricted we then hav®! € t+ S = S which is not true. Hence¢ S and, consequently,
Sp=t+5.

(b) According to [18, Theorem V1.2(2)], there is a tortisn S, such thafI" (S, t')| =
p?—1and dims, = p for all y € I'(S, t'). Combining this with [9, Corollary 2.11], we
obtain that the same is true farthat is

IS, 0|=p>—-1 and dims, =p Vyel(S,0.

Since t acts nilpotently onS,/S,, we also have thal, = S, for all y € I'(S, t).

The standard filtration of (respectlverS) induces a filtration in its subalgebr®(e)
(respectlverS(a)) The corresponding graded Lie algebrasS@) and grS(a)) are
naturally identified with graded Lie subalgebrassiands, respectively.

There is a toral elemente t such thatS(«a) = c¢5(¢) (and likewise forS andg). We first
suppose that¢ S. Thens = an + u wherea € F* andu € S. It is easily seen (and first
observed in [2, p. 232]) that gi() is contained ires (DY) = H (2; 1)@ while grS(a) lies
in c3(DY) = H(2; 1). Since

dimgrS(e) =dimS(@) =dimS — p(p® — p) = p® —2— (p* - p?) = p* - 2,
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we deduce that gf(@) = H(2,1)®@ as Lie algebras. Likewise dim@(a) = p? + 1
yielding grg(a) = H(2;1). Since for any ideal c S(«) the subspace dris an ideal
in grS(«) the Lie algebra (o) must be simple. A similar reasoning appliecﬁ‘t@m) shows
that any nonzero ideal i§(«) has dimensior= p2 — 2 (this is due to the fact that any
nonzero ideal inH (2; 1) containsH (2; 1)®). SinceS(«) is a 1-section in a simple Lie
algebra of absolute toral rank 2, we now obtain that) = H (2; 1)@ (see [9, p. 193]).
The adjoint action oﬁ(a) on its idealS(«) gives rise to a Lie algebra homomorphism
¢:S(a) —> DerH(2; 1)@. As S(«) is simple¢ must be injective (otherwise our earlier
discussion would implys(«) C kerg which is impossible). Thus(«) is isomorphic to
a Lie subalgebra of dimensigr? + 1 in DerH (2; 1)®. As mentioned at the beginning
of the proof,t is a torus of maximal dimension iﬁp. By [19, Theorem 1.9(2)], this
implies thatTR(S(a)) < 1. On the other hand, it is well known that Dg(2; 1)@ has
dimensionp? + 2 and contains a 2-dimensional torus. Sirﬁ{e)/S(a) is nilpotent it
is immediate from the description of DAN2; 1)@ given in [2, Theorem 2.1.8(vii)] that
the 3-dimensional image @f(S(«)) in the restricted quotient Déf (2; 1)@/ H (2; 1)@
consists ofp-nilpotent elements. So it must coincide with the imager2; 1). This
enables us to conclude th§(a) = H(2;1). But theng(a) C §(oc) can be identified
with a subalgebra of D&t (2; 1)@ containing H (2; 1)®. Since any such subalgebra
is semisimple, we obtain the second staént of the propositio (under our present
assumption om).

(c) Next we suppose thate S\ S). Thent =aD1 + bD> + w wherea,b € F and

w € Sq). Since(aD1 + bD2)? = apr andw? € §, the equalityr” = combined with
Jacobson’s formula gives = 0 andb # 0. We now look at the graded Lie algebra
orS(a) = gres(z) which is naturally identified with a graded subalgebracofD») (cf.

[2, p. 232]). This observation enabled Block and Wilson to deducectf{at is solvable.
However, in this proof we need more information og(r). We claim thatcg(z) is
nilpotent and acts triangulably dh To see this we first recall that, as in the former case,
dimeg(r) = p2 — 2. We define

u; = ((adt)p*l - Id) (DH (xii)xép_l))), 1<i< p2 -2,

all of which lie in cg(¢). Sinceb # 0, the element gr; € H(2; (2,1))@ is a nonzero
multiple of DH(xil)). It follows that the g;’s are linearly independent. But then so are
theu;’s. Then they form a basis @k (¢). Sincet € S\ S andu; € S fori > 3, we get
cs(t) = Ft @ Fup @ c¢5(t) N S1y. Theneg(r) is nilpotent andcs(?), cs(2)] C Sy, hence
the claim. As a consequende= cs(t) = Ft @ nil h. But thena vanishes oty contrary to
our assumption oh.

(d) Finally, suppose € S.q). Then 0 grt € S0)/S1) = s((2) acts invertibly onS/S().
It follows thatcg(r) = Ft @ S(1)(¢) forcing h = Fr @ nilh. Then agairx vanishes orf
contrary to our assumption. Thus our assumptior amplies thatr ¢ S. Then we are in
case (b) and the proof of the proposition is now complete.
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As in the earlier papers, we denote Aym)) the divided power algebra im variables,
a complete, linearly congzt, local algebra oveF (see, e.g., [2, (1.1)] where the notation
is a bit different). Fok > 0, thekth part of the standard (decreasing) filtratiorditim)) is
denoted byA (m)) ). Recall that the exponential mapping

expiA(m)a — 1+ A(m)@, fr>exp(f) =Y 7,

i20

is bijective. The inverse mappingl A(m)) 1) — A(m)) ) is given by

14
1+ g+—In(1+g) = Z(_]_)'*l(i —11g®,
i=1

Of course, expf + g) =exp(f) expg) and I1+ )1+ g) =In(1+ f) +In(1+ g) for
all f, g € A(m) ).

We are now going to investigate the 1-sections in the Albert—Zassenhaus algebra
g= H(2; 1, A). Recall thatg consists of allD € W(2; 1) with Dw, = 0 where

WA = exp(xip))dxl Adxo.

The Lie algebrag is simple and has dimensiop? (see [2, (2.1)], for example). The
standard filtration irg is induced by that of¥ (2; 1).

Proposition 2.2. Letg = H(2; 1; A) and lett be a2-dimensional torus in the semisimple
p-envelopgy, of g. Leth = ¢4 (1), € I'(g, t), and suppose that(h) # 0. Then the union

U (radg(a)ia U [g(a)iou radg(a)—ia])

ieF;
consists ofp-nilpotent elements aj,,.

Proof. It is well known (see, e.g., [18, Chapter VIII]) tha}, = Derg = H(2;1; A) &
Fx1D1 C W(2; 1). Moreoverg, contains the 2-dimensional tor&is; D1 @ Fx2 D, which
will be denoted byt;. This description implies thag, acts on the lineFw4. According
to [18, p. 459],|I (g, t1)| = p®> — 1 and dimg, =1 for any y € I'(g, t1). Therefore,
t has p2 — 1 roots onH (2; 1; A) and all root spaces for are 1-dimensional (see [9,
Corollary 2.10]).

(@ Letto=FQA+ x1)D1® F(A+ x2)D2 and to = F(1 + x1)D1 & Fx2D2. By
Demushkin’s theorem, there ¢gse Aut W(2; 1) such thatp (t) = t; for somes € {0, 1, 2}.
Furthermoreg is induced by a continuous automorphism of the divided power algebra
A(2) preservingd(2; 1) C A(2)). Let

J(¢) = D1(p(x1)) D2(¢ (x2)) — D2(¢p(x1)) D1(¢(x2)),
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an invertible element ind(2; 1). Since¢(dx1 A dx2) = J(¢)dx1 A dxo we have that
d(wp) = aw Wherea = exp(¢p (x1)P)) J (¢). Fori =1, 2 seta; := a~1D;(a). There exist
u € A(2)@y andp € F* such thats = pexp(u). Thena; = D; (v) wherei =1, 2. Since
D; respects the divided power maps, we also have that

a; = ¢(x) "~V D; (¢ (x1) + J (@) T D; (J (9)).
As a consequencey,az € A(2;1). Sincew, is a weight vector fort and dx1 A dx2
is a weight vector for each of the tot, t1, t2, the divided power series is a weight
vector for t;. But then so are the truncated polynomials and ap. Furthermoreg;

has the same weight aB;. Sincea ¢ A(2; 1) it follows from [2, Lemma 2.1.3] that
#(@) ={Da(f) | [ € A(2; D} where

Du(f) = (D2+a2)(f)D1— (D1+a1)(f)Da.

(b) Thereis atoral elemente t such thay(«) = c4(7). Set
¢ 1= cp(e) (0(1) = p(8(@)).
If t ¢ W(2; 1)(0), it can be assumed thé{(r) = (1 + x1) D1 (see [9, Theorem 2.3]).
Supposes = 0. Since alltg-weight spaces inA(2; 1) are 1-dimensional, there are
A1, A2 € F such thatD; (u) = A;(1 + x;)?~1 for i = 1,2. This system of differential
equations has a unique solutionAr(2)) 1), namely,
u=2xr1In(1+ x1) + A2IN(1+ x2).

If A1, 22 € F,, thenu = In(1+ x1)*1 (1 + x2)*2 yielding

a=pexpu) =pnl+x)"(1+x2)"2 € A2 D),

a contradiction. Thus, eithen ¢ F), or A2 ¢ F,. It follows from our remarks earlier in the
proof thate” has basi§D, ((1+ x2)'(1+x1)) | i € F),} where

Da((1+x2) (14 x1)) = (i + 22 (L4 x2)" (L4 x1) D1 — (1+ A1) (1 + x2)' D2.
If A1 % —1, the natural projection’ — A(2; 1)D» induces an isomorphismg(a) =
W(1; 1. Then rady(er) = (0). If A1 = —1 theni, ¢ F),, hencec is spanned by the

elementg1+ x2)' (1+ x1) D1 with i € F),. Thereforegyg) (¢ (1)) = F(14 x1) D1 so that
h = Fr anda vanishes orf.

(c) Suppose =2 andr ¢ W(2; 1)g). Thenay = 21(1+ x1)?~ Y andas = )»zxi”_l) for
someil, A2 € F andc’ has basisDa(xé’)(1+x1)) |0<i < p— 1} where

Da(xy) X+ x0) = (L= 810025 P + 228, 0x" D) A+ x1) D1 — L+ A0)xy Do
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If A1 # —1 then, as beforgy(w) = W(1; 1) and rady(e) = (0). If A1 = —1 theniz2 #0
(otherwiseu = In(1 + x1)?~1 anda = u(1+ x1)?~1 € A(2; 1), a contradiction). Then
againcg g) (¢ (1)) = F(1+ x1) D1 anda(h) =0.

(d) Suppose € W(2; 1) ands = 2. In this casep(t) = rx2D; for somer F; while
a1 anday are as in part (c). Therl has basi§D, ((1+ x1)'x2) |i € F,} and

Da((1+x1)'x2) = (1 +x1)' D1 — (i + A1)(L+ x2)' x2Do.

Sog(w) is isomorphic toW (1; 1) and rady(«) = (0).

(e) Suppose = 1. Then there argg, A2 € F such thatz; = A,»xl.(”’l) fori =1, 2. First,
we consider the case whepér) acts noninvertibly on the subspace spanne®®bandD».
Theng (1) = rx; Dy, Wherer € IF*;, fork =1, 2. We assume that= 1, the casé& = 2 being

similar. Sincec’ is spanned byD, (x;“xl) |0<i<p—1}and
. - - .
D, (xél)xl) = ((1 — 55’0))65 ) 4 )\zéi,oxépﬂ ))xlDl - xél)Dz,

we haveg(e) = W(1; 1). So rady(e) = (0) in this case.

Next, we suppose that(r) is a nonzero multiple of1D1 + x2D;. Thenc' is spanned
by all Da(xi’)xéf)) with 0<i,j < p—1andi + j — 2= 0 (mod p). It is easily checked
thats := spar{Da(xf), D, (x1x2), Da(xéz))} is a 3-dimensional simple Lie subalgebra in
W(2; 1)(0). From this it follows thate’ = s @ radc’ where rad’ = ¢/ N W(2; 1)(1). So
g(or) = 5((2) @ radg(ar) and rady(«r) consists ofp-nilpotent elements aof ,.

Finally, suppose (¢) acts invertibly on the span dd1, D2, x1 D2, andx2D1. Thend C
t1 @ W(2; 1)(1) which implies thay, (o) = (tN g, («)) ® nil g(er). But theng;, C nil g(a)
foralli e IF;.

We have considered all cases and the proof of the proposition is now compiete.

3. Triangularity

Let M and A be Lie algebras and suppose tiaacts onM as derivations. We say that
A acts triangulablyon M if A acts onM as nilpotent linear transformations. Af is
a subalgebra i/ and adA acts triangulably oM we often say thati is triangulable
Given aT -invariant Lie subalgebr@ C L, we say that is standardwith respect toQ if
the centralizet o (T') acts triangulably orQ.

The starting point for the second author’s classification has been the observation that
certain important subalgebras of, are triangulable. In this section we will generalize
these results to our present case 3. We first generalize [14, Theorem 3.5].

Theorem 3.1. Let to C L, be a torus inL, such thatc, (tg) is nilpotent and acts
triangulably onL. Letay, ...,a5 € I'(L, tg) and assume thal (a, ..., «y) is nilpotent.
ThenL(asi, ..., «y) acts triangulably onL.
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Proof. Putt:=tgN(j_jkera;, h:=cr(t) = L(o1,...,as), and leth, denote thep-
envelope ohy in L, C DerL. Lett be the unique maximal torus in the restricted nilpotent
subalgebrd :=t+h,. PutL :=h + L and let

L=ho Y L, I'ct\{0},
yel’

be the root space decompositionfof/vith respect td.

(@) Supposé acts nontriangulably od.. Then [7, Theorem 1] shows that=5 and
there existy, 8 € I" linearly independent ovés in t* and a maximal ideak («, B) of the
2-sectionL(«, B) such that

L(e, B)/R(e, p) = 8(1, 1)

is the 125-dimensional restricted Melikian algebra. Moreover, the proof of this theorem
shows that the image d;fln g(1, 1) is a nontriangulable Cartan subalgebraif, 1). The

p- envelopeL(a B)p of L(a, B)inL, preservesR(a B) hence acts ot (a, ﬁ)/R(a B)

as derivations. Sincg(1, 1) = Derg(1, 1) (see [19, Theorem 3.37] for example) this gives
rise to an epimorphism of restricted Lie algebras

¢1:L(a. B)p — a(1.1).
Note thatg; (f) is a 2-dimensional nonstandard torusii, 1).

(b) Supposeﬁ(a, B) N b contains an elemert acting nonnilpotently orL (c, B) and
let hy € t denote the semisimple part 6f There exists a nonzenoe Fsa + Fsp such
thatv(hy) # 0. But thenL, C R(a, B), so thatv is not a¢y(f)-root of g(1, 1). However,
g(1,1) hasp? — 1 roots relative to each of its 2-dimeasal tori (by [7, Lemma 4.1] and
[9, Corollary 2.10]). This contradiction shows tﬂata B)Nh acts nilpotently orL(a B).
Let I be any ideal ofL(a B) not contained mR(a B). The maX|maI|ty ofR(a B)

implies thatL(a B =1+ R((x B). Both I and R((x B) are ideals |nL(a B)) hencet-
stable. Thethy = =1 ﬂb+R(a B)Nh. Thus any € T can be written as= h1i+hawith hy €
INhandhy e R(a, B) Nh. By our discussion abovép acts nllpotently oL (, B). Also

= [t, h2] = [h1. h2]. Hence, for- big enough?" = h” + hg € h” +tNkera Nkerp.
But thenL c I foranyy € (Fsax +Fs8) \ {0}. In other words,

L, B)=1+bHN R, p).

(c) Note thaty, h,, and the centef (h,) aretp-invariant. Therefore,

P
C(hy)’ = (Z c<hp>a) C Y Clhp)ps

set] set]
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is centralized by. Then[tg, {] = [to, t”] C [to, C(h,)?1=(0), so thatto respects the root
space decomposmon df relative tof. In other words[to,h C h and[to, L,]1 C L, for
al y e F(L D.In partlcularL(a B) is to-invariant.

Let 7 be the sum of altg-invariant ideals of(a, B)p contained in kep1 and

¢2: L, B)p — L(a, B)p/ T

be the canonical homomorphlsm Singeis tp-invariant, the torugg acts on its |mage
¢2(L(a B)p). Let (0) #I C ¢2(L(a B)p) be a minimaltp-invariant ideal,/ := ¢, Y@,
and!’:=1n L(a, p). By the minimality ofZ, there are two possibilities: eithér C
¢2(L(a B)) or I N b2(L(a, B)) = (0). Suppose the second pdsity occurs. Then
(1, L(a, B)pl C I' C kergp = J C kergy, hencepi(I) C C(g(1, 1)) = (0). But then
I ¢ J, by the definition of7, andI 0), a contradlctlon SdI C qbz(L(a B)).
Moreover,I" ¢ kerg;. By part (b), L(e, B =1+hn R(a, B). Also, ¢2(1 ) =1, by
the minimality ofZ. Sinceh is nilpotent, this shows thaf = 70 = ¢>(L(a, ,3))(00) is
the unique minimatg-invariant ideal of¢2(L(a B)). In particular,Z is nonsolvable. By
Block’s theorem, there ana € Ng and a simple Lie algebr& such thatZ = S ® A(m; 1)
as Lie algebras. Sinc& C kerg, there exists a Lie algebra epimorphism

¢3:L(a, B)p/T — L(a, B)p/ kergr = g(1, 1)
such thatpy = ¢3 o ¢2. Note thatgo(h N R(a, B)) C kergz and the images(Z) = g(1, 1)

is simple. ClearlyS ® A(m; 1)1 is the unique maximal ideal &f ® A(m; 1). Since this
ideal is nilpotent so is

¢2(R(@, B)) = p2(L(e, B)) Nkergs = T Nkergz+ ¢2(h N R(, B)),
while S = g(1, 1).
(d) Since the idedl is to-invariant,$, gives rise to a natural homomorphism of restricted
Lie algebrad (o, ), + to — DerZ. SinceZ = S ® A(m; 1) the latter induces a restricted
homomorphism

®:L(a, B)p + to —> (DerS) @ A(m; 1) +1d @ W(m: 1)

such thatS ® A(m; 1) c @(L(a, ), + to) and ma(®(L(a, B), + to) is a transitive
subalgebra iriW (m; 1) (recall that we denote by, the canonical projection

(DerS) ® A(m; 1) +1d ® W(m; 1) — W(m; 1),

see [9] for more detail). Sinc& = Der S there exists a restricted transitive Lie subalgebra
D C W(m; 1) such that

®(L(e, B)p+1to) =S®A(m; 1) +1d @ D.
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It follows from the maximality ofR (o, 8) and our discussion in part (c) that
(R, ) =S ® A(m; 1)(1) + 1d ® Dy,

whereDy is a subalgebra ob. As @(E(a,ﬂ)) is a Lie algebra it must be thd®y C
W(m; 1)). Let Dy denote thep-envelope ofDg in W(m; 1)). As S =g(1,1) is a
restricted Lie algebra anﬂ(oz, Bcl + ﬁ(a, B), we have

@(L(a, B)p) € S® A(m; 1) +1d ® Do.

As D is transitive this shows that so must &tp). Thanks to [9, Theorem 2.6] it can
be assumed that there exist toral elements. ., ,, € to and a subtorug, C to such that
to=ty® P/, Fr; and

Q) =1d® (1+x;)9; Vi <m,
P(x)=rx)@L+1d®r2(x) Vx €ty
where A1 and A, are restricted homomorphisms froty into S and W(m; 1)),

respectively. AgA2(th), (1 + x1)3;] € (12 0 D) (t5) = (0) for all i <m andia(t}) lies
in W(m; 1)(o) it must be thak, =0. So

D (to) = (Z Fld® (1+x,~)a,~) ® (r(to) ® F).
i=1

As L(a, B), is to-invariant andDo = (12 0 ®)(L (e, B)p) C W (m; 1)) the transitivity of
@ (to) yieldsDg = (0). But thend® (L(e, B),) = g(1,1) ® A(m; 1), a perfect Lie algebra.
Consequently,

@ (L(e B)p) = ((L(. B),) ™) = @(L(@t. B)).
(e) Recall that C to N L(a, B). Then®(t) C g(1, 1) ® A(m; 1) forcing t C ), so that
A1(H) C 11(tp). Both A1(t) and Ay (ty) are tori ing(1, 1). SinceMT(g(1, 1)) = 2 (see [7,
Lemma 4.4(ii)]), one has
0 < dimag(t) < dimas(ty) <2
Sincel = ¢, (1) is nilpotent so isg1,1)(A1(1). Therefore, dimky(H) # 0. If dimiy(t) =1
then [7, Theorem 1] implies thaf 1)(A1(t)) acts triangulably og(1, 1).
Suppose dimy(t) = 2. Theniy () = 11(t;) and

P (cL(t0)) = D (cL(w.p) (t0)) = cqr.1) (A1 (tp)) ® F = cq.1)(A1(D) ® F.

Sincecy (to) is triangulable by assumption we obtain thgt 1)(A1(t)) acts triangulably
ong(l,1) in all cases.
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The evaluation mag — f(0) from A(m; 1) onto F induces a natural homomorphism
of restricted Lie algebras: g(1, 1) ® A(m; 1) — g(1, 1). Chasing through the maps shows
thate sends® (h) C g(1, 1) ® A(m: 1) onto a restricted subalgebragil, 1) isomorphic
to cg(l,l)(qsl(%)). By part (a), the latter acts nontriangulably @i, 1). Hence @ ()
acts nontriangulably og(1, 1) ® A(m; 1). Sinceh® = h so doesd (h), too. On the
other hand, it is easy to see thasends® (h) C @(6) onto cg(1,1)(A1(1)), a triangulable
subalgebra i (1, 1). This entails thatd (h) acts triangulably org(1, 1) ® A(m; 1). Thus
the assumption we made in (a) leadsatcontradiction. Therefor§,acts triangulably on
L as desired. O

Recall that for a subalgebr& of a Lie algebraM thetoral rank of A in M, denoted
TR(A, M), is defined as

TR(A, M) := MT(A/(ANCM))),

whereM is any p-envelope of\f and.A is the restricted subalgebravl generated by
(this is known to be independent of the choiceMdf see [19, Theorem 1.3]).

Theorem 3.2. Let g be a perfect Lie algebra anfl be a Cartan subalgebra ig with
TR(h, g) = 1. Then the following hold

(1) b acts triangulably ony;
(2) radg is the unique maximal ideal ig;
(3) g/radg is one ofs((2), W(1; n), H(2; n; ¥)@.

Proof. Let g, be ap-envelope ofg, b, the p-envelope off) in g,, andt the unique
maximal torus inf,. Then dimt/t N C(g,) = TR(h, g) = 1. There is a nonzero toral
elementr in t such thatt = Fr @ t N C(g,). All eigenvalues of ad lie in IF,,. Let
g=hHo Zier g; be the eigenspace decompositiogatlative to ad.

(&) Letl beanyidealiry.Clearly,l =1Nnh® ZieF; I Ng; is anF ,-grading of the Lie
algebral. If I Nk acts nilpotently orf then[ is solvable (see [19, Proposition 1.14]). But
thenl C radg. If I N§ acts nonnilpotently o then there is € I N h whose semisimple
parth, (in g,) is not contained irC(g,). Sincek, € t, we have thak, = at + z for some

a e F* andz € C(gp). As I is an ideal, this givegieF; giCcl,sothag=h+ 1. Asgis
perfect and) is nilpotent we gegy = 1. This proves (2).

(b) Leth denote the image df in g/ radg, and7 be the image of in Der(g/radg). By
part (a),g/ radg is a simple Lie algebra ang}/radg (1) = h. Besides, the maximal torus
of the p-envelope ofy in Der(g/ radg) is nothing butFz. So [7, Theorem 1] applies and
shows tha)M acts nilpotently org/ radg. This, in turn, shows that

[(6'7) Nt. g] C radg.
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If (6D ,)Nt¢ C(g,) theng = b + radg, a contradiction. Thugh™ ,) Nt C C(g,,) which
means that all elements bfY act nilpotently org. This proves (1).

(c) We have already established th@iradg is a simple Lie algebra aniglis a Cartan
subalgebra of toral rank 1 igy radg. Now [7, Theorem 2] yields (3). O

One often obtains important information 6f by studying 2-sections of. relative to
atorust C L,. This reduces the investigation to simple Lie algebras of smaller absolute
toral rank.

Proposition 3.3 (cf. [2, Lemma 10.21])Let to C L, be a torus such thaj = ¢ (to) is
nilpotent,t be the uniqgue maximal torus t9+ b, C L ,, and suppose one of the following
two conditions holds for some 8 € I' (L, t):

(a) there arehy € [Ly, L_g] and hp € [Lg, L_g] such thatu (k1) =0, B(h1) # 0, and
a(hz) #0;

(b) t is a maximal torus ofL, and there areu € L, and h € [Lg, L_g] such that
Bu?) #0anda(ho) # 0.

Setg: =3, cm,a+r,p0\0(Ly +[Ly. Ly ]). Then the following hold

(1) Every ideal ofg is t-invariant.

(2) If I is a maximal ideal ofy andx :g — g/I is the canonical homomorphism then
hi1, ho ¢ I (respectively, hp ¢ I) andn (g) is simple with TRz (g)) > 2. Moreover, if
(a)holds forL thenw(h N g) is a Cartan subalgebra itr (g) with

dimn(hﬂg)/(n(bﬂg)ﬂniln(bﬂg)p):2 and TF(rr(bﬂg),n(g)):Z,

where thepth powers are taken i (g), C Derg.
(3) Suppose further thatis a maximal torus ir. ,. Thenradg is nilpotent and, moreover,
the unique maximal ideal ip. If b’ is a subalgebra ir, , (t) such that all elements in

the unionUheh,(adh)Pfl(h N g) act nilpotently ong/ radg thenradg is b’-invariant.

Proof. (a) Letr, 2 € t denote the semisimple partsiof, 2 € h in case (a) and af?, iy
in case (b). In case (a},(h1) = 0 by our assumption, while in case (b) the maximality of
implies thatw(u”) = 0. Thus

a(t1) =0, B(t1) #0, a(tp) #0.

Consequently, = Fr1 & Fro @ (tNkera Nkerp). SincetNkera NkerB annihilategy and
11,12 € g, every ideal ofg is t-invariant.

(b) Given an ideall of g, we denote byl, be the p-envelope ofl in L,. Suppose
I, Nt ¢ kera Nkerp. Then thereis € I, Ntwith a(¢) # 0 or (r) # 0. Suppose(t) # 0
the cases (1) # 0 being similar. Sincé.;, = [t, L] C I foralli € IF;;, we have thak1 € I
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in case (a) and € I in case (b). Them € I, N tin both cases showing that, C I for all
v € Fpa +F,p)\ {0}. This givesI = g. Thus ifI # g thenI, N t centralizeg.

(c) LetI be a maximal ideal of. Sincery,t; € g, one hag¥ = g. Sog/! is simple.
Sincel, Nt C kera Nkerpg, by part (b), itis clear thaliy, o ¢ I in case (a) and, hp ¢ 1

in case (b). This implies thdt, ¢ I andLg ¢ I. Sox(h1) andr (h2) (respectivelyr (1)
andm (h2)) generate a torus in(g), which distinguishesr (g.) # (0) andx(gg) # (0).
From this it is immediate thatR(r (g)) > 2. If (@) holds thent (h N g) is self-normalizing,
hence a Cartan subalgebrarsiitg). Moreover,r (h1) andr (hp) are linearly independent
modulo nilz(h N g) ,, so that

2<TR(x(hNg), 7(8) < TR(T (), 7(g) ) = 2.

(d) Now suppose thatis a maximal torus irL,. Let I C g be a proper ideal o and
x € I, =g,NIwherey € F,a+TF,p. Astis maximalx”" e tforr > 0. We have shown
in (b) that/, Nt centralizesy. It follows thatUVE]FpaJerﬁ ad; I, is a weakly closed set
consisting of nilpotent endomorphisms. So the Engel-Jacobson theorem yielfiattst
nilpotently ong. Therefore,/ C radg. Moreover,g # radg, for g® = g. Then radj is
nilpotent.

(e) Leth' be alie subalgebrait,,(t). Clearly,[h’, L, ] C L, forally. Then[h', g] C g
forcing[h’, h N gl C h N g. Let R be the maximal'-invariant solvable ideal ig, and let

o' +g— (' +9)/R
denote the canonical homomorphism. |Btbe a nonzerd/'-invariant ideal ofp(g), and
I =¢~1(J). ThenI is anl’-invariant ideal ofg satisfying/ ¢ radg. So part (d) of this
proof shows thatt = g and, as a consequencg,= ¢(g). This means thap(g) is §’'-
simple. By Block’s theorem, there is a simple algeBrandm € Ng such that
(@) =S®A(m; 1) Coh' +g) C (DersS) ® A(m; 1) +1d® W(m; 1).

By part (d) of this proof,g/radg = n(g) = S. The associative algebra(m; 1) is
isomorphic to the centroid @f(g) = 7 (g) ® A(m; 1), hence acts op(g) via

xR fia)— (x® flea:=x® fa, Vxen(g), Vf,ae A(m;1l).

Decomposingp(h2) e a € ¢ (g) into root spaces relative toand applying a¢h(k1) and
ade (h2) in case (a) (respectively adu) and adp () in case (b)), we observe that

¢(h2) e A(m; 1) Cp(hNg).

Suppose there i8 € iy’ such that(z o ¢)(h) ¢ W(m; 1)(). Then (w2 o ¢)(h) = E +
Y 1aid; whereE € W(m; 1)(0) anda,, # 0 for someip < m. Hence

(adp (h)" (P (ha) @ WY =(p - D ) @1 (ModS® A(m: D).
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Thus for eachy € ¢~ 1(¢ (h2) .x,.’;‘l) N(hNg) we havex (¢ ((adh)?~1(y))) # 0. However,
7 (adh)?~1(y)) acts nilpotently orr (g) by our assumption. S8 ® A(m; D isag®)-
invariantideal ofp (g). Sinceg (g) is ¢ (h’)-simple by our earlier remark; = 0 necessarily
holds. Thenp(g) = 7 (g) is simple and, consequently, ke radg is i’-invariant. O

Proposition 3.4. Lettg C L, be a torus such thdj := ¢ (to) is nilpotent. Let denote the
maximal torus intg + h, C L, anda € I'(L, t) be such thatv(h) # 0. Then

@([La, L—]?) =0 and [Lq,L_oI%Cnilh,.

Proof. (a) Suppose([Le«, L_4]%) # 0 and set

g:= Z (Lia + [Lia, L—ioz])~

r *
tEIFp

Our assumption implies that therefiss [Lq, L_o12 C (h N g)Y such thatx (k) £ 0. Then
g =g, TR(hNg, g) > 1, andhNgis self-normalizing iry. In particularh Ng is a Cartan
subalgebra ofi. On the other hand,R(h N g, g) < dimt/ kera = 1. But then Theorem 3.2
applies showing thath N g)V acts nilpotently org. So our present assumption leads to a
contradiction which proves that([L,, L_4]% =0.

(b) SupposdLy, L_¢1® ¢ nil hp. Since[Ly, L_,]% is an ideal of, and nily, is the

sum of all p-nilpotent ideals irfy,, there ish € [Lq, L_41® whose semisimple patft, is
nonzero. Then there ise I' (L, t) with « (hy) # 0. It follows that the set

2:={keI'(L.1 |«(La,L-o1%) #0}

is not empty. Sincd is simple, we have, by Schue’s lemma, that

b= [Le. L.

ke

If the union J, .o adr,[Lc, L] consisted entirely of nilpotent endomorphisms then
the Engel-Jacobson theorem would imply th@h) = 0. Since this is not the case, by
assumption, there is € £2 such that{L,, L_,] acts nonnilpotently or,. This means
thata([L,, L—_.]) # 0. We deduce that

(Lo L-a1®) =0,  k([LasL—ol®)#0,  a([Lc,L_]) #0,

thereby verifying the conditions of Proposition 3.3 (case (a)).
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(c) Now define

g:= Z (Ly +[Ly,L-y])

yE(Fpa‘HFpK)\{O}

and let/ # g be a maximal ideal of. In accordance with Proposition 3.3, pttg) = g/1
and letho := (g N h + I)/I C 7(g). Proposition 3.3 yields that(g) is simple, thatyg is

a Cartan subalgebra of toral rank 2sitig) and, as a consequence, thatgy), 7(g_o)1°
acts nonnilpotently o (g). Then [7, Theorem 1] shows that(g) is isomorphic to the
125-dimensional Melikian algebrg1, 1) andfg is a nontriangulable Cartan subalgebra
in 7(g). As g(1,1) is restricted there is a nonzero toral elemente ho such that
a(ty) = 0. According to [7, Lemma 4.3], all nontriangulable Cartan subalgebrg&lirl)
are conjugate under Agtl, 1). Combining this result with [13, Theorem 2.1], it is easy
to observe that there exists € Autg(l,1) such thato (ho) = cg1,1)(F(1 + x1)01 +
F(1+ x2)d2) ando (ty) = (1 + x1)31. The description in [7, p. 697] yields dihy = 5,
dimC(ho) = 2, and

b3 € C(ho) C Y [7(8ia), 7 (8-ia)] < bo-

7 *
ler

It follows thatC (ho) has codimensio 2 in [ (ga). 7 (g—a)]. Then[ (ga), 7(g—a)1? C
C(ho) forcing [ (ga), 7 (g—a)1° = (0). However, this is impossible as the latter space acts
nonnilpotently onz (g). This contradiction pves the proposition. O

We are now ready to determine 1-sections.

Theorem 3.5. Letto C L, be atorus such théf := ¢z (to) is nilpotent and be the maximal
torus ofto+h, C L,,. Leta € I'(L, t). The following are equivalent

(i) L(a) issolvable
(i) a([Lig,L—_iq])=0forallie IF;.

Proof. Let L(a) = ZieF;(L,»a + [Lig, L—iy]). Supposex([L;q, L_ix]) = 0 for all
i€ IF;. Thenthe uniorUidF; ad[L;,, L_;4] consists of endomorphisms acting nilpotently
onL(a)'. By[19, (1.14)],L(«)  is solvable. Hence so is(a) = h + L(a)’. Conversely, if
there ish € UieF;[L,-a, L_;4] such thatx(h) # 0 then ad: acts invertibly onZieF; Lig.

Thenh € L(«)® andL(«) is not solvable. O

Theorem 3.6. Lettg C L, be atorus such thdf:= ¢, (to) is nilpotentand be the maximal
torus oftg+h, C L,.Leta € I'(L, t) be such thaL («) is nonsolvable. Then the following
hold:

(1) radL(«) is t-invariant.
(2) L[o] = L()/ radL(x) has a unique minimal ideal = L[«].
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(3) Sist-invariant andcgs(t) is a Cartan subalgebra of toral rankin S.
(4) S is simple and isomorphic to one 42), W(1; n), H(2;n; ¥)®.

Proof. (a) Let L(a) := Ziem;;(Lia 4+ [Liw, L—iq]). Since L(«) is nonsolvable, Theo-
rem 3.5 shows that there ig € ]F*;, such thatr([L;ya, L—ige]) # 0. Adjustinga, we may

assume thaly = 1. Choosé: € [L,, L_,] With (k) #£ 0 and letr = h?" €t be the semi-
simple part ofh. Thenr ¢ kera yielding t = Fr & kera. Consequently,

[t,radL(a)] = [Fr,radL(@)] c (adh)?" (radL(@)) C radL(a).

This proves (1) and shows that kdd(«) = radL(«) is t + fj,-invariant. Thust + §,, acts
on L[] = L(«)/radL(«) giving a restricted homomorphism

t+bh,3x— x eDerL[a].

(b) Sincet N kera acts trivially onL(«), we have that = Fr. We identify « with the
corresponding root il (L[«], t) so thate(7) = «(z). ThenL[a] =h & ZieF}; Lla)iq IS

the root space decomposition bf«] relative tot. Since

(a0 B)” = @0, 0)”

for all r, the uniqgue maximal torus of the-envelope ofy in DerL[«] coincides withF7,
the image of the maximal torus 6f, in DerL[«].

(c) LetI be a minimal ideal ofL[«]. By the preceding remark, the toral element
acts on/ which turns/ into anF,-graded Lie algebra. I& vanishes on;(t) = ¢;(7)
then ¢; () acts nilpotently on/. By [19, (1.14)], this would imply thatl is solvable.
However,L[«] is semisimple. Thus thereise ¢; (t) with a(x) # 0. Astis 1-dimensional,
Ff = F(ad[¢)(x))?" forr > 0. ThereforeL[a] = I +cr(4)(D) = I +b. As a consequence,
I = L[«]®® is theuniqueminimal ideal inL[«]. This description also shows thats t-
invariant and ad.[«] acts faithfully onI.

(d) LetL[o], andI, denote thep-envelopes ofL[«] and/ in Der/. Block's theorem
says that there exist a simple Lie algelSrandm € Ng such tha? =S ® A(m; 1). It also
yields a homomorphism of restricted Lie algeb#asL[«], — DerI such that

S® A(m; 1) C ®(Llal,) C (DerS) ® A(m; 1) +1d @ W(m; 1).

Recall from part (c) that[«] = I + b. This gives® (L[«]) = S ® A(m; 1) + @ (h).
Supposen > 0. Sincet is spanned by an iteratgeth power of ad ) x with x € 1, we
then havep (t) C @(I,) C (DerS) ® A(m; 1). In this situationd can be chosen such that
@ (t) = r1(t) ® F whereiry :t— Der S is an injective restricted homomorphism (see [9,

Theorem 2.6)). It follows thats (A1(t1)) @ A(m; 1) C @ ().



A. Premet, H. Strade / Journal of Algebra 278 (2004) 766—833 785

Letk € I'(L, t) be such thak (h) # 0. By Proposition 3.4[L,, L_.]® C nil h,. Then
foranyy e [L,, L_,] one has

(ady)®(h) € (nilh,) N b.
Letw, be as before and suppose therg & [L,, L] such thatmao @) (y) ¢ W(m; 1) (o).
Then

PH=E+Id® Y fid,

i=1
whereE € cpers((A1(1)) ® A(m; 1), fi € A(m; 1), and f;,(0) # O for someip < m. Then
(ad® ()% (h)) contains(ad® (7))%(cs (11.(H) ® x7), so that
es (1) ® Alm; 1) C es(11(D) ® A(m; Dy + (add (1)) (@ () € D (B).

Since(ad® (7))3(®(h)) is contained in the>-nilpotent ideal® (il §,) N h) of @ () this
yields thatcs(11(t)) ® A(m; 1) acts nilpotently ond (L[«]). As a consequencey (t) acts
nilpotently onL[«]. However, we have seen in part (c) that this not true. Thus

(m20@)(y) e W(m; Do) (Vk € I'(L,t) with k(h) #0, Vy € [Ly, L_.]).

Set21={k e I'(L,t) | x(h) # 0}. As « is not solvable it lies inf21 (Theorem 3.5). So
21 # 0 whenceh =3, o [Le, L—c], by Schue’s lemma. Combining this with the above

remark, we obtain the inclusiagr; o @)(6) C W(m; 1)(g). But then
@ (L[a]) C (DerS) ® A(m; 1) +1d @ W(m; 1) (o)

implying that S ® A(m; 1)1y is a solvable ideal ofp(L[«]). As @ is injective this
contradicts the semisimplicity df[«]. Thusm =0 and/ = S is simple.

(e) Recall thatt = F(adx)?" for somex € ¢;(f). From this it is immediate that

¢;(t) is self-normalizing, hence a Cartan subalgebral ofAlso, 1< TR(¢/(t), 1) <

TR, L[a]) = 1 (see [19, Theorem 1.7(1)]). SindeX S this proves (3). Since is

simple and possesses a Cartan subalgebra of toral rank 1, one now derives (4) from
Theorem 3.2. O

Corollary 3.7. Let T be a torus of maximal dimension ih,, ando € I'(L, T). Then
radL («) is T-invariant andL[«] is restricted. Moreover, either

Lle] €{(0),512), W(L: D, H2 D®, H(2 DD}
or p =5, L, possesses a nonstandard torus of maximal dimension, and

L] = H(2;1)® @ Fx{}o,.
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Proof. TheT-invariance of rad.[«] follows immediately from Theorem 3.6. It shows that
L(w), acts onL[«] as derivations.

Let L[«a] be nonsolvable. A§ is a torus of maximal dimensioFR(L[«]) =1 (by [19,
Theorems 1.9, 1.7]). Lef denote the socle df[«]. By Theorem 3.6S is simple, while
[19, Theorems 1.9, 1.7]) show tHER(S) = 1. ThensS is one ofs((2), W(1; 1), H(2; 1)@
(see [7, Theorem 2]). Moreovef,C L[«] C DerS.

Supposes C L[a]. ThenS = H(2; 1)@ andL[«] contains a nonzero element

D = ax?op + bx§ Mo1 + c(x101 + x202) + E

with a,b,c € F andE € H(2; )?. SinceTR(L[«]) = 1 it must be that = 0, so that
Lla] C H(2; 1). Jacobson’s formula now shows thiix] is restricted.

If Llo] € H(2; 1) then we are done because ding2; 1)V /H (2; 1)@ = 1. So from
now on we may assume th&x # E. Thena # 0 or b # 0. Applying the automorphism
o1 of H(2;1) induced by the rulesi(x1) = x2, o1(x2) = —x1, we may assume that
a # 0. Applying the automorphism, of H(2;1) induced by the rulers(x1) = x1 —

(b/a)YPxs, o2(x2) = x2, we may assume = 0. Thus we may assume thait= xfflaz +

dDH(xf’lxé”l) + E’ whereE’ € H(2; 1)® andd € F. Applying the automorphisras
of H(2; 1) induced by the rule3(x1) = x1 + dxé”l, o03(x2) = x2, we may assume further
thatd = 0.

In other words, it can be assumed tliat xfflaz. Note that

=14 x)P 0, (modH (2 1)P).

It follows that ¢ := ¢z[o1(DE ((1 + x1)x2)) containsv_y := (1 + x1)P 135, For 0<i <
p—2, puty; := (i + 171Dy (14 x)' b, It is easy to check thato, ..., vp_2
pairwise commute and

[v_1,vil=ivi-1, 0<i<p-—2.

Moreover, L[] contains allv;’'s with 0 < i < p — 3. Sincewg is a toral element this
implies thatc is a nontriangulable Cartan subalgebrd.ifa:]. SinceL(x), is a restricted
Lie algebra it contains a toral elementsay, which acts orL[a] asvg. ThenT’ :=
Ft @ (T N kera) is a nonstandard torus of maximal dimensioniip. Applying [7,
Theorem 1] now yieldgp = 5.

Finally, supposé.[«] 2 H(2; 1)® & Fx}d,. Thenc contains an elememt= Ax5d1 +
nvz with A #£ 0 or u # 0. Observe that

[u,v_1]=—avz (mModH(2;1)?).

From this it is immediate that3 € ¢ while from our earlier remarks it follows that
(adv_1)3(v3) € ¢ is not nilpotent. LetV denote the subspace i (2; 1) spanned by
and allv;’s with 0 < i < 3. It follows from the above discussion thaf V is an abelian
ideal of codimension 1 il acting nilpotently onl.[«].
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Letx : L(a) — L[] denote the canonical homomorphiskt,:= ¢, (T'), and
Q' ={y'er, 17|y (H)#0}.

By Schue's lemmaH’ = ZWEQ/[L),/,L_,,/], hence there exisk’ € 2’ and x €
[L.,L_.1]suchthatr(x) =v_1 (modcN V). Then

(@dv_1)%(v3) e 7 (ILy, L 1) +cN V.

However, due to Proposition 3.4 and the Engakobson theorem, the subalgebra on the
right acts nilpotently orl.[«]. This contradiction shows that the case we are considering is
impossible. This completes the proof of the corollary

Remark. Theorem 3.6 and Corollary 3.7 extend [14, Theorem 4.1, Corollary 4.2] to our
present situation.

Corollary 3.7 enables us to generalize the notion of a root being solvable, classical,
Witt or Hamiltonian to the case whef® is an arbitrary (not necessarily standard) torus
of maximal dimension irL . It also allows us to generalize the notion of a distinguished
maximal subalgebra to this situation.

Leta e I'(L,T). If a is solvable or classical, we sél(«) := L(x). If a is Witt, we
define Q(«) to be the unique subalgebra of codimension L) containing rad.(«).

If « is Hamiltonian, we defing(«) to be the inverse image dffa] N H(2; 1)(g) under
the canonical homomorphism: L(«) — L[«] (in this caseQ(«) has codimension 2 in
L()). We sometimes writed (@) = Q(L(«)) in order to distinguish betwee@ (L («))
and Q(L(a)p). The latter is defined analogously for theenvelope ofL(«) in L,. By
Corollary 3.7, L[] is restricted, so thaL(«), = L(a) + radL(«a),) = L(a) + H N
radL(a),) whereH = ,(T). Thus

O(L(w)p) = Q(L(e)) +rad(L(a),)

and dimL(a)/ Q(L(@)) =dimL(x),/Q(L(x),). We calle properif the subalgebra (o)
is T-invariant, andimproper otherwise. Note that ifx is proper thenQ(«x) contains
H=cy(T).

Proposition 3.8. Leta € I' (L, T') be a proper root satisfying(H) # 0. Then

| ((radL(@)),,, U [@(@)ia. (radL(@)) _,,])

7 *
tEFp

consists ofp-nilpotent elements daf , unlessx is classical and there i € I'(L, T') with
Lla, B1= g(1, 1). In the latter case

U ((radL@),, U [(radL(@)),,. (radL (@) _;,])

7 *
ler

consists ofp-nilpotent elements df ,.
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Proof. Suppose the claim is not true. Defifé(L(«)) := radL(«) if « is classical and
there isg with L{a, 8] = g(1, 1), andW (L («)) := Q(«) otherwise. Adjustingt, we may
assume that there exisise (radL(«)), Or by € [W(L(«))q, (radL(x))—] Which is not
p-nilpotent. Define

21:={yelL,T)|y?)#£0} or @1:={yel(L,T)|y(h)#0},

in the respective cases. Then # ¢. By Schue's lemmalf =3 o [Ly, L—,]. Since
a(H) # 0 and eachL,,L_,] is an ideal ofH, the Engel-Jacobson theorem shows that
there isp € 221 suchthat([Lg, L_g]) # 0. Choosé:, € [Lg, L_g] with a(h2) # 0. Since

h1 € HNradL(x) N[Ly, L_y] One hasx(k1) = 0 (this is obvious ifa is honsolvable
and follows from Theorem 3.5 otherwisd@)hus the assumptions of Proposition 3.3 are
satisfied. Set

9= > (Ly + Ly, Ly).

ye(Fpa+F,8)\{0}

Theng := 7 (g) = g/ radg is simple andr (#) # O (respectivelyr (h1) # 0). Hence there
is an elementirfradg(a)), orin [W(g(a))e, (radg(a))—_ ] which does not act nilpotently
on g. The semisimple parts of (u) and (k) (respectivelyr (k1) andw(h2)) in Derg
span a 2-dimensional torus ), which we denote by. Note thatt C g, coincides with
the image off" in Derg. SinceT has maximal dimension, we have

2<TR(@) < TR(g) < TR(L(a, B)) <2

(see [19, Theorems 1.7, 1.9]). Thuss isomorphic to one of the simple Lie algebras listed
in [10, Theorem 1.1]. Since is proper inI"(L, T) it must be proper in" (g, t) as well
(one should take into account th@t«) containsH). Since at least one of the subspaces
(radg(a))+q is nonzergy cannot be classical.

Suppose is a restricted Lie algebra of Cartan type. Tlgeis one of

w2, SE&LY, H4DLDY, K3ED.

By [2, Lemma5.8.2]Q(g()) C g(o) + tNkera (note that [2, Lemma 5.8.2] only relies on
the classification of toral elements in resteidt_ie algebras of Cartan type, hence holds for
p > 3). Sinceg(1) acts nilpotently org, we are reduced to examine th@wvariant quotient
go = §(0)/8c1). Since this quotient is classical reductive, we h@nago(a))+. = (0).
Then radg(o) C g1y + tN kere which implies that the case we consider cannot occur.

Supposeg = W(1; 2). Since I'(g,t) contains a proper root the torusis optimal
in g,, see [18, Section V.4]. By [18, Theorem V.4], all solvable rootd7i(y, t) vanish
on cz(t). Soa € I'(g, t) is nonsolvable (forx(r (h2)) # 0). Then(radg(a))+e = (0),
again by [18, Theorem V.4]. So this case cannot occur either. Sjee+# (0), we also
have thatg 2 H(2; 1; ®(7))?, by [18, Theorem VII.3]. Proposition 2.1(2) shows that
g% H(2; (2,1))@ while Proposition 2.2 ensures thagz H (2; 1; A).

Finally, supposey is isomorphic to the restricted Melikian algelyél, 1). We have
already mentioned that all derivations ¢f1, 1) are inner. Sot can be identified with



A. Premet, H. Strade / Journal of Algebra 278 (2004) 766—833 789

a 2-dimensional torus ig(1, 1) and g(«) with the centralizer of a toral element in
The conjugacy classes of toral elementgf, 1) are determined in [13, Theorem 3.1].
The centralizers of toral eleents are described in [13, Themn 4.1]. It follows from this
description that no root i’ (g, t) is solvable and the unioLryieF,;(radﬁ(a))m consists of
nilpotent elements of. Moreover, ifa € I'(g, t) is Hamiltonian ther(radg(«))+, = (0).

If « € I'(g,t) is Witt then it follows from [13, Theorem 4.1(3), (4)] that the union
Uier[Q(g(a))m, 0(g(a))—iq] consists of nilpotent elements gf(see also the proof of
[13, Proposition 6.2]). But thefW (g(«))q, (radg(a)) ] consists of nilpotent elements
of g. Thusa € I'(g,t) must be classical. But them is classical inI"(L, T) (this is
immediate from Corollary 3.7 and the equalitye)® = g(a)*).

In order to reach a contradiction it will now suffice to show thék, 8] = g(1, 1). By
[10, Corollary 2.10] and [7, Section 4], we havE(g, t)| = p2 — 1. So anyy € Fpo +
F,B\ {0} is a root ofg. SinceL(y)® = g(y), it follows from [13, Corollary 4.3]
that all roots ofL(«, 8) relative toT are nonsolvable. Combining Corollary 3.7 with
Demushkin’s theorem, it is how easy to observe that any rodt(af 8) relative toT
vanishes orH*. But then all elements in the uniQ[jheH(adh)“(H N g) act nilpotently
on g. As a consequence, rgds H-invariant (Proposition 3.3(3)).

ThusL(«x, B) acts ong as derivations. Sincg = Derg, there is an ideal of L(«, B)
such thatL(«, 8)/1 = g(1, 1). By our earlier remarksTR(L(, 8)) = TR(g(1, 1)) = 2.
So [19, Theorem 1.7] shows thétis nilpotent. Then/ = radL(«, 8) and our proof is
complete. O

Coroallary 3.9. The following are true

(1) H*cnilH;
(2) allrootsinI"(L, T) are linear onH.

Proof. (1) Supposed* ¢ nil H. Then

:={yel(L,T)|y(H*) +0}
is nonempty. Ify € I'(L, T) is nonsolvable then Corollary 3.7 (combined with Demushk-
in’s theorem) shows that(H*) = 0. Thus all roots irf2 are solvable. Let € 2. Proposi-

tion 3.8 now says that the ide@dl,, L_, ] of H acts nilpotently or.. Combining Schue’s
lemma with the Engel-Jacobson theorem, we then obtain

H= Z[LK, L_.]cCnil H.
KES2

But thenH* c nil H, a contradiction.

(2) We denote by, the semisimple part of € H. By part (1), H* C nil H. Given
hi1, hp € H, we then have

(h1+h)? =h? +h5  (mod nili), Vr € No
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(by Jacobson’s formula). Therefok@s + h2)s = h1s + ho s forall k1, ho € H. Thisis the
same as to say that all rootsih(L, T) are linear. O

One of the key results of the classification theory fot 7 is [15, Theorem 3.1] which
says that for any torug of maximal dimension in_,, the Cartan subalgebxa ,(7') of
L, acts triangulably or (andL,). We now come to extending this result to our present
situation where > 3. As Skryabin pointed out to the second author, the proof of [15, Cor-
ollary 2.5] is incorrect (in the notation of [15], the implication, u) € 2 = (u, A) € 2)
is false). In [15], Corollary 2.5 is used in the proof of Theorem 3.1 and only there.

This problem is resolved easily for Lie algebras of rank 2 and has no effect on [9,10]
(see [8, pp. 424—-426]). Moreover, passing to rank-two sections allows one to salvage [15,
Corollary 2.5] relying only on information available at the time when [15] was written.
Thus what follows aims at both, a correct proof of [15, Theorem 3.1pfer7 based only
on that information and a partly different proof fpr> 3.

Recall thatl" C L, is a torus of maximal dimensio®] = ¢; (T), andH = cr,(T). By
[7, Theorem 1], ifp > 5 thenT is standard.

Lemma 3.10. If T is standard theiH, H] C nil H.

Proof. (&) Leta € I'(L,T) andx € Ly. If p > 7 then [15, Lemma 3.2] says that
a([x?, H) = 0. The proof of this lemma is correct but relies on several results proved for
p > 7in[14]. Theorems 3.1, 3.5, and 3.6, and Corollary 3.7 provide suitable substitutes for
all these results. Thus the equality{x”, H]) = O still holds under our present assumption
onp.

(b) Nextwe are going to prove the stronger statement that

[x?, HlCnil H, Vxe U Ly,
ael(L,T)

which constitutes the first part of [15, Lemma 3.3]. The proof will require some minor
changes, even fgr > 7.
Firstassumex(H) =0 and lety e HU Uier Liq. Let y; be the semisimple part of

in L,. Sinceyy lies in the restricted subalgebra generated by H andT is a maximal
torus inL,, we havey, € T. If y € H thena(ys) = 0 by our assumption, whereas if
y € Liq fori e I, thenia(ys)y = [ys, y] = 0. The Engel-Jacobson theorem now yields
that L(«) is nilpotent. By [14, Theorem 3.5(1)] fop > 7 and by Theorem 3.1 in the
general casd, («)® acts nilpotently orL. This showgx”, H] C [Lg, L_o] C nil H.

Now assume that(H) #0 and put2 :={y e '(L,T) | y([x?, H]) Z0}. If 2 =0
then [x?, H] acts nilpotently onL, hence is contained in nil. So suppose? # ¢.
Since L is simple, we then havél =Y _,[L,,L_,], by Schue’s lemma. Ag{D
acts nilpotently orn, all roots inI" (L, T) are linear onH. So there is8 € £2 such that
a([Lg, L_g]) # 0. We thus have

allsr.H) =0, A" H) 20 a(iLp, L gl) 0
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As [x?, H] C [Ly, L—4] the assumptions of Proposition 3.3 are satisfied. (Note that the
proof of Proposition 3.3 is elementary in nature!) Let

g:= Z (Ly +[Ly. L—y]).
VE(]Fpa"F]Fp,B)\{O}

As H® acts nilpotently onL, Proposition 3.3(3) shows that radis H-invariant.
Letr:g+ H — (g + H)/radg be the canonical homomorphism, afd= 7 (g). By
Proposition 3.3(2)g is a simple Lie algebra ang(H N g) is a Cartan subalgebra of
toral rank 2 ing. SinceT has maximal dimension i ,, we haveTR(g) < 2. Then
2=TRm(HNg),d) < TR(g) < 2 (see[19, Theorems 1.7, 1.9]). Therefore,phenvelope
of 7(H Ng) in g, C Derg contains a unique 2-dimensional tortisay, which coincides
with the image ofr" in Derg (the torusT’ acts ong by Proposition 3.3(1)).
Starting from this point the original proof in [15] goes through fox 7. Let

Mg = {y e dp|a(ly. 3-5]) =0}.

Sincea([Lg, L_g]) # 0 and rady acts nilpotently ory (by Proposition 33(3)), one has
98 # Mg. So the pair(g, t) satisfies all assumptions of ,[Proposition 5.5.2] except a
restrictedness condition which can beopiped in view of [15, Lemma 2.4]. Then [2,
Corollary 5.5.3] yields dings/M§ < 7. SinceHY ¢ nil H and a([x?, H]) = 0, the
subspaceM is invariant undet, := adnz (H) + (adr (x))?. Theng';ﬁ/Mg is a nonzero
h.-module of dimensior: p (for p > 7). Sincel, is nilpotent (as a homomorphic image
of a subalgebra oﬁ), all composition factors of thi§,-module are 1-dimensional. But
then (h,)™ acts nilpotently orgz/Mg . This, in turn, implies that ak”, H] consists of
endomorphisms acting noninvertibly drg. Theng([x?, H]) = 0, a contradiction. For
p =5 this argument is no longer valid but it still works fpr= 7 because we know, from
[9, Lemma 1.4, Theorem 8.6], that dﬁp/Mg < 6.

The main result of [10] enables us now to ardjue general case differently and include
the remaining cas@ = 5 into considerations. Singg is simple and has absolute toral
rank 2, it is isomorphic to one of the Lie algebras listed in [10, Theorem 1.1]. Sugpsse
restricted. Then there ise€ H N g with 7 (x)? = (h), so that

7([(ad)?, H]) = [z ()P, n(H)] = [z (h), n (H)] C = (HP).

As before, this implies thag([x?, H]) = O contrary to our choice op. If g is one
of W(1;2), H(2;1; A), H2; 1, @(r))® then all root spaces df relative tot are 1-
dimensional (by [10, Corollary 2.10] and the results of [18]). Then agﬁgimflg has
dimension 1< p and we are done.

So we are now left with the case whegex= H(2; (2, 1))®. Recall that dimt = 2.
By Proposition 2.1(1)g, = g + t. Thus there exist e t and h € H N g such that
7 (x)? =t+mw(h). Then

7 ((@adx)?(H)) = [ (x)?, w(H)] = [t + 7 (h), 7 (H)]
= [z, 7(H)] cn(H)P =7 (HD).
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Again this implies that all elements [n”, H] = (adx)” (H) act noninvertibly orLg. This
contradicts our choice (4.

() Now observe thatl’ := {h € H | [h, H] C nil H} is a restricted subalgebra ¢f
containingHd and allx? with x € U, 1) La- By Jacobson’s formuletl’ = H. This
completes the proof of the lemman

Lemma 3.11 (cf. [15, Lemma 3.4])If T is standard thew (4 V) = 0 for any nonsolvable
rootae € I'(L, T).

Proof. No changes in the proof of [15, Lemma 3.4] are needed to obtain the result.
We now come to our first main result.

Theorem 3.12 (cf. [15, Theorem 3.1])Let 7' be a torus of maximal dimension I, and
suppose thal is standard. Therl = ¢, ,(T') acts triangulably or’ ,.

Proof. Suppose there ig € I' (L, T) such that
a(HP)#£0 and [Lg, L_o] ¢ nil H.
As HY c H we havea(H) # 0. SetQy :={k € I'(L,T) | k((Ly, L—q]) # 0}. As

21 # @, Schue’s lemma yield#l =", ., [L¢, L—.]. As « vanishes ondH® but not
on H thereisg € I'(L, T) such that

KES21

,3([140(7 Lfa]) #0 and a([Lﬁ, L,ﬂ]) #0.

By Lemma 3.11,«¢ is a solvable root. Themx([L,, L_y]) = 0, by Theorem 3.5.
Consequently, case (a) of Proposition 3.3 applies to

9= > (Ly +[Ly. L))
VE(]Fpa"F]Fp,B)\{O}

Lemma 3.10 enables us to apply Proposition 3.3(3) Witk H which yields that rag is
H-invariant andH acts ong = g/ radg as derivations. Since radacts nilpotently ory, we
then haveyg # M3, where the notation is suitably adopted from the proof of Lemma 3.10.
Since[H, H] C nil H the subspacé/g is H-stable. Moreover, as in part (b) of the proof
of Lemma 3.10 we have dify/Mj < 6. SinceH is nilpotent this forces: (H®) = 0 for

p > 5.

To settle the remaining cage= 5 we again invoke [10, Theorem 1.1]. It should be clear
by now that the element” from the proof of Lemma 3.10 can be replaced by any element
in H. So the argument from the proof of Lemma 3.10 relying on [10, Theorem 1.1] yields
thata(H?) = 0 in all cases. Since this contradicts our choice efe must have

[Lo, Lol Cnil H whenevew(H®) #0.
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Now set$22 :={y € I'(L.T) | y(HY) #0}). If 22# 0 thenH =Y o [Ly. L],

by Schue’s lemma, forcingd c nil . But then H®Y ¢ H c nilH and 22 = ¢, a
contradiction. Thus/(H®) = 0 for all y € I'(L, T) which is the same as to say that
H® acts nilpotently or.,. O

4, Two-sections

Now we are ready to begin our investigation of the 2-sectiond. atlative to T.
Leta,B € I'(L, T) be such thatl.(«, B) is nonsolvable and denote by rafl(«, B) the
maximalT -invariant solvable ideal of. («, 8). Put

Lla, B]:= L(e, B)/ radr L(e, B),

and letS = S[a Bl ] be theT socle of L[«, Bl the sum of all minimall’-invariant ideals
of La, B]. ThenS &b: lS, where eacm is a minimal T -invariant ideal ofL [a, B].
It is easily seen thal’ and L(«, B), act onL[«, 8] as derlvatlons and presen‘le Thus
there is a natural restricted homomorphigm- L (e, 8), — DerS which will be denoted
by ¥, g. In what follows we identifyL[«, 8] with ¥, s(L(«, B)) (as we may), denote the
torus¥, (T) C DerS by T, and putd := ¥, p(H).

Note thatr < TR(S) < TR(L[e, 1) < TR(L(a, B)) < 2, by [14, Theorem 2.6] and [19,
Theorem 1.7]. Applying [19, Theorem 1.7(8)] fo= T + L[, ] andK = S and taking
p-envelopes in Deg, we get

dim(T N S,) = TRES)

(one should also keep in mind tha@t+ L[a, Blp, C DerS is centerless) In particular,
if TR(S) =2 thenT - S,, If r>1 thenr =2= TR(S) and TR(S,) =1fori=12.
Moreover, in this cas@,, = (Sl),, + (Sz),, C Der(51 &) Sz)

Theorem 4.1. If r = 2 then there areu1, u2 € I'(L, T) such that
Lip1]P @ Li2)™ € Lo, B C LIpa] ® Lia].

Proof. As eachS; is perfect, DetS; & S») = (DerS1) @ (DerS,). Therefore, §p ~

(Sl)p <) (Sz)p where (5; )p C DerS;. Applymg [19, Theorem 1. 7(8)] with, = S and
K =5;, we getdinT /T N (S,),, =2- TR(S,) =1.Hence dinT N (S,)p =1fori=1,2,
and

T=(TnGn,) ®(TNGS2),).
Eick pi€I'(L,T) with w; (T N (E)p) #0. ThenL[«a, B] = (§1(u1) @ §2(u2)) + H and

S; =S(u;)fori=1,2.Letm; : Llo, B](wi) — L] denote~the canonical homomorphism
and observe that rad. («, 8) NL(u;) C radL(w;). Thens; (S;) isanonzeroideal af [ ;]
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satisfyingr; (S) =mi (SHD. . According to Corollary 3.7g; (S)=L[u i]D. Observe that
(kerm;) N S; = (0), being aT -invariant solvable ideal of.[«, B]. ThusS; = L{u;1® for
i=12.

Fori =1, 2, the adjoint action of.[«, 8] on its ideal§,~ gives rise to a homomorphism
¥ Lla, Bl — Der§, with kery; C Lla, B](u3—;). Our discussion above implies that
Vi(Lla, B]) = Llp]. Let yr = y1 @ Y2: Llo, Bl — Llual @ Llpz]. If x € kery then
[x, S,] C (keryr) N S, = (0). SinceL[«, 8] is isomorphic to a subalgebra of EQ@[@ Sz)
we thus have: = 0. Sovr is injective and our proof is complete D

Theorem 4.2. If r = 1 and TRS) = 2 then$ simple and the following hold

1) If S is restricted therL[«, 8] =
2) If S is nonrestricted thers C L [0, 1 C S+ T =S, unlessS = H(2; (2,1))? in
which caseH (2; (2,1))@ C Llo, B1 C H(2; (2, 1)),

Proof. Given a Lie subalgebra/ in L[«, 8], we denote by, the p-envelope ofM in
DerS. Note that thep- envelopel [, B], is semisimple.

(a) By Block's theorem, there are a simple Lie algebrandm € Ny such thatS =
s® A(m; 1). Then

s®A(m; 1) CT + Lla, B1, C ((Ders) @ A(m; 1) & (Id®@ W(m; 1)),

where 72(T + Lla, Blp) is a transitive subalgebra o (m;1). Let S denote the

(semisimple) p-envelope ofs in_Ders. Our assumption 0T R(S) (combined with an
earlier remark) shows that c S,, SlnceSp C (Ders) ® A(m; 1) it follows from [10,

Theorem 2.6] that we can choo$e> s ® A(m; 1) such thatT c (Ders) ® F. Since

EQAM;D)p =50 Am; D +S® F we haveT CSQF. ThenT =t® F where

t is a 2-dimensional torus i¥, forcing 2< TR(s) < TR(S) =2 andzyioL[a Bly

5Q® A(m; 1). As a consequence,

Llo,fl=H+S and T +Lla,Bl,=H,+S,,

which implies that rad L(«, ) = radL(«, B). Besides, the subalgebta(H ) = m2(T +
L, Blp) is transitive inW (m; 1) andcs (t) ® A(m; 1) C H.

(b) Supposen # 0. Then there exists € H such thatra(h) = Y ", a;8; + E where
a; € F,a;y #0,andE € W(m; 1)(g). Since

() ® F C (@dh)” (e () @ x/ 1) +5® Alm: Dy

andH* c nil H, by Corollary 3.9, the subalgebea(t) ® F must act nilpotently ors. By
the Engel-Jacobson theorem, each 1-secfign relative toT must be solvable. From
this it is immediate thaL(y) =radL(y) foranyy € (F,a +F,8) \ {0}.
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Suppose there ig € (F,a +F,8) \ {0} with y(H) =0 and lettg := T Nkery. AsT
is a maximal torus irL ,, the 1-sectiorL(y) is nilpotent and the maximal torus of the
envelope oftyg + L(y) is contained inT N kery = tp. Note thatL(«, B) is a 1-section
relative totg. By Theorem 3.6, the unique minimal idesllof L(a, B)/radL(«, B) =
Lla, B] is simple. But thenn = 0 contrary to our assumption. Therefoyg,H) # 0 for
ally € F,a+F,p8)\ {0}). According to Proposition 3,&ll elements in the union

U (Ly ULy, L*)’])

VE(FI,O(+F1;/9)\{O}

arep-nilpotentinL ,. ButthenL(«, B) is solvable (again by the Engel-Jacobson theorem).
This contradiction shows that = 0.

(c) It follows from parts (a) and (b) thatis simple withTR(S) = 2, andT + L[a, 8] C
DerS. ThenS is listed in [10, Theorem 1.1].
If S is classical or one oV (2; 1, K31, g(1,1) then DelS = § (see [19 22])
If S is non-restricted Cartan-type arfl H(2; (2,1))@, then DeS =S + T = S,
(see [2,18]). Thus in order to finish the proof it remains to consider the case where
Se{S@; DD HA DD, H(2 (2,1)?).
Supposs = 5(3; 1) andH ¢ S. We have

DerS = Fxf_lxg_lag @ Fxf_lxé’_laz ® Fxé’_lxé’_l&l @ Fro® S,
wherer = x101 + x202 + x393. If H containsro + Ollxg_lxg_lfh + azxf_lxg_laz +
astflxé’*lag + E forsomeE € § thenTR(L[«, B]) > 3 which is not true. Thus

HcS+ Fxé’_lxé’_l&l + Fxf_lxé’_laz + Fxf_lxg_lfig.

We may assume (by symmetry) theitg § @ Fxb 'x2 o1 @ Fxl'xl 9, = 3. Let
71:= (1+x1), z2:= (14 x2), andt’ := F(z101 — z202) ® F (2101 — x333), a 2-dimensional
torus inS. The restricted Lie algebra(a, B), contains a torus of maximal dimensi@t
with W, (") = t. Let H' := ¢, (") and H' = ¥, g(H’). SinceL[a, 1/S is a trivial
S-module, we havé[a, B1=S+ H' ¢ §'. It follows thatH’ ¢ §'.

Sincet’ c H',we haveH’ ¢ nil H. So2’ :={y' e I'(L,T') | y'(H') # 0} # ) whence
H = ZV,EQ,[L),/, L_,], by Schue’s lemma. Therefore, thereyig [L,/, L_,/] for some
k' € £2' such that

. -1 1 p-1 “1.p1
V=W () =20 b Yoa + Breh Tl T ror + Bozt T Moo+ E,

whereE € S N H'. Recall thatS = $(3; 1)® has dimension @3 — 1) and is spanned
by the elementsD; ;(f) with f € A(3;1) and 1< i < j < 3 (see [22, (4.3)] for
example). Since any root space $frelative tot’ has dimension 2 (this is explained
in [10, p. 284]), we have that difi’ N S = 2(p — 1). It follows that H' N S has basis
consisting of allDy 2(z5 25T xk) = (k+ 1) 2825 xk (22001 — 2282) and Dy 325 M 2kxs ™) =
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(k +1)zk 25 x (2181 — x383) with 0 < k < p — 2. As a consequencl NS is abelian. From
this it is immediate that

[7. (z122x3) (2181 — x383) | = i (z122%3) (2181 — x333)

foralli < p — 2 Therefore,
(ad)'))”_z(D1,3(szlz§72x§71)) = (p — 2)!(z101 — x303).

Since the element on the right is toralSnwe havd L., L_ 13 ¢ nil(H'),. Sincep > 5,
this contradicts Proposition 3.4.
Supposes = H(4: 1)@ andH ¢ S. One has

4 4
DerS = §€B ZFDH()C’-(p)) @ F(inD,).

i=1 i=1

SinceTR(S) = 2 it must be thall ¢ S & Y+, FDy (x"). No generality will be lost by
assuming thall ¢ S + Y%, FDy (x"). This time we set

t':= F((1+x1)81 — x303) @ F (x202 — x434).

Clearly,t is a 2-dimensional torus ifi, hence there exists a taof maximal dimension
T' C L(a, B), such thatW, z(T’) = t'. As before, we setd’ := ¢, (T') and H' =
W, g(H'"). Itis straightforward to check th&’ N S is spanned by alDy (1+x1)' xJx4x3),
with 0<i,j < p—1and 0<i + j <2p — 2. This implies thatd’ N S is abelian (see
[22, Lemma 4.3(2)]). Arguing as in the previous case, we find axbetl" (L, T') with
k'(H"Y# 0 and an element e [L,/, L_,/] with

§ 1=V p(y) = (L x0)" 205 + o)~ 0a + Pax] o1+ faxf oo+ E
for someE e SN H'. Applying (ady)?~2 to the element
Dy (A4 x)? ™) =~ + x1)" 2 M3+ L+ x1)P 2L 20y,

we obtain a nonzero multiple ofl + x1)01 — x303. Since p > 5, this contradicts
Proposition 3.4.

Finally, supposeS = H (2; (2,1))®. Then H(2; (2,1)), = H(2; (2,1)) + FD} and
Ders = H(2;(2,1), ® F(x1D1 + x2D>) (see, e.g., [2, Theorem 2.1.8]). ~Since:2
TR(S) = TR(L[«, B]) andL[«, 8] is semisimple, the restricted quotidiitr, 8]1,/S, must
be p-nilpotent. This yieldd [«, 81, C H(2; (2, 1)), completing the proof. O

Lemma 4.3. Leta € I'(L,T) be a proper root witha(H) # 0, and y € L,. Then
(ady)2?(H NradL(x)) C nil H.
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Proof. (a) Suppose thatady)?’(H N radL(«x)) contains an element which is ngt
nilpotentinL,. Then the set

2:={y e(L,T)|y((@dy)? (H NradL(a))) # O}

is not empty. By Schue’s lemma, we then ha¥e= 3" o[Ly, L, ]. Sincea(H) # 0
andu is a linear function orfZ, by Corollary 3.9, there i € £2 with «([Lg, L_g]) # 0.
If «(H NradL(x)) # 0 thena is solvable, hence vanishes @ieF;[L,-a, L_;y] by

Theorem 3.5. Therefore,

a((ady)? (H nradL(a))) C a(H NradL(e) N Y [Lia. L,»a]> =0

7 *
ler

in all cases. As a consequence, there/are [Ly, L_] andhy € [Lg, L_g] such that
a(h1) =0, B(h1) # 0, anda(h2) # 0. But then Proposition 3.3 applies to

g:= Z (Ly +[Ly. L—y])

y €EFpa+F, £\{0})

showing thatg := g/radg is simple and ragd is H-invariant (one should also take into
account Corollary 3.9). The semisimple pakts;, ho s € T of hy and hy are linearly
independent. Thed = Fhy s & Fhas @ (T N kera N kerp) forcing rad- L(«, B) =
radL(«, 8). SinceL(a, 8) = H + g and rady is H-stable, we also obtain that rga=
g NradL(a, B). This entails tha§ is nothing butS = S[a, 8], the T-socle of L[, f].
Since 2< TR(g) < TR(g) < TR(L(a, B)) < 2, we getTR(§) 2. Therefore, Theorem 4.2
is applicable toL[«a, B]. Givenx € L(a, 8),, We setx := ¥, g(x). As TR(S) =2, the
simple Lie algebr£ is listed in [10 Theorem 1.1].

Supposss is restricted. TheS = L[w, 8], by Theorem 4.2. Moreovey? = z for some
z € H. Therefore,

(ady)? (H) = (ady)* (H) = (ady?)*(H) = [z. [z. H]] C H>.

As B does not vanish ofady)27 (H), we deduce thaf is a nonstandard torus e, Blp.
Then [7, Theorem 1] says thaf«, 8] is isomorphic to the restricted Melikian algebra. By
[7, Section 4], all roots in"(L[a, 8], T) are then improper. Howeve, is still proper
when viewed as a root df[«, 8] (by our assumption). Thus is non-restricted. IfS is
isomorphic to one o (1; 2), H(2; L A), H(2; 1, ®(r))™V then dimez(T) < 1 (by [10,
Corollary 2.10] and [18]). Buk1, iz € ¢3(T) are linearly independent. Thus it must be
thatS = H(2; (2,1))?. ThenS, =T + S, by Lemma 2.1(1). Sinc&[a, 81 = H + S, we
also havey € S. So there are € cg(T) andr € T such thaty” = z + ¢. Arguing as before,
we now get

(@dy)2r(H) = [z +1,[z+1, HI| C [ez(T), c5(T)].
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Sincecz(T) is triangulable inS, by [7, Theorem 1], this contradicts our choicesathereby
completing the proof. O

Theorem4.4.1f r=1and TF{§) = 1then one of the following occurs

(1) Lla, 8] = L[u] for somep € (F,a 4+ F,B) \ {0}. Moreover, § = L[u]® and
dim, 4(T) = 1.

(2 S=H2; )P and Lle, ] = H?2; 1)@ @ FD where eitherD =0 or D =
DH(xf_lxé’_l) or p=5andD = x79,. Moreoverdimy¥, s(T) = 2.

(3) S =S ® A(1; 1) whereS is one ofsl(2), W(1; 1), H(2; 1)@. Moreover,L[, B] C
(DerS) ® A(L; D) and ¥y g(T) = (Fho ® 1) @ (FId ® (1 + x1)d1) wherehg is a
nonzero toral element if.

(4) S =S® A(m; 1) whereS is one ofs[(2), W(1; 1), H(2; 1)@ andm > 0. There exists
a classical rootu € F,a 4 F, 8 such that

Lo, Bl=8S® A(m; 1) + Lo, Bl(1); m2(Lla, Bl()) = sl(2);
Llu,v]=g(1,1) forsomevel'(L,T).

(5) S =S ® A(L; 1) where S is one ofsl(2), W(1;1), H(2; 1)@, and L[w, B] is a
subalgebrainDerS) ® A(1; 1) +Id ® W(1; 1) such that

m2(Lle, B1) = m2(L{p]) = W(L; 1)
for some Witt rooj € F o + ), 8.
(6) S =S5 ® A(2;1) whereS is one ofsl(2), W(L;1), H?2; 1)@, and L[«, B] is a
subalgebrainDerS) ® A(2; 1) + Id ® W(2; 1) such that
H(2 1)@ c mo(Lle, B1) = m2(LIw]) € H(2 1)

for some Hamiltonian roof € Fpa +F ), 8.

Proof. As before we denote by the torus¥, s(T) c DerS. Sincer = 1, theT-socleS
is a minimal ideal off + L[«, B]. By Block’s theorem there exists a simple algeSrand
a nonnegative intege such thatS = S @ A(m; 1) (under an isomorphism). As in the
present case £ TR(S) < TR(S) = 1 the Lie algebra is one ofs((2), W(1; 1), H(2; 1)@
(see[19, Theorem 7] and [7]). The isomorphigrgives rise to a restricted homomorphism

@ Wy p(T + Lo, B)p) —> Der(S® A(m; 1)) = (DerS) ® A(m; 1) @ (Id ® W(m; 1)).
By [9, Theorem 2.6], we may choogesuch that
&(T)=(Fho®1) @ Fd®1+1d® 1),

wheretg € W(m; 1) is a toral elementFhg is a maximal torus of the restricted Lie algeb-
ra §, and eithed =0 or S = H(2; 1)® and Fho & Fd is a maximal torus in De§. In
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what follows we choose as above and identif§ with @ (7). Giveny € L(«, ) ,, we set
V=@ W p(y).

(@) Supposen =0 andd = 0. ThenT = Fhg acts onS = S as a 1-dimensional
torus. Letu € T* \ {0} be such thafS'M # (0) (recall thathg € S and (ko) # 0). Then
Llo, 1= S(u) + H = L(w)/rady L(w) and L[] = S (see Corollary 3.7). This is
case (1) of the theorem.

(b) Supposen =0 andd # 0. ThenS = H(2;1)® andT = Fho & Fd is a 2-dimen-
sional torus in De§. By [1, Theorem 1.18.4] (which does not require the assumption that
p > 7), any 2-dimensional torus of D&k(2; 1)@ is conjugate under an automorphism
of H(2; 1)@ to one of Fx191 @ Fx202, F(1+ x1)31 ® Fx292, Fx191 ® F(1 + x2)02,
F(1+ x1)01 ® F(1+ x2)92. Thus we may assume that

ho=12101 —z202, d=1z101+2202, =z €{x;,14+x}.

The eigenspaces of D&r(2; 1)@ with respecttd” are described in [18, Proposition I11.1].
As L[a, ] C DerH (2; 1)@, it follows from this description thall c 7. Supposed =T
and consider the torus= F(1+ x1)31 ® F(1 + x2)d». Note thatt c H(2; 1)@ + H C
Lla, B]. LetT' C T + L(a, B) , be atorus of maximal dimension satisfyitg g (T') = t,
and defineuw’ € (T')* by setting

W (T’ Nkerankerf) =0, ' ((14x1)31) =p'((1+x2)32) = 1.
As (H(2; 1)@) () is abelian, L[, B1(1') is solvable. Therefore, so is the 1-section

L(i). As 1/(t) # 0 andt C L[a, 8], Proposition 3.8 shows that evexye Ly, is p-
nilpotentinL,. However,

Dy (14 x1)2(1+ x2)%) = 2(1+ x1) (1 + x2)%01 — 2(1+ x1)*(1 + x2)2
is a vector oft-weight 24 which is notp-nilpotentinH (2; 1)® . This contradiction shows

that H # T. ThusH = Fho C H(2; 1)@. Therefore, thel-module L[«, 81/ H (2; 1)@
has no zero weight. Consequently,

Lia, B1C H2; D@ & F2! 0@ F2b 0@ FDu (07 1207Y).
Now defineu € T* by setting
w(T NkeraNnkerg)=0, u(ho) =0, u(d) =1,
and lettg := 7 N kery and b := L(u). Since u(H) = 0 the 1-sectionL(u) 2 H is
nilpotent, hencdgp coincides with the unique maximal torus in tpeenvelope oftg + b
in L,. Moreover, there existst € t; such thatL(«, 8) coincides with the 1-section

L(A) relative totg. By Theorem 3.6, the unique minimal ideal of the quotiépn] =
L(A)/radL(A) is simple and coincides with[ 4] . Note thatL[A] is a homomorphic
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image ofL[«, 8] and the unique minimal ideal df[«, 8] is simple on its own right. Then
Lla, 1= L[ A] so thatL[A]® = H(2; 1)@. Since there is a toruk in T + L(e, B)
with T N kera Nkerp C To and T = tg, we can replac& by Ty in the final part of the
proof of Corollary 3.7 to conclude thdfie, 81= H(2; 1)@ & F D whereD is either 0 or
Dy (xf’lxé”l) or p =5 andD = x}d,. This is case (2) of the theorem.

(c) Suppose that > 0 andthereis € (F,a +F,p) \ {0} with v(H) =0. Sett,:=T N
kerv andh’ := L(v). Then agairh’ is nilpotent andy, is the unique maximal torus in the
p-envelope oft; + b’ in L,. Moreover, there existd’ e (t;)* such thatL(«, g) coincides
with the 1-sectionL(A’) relative tot,. By Theorem 3.6L[A’] = L(A")/radL(A’) has a
unique minimal ideal which is simple and coincides with4']©®. Let

¥ Lla, Bl —> L[A'] = Lle, B]/radL[e, B]

denote the canonical homomorphism. Sirt® A(m; 1) is perfect the image/ (S ®
A(m; 1)) coincides with the minimal ideal of.[A’], hence is simple. Thereforg ®
A(m; D) =S ® A(m; ) Nkery is an ideal ofL[«, B]. Then it is an ideal oL[«, 8], as
well. This yieldsmo(L[a, B1,) C W(m; 1)(g). On the other handrz(L[«, 81,) is an ideal
of ma(Lle, Bl + T) and the latter subalgebra is transitive(m; 1). So it must be that
ma(Lle, Blp) = (0). Thenma(T) = m2(F(d @ 1+ 1d ® 10)) is a transitive subalgebra of
W (m; 1). This means that there is a toral elemegstT such thatra(r) ¢ W (m; 1D and
m2(Ft) is transitive inW (m; 1). Sincems(¢) is conjugate under Awt (m; 1) to (1+ x1)d1,
by Demushkin’s theorem, we conclude that= 1. This is case (3) of the theorem.

(d) From now on suppose that> 0 andy (H) #0 forall y € (F,a +F,8) \ {0} (this
implies thatT C H)). Fix u € (Fpa +F,8) \ {0} with (ko) =0. Then

Lla, 1= Lla, B1(10) + S,
Llo, B1(1) C cpers(ho) ® A(m; 1) + 1d @ mo(Lle, B1(1)),
Fho® A(m; 1) C radr (L[eBl(w)).

SinceT C H,, we also have that(L[e, 1, + T) = ma(L(p)p). As a consequence,
ma(L(n)p) is atransitive subalgebra ®f (m; 1).

Suppose all roots iﬂF;‘,u N I'(L,T) (if any) are proper. Ley € UieF;(fadL(M))m-
Proposition 3.8 shows that the subsppeg® o llfa,ﬁ)—l(Fho ® A(m; 1))] consists opr-
nilpotent elements of ,. Then all elements iy, Fho ® A(m; 1)] act nilpotently onS
forcingma(y) € W(m; 1)(). Now lety € H. Theny € cpers(ho) ® A(m; 1) + 1d @ m2(),
hencel[y,ho ® f]1 = ho ® m2(y)f for all f € A(m;1). Since Fho ® A(m;1) is T-
stable, we can combine Proposition 3.8 anddllary 3.9 to deduce that all elements in
(ady)3(Fho ® A(m; 1)) act nilpotently onS. But then againra(y) € W(m; 1) ().

Thus we have proved thab(radL(r)) C W(m; 1)(g). Sincem(radL(u)) is an ideal
in w2(L () p), atransitive subalgebra & (m; 1) we conclude thata(radL (w)) = (0). If
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m2(L (1)) = (0) thenma(L (1) ,) = (0), becauserz o @ o ¥, 4 is a restricted homomor-
phism. Howevernn > 0 andma(L (1)) is transitive inW (m; 1). So L(u) is nonsolvable,
in particular,F;y, NIT(L,T)#@. Since(kermz) (i) C cpers(ho) ® A(m; 1) is solvable,

we also obtain

m2(Lle, B1) = w2(L(w)) = L(w)/radL (1) = L[u].

(e) We continue assuming that all rootshiyu are proper. Sinc&,u N I'(L,T) # 9,
by part (d), we may assume without loss thats a root. If 1 is classical and fits into
a Melikian 2-section then we are in case (4) of the theorem. So suppdsenot of
this type. Proposition 3.8 then says that the U@@F;[Q(u)m, (radL(w))—;.] consists

of p-nilpotent elements oL ,. Arguing as in part (d), we are now able to deduce that
m2(y) € W(m; 1) forallye HU (U,.GF; Qi.). Nowlety U,.GF; L;,. Then

P € tpers (ho) ® A(m; 1) +1d @ m2(yP).

Since Fho ® A(m; 1) is T-stable, we now combine Lemma 4.3 and _Corollary 3.9 to
deduce that all elements i@dy?)?(Fho ® A(m; 1)) act nilpotently onS. Then again
m2(y?) € W(m; 1)(0). Thus

nz(Q—(u) +y ZZ) C W(m; Do,

ie]F;; r>0
which implies thatr2(Q (L (1)) C W(m; 1) (o). This enables us to conclude that

m =dimW (m; 1)/ W (m; 1)0) = dimm2(L(w)p)/ W (m; )0y N7w2(L(w) p)

<dimma(L(w)p) /m2(Q(L (W) p))
=dimL(w)p/Q(L(1)p)
=dim L[]/ Q(L[u])

(one should keep in mind that the solvable idéedrns o @ o ¥, g)(n) of L(), is
contained inQ(L(u),)). As a first consequence:, < 2. More preciselyy is Witt if and
only if m = 1, andu is Hamiltonian if and only ifn = 2 (sincem > 0, u is not classical).

(f) Finally, supposew € I'(L, T) is improper. This case will involve toral switchings;
we refer to [9, pp. 218-222] for related material and notation. It follows from [2, (1.9)]
thattherearé€ e {x € HOI’T\[[: (F,F) | »x?—»x=Idr}andu Ulew L;, suchthatthe torus

T, ={t — u@) Zm(“) u?' |t € T} has the property that any roquu g € I'(L, T,) with

i€ F; is proper. Since: € L(1), we have that.(u) = L(py.¢). Sinceu € Fpa +F,8,

we have thatL(«, 8) = L(ay.g, Bu,g). Since the generalized Winter exponentials, ¢
preserve all ideals af («, 8), we also have that radL(«, 8) =rady, L(oue, Bu,e). Then

Lla, Bl = L(a, p)/ radr L(a, B) = L(ou.g, Bu.g)/ 1adr, L(au g, Bug) = Llow,g, Bu.el-
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As a consequencey, g = Yy, . 6, .- Moreover,Lla, ¢, Bu.g] has a unique minimal ideal
isomorphic toS ® A(m; 1) with S andm unchanged. Thus we can choose the same
embedding® for both L[«, 8] and L{oy ¢, Bu.c]. Note thathg € @ (¥, g(T)) Nkeru =

D (W, ¢ poc (1) Nkerp, : and

(120 ® 0 Wo ) (L(1)) = (120 @ 0 Wey, . ) (L(1ue))-

Since all roots ir¥7, i1, ¢ are proper we can apply parts (d) and (e) of this proofto conclude
that we are in case (5) (respectively (6)) of the theorem whgn is Witt (respectively
Hamiltonian). To finish the proof it now remains to mention that is Witt (Hamiltonian)
ifandonly if wis. O

5. Someremarkson Block algebrasof dimension p2 — 1

In this section, we are going to revise [17] in order to extend the results there
to our present situation. It is assumed in [17, §1-3] that 3 but at the beginning
of 84 it is imposed thatp > 5. We will go through the proofs and check for their
validity in characteristic 5AIl our references to [17] will be boldfaced. Recall that
H = H(2;1 &())?P is a Block algebra of dimensiop? — 1, A =1—xP~1yr~lec H,
© = —yP~13, e DerH, and M is an irreducibleH-module of dimension< p2. By
Propositior?2.2, the semisimplg-envelopeH,, of H (which is isomorphic to DeH) acts
naturally onM. The p-character of thed,-moduleM is denoted by:. From now on we
use the notation of [17] without further comment.

Lemmast.1-4.3 hold for p = 5. Lemmad.4(1) needs a new proof given below.

Let Mp denote an irreduciblé?g-submodule ofM. According to (4.2),Mp is an
irreducible module foFx? + Fxy + Fy?. Pick a nonzera € Mo with p(xy) - u € Fu.
The set

[P p(»)/u]0<i <4, 0<j <2} U{p() p(») p(xPu|0<i <4 0<j <2}

consists of 30 elements. As dibh < 52 we have a nontrivial relation

4 2
(ZZ(aijp(x)ip(y)j +/3ijp(x)ip(y)jp(x2))> u=0.

i=0 ;=0

Putk :=maxi + j | a;; #0 or B;; #0}, s :=maxj | ax—; ; #0 or gr_; ; # 0}, and
r:=k—s. Obviouslyk < 6 ands < 2. If k < 6 then argue as in the original proof= 6
thens =2, r =4, and

0=(p(4) - u(A)Id)(Z(ai, P () + &,-p(x)"p(y)-’p(xz))u)

iJ

=Y aij[p(A), p ) o Ju+ Y Bij[p(A), pX) 0 (1) ]p(x%)u

ij i,j
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= as2[p(A), p()*p(N?]u + Ba2[p (1), p (1) *p(1)?]p(x?)u

1 1 2
= Eom,zp(xz)u + 5,34,2p(x2) u.
As p(x®u and p(x®2u belong to distinct eigenspaces @f(xy) it must be that
a4.20(x%)u = Ba20(x%)%u = 0. As k = 6 one of these coefficients has to be nonzero
implying p(x2)%u = 0. The rest of Lemma.4 now follows from this result.

To extend Lemmd.5 we consider the set

{p(©) p()/u|0<i, j <3 U{p@©) p() p(x)u|0<i, j <3

and then proceed as in the original proof. The proofs of Theoref$.3 only require
Lemmast.4 and4.5, and(p > 3)-arguments. So these theorems holdgor 3. However,
we will need a better estimate in Proposit@d(1).

Proposition 6.4(1) (improved).Let G be a central extension off (2; 1; @ (r))® and
M be a finite-dimensiona;-module. IfG® N C(G) acts non-nilpotently on then
dimM > pr—D/2,

Proof. Suppose dim < p®»~D/2. The proof in [17] shows thaM is an irreducible
G-module of dimensiop?~1/2 and the monomialg (y)*1p(y?)2 ... p(yP~1)kr-1 with
0< k; < p—1form abasis of End/. Then

p(A) = Do app(y?) P p ()
k:(kl,kg,...,kp—l)

for someuy € F. The central extensions éf (2; 1; @ (7))V are described in Theoreés.

It is immediate from this description that A) commutes withp (y*) fork =2, ..., p— 1.
Applying the operators gel(y?~1), adp(y?~2), ..., adp(y?) to the above expression, one
derives thaty = 0 unlesk = (0, ..., k,_1). It follows thatp(A) is a linear combination
of p(y?~17 with 0 < j < p — 1. Sincep(A) commutes withp(xy), this yields that
p(A) C Fldy. SinceH (2; 1; (7))@ is simple this contradicts our general assumption
onM. O

The improved Propositiof.4(1) enables us to extend Theoréh®(1) after which all
arguments used in [17, Sections 6, 7] go throughfer 3. We conclude that all results of
[17] hold for p > 3.

In the sequel, we will need two additional resultsB12; 1; @ (1))@

Proposition 5.1. Let x be a linear function on the Lie algebrBerH (2; 1; & (r))®
vanishing onH (2; 1; @ (z))¥ o, and T be a2-dimensional torus iDer H (2; 1; & ().
Let u,v € H2; 1, ®(r))® be root vectors forl corresponding to rootsx and 8,
respectively. Then

x ([, v])" = —a(vP) x W) + B(uP) x (v)”.
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Proof. Recall from [17, Section 1] thaH (2; 1; ®(7))? is the derived subalgebra of
a Poisson Lie algebra. More precisel§(2; 1; @)D = (A2 D), (-, -HD where the
Poisson bracket{-,-} on the commutative algebrd(2;1) is given by {x, y} = A.
According to [18, Theorem VI8], there is a generating sét1, y2} C A(2; 1)1y of the
commutative algebrd (2; 1) such that

v, 72} =Q+yD)A+y2) and T = (14 y19/dy1® F(1+ y2)d/0y>.

Fori =1,2, setz; := (1+ y;). Since allT-root spaces of the Poisson algebrez; 1
are 1-dimensional, we may assume, after rescaling uthatzlzz andv = z{z g for some
0 b,c.d € By with (0.0) ¢ [(a,b), e, d). AS (45 524} = (ad — be)ed 5 we
derive that

ﬁ(up)v = (adu)p(zizg) = (ad — bc)Pv,
ot(vp)u = (adv)p(zizg) = (bc —ad)’u.

Slncezlz2 =iy1+ jy2 (mod A(2; D)) + FA), it follows from [17, Proposition 1.2(1)]
that

il =izi+jzz (MOdH(2 L &) Vo) (Vi jeF,).

As x vanishes orH (2; 1; @ (1))® ¢, we then have

x (L, v])” + a(vP) x w)? — B(uP) x (v)?
= x((ad = be) 28+ 25 )Y+ (be — ad)P x (2525)7 — (ad — be)? x (2524)”
= (ad — bc)?(((a+ ) x(z1) + (b +d)x(z2))" — ((ax(z1) + bx (z2))"
— (ex(z) +dx(z2)")) =0,

completing the proof. O

By [2, Proposition 2.1.8(b)], # derivation algebra Dé¥ (2; 1; @ (1))V is naturally
identified with a restricted subalgebra #f(2; 1). The standard maximal subalgebra
of DerH (2; 1; @(r))® is defined as DeH (2; 1; & (7)Y N W(2; 1)(g). It is obviously
restricted and has codimension 2 in B&2; 1; & (v))D.

Proposition 5.2. Let £ be a restricted Lie algebra with M) = 2 such that

(a) radC is abelian andC/radl = DerH (2; 1; @ (1))D,
(b) radC = H(2; 1; #(1))® as(L/radL)-modules.
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LetT be a2-dimensional torus irC, let £ gy denote the preimage of the standard maximal
subalgebra oDerH (2; 1; (1)) in £, and suppose that

radl ¢ [L0), Lo)]-

Then there exists a restricted subalgebv&in £ with T c M and £ =M @ radL. In
particular, £ is a split extension.

Proof. (1) Since both the standard maximal subalgebra of /& 1; @ (r))® and rad’
are restricted so i€ (). It is immediate from assumption (b) that the Lie algeldras
centerless, while from the description[iL7, Proposition 1.2(1)] it follows that

radLo) = {x € Lo | x +radL e DerH (2, 1; (1))’ n W(2; Dn)}

and L)/ radL o) = sl(2). Given x € radL ) one hasx!?’" e radC for r > 0 forcing
xPI e (L) = (0). Thus radC o) is p-nilpotent.

(2) By our assumption, rafl ¢ [L0), L0)]. So there exist a subspasein L and

a nonzeroc € radL such that[L), L)l CV and L) =V @ Fec. Clearly, V is an
ideal of L. Let 2 denote the linear function ofig) with kera =V andi(c) = 1. Let
F), = F1, be a 1-dimensional vector space o¥erThe mapp, : L) — gl(Fy) given by
pr(x) - L, = A(x)1,, is a representation ofq). It is well known (and easily seen) that
there exists a linear functiqgm on £ such that

()P = 1(x)? — A(xP)  vx e L)
Letu(L, u) denote the reduced enveloping algebr& aforresponding te € £*, and
M = u(‘C’7 I’L) ®u(£(o),p.) F)u

a p?-dimensional induced-module with p-characten.. Let M’ be a composition factor
of M. It is immediate from assumption (b) thigf, rad£] = rad£. Due to the choice of
A the radical ofZ does not act nilpotently o’ (indeed, as!?! € C(£) = (0), the only
eigenvalue of on M’ equalsu(c) = A(c) = 1). Theoren.5 now shows that dinM’ = p2.
As rad. is a minimal ideal ofC, we deduce tha¥ is irreducible and faithful. Therefore,
so is the dualC-module M*. It is well known that the£-module M* is coinduced.
More precisely, the antipode of the universal enveloping algéhd) induces a natural
isomorphism

M*= HOI'T‘IU(L(O)’,M) (u(ﬁ, —u), F)ik)
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(3) We now observe that the discussion in [8, Section 2] applies t&€theduleM*.
Recall that the restricted-module 7 (L, L(g)) = Homy, 2o (u(L), F) carries a natural
commutative algebra structure amtl acts onF (L, Lp)) as derivations. The algebra
F(L, L) acts onM* via the comultiplication inU (£) and this action is compatible
with the action ofL on F(L, L)) and M*. FurthermoreM* is a free module of rank 1
overF (L, L(g)).

Since Lg) has codimension 2 itf, we have thatF (L, L) = A(2; 1) as algebras.
The (tautological) semidirect produd@j(2;1) := W(2; 1) & A(2;1) acts faithfully
and restrictedly onA(2; 1). It follows from the preceding remark that after a proper
identification of the freeF (L, £(g))-modulesM* and A(2; 1) the initial representation
L — gl(M*) will factor as

£ W2 1) — gl(A2 D)

for some injective homomorphism (see [8, p. 428] for more detail). Let denote
the canonical projection froMY(2; 1) onto W(2;1). Since M* is L-irreducible, the
subalgebrar (£) is transitive inW(2; 1). SinceL ) preserves the uniqgue maximal ideal
of F(L, L)), it follows from our construction thatr o o)(Lq) C W(2; 1)(g). Since
(r oo)(radl) C W(2; 1) (g is an ideal of( 0 o) (L), the transitivity of(;r o o) (£) yields

(m oo)(radL) = (0). As a consequence,

(mr oo ) (L) = L/radl = DerH (2; 1; @(T))(l)’

(4) We now look ato (T) € 20(2; 1). Clearly, T = Fr1 & Frp for some toral elements
1,12 € L. SinceM* hasp-character—u, we have that (1;)? = cr(tl.[p]) — u(t;)?1 where
1 is the unity inA(2; 1) C 25(2; 1). Therefore, ifu(z;) # 0 for somei theno (T) is not
closed under takingth powers i25(2; 1). Choose\; € F with Af’ —Ai = —u(t)? where
i=1,2,and set

t:= F((r(tl) + )»11) &) F(U(tz) + )»21).

Thent is a torus in20(2; 1) andx(t) = (r o o)(T) is a torus in(w o 0)(L). By [8,
Theorem 3.3], there ig € A(2; 1)1y such that(expadf)(t) C W(2; 1) & F1. Thus we
may assume without loss of generality thaf") c W(2; 1) @ F1. SinceC(£) = (0) and
(mroo)(radLl) = (0), we haves (radL) N (W (2; 1) @ F1) = (0). Since rad has dimension
p% — 1, we now get

W2 =o(radl)® (W2 D & F1).
SetM =0 Lo (£)N(W(2; 1) ® F1)). By construction = M @ rad andT c M. If
xeMthenoc(x)? e W(2; 1) d FlasW(2; 1) & F1lis arestricted subalgebra®ii(2; 1).

But theno (xI?1) = 6 (x)? + u(x)?1e W(2; 1) @ F1. ThusM is a restricted subalgebra
of £ and our proofis complete.O

As a consequence of Propositions 5.1 &rtlwe obtain the following proposition.
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Proposition 5.3. LetL, L), andT be as in Propositio.2, and lety be a linear function
on £ with x ([£(), £0)]) = 0. Letu andv be root vectors irC corresponding tgnonzerg
T-rootsa andB. Then

x ([, v])” = —a (V1) x )P + B(u'?!) x (v)7.

Proof. (1) By Proposition 5.2£ = M @& radC and T ¢ M. Since MDD = H(2; 1;
@ (7)) and[£, radl] = radL it must be thatt® = M @ radl. So L, = M, &
(radl), c LD foranyy € I'(£, T). Besides,I has no zero weight o6™. In view of
Jacobson’s formula, the latter implies that the functios y (x[71) is p-linear onL; for
anys € I' (L, T). But then the function

(x, 9) > x(1x, ¥1)” + a(xP) x )7 = By x (x)?
is p-bilinear onL, x Lg.

(2) Let M) = L N M. Clearly, M, is isomorphic to the standard maximal
subalgebra of Del (2; 1; @ (r))®. According to [17, Proposition 1.2(2d)M Y =
MWD = H2: 1 d(1)P . By our assumptiony vanishes onM gD, Thus if
u, v € M then the desired resultfows from Proposition 5.1.

Recall that rad. is p-nilpotent (see the proof of Proposition 5.2). Se b € radL then
[, v] = 0 anda(u!?!) = B(u!P1) = 0. Thus in this case we are done as well. Due to our
discussion in part (1), we can now assume thatM, v € radL. To finish the proof we
will need to show that

x(lu, )" = () x ()7

(3) We identify MD = H(2; 1; & (r))D with the derived subalgebra of the Poisson
algebra(A(2; 1), {-, -}). As in the proof ofProposition 5.1, we choose generatefsy,
A(2; 1)1y such that

v, y2l=A+yD)A+y2) and T =(1+4y1)d/dy1® F(1+ y2)9/dy2

(this is possible because c M = DerM®). We now fix anM-module isomorphism

n H(2; 1 @(x)® = radl and setz; = 1+ y; for i = 1, 2. Since allT-root spaces

of the Poisson algebra(2; 1) are 1-dimensional it can be assumed, after rescaling, that
u =z4z5 andv = n(z{z4) for some(a, b), (c,d) € F3 \ (0,0). Sincez§ — 2z1 + 1,25 —
272+ 1€ A(2; 1)) C Mg, the subspackM ), rad£] contains all elements

(- 201+ Ln(Ehed) ) = 27 (a1 72h) — (e 43)).
(8 - 202+ Ln(eied) | = ~2inleheh ) — n(chef ™).

From this it is easy to deduce thatz"lzé) — n(z122) € [M(g), radL] for all (i, j)
F2\ (0, 0). As a consequence(z{z5) = n(z§ z5*) (mod[M q). radL]) unlessa, b) =
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(—c, —d). As x vanishes onZ® and[Mq), radL] ¢ L)Y, the preceding remark
shows thaty (n(zgzg» = X(r;(zﬁ*"zg*d)). In the course of the proof of Proposition 5.1 we
have established th#(u!?)) = (ad — bc)P. So if (a, b) = (—c, —d) then[u, v] = 0 and
B!’y =0. Hence
x ([, v1)” = B x v)P = (ad — be)? x (n(z5251))? — (ad — be)? x (n(z524))"
=0,

as required. O

6. Case (A): Liealgebraswithout nonsolvable 1-sections
In this section, we assume that
all 1-sections of_ relative toT are solvable.

Recall that the general case of the classification problem in characteristi¢ was
split by the second author into four special cases known as Cases (A)—(D). The simple Lie
algebrad. satisfying the assumption above fall into Case (A) which was solved for7
in [16, Section 2] and [20]. Our goal in this section is to solve this case fo13.

Proposition 6.1. Then the following are true

(1) H cnilA.
(2) Eachl-section ofL relative toT is nilpotent and acts triangulably oh.

Proof. SupposeH ¢ nil H.Thenthere is € I'(L,T) suchthate(H) # 0. Set
2:={kel(L,T)|x(H)#0}.

As 2 # ¢, by our assumption, Schue’s lemma yields= )", _o[Ly, L_¢]. Since all
rootsinl"(L, T) are solvable, Proposition 3.8 shows that, L, ] C nil H for all x € £2.
But then H C nil H, a contradiction. Sinc& is a maximal torus in_,, this argument
(in conjunction with the Engel-Jacobson theorem) also yieldsKhatstandard and each
L(a) is nilpotent. Then Theorem 3.1 applies (wih= T') showing that eacli(«) acts
triangulablyonL. O

Recall that in prime characteristics thegea natural way to extend domain of root
functions. Letw € I'(L, T). Givenx € L, withy e I'(L, T') one hasc” € H. We define

a(x) = Ja(xP) Vxel,.

Thus « is defined on the uniorﬁqueF(L)T) L,. Since in our cas¢Ly,L_o] C
H CnilH, by Proposition 6.1, it follows from Jacobson’s formula that+ y)”
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xP + yP (mod nilH) for aﬂ x,yeL,andallx,ye H. Thereforeg is a linear function
not only onH but also onH and any root spack,, .

Lemma6.2. Let G be a simple Lie algebra with T&) < 2 andt C DerG be a torus such
that the centralizerg () acts nilpotently onG and eachl-section ofG relative tot is
nilpotent. TherG = H(2; 1; (7)), dimt=2, andt C G, = DerG.

Proof. (a) Lett Dt be a maximal torus of Dé&¥. If every 2-section ofG relative to
t' is solvable then so i$5 [19, Theorem 1.16]. Since this is not the case, there are
k', A e I'(G, t) such that the 2-sectialf := g(«’, 1") is nonsolvable. Fot € IF,, set

M(l) = Z Milc’—i—jk’-

JjeF,

Clearly, the decompositiol = @ieFP M (i) is anlF ,-grading ofM . As M is nonsolvable,

M (0) does not act nilpotently oM (see [19, Proposition 1.14]). Sineg (t') C ¢g(t)

does act nilpotently oz (by our assumption), the Engel-Jacobson theorem shows that
there isx € M,;, for somer € F such that ag} x is not nilpotent. Since the torus

is maximal, we have that’'(x) = 0 and«’(x) # 0. Interchanging the roles af and1’

in this argument, we find € Ly, for somes € [, such thatc'(y) = 0 and/(y) # 0.
Sincet’ is a maximal torus, the semisimple partsandy;, of x, y in M, C DerG lie in

the torust, :=t' N M, C G,. By constructionx, andy, are linearly independent. Since
dimty < MT(G,) = TR(G), our assumption o implies thatty = Fx; + Fys.

(b) Suppose that for soma € I' (G, t;,) the 1-sectionG(A) is nonsolvable. Clearly,
G(A) =G(a),....q)) for somea; € I'(G,t). So G(A) is a section ofG relative

to t'. Since G(A) is assumed to be nonsolvable it contains a nonsolvable 2-section
relative tot’, say M’ (again by [19, Theorem 1.16]). We now repeat the argument from
part (a) withM replaced byM’ (and witht' unchanged) to observe that theenvelope
G(A), C G, contains a 2-dimensional torus, s#y which acts faithfully onG(A).

But thent] @ (t; N kerA) is a 3-dimensional torus i, violating our assumption that
TR(G) = 2. Thus all 1-sections of; relative to the 2-dimensional toru§ in G, are
solvable.

(c) AsTR(G) =2, the Lie algebraG is listed in [10, Theorem 1.1]. Thanks to part (b)
of this proof, Proposition 6.1 applies @ implying that cs(t;) contains no nonzero
p-semisimple elements af ,. It follows that G is non-restricted (for otherwise; (t;)
would containt, which is impossible). IiG is isomorphic to one oW (1; 2), H(2; 1; A),
H(2; (2,1))® thenG has codimension 1 i@ . Sincety is 2-dimensional(0) # t;N G C

¢ (ty), a contradiction. We conclude tha& = H(2; 1; ®(r))P. So DerS = 5, by
[2, Theorem 2.1.8(b)], implying that ditn< TR(S) = 2. Thent =t D t; # (0) is 2-
dimensional. O
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Proposition 6.3. If L(«, B) is nonsolvable for some, 8 € I'(L, T) then
~ 1. @)
Lla, BIZ H(2 L ®(1) .

Proof. Suppose thaL[«, 8] is nonsolvable and lei0) # S = @;_, S: be the sum of all
minimal T -invariant ideals of thg -semisimple Lie algebra[«, 8]. The structure of is
described in Theorems 4.1, 4.2, 4.4. The algebras described in Theorems 4.1 and 4.4 do not
occur in our case since, as is easily seen, they all possess nonsolvable 1-sections relative
to 7. ThusL|e, B] is described in Theorem 4.2, so tifais simple andrR(S) = 2. As all
1-sections of. relative toT are solvable so are all 1-sectionsSofelative toT . Lemma 6.2

now saysS = H(2; 1; @(¢))®. ThenS c L[«, B] c DerS =S @ T, by Theorem 4.2(2).
SinceL[a, B1NT = (0), by Lemma 6.1, we must have thefe, 1= S. O

Corollary 6.4. Let T’ be an arbitrary torus of maximal dimensionir),. Then all roots in
I'(L,T’) are solvable.

Proof. Accordingto [6, Theorem 1], the tords is obtained fron¥" by a finite sequence of
successive elementary switchings. Easy induction on the number of elementary switchings
involved shows that it suffices to prove the corollary under the assumptiorfthatr,
wherez € L, and« is an arbitrary root inl" (L, T') (for the terminology related to toral
switchings, see the end of Section 4). Eix Homg, (F, F) with §7 — & =Idp. Any 1-
section ofL relative toT; has the formL(8;¢) = E; :(L(B)) forsomeg € I'(L, T); see
[9, p. 221] for example. Clearly; £ (L(B)) C L(«, B). So if L(«, B) is solvable we are
done.

Supposé. («, ) is nonsolvable. Thed[«, 8] = H(2; 1; @ (1))V, by Proposition 6.3,
while Lemma 6.2 shows that

‘I’a,ﬁ(T + L(a, ,B)p) =Wy g(T) ® Lla, B].
SinceE_ ¢ is invertible and preserves boil(«, §) and radL(«, B) ), we get

lI’oz.ﬁ (T + L(a, ,B)p) = lpa,/fi(Tz) @ Lla, B].
Thus the image of, in DerH (2; 1; @ (r)) is 2-dimensional. So it follows from [15,
Theorem VII.3] that all 1-sections off (2; 1; @ (7))V relative to the image of, are
abelian. But then all 1-sections @f(«, 8) relative toT, are solvable. In particular, this
applies toL (B, ¢) completing the proof. O

Next we are going to determine 3-sections.

Theorem 6.5. Letw, 8,y € I'(L, T). Then one of the following holds

(1) Ll B, y1=(0).
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(2) There exis$y, 82 € I'(L, T) such that
L[81, 821 = Lo, B, y1 = H(2: L; & (1)) V.

@) H2 L o) ® Am; 1) C Ll B, ] C Den(H(2;1; @(1)Y ® A(m; 1) for
somem € Ng. There existg. € I'(L, T) U {0} such that

Lla, B, y1=H(2 L @)Y ® A(m; 1) + Liw, B, y1(0).

Moreover, the image of the tordsin DerL[«, 8, y] is 3-dimensional.
(4) There exists a simple Lie algebfsawith TR(S) = 3 such that

S C Lla, B,y] C DerS.

Proof. (1) If G := L(a, B, ) is solvable then we are in case (1) of the theorem. So
assume from now thak(«, 8, y) is not solvable. TherG := L{a, 8, y] = L(«, 8,y)/

radr L(«, B, y) is a nonzerdl'-semisimple Lie algebra. Let be a minimalT -invariant
ideal of G. By Block’s theorem, there exist a simple algelstaand m € Ng such that

I =S ® A(m; 1), under a Lie algebra isomorphism SinceT + L(«, B, ), preserved,

the isomorphisngp induces a restricted Lie algebra homomorphism

@:T+ L, B,y)p — (DerS) ® A(m; 1) + (Id ® W(m; 1)).

Lett:= @(T) and identify! with S ® A(m; 1). By [9, Theorem 2.6], we can chooge
such that

S
t= (Z Flds ® (1+x,~)a,~)eato,

i=1

where tg is the normalizer ofS ® A(m; 1)1y in t ands = dimt/to. Moreover,tg =
A1) @ 1+ 1ds ® A2(2) | t € to} whereAry:tg — DerS andiy:tg — Z?;s+1 Fx;0; are
restricted homomorphisms. Pyt:= A1(tg) C DerS, a torus in DeSS. Fory € tf, define
7 € t* by setting

7(Q+x)3)=0 (1<i<ys), PO ®@1+1d®@A20) =y (h1(1) (¢ € to).

Lety be anyrootin/"(S, t1). ThenS, ® F C <1>(5)); yieldingy € F(¢(5), t). In view of
Proposition 6.1¢5(t1) ® F C ¢p(G) (b acts nilpotently or§ andS(y) ® F C (@(5))(77)
is nilpotent. Sinceas is a homomorphic image of the 3-section we have, by [19, Theo-
rem 1.9], that O< TR(S) < TR(G) < 3.

SupposeTR(S) < 2. Since all 1-sections of relative tot; C DerS are nilpotent,
Lemma 6.2 yields thas = H(2; 1; & (7)Y andt; C S, is 2-dimensional. In particular,
TR(S) = 2 in this case.
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Now let S = ;_; S; be the sum of all minimal-invariant ideals ofG. From the pre-
ceding remark itéllows that 2 < Y _!_; TR(S;) = TR(S) < 3 (see [19, Theorem 1.7(6)]).
Thusr =1 and! is the unique -invariant minimal ideal inG.

(2) SupposeTR(S) = 2. ThenS = S = H2; L ®(x))D. If m =0 then & maps
T + L(a, B,y), Onto DerS = (H(2; L ®())P), which gives dinT < TR(S) = 2.
Also, t = t1 is 2-dimensional (Lemma 6.2). So there exi&-independentl’-roots
81,82 € Fpa + F,8 + Fpy such that<1>(5) = @(L(81,82)). SinceG is T-semisimple,
Proposition 6.3 give§ = L[81, 82] = H(2; 1; ®(7))V. This is case (2) of the theorem.

(3) Now suppose thatR(S) = 2 andm > 0. Let I, denote thep-envelope of! in
Der!. SinceS = H(2; 1; @(7))Y we have that De§ = S,,. Therefore,/, = (DerS) ®
F + S ® A(m; 1). By [19, Theorem 1.7(8)], dirit N I, = 2 (one should keep in mind
that 7 + I, C Derl is centerless). Sincen I, = to N I, = kerky, we deduce that
t=(2® F) @ Ft wheret; is a 2-dimensional torus i}, andt is a toral element (possibly
zero). Then

®(G)=S®@Am; 1) + (2(G)) (1)

for somep € I'(@(G), T) U {0} with u(t2 ® F) =0. If t=t ® F thenG is a
homomorphic image of a 2-section ih. Since G is T-semisimple andn > 0, this
contradicts Proposition 6.3. Thus we are in case (3) of the theorem.

(4) Finally, supposelR(S) = 3. ThenTR(/) = 3 and hence dirhn I, = 3; see [19,
Theorem 1.7(8)]. Therefore,C I,. By [7, Lemma 2.5], we can choosg such that
t=t, ® F for some 3-dimensional tords C S,. As a consequence,

®(T + Lo, B, y)p) = Ip + P (H,).

Sincel is a minimalideal in® (T + L(«, B, ) p), the subalgebraz(® (H))) is transitive
in W(m; 1). Supposen > 0. Then there exists € @ (H),) with w2(h) ¢ W(m; 1) (o). Note
thatS, ® A(m; 1) C @(G); foranyy e I'(S, t2). Therefore,

Sy ® A(m; 1) =S, ® A(m; D1y + [h, Sy ® A(m; D]
C () ® Am; Dy + (9(6)) (M)D.

It is immediate from Propositiv 6.1(2) and the definition of that (@ (G))(iv)? acts
nilpotently on 7. But then S, ® A(m; 1) acts nilpotently on/, too (one should take

into account that the last summand in the displayed formula is stable under the action
of S(y) ® A(m; 1)(1)). Since the above applies to apye I"(S, t2), we now combine
Proposition 6.1(1) with the Engel-Jacobson theorem to deducé thets nilpotently on

itself. This contradicts the simplicity & proving thatm = 0. Thus we are in case (4) of

the theorem. O
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In the (p > 7)-theory, the role of the result we just proved is played by [16, Theo-

rem 2.7]. It should be mentioned here that our result is slightly weaker than the resultin [16]

where it is stated, in case (3), that the minimal ide& isomorphic toH (2; 1, @ (7)Y ®
A(1,1). Theorem 2.7 of [16] is only used in [20] to deduce [20, Lemma 6.3]. Now that
lemma follows easily from our weaker version of [16, Theorem 2.7].

It seems that relying on the information available at the time when [St 91/1] was written,
one can only prove our weaker version of [16, Theorem 2.7]. This oversight has no effect

on the classification fop > 7. Indeed, one of the consequences of [20] is that all solvable

1-sections in case (A) are triangulable; using this result, one can recover the original

version of case (3) in [16] from our slightly weaker version.

We are now going to take a closer look at the Lie algebras which appear in case (4) of

Theorem 6.5. To streamline our exposition weeaftmpose in the rest of this section that
TR(L) =3.

Theorem 6.6. Let TRL) = 3 and suppose that eithet. = H(2;n; ¥)@ or L =
S(3;n; w)M. Let T be a3-dimensional torus in the-envelopeL , C DerL with the
property thatL(«) is solvable for anyw € I'(L, T). ThenL is isomorphic to one of
H(2:(2,1); ®(x))? or §(3; 1; @(1))Y. Furthermore, the following hotd

(1) H = (0) and no root vector fofl" act nilpotently onL.

(2) Every solvable-section ofL relative toT is abelian.

(3) I'(L, T) U {0} is an elementary abeliap-group of orderp®.
(4) f x e Ly andy € Lg then[x, y1? = —a(y")x? + B(xP)yP.

Proof. For p > 7, this is proved in [20, Propositions 5.4, 5.5]. The proof follows from
some explicit computations involving the Lie algebré$2; n; &)@ and $(3; n; ¥)®
with property (A; 3) (see [20, Definition 2]). That property holds for odr due to
Corollary 6.4, while the computations themselves go throughjos 3. The result
follows. O

Proposition 6.7. If TR(L) = 3 and L contains a solvable-sectionL(«, 8) with F,-
independent, 8 € I'(L, T), thenL = H(2; (2,1); ®(7))D.

Proof. Let M be a maximal-invariant subalgebra af containingL («, 8).

(a) SupposéM is not solvable. Them contains a nonsolvable 2-section relativeltp
see [19, Theorem 1.16]. Sindé¢(«, 8) = L(a, B) is solvable there exist ,-independent
vy, 6e'(L,T)withy ¢ F,a +F,8 such thatM (y, §) is nonsolvable. For € F,, set

M(y.8)i:= Y Misyjy.
Jj€Fp

ThenM(y,d) = EBier M(y,6); isF,-graded. By [19, Propositinl.14], the subalgebra
M(y, 8)o does not act nilpotently oM (y, §). By Proposition 6.1, H C M(y, §)o acts
nilpotently onL. The Engel-Jacobson theorem now yields that there exists/;,,, for
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somej € F*, with §(x) # 0. Let L1(x) denote the Fitting ‘component for ad. Since
adx is not nilpotent,L1(x) = (adx)?" (L) # (0) (herer is a big enough positive integer).
By [19, Proposition 1.12], we then have= L1(x) + [L1(x), L1(x)]. HenceL1(x) ¢ M.
Note thatL1(x) = (adx)? (L) is T-invariant. So the complemetit;(x) \ M contains a
root vector, say: € L,,. Since ad acts invertibly onL1(x) it also acts invertibly of the
factor spacgL1(x) + M)/M. From this it follows thatw + F,y Cc I'*(L/M,T). Now
w=ma+nf+ry forsomem, n,r € F,. By our preceding remarkyo +np is aT -weight
of L/M. HoweverL(«, 8) C M, a contradiction.

(b) As a consequenced is solvable. Now [21, Corollary 6.34] (which generalizes
earlier work of Kuznetsov [3], Weisfeiler [24], and Skryabin [11]) says thais one
of sl(2), W(L n), H2;n; ®)@ for somen and @. As TR(L) = 3 we havel
5[(2). The semisimplep-envelopeW (1; n), is nothing butW(1; n) + Z;’;ll FDP' C
W(n; 1). It is well known thatTR((W(1; n)) = n (see [18, Section V] for example). So
W (1; n) intersects with any torus of maximal dimensionW(1; n),. As H C nil H, by
Proposition 6.1(1)L is not of Witt type. Now Theorem 6.6 givés= H (2; (2, 1), & (1))
completing the proof. O

Lemma 6.8. Suppose thal = L(«a, 8, y) has absolute toral ranlB. ThenI"(L,T) =
Fpra@F,p@TF,y)\ {0} and there iskt € N such thadimL; =k forall § e I'(L, T).

Proof. (1) Assume first that for any paisy, §2) of F,-independent roots i (L, T') the
2-sectionL (81, §2) is nonsolvable. Proposition 6.3 then says thi, §2] is isomorphic to
H(2; 1; ®(r))V. By [18, Theorem VII.3], any root vector ih[81, 8] acts non-nilpotently
on L[81, §2]. So there exist € Ls, andy € Ls, with §2(x) # 0, §1(x) = 0 andéy(y) # 0,
82(y) = 0. Thus dimL;s, = dimL;s,4 5, = dimL;s, for all F,-independenty, s>
I'(L,T) and alli, j € . This implies that all elements i(F,a ® F,8 & F,y) \ {0}
are roots and all root space®alf the same dimension.

(2) Now assume that. contains a solvable 2-section relative . Then L is
isomorphic toH (2; (2,1); ®(r))Y, by Proposition 6.7. Root space decomposition in
L=H(221);o()Y relative to a 3-dimensional torus i, has been investigated
in [20, Proposition 5.4]. Inspection showsaththe computations in [20] involving
H(2; (2,1); (1)) go through forp > 3. They imply, again, that all elements in
FradF,@F,y)\ {0} are roots and all root spaceaf the same dimension.o

Lemma6.9.Letg=g, D---Dgo D D g be afiltered Lie algebra and létbe a
triangulable subalgebra of. Thengrb is a triangulable subalgebra afrg.

Proof. LetG =grg, B = grb, and assume th@® does not act nilpotently of. Clearly,
BWD = i jczlBi, Bjl where

Bi:=gr,b=(bNgu +96+1)/96+1) C 96)/8G+1) =91; .
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For i # 0, the subspace gdB; consists of nilpotent endomorphisms. So the Engel-
Jacobson theorem implies that the subalgebra,[B;, B—;] does not act nilpotently
onG. Since the sdtJ;.,[Bi, B—;] is weakly closed, there ise Z such that the subalgebra
[Bi, B_i] does not act nilpotently o7. Then there existy,...,u; € b N g and
v1,..., v € bN gy such that the coset [u;, v;] + g(1) contains an element which does
not act nilpotently ory. But this is impossible a3 [u;, v;] € b™ N g(o, acts nilpotently
ong. O

Our next result will be crucial for the rest of this section. Its proof illustrates well some
of the classification methods.

Proposition 6.10. If TR(L) = 3 then H = (0) and (Ls)? c T for all § e I'(L, T).
Moreover, no root vector fof is p-nilpotentinL .

Proof. (1) Suppose the theorem is not true andllebe a counterexample of minimal
dimension to it. LetAV(L,) denote the set of alp-nilpotent elements inL,. By
Proposition 6.1(2), all 1-sections(§) relative toT are nilpotent and have the property
thatZ(8)Y ¢ N'(L,). Letn(8) denote the nilpotency class bfs) and letw € I'(L, T) be
such thai (o) = max{n(8) | § € I'(L, T)}. If n =n(a) >3 then(0) # L(a)" L C N(L,).
SinceL(a)"~1is T-invariant, eithet N L(«)"~1 £ (0) or L;, N L(ex)"~1 # (0) for some
i el If n(a) > 3, we letw be any nonzero element in the uniod N L(x)*~1) U

(Uielﬁ;; L(@)" 1N Lig).

Now suppose that all 1-sections bfrelative toT are abelian. The#/ = (0) (asL is
centerless). Sinck is a counterexample, there is a nonzek L, for somex € I' (L, T),
such that either” = 0 orx? is not p-semisimple ind . If x? = 0 for some nonzere € L,
we setw := x. If H = (0) andx” is not p-semisimple inH for somex € L,, we letw
be thep-nilpotent part oft”? in H. Clearly,w = f(x?) for somep-polynomial f € F[t]
without constant term.

Thus in all cases we can finde H U (U,.GF; L;y), forsomex € I'(L, T), such that

weN(Lp \ {0} and [w,L(a)]=(0).

Furthermore, ifw € H then eitherw € H or all 1-sections of relative toT are abelian
andw is the p-nilpotent part ofc” for somex € L,. From now we fix such @ and denote
by M a maximalT -invariant subalgebra df containing the centralizer @b in L.

Lets e I'(L,T). SinceZide Ls+iq is invariant under the nilpotent endomorphism
adw, there existsi = j(8) with Lsy o Ncr (w) # (0). Since this holds for all root$ we
can findF ,-independent, 8, y € I'(L, T) with

L(a) C M, Mg # (0), M, # (0). 1)
(2) We identifyL with adL c DerL and considef” + L, a Lie subalgebra of Ddr. If

J is anideal off + L then[J, L] is an ideal ofL. So eithefJ, L1 = (0) or[J,L] = L.
In the first case/ = (0), for J C DerL, while in the second casé D L. ThusT + M
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contains no nontrivial ideals df 4+ L. The T-maximality of M in L implies thatT + M
is a maximal subalgebra a@f + L.

Choose a subspa¢€ + L)—1 in T + L which containg” + M and has the property that
(T +L)(—1/(T +M)is (T + M)-irreducible. Let{(T + L) | i € Z} denote the standard
filtration associated with the pai(T + L)(—1y, (T + L)) where(T + L)y =T + M.
By the above, this filtration is exhaustive and separating, that is

T+L=(T+L)_pD- DT +L)sr1=0),

wherer > 0 ands > 0 are finite. LetG denote the associated graded Lie algeb(& gr L)
and letM (G) be the maximal ideal of; contained in)_, _, G;. It is well known (and

easy to see) thal/ (G) is a graded ideal of. So the quotienE := G /M (G) inherits from
G a graded Lie algebra structure.Gf; # (0) then the graded Lie algeb@ = ;_; G
satisfies the standard conditions (g1)—(g4) (see [10, p. 246] for examplg) 2f(0) then,
of course M (G) =", _oG; andG = Go.

Let T denote the image df in G. By construction7 acts onG as a torus of derivations.
SinceM carries thred ,-independent -roots, by (1), and sinca? (G) N Z,;o G; = (0),
the image off" in DerG is 3-dimensional. In other word§; carries thre& ,-independent
T-roots. As a consequencER(T, G) = 3. Combining Skryabin’s result [12, Theorem 5.1]
with [19, Theorem 1.7], we now get3 TR(T,G) < TR(G) < TR(G) < TR(L) = 3,
forcing TR(G) = 3.

(3) Suppose& = (0). ThenM (G) =Y, _, G; which entails that
G=Go=(T+L)o/T+L)=T+M

as Lie algebras. Thanks to (1), we haves,y € I'(M, T). Let A be an abelian ideal of
T + M. By what we just said, any element A;, for§ € I'(M, T) U {0}, has the property
thata(x) = B(x) = ¥y (x) = 0. Then any element ids acts nilpotently or’ ,, and hence
onG_1=(T + L)(—1/(T + L)(0). The Engel-Jacobson theorem now shows tatts
nilpotently onG_1. The irreducibility of G_; yields thatA annihilatesG_1 implying
A C (T + L)1y = (0). ThusG is semisimple. Since the grading Gfis trivial in this case,
all minimal ideals ofG are obviously graded.

If G1 # (0), then Weisfeiler's theorem [23] says th@tis semisimple and contains a
unigue minimal ideal which is graded. Thasis semisimple in all cases, and any minimal
ideal of G is graded.

SinceTR(G) =dimT = 3, we can identifyl" with a torus of maximal dimension in the
(semisimple)p-envelopeG , C DerG. Let I be a minimal ideal o&. By Block’s theorem,
there exist a simple algebsaandm € Ng such that

I — S®A(m; ),
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under an isomorphism. We suppress by identifying / with S ® A(m; 1), and denote
by I, the p-envelope off in Der!. The adjoint action o0&, on I gives rise to a restricted
homomorphism

®:G, —> Derl = (DerS) ® A(m; 1) ® (Id @ W(m; 1)).

Since G, is restricted, Block's theorem yields that the subalgebrao ®)(G)) is
transitive in W (m; 1). Since both®(G,) and I, contain/ (or rather ad), they must
be centerless. Then [19, Theorem 1.7(8)] shows thatdeif) N I, =TR() and, as a
consequencep (T) N I, is a torus of maximal dimension if,.

Putt:= @ (T) and letty denote the normalizer of ® A (m; 1) in t. According to [9,
Theorem 2.6], we can choogesuch that

N
t= (ZF®(1+x,~)3,~> ®to and to={r1() @ L+Id®Ar2(t) | 1 € to},
i=1

for some restricted homomorphisms:tg — DerS and A2:tg — Z;”:SH Fx;0;. Let
ty:=tN1I,, a subtorus irtg. Sincel, =1+ S, ® F, whereS, is the p-envelope ofS
in DersS, itis straightforward to see thap vanishes or; andiy(t1) C S, ® F. Combined
with our discussion above, this shows that=t; ® F wheret; is a torus of maximal
dimension inS,,.

Let t; := 11(to), a torus in DesS. Givens e (tp)* we lets denote the linear function on
t given by

§(1+x)3)=0 (1<i<ys), (M ®L+1d@Arx1) =8(r(1)) (1 € to).

Since theimage df in G = grL liesinGo, each 1-sectior (§) in G has the form gE.(§),
hence is nilpotent. Therefore, so is each 1-sectia@) relative toT . This, in turn, yields
that all 1-sections o (G) relative tot are nilpotent. NowS(8) ® F C (®(G))(8) for all
8 e I' (S, ty). This means that all 1-section Sfrelative tot;, are nilpotent as well. Applying
Lemma 6.2, we now deduce thER(S) > 2.

If G has two minimal ideals, salf = S1 ® A(m1, 1) andl> = A(my, 1), then the above
discussion yields 3- TR(G) > TR(I1 ® I) = TR(S1) + TR(S2) > 4, a contradiction. This
enables us to conclude that SocG is the only minimal ideal irG. As a consequence,
is injective (otherwis¢ker®, G| would contain a minimal ideal a& commuting withr).
In particular, dint = 3.

(4) SupposdR(S)=2.

(@) BylLemma6.25S= H (2 1; &(x))?, dimty =2, andt; C S,. Note thatS ® F is
t-stable; moreovet, acts onS ® F ast; ® F. The kernel of this action is contained in
ld ® W(m; 1) and has dimension 1 (because dig 3). Sincet; =tN I, is a torus of
maximal dimension iff,, by part (3), we also have thgf= t;. It follows that
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t=(t(,®F)® (Fld®d) (2)

for some nonzero toral derivatiahe W(m; 1). As a consequence; > 0. Sincet; is 2-
dimensional it follows from (2) thab (G) = (S® A(m; 1)) ® (®(G)) () for some nonzero
n € t* vanishing onty ® F and taking values i, on all toral elements of (such au is
unique up to a nonzero scalar multiplelip).

Givenn € t* we will denote byn* the pull-back ofy in 7. Note thatp* is uniquely
determined by and has the property that (¢) = n(®(grz)) forall t € T. Our goal in this
partis to show that the pull-bagk* of u is a multiple ofa from the first part of this proof.

Since DetS = t; @ S, by [2, Theorem VII.3], we have the inclusion

(@(G))(w C (H® A(m; D) @ (Id®@ W(m; 1)).

It follows easily from Demushkin’s theoremahthe spectrum of the toral derivatiah
on A(m; 1) equalskF, and all its eigenspaces have dimensjgti 1. According to [18,
Theorem VI1.3], there exisF ,-independent, v € I" (S, t;) such that

S= Z Ss.

Se(Fpi+F )\ {0}

Moreover,I'(S ® F,t) = (F,x +F,v) \ {0} and each root spac$ is 1-dimensional.
Each subspacés ® A(m; 1) is t-invariant andl"" (S5 ® A(m; 1), t) = 5+ Fou. As a
consequence,

(S® A(m; D) N (@(G)) () = (0).
It follows from the definition ofu that the t-roots u,«, v are linearly independent.
Combining this with our earlier remarks give¥® (G), t) D (Fpk +F,0 +Fpu) \ Fpu,
and

dim®(G), =p™ ' (Ynel(#(G).t)\Fyu). (3)

(b) Suppose that;1 # (0) and we are in the nondegenerate case of Weisfeiler's theorem
[23]. ThenG_1 C I andI N G; = S; ® A(m; 1) for some grading = P, ;, Si of S. Note

that [9, Theorem 2.6] is applicable in this graded setting, thatis it can be assumedshat
graded isomorphism and (2) holds for @ (7). SinceT C Go, the torug, preserves_;.

But then all root vectors fof, contained inS_; arep-nilpotentins,,. Since this contradicts
[18, Theorem VII.3(3)], we conclude that this case cannot occur.

(c) Now suppose&s1 = (0). Recall thatG_; is an irreducible and faithful;o-module.
Identify the 3-dimensional to and g7’ C Go. Suppose there ige I'(®(G), t) \ F 1.
such thaty* ¢ J;.o " (G—i, T). In view of (3), we then have dith,» = dim®(G), =
"~ 1. Since all root spaces df relative toT have the same dimension, by Lemma 6.8,
this implies that dini,« = p™~1 for all n € I'(®(G),t). So (3) now yields that
Uiso ' (G-, T)C F,u*. But thenT does not act faithfully orG _1, a contradiction.
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Thus (Fpi* 4+ F,0* + Fpu*) \ Fpu* C ;oo (G—i, T), by our final remark in
part (4a). Sinc& ,a N (U;.o '(G-;,T)) =9, by (1), we deduce that in the present case
Fp,a =Fu*, as desired.

(d) Finally, suppose thati; # (0) and we are in the degenerate case of Weisfeiler's
theorem [23]. TheiG2 = (0) and/ N G1 = (0).

Let x1,...,x, be a generating set im(m;1)1). Given a subsefiy,..., ik} of
{1,2,...,m} we denote byA(x;,,...,x;) the unital subalgebra of(m; 1) generated
Xiy, ..., X, atruncated polynomial algebra invariables. By [23, Theorem 3.1], there
exists a nonnegatiwve< m such that

U ={S®A(x1,....x) - f | f € Alerd, ..., xn), degf = j},

forall j >0, and

@(50)CDer(S®A(x1,...,xe))+Id®< Z A(xl,...,xe)-xi3j>.
e+1<i, j<m

To show that (2) is still valid in our present (more restrictive) setting we will apply [9,
Theorem 2.6] to the graded subalgebfa= S ® A(x,41,...,x,) of I. We first observe
that/ =1I' ® A(xy, ..., x.) as graded Lie algebras. Since

Der01’=(DerS)®F+Id®< Z FX[aj),
e+1<i,j<m

we have that
®(T) C ®(G) C (Derl) ® A(x1, ..., x.) + (Id @ DerA(xy, ..., xe)).

Combining [9, Theorem 2.6] with the fact that all maximal torijn, 1 ; ; <, Fxid; =
gl(m — e) are conjugate under the adjoint action of @lL— ¢), we deduce that the graded
mape can be chosen such that the totus & (T') has the form described in part (3). Then
our remarks at the beginning of part (4a) show that (2) is still valid fotthe present case.

AsS® F C Ip and[lo, ®(G1)] C I N @(G1) = (0), the p-envelopeS, ® F of S® F
in Derd (G) annihilatesp (G1). Sincety C S, we now get® (G1) = (@ (G1)) ().

Since [Id ® d, Ip] C Ip, the derivationd must preserveA(xy,...,x.). If d acts
nontrivially of A(x1,...,x.) then, as in part (4a), the spectrum dfon A(xy, ..., xe)
equaldF,. As a consequence)(Ss ® A(x1, ..., Xe)xm, t) = S+F,,;L foranys € I"(S, tb).
SinceS®A(x1, ..., x.)xn C G_1, we deduce, as at the end of part (4a), thatc +F, 0+
Fpi)\Fpu C I'(G_1,t). ThenF,u* =F,a as desired.

Now supposel acts trivially onA(x1, ..., x.). If e + 1 <i < m thend(x;) = a;x; for
someg; € F,. Asd # 0, at least one; is nonzero. So we may assume, after renumbering,
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thata,, # 0. Clearly,I" (S5 ® A(x1, ..., x.)xk, ) =8 + ku for all k < p — 1. From this it
is immediate that

UG- T) o I i= Fpk* +Fpi* + Fpu*) \ ((Fpi* +F,5%) UF,1*).
i>0

Moreover, dimLs- > p¢ for any §* € I''. Suppos& ,a # F,u*. Thena = n* for some
ne Fpc*+F,0)*\{0}). Hence dinL, =dimGoq = dim®(Go), = p¢. But then all root
spaces ol relative toT have this dimension; see Lemma 6.8. It also follows that 0
fore+1<i <m (indeed, ifa; # O for somel <m thenn € I'(S® A(x1, ..., X)X X, t)
for somec < p — 1, a contradiction). Thus it can be assumed thatx,,d,, .

Let H denote the image of gf in G. Combining [23, Theorem 3.1] with our earlier
remarks itis easy to observe thfabo @) (G) is contained in the fred (x1, . . ., x.)-module
generated by abl; andx ;d; with 1 <i <m ande+ 1< j, k <m. Therefore(m; o ®)(G)
decomposes into eigenspacesdas follows:

(120 @)(G) = (20 P)(G)o® (120 D)(G)—1 D (20 P)(G)1,
where(rrz o0 @)(G)o = (2 0 ®)(H) and

(720 @)(G)—1 C A(X1, -+, Xm—1)

(r20®)(G)1C Y ARL ..., Xn-1)Xm;.
i<m-1

As a consequencf(rz o @)(G)+1]” = (0). Jacobson’s formula now gives
(120 D) (G p) = (20 @)(H ) ® (120 P)(G) -1 ® (120 P)(G)1.

Supposen > 1. Since(rrz o @)(5,,) is a transitive subalgebra &f (m; 1), the subalgebra
(m2 o @)(H ) acts transitively onA(xy, ..., x,—1). Then there ish € H with (72 o
@) (h))(xk) ¢ A(m; 1)1y for somek < e. From the description of® (G))(w) given in
part (4a) we deduce thip (h), Ss @ xx)] ¢ Ss® A(m; 1) (1) foranys e I'(S, t;). However,
this means that some of the 1-sectiond.aklative toT are not triangulable, contradicting
Proposition 6.1(2).

Thusm = 1 forcinge = 0. As a consequence, diy =1 forall§ e I'(L, T). This, in
turn, givesd = T. Theorem 3.1 of [23] shows théito(u*) = Go(u*) = T andG1(u*) =
D(G(n)=Fn= G1, -k for somek IF*;,. Therefore My,+ is a 1-dimensional ideal
of M. By [18, Theorem VII.3], all 1-sections f relative tot; are abelian and no root
vector of S relative tot; act nilpotently onS. In conjunction with Proposition 6.1(2), this
implies that® induces an embedding

M/Miy» — (SQ F)® (FId® d).

From this it is immediate that all 1-sections #&f relative to T are abelian. But then
so is L(«x). Due to the choice of, all 1-sections ofL relative toT are abelian (see
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part (1) of this proof). Since nfil = (0), our choice ofw in part 1 now shows that
N(Lp) N (UieF; L;y) # . Since this contradicts [18, Theorem VII.3], we conclude, at

last, thatF',a = F,u* in all cases.

(5) (a) We will need some subtle estimates for the dimensions of root spaces. From our
discussion in part (4) we know that eithér = (0) or we are in the degenerate case of
Weisfeiler's theorem [23]. We also know that in either cases a graded map and (2)
holds fort = & (T). Set

K=Y (20 ®)(Gia) + [(120 @)Gia), (120 B)(G—ia)]).

: *
i€l

and letK, denote thep-envelope ofK in W(m; 1).

Letv® f € Ss ® A(m; 1) be aroot vector fot. Since all components of our filtration are
T-invariant, any 1-sectio () of G relative to giT' has the form gL (). In conjunction
with Proposition 6.1(2) and Lemma 6.9 this yields that any 1-secfi@y) is triangulable.
But then so is any 1-sectio@(n). Sincev € Ss is non p-nilpotent in S, the preceding
remark shows that® (H),v ® f]le S5 ® A(m; D). As this holds for all root vectors
in Ss ® A(m; 1) it must be thai®(H), Ss ® A(m; )] C S5 ® A(m; D). This forces
(20 ®)(H) C W(m; 1) Since

(120 ®)(Gp) = (120 2)(©)], = [(T20 )(G(®)],

is transitive inW(m; 1), we now deduce that the subalgelffd + K, C W(m; 1) is
transitive as well. Recall from part (4a) that

(kerm2) NP (G(a)) C ty® A(m; 1).

So anyy € (kermp) N ®(G;y) Can be written as =1 @ f + t2 ® g wherety, 1> € ty are
linearly independent ang, g € A(m; 1).

Supposed € W(m; 1)). Then K, is still transitive in W(m; 1). Since L(«) acts
triangulably onZ, all elements if K ,, y] act nilpotently on®(G), by Lemma 6.9. Since
ty is a torus, it must be thaf, g € F. Theny € (1o ® A(m; 1) N ®(Giy) = (0). As a
consequence,

deWm; Do = (Kkerm)N@(Gip)=(0) (VieF}). (4)
Supposel ¢ W(m; 1)g. Then it can be assumed further that (1 4 x1)91, by [9,
Theorem 2.6]. Then = 11 ® (14 x1)¥ f1+12® (1+x1)* g1 for some truncated polynomials

fi.gr€e A(m; D) in xo, ..., xn. SinceFd + K, is transitive inW(m; 1), we have that
02,...,0m € K, + W(m; 1)(0). Arguing as before, we now obtain th, g1 € F. Thus

d¢Wim; Doy = dim((kerma)N@(Gip)) <2 (Vi €Fy). (5)
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(b) We claim thatK, consists of nilpotent elements ¥ (m;1). So assume for a
contradiction that it does not and consider the weight space decompdsitiod; . Ki

of K relative tod. By Jacobson’s formulak, = K + Z,»dgp 2 i=0 Kipj. SinceL(w) is
nilpotent, so isK. Suppose one of th&;’s contains a non-nilpotent element @¥f(m; 1).
ThenC (K ) contains a nonzero toral elemerdommuting withd. By the definition ofK,
we havek # Ko. Henced does not centraliz& . Sod ¢ Ft, thatisK, + Fd contains a
2-dimensional torus. But the@ contains a 4-dimensional torus, a contradiction. Thus all
K;’s consist of nilpotent elements and our claim follows in view of the Engel-Jacobson
theorem.

Thus (Fd + K,)Y = K C K, acts nilpotently onA(m; 1). So we can apply [8,
Theorem 3.2] taFd + K. That theorem yields a restricted embedding

m m
o:Fd+K,— ZFx,»ai+ZA(x1,...,x,»,1)8,-.
i=1 i=1

Sinceo (K) is p-nilpotent, it must lie iny /. ; A(x1, ..., x;—1)9;. Consequently,

. _ mo m_q
Y dim((rz0 @)Giw) < Yo p =1 (6)
i=1

7 *
ler

Recall that all root spaces df relative to7T occur and have the same dimension, by
Lemma 6.8. AlsoG;, N M(G) = (0), by our choice ofM in part (1). So (3) yields that

dimGi, > p"~ " (Vi €F). (7)

Combining (7), (6), (5), and (4), we now get

m :I
2 — |

(p—Dp" <Y dimGiy < 2

7 *
ler

which givesn = 1.

(c) Supposel € W(1; 1)) Then(kermp) N ®(Giy) = (0) forall i e IF;;; see (4). But
then (7) leads to a contradiction:

(p=1 <) dimGia =) dim((m20 ®)(Gia)) < L.

r * r *
ter ter

Thusd ¢ W(1; 1)(g), and heﬂce it can be assumed that (1 + x)9.
Suppose there existse G;,, for somei e IF*;,, such that(z2 o ®@)(u) # (0). By our
concluding remark in part (5a),

D) =t @ (L+ )+ r21d ® (L+ x)F 19
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for somei; € F, A2 € F*, andt € t,. By (7), there exists a nonzenoe Goig. Our
assumption in conjunction with (6) shows that . dim((m20®)(G,y)) = 1. Sincex and
P

v have different weights faf, it must be that o @)(v) =0. Then® (v) =1’ ® (1+ x)%
with ¢’ € t; \ {0}. Therefore,

[® ), ®(v)] = 22zt ® (1+x)*.

We have already mentioned that all 1_—sect_ions{_}ofelative toT are triangulable. Thus
k=0 necessgrily holds. But theme H N Gy, = (0), a contradiction. We conclude
thatzieF; @(Gig) C thp® A(1; 1). Our discussion at the end of part (4d) (together with
[23, Theorem 3.1(v)]) now shows that we aret in the degenerate case of Weisfeiler's
theorem. As a result7; = (0) and hencel (o) injects intoty ® A(L; 1) + (Fld ® d).

As H C nil H, it must be thatL (o) — ZieF; ®(G,y). But thenL(x) is abelian and
N(LpyN (UieF; Liy) = {0}. Moreover, either dink, = 1 or dimL, = 2.

(d) Suppose dink, = 1. Then dimLs =1 for all § € I'(L, T), which implies that
H=T. Itis easy to see that this contradicts our choice of ghalpotent elementv €

L, (@) in part (1). Thus dinL, =2 whence dinLs =2 forall§ € I'(L, T). SinceGy =

(0), it also follows thatl + M = Go = G. Recall thatS = H (2; 1; @ (1))D. Therefore,
the minimalp-envelope off + S ® A(L; 1) is nothing butl + S® A(1; ) + S, ® F =

T 4+ S® A(1; 1). This shows that the Lie algeb@is restrictable. Lefp]: G — G denote
the pth power map ofG. SinceL(«) is abelian,H = (0), and no root vector irn.(«)

act nilpotently onL, our discussion in part (1) shows that thereis L, such thatw is
equal to thep-nilpotent part ofx” € H. Identify T + M with G and observe thaT is
self-centralizing inG. Thereforex!?! € T is [p]-semisimple. Sinc@/ carries threér -
independent -roots andc” — x!7! centralizes” + M, it must be that? — x!1 € H is p-
nilpotent. But ther(x?), = x[?1 andw = (x?),, = x? —x!P1. As aresult[w, T+ M] = (0).
Since bothl" + L andT + M carry p®—1 roots and. (o) C T + M, our present assumption
on dimL,, implies that dint7 + L)/(T + M) = p(p® — 1). On the other hand; _; is an
irreducible and faithfulG-module. By the toral rank considerations, this module is also
restricted (for otherwise the centralizer 6% in the p-envelope ofG in DerG would
contain a nonzero semisimple element and this would eventually result in the inequality
TR(G) > 4, a contradiction). Applying [9, Theorem 1.7] with= § ® A(1; 1) now yields
that there is a nontriviaf-moduleU such thatG_1 = U ® A(1; 1) as vector spaces. By the
preceding remark, ditf < p?— 1. Recall that we have already reinstated all results of [17]
under our present assumption pnsee Section 5. It is immediate from [17, Theorems 4.6,
4.9] thatU is S-irreducible of dimensiorp? — 1. This leaves no room fo& _, forcing
T+ L=(T+ L)—y. As adw commutes withT + M and acts nilpotently ol + L,

it acts trivially on the factor spacél’ + L)/(T + M), by Schur's lemma. This gives
(adw)?(L + T) = (0). Let y be an arbitrary element ifi + L and putW := adr,; w,

Y :=adr,z y. Since[W, [W, Y]] = ady[w, [w, y]] =0 andW? = 0, we have

0=[W,[W,Y]]=W2Y —2WYW + YW?=—2WYW.



824 A. Premet, H. Strade / Journal of Algebra 278 (2004) 766—833

Therefore WY W (z) =0forallz € T + L implying thatfw, T + L] C T + M is an abelian
ideal inT + M. AsT + M is semisimple we now gab = 0, a contradiction. The case
TR(S) < 2 is thus impossible.

(6) SupposdR(S)=3.

(@) Recall from part (3) that; is a torus of maximal dimension iS,. Therefore,
dimt] = 3 giving t = t;. Our discussion in part (3) now shows that t,® F C S, ® F.
Then®(G) =1 + o) (O =1+ ®(H) + t (as before H stands for the image of @f
in G).

(b) As explained in part (3), all 1-sections &frelative tot;, are nilpotent. Supposgis
not a counterexample to our theorem. Then no root vectSefative tot; act nilpotently
on S. Combining our discussion in part (6a) with Jacobson’s formula, we observe that

DGy =2(G)y=SQ@RAmM; )+ S, @F +®(H), +t
C (DerS) @ A(m; 1) + @ (H) .

Consequently(mz o ®)(H), = (72 0 ®)(G) is a transitive subalgebra o¥ (m; 1).
Supposen > 0 and lets be any rootin" (S, tp). Then[® (H), S5 ® A(m; 1)] contains non-
nilpotent elements oqb(ﬁp). In view of Lemma 6.9, this contradicts the triangulability of
L(5*), however. Thusn = 0. But then[® (H), Ss5] = (0), by a similar reasoning. Since
this holds for all rootss we derive thakb (H) is a nilpotent ideal in®(G). Since®(G)

is semisimple, by part (3), we now gét(H) = (0). ThenH = (0), G =1 + T, and
GO =U+T)D=1=¢5issimple.

Recall that/ is a graded ideal of;. Since all graded components bare T -invariant
and no root vector i relative toT C I, is p-nilpotentini,, it must be that = 7 N Go.
ButthenG =T + I = Go. This shows thaG1 = (0) andS + t; = M + T as Lie algebras.
By Lemma 6.8,|I" (S, tp)| = p3 —1=|I'(L,T)| and all root spaces of relative totg
(and of L relative toT) are of the same dimension. Sinfe= (0) andL, C M this gives
dimM = (p® — 1)dimL, = dimL. But thenL = M. This contradiction shows thatis a
counterexample to our theorem.

(c) It follows from part (6b) and our choice df that dimS = dimL. As grL is an
ideal of G containingl = S ® A(m: 1) we getm = 0 and(grL) N 1\7I(G) = (0). Itis now
straightforward to see that/ (G) = (0). ThenG =G =T + S andT is a 3-dimensional
torus inS,. Besides,S = G is graded and” C Dery S. Fori € Z, we letS; denote the
ith graded component ¢f.

If S contains a solvable 2-sectidf(n, §), for somelF ,-independent), § € I'(S, T),
thenS = H(2; (2,1); ®(1))V, by Proposition 6.7. By Theorem 6.6(T) = (0) and no
root vector forT act nilpotently onS in this case. Alsogs(7) = (0). SinceT preserves all
graded components &f this entailsG = Go. But then, again. = M, a contradiction.

Thus no 2-sectio (5, §) with IF,-independent ands is solvable. By Proposition 6.3,
we then haveS[n, 8] = H(2; 1; @(r)) wheneverm ands$ areF ,-independent. Recall
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that no root vector irf (2; 1; @ (7))V act nilpotently onH (2; 1; @ (7))Y. From this it is
immediate thass; N S(n, §) C radS(n, §) for all i £ 0. This shows that

Solv, ¥1:= So(n, 8)/ radSo(y, 8) = S[n, 81 = H(2; L; ¢ (1))

for all F ,-independent, § € I'(S, T).

Recall from part (1) that the roots g, y arelF,-independent and_, ;, = (0) for all
i € Fp. SinceG # Go, we haveS_; # (0). Letv € I'(S, T) be such thasy , # (0). We
may assume without loss of generality thais FF,-independent of,. Then Sg[v, y] =
H(2;1; @(7))Y, hence there is € So, with v(x) # 0. Then

S_1utjy =(@dx)/ (S_1,) #(0) (V) €F)).

Consequently/"(S_1,7) containsra + sp for somer e F, ands € IF*;,. Sincea and
ra + sp are F-independentSola, ra + sB1 = H(2; L; & (7))P. We now proceed as
before to obtain™(S_1, 7) N F,a # @. This contradiction finally completes the proof of
the proposition. O

Proposition 6.11. Suppose TR.) = 3. Then
[u,v]? = —a(v”)u” +,3(u”)v” (Vu e Ly, Yv € Lp).

Proof. (1) Proposition 6.10 in conjunction withacobson’s formula implies thdt, =
L ®T. Given a subalgebraf of L, we denote by, the p-envelope of\f in L. Let Ty
denote the set of atle T such thain 4+t € M, for somem € M. ThenTy =T N M, is a
subtorus off".

Suppose dird g < 3. Lemma 6.8 identifies the sét(L, T) U {0} with the F,-
space dual toT'™" := {r € T | t” = t}, a 3-dimensionalF ,-subspace ofT. Since
Tr.p) is spanned by its toral elements, thereyiss I'(L,T) with y(Tp(,p)) = O.
The 2-sectionL(«, ) carries a naturdF ,-grading with graded componenise, y); =
Zje]Fp L(a, ¥)iy+jo fori e F,. By the choice ofy, botha andy vanish onTy ) C
T1(a,p)- This implies thatl (o) = L(«, y)o acts nilpotently or’(«, y). But thenL(«, y)
is solvable, by [19, Proposition 1.14]. Accand to Proposition 6.7 and Theorem 6.6(4),
our result holds in this case.

(2) Thus we may assume from now thag, 8) is nonsolvable and
L(a,B)p =L, p)DT.
Then
C(L(a, B)) = C(L(a, B)p) N L(a, B) C CLiap)(T) = (0),

by Proposition 6.10. Sd.(«, 8) embeds into Dek («, 8) via the adjoint representation.
Let G denote thep-envelope ofL(«, 8) in DerL(«, 8). SinceG contains ad.(«, 8), we
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have C(G) = (0). But thenG is a minimal p-envelope ofL(«a, B) in the sense of [22,
(2.5)]. According to [22, Theorem 2.51,(«, B), contains an isomorphic copy 6f as an
ideal. More precisely, we have a commutative diagram

La,B) — G

|

L, B)py —= GoC

such thatC is central, all maps are injective Lie algebra homomorphisms, and the bottom-
row isomorphismis restricted. We stress, however,¢hetnot a restricted ideal @F & C.
After identifying the restricted Lie algebras® C andL(«, ), = L(, B) & T, we will
haveC =T Nkera Nkerg = C(L(a, B),) andG C L(a, B) .

Let [p]: G — G denote the (uniquepth power map onG. We extend[p] to a pth
power map orL («, ), by setting

(x+o)lPl:=xPl 4y P (Vxe€G, VeeO).
By Proposition 6.10w!?! € w? + C c T for all root vectorsw contained inL(c, B).
Therefore,k (w!Pl) = k(w”) for all x € Fya + F,B. Let T/ := T N G; then G =
L(a, B) ® T'. It is immediate from our earlier remarks th@t= Fry for some nonzero
toral elementg € T Nkera N kerB. As a consequence, for arye L(«, 8), we have that
xP — xIPl = y (x)P19 with x (x) € F. It is well known that the function
x:La,B)— F, x— x(x),
is linear; see [22, Proposition 2.1(2)], for example. k@r L,, v € Lg, we now have
[u, v]? +a(vp)up _ ﬁ(u”)v” =[u, U][p] + X([M, v])pto +a(v[”])u[p]
+ a(v[p])x(u)pto — ,B(M[p])v[”] — ﬁ(u[”])x (v)"1o.
Thus it suffices to establish the following two equalities:
[u, v]P) = —a(v[”])u[p] +13(M[p])v[p]’ (8)
x ([, v])” = —a (1) x )P + B(u'P) x (v)7. 9)
(3) In this part, we will show that (8) holds. Put
A= ey, eﬁ][p] —i—a(e/[gp])e([f] — ,B(egp])elgp].
We first suppose that difiy = 1 for all § € I' (L, T). SinceH = (0), by Proposition 6.10,

andL(«, B) is nonsolvable, we then havda, ) = H(2; 1; @ (1)); see Proposition 6.3.
ThenG = DerH (2; 1; ®(1))V as restricted Lie algebras, by [2, Proposition 2.1.8]. Due



A. Premet, H. Strade / Journal of Algebra 278 (2004) 766—833 827

to [18, Theorem VII.3], the Lie algebra(x, ) = H(2; 1; @ (7)Y has a basiges | § €
(Fpa +F,B) \ {0}} consisting of root vectors fdf and such that

len, el = fO, wWersp  (Ya,pe EFpa+Fpp)\(0}),

where f is a skew-symmetri& ,-bilinear form onF ,a + F, 8. Foru = ey, v = eg, this
gives

(adeq, epl)” (ep) = f(at, B)P (@learp)’ (en) = f o, B)F [l + B, w)P ey
= fa, B fla, w)Pey + fla, BYP f(B. W) ey

Sincep(el/ e, = (adeq)”(ep) = f(a. p)Pep and, similarlya(efeq = £(B.a) e =
—f(a, B)Pey, we obtain that ag, gy A = 0. SinceG acts faithfully onL(«, ) and
A € G, we deduce (8) in the present case.

Now suppose that diths > 2 for all § € I' (L, T') (recall that all root spaces fa@r have
the same dimension). We still havda, ] = H(2; 1; (1)), by Proposition 6.3. So
radL(«, B) is T-stable. From this it follows that (o, 8) ® T’)/ radL(«, B) is semisimple.
As a consequence, réd= radL(«, 8). Then G/radG is a minimal p-envelope of
L[a, B]. The argument used in the former case now gies radG while our earlier
remarks yieldA € T. But thenA € T NradG = T’ N radG = (0). Thus (8) holds in all
cases.

(4) Inthis part, we will show that (9) holds. We may assume gt 0.

Choose a rooy independent of and 8, and letM be a composition factor of the
L(a,ﬂ)p-modulezi,jer L, +ia+jp- Let p denote the corresponding representation of
L(a, B) p. By the definition ofL («, B),, this representation is restricted.

Sincety € C is a nonzero toral element, we have thatg) = y (t0)ldy # 0 and
y (to) € F,. So, giverw € G we have

pw)? = p(w!l) = p(w?) — p(w!) = x (W)” p(10) = (v (10) x (w)”) d .

Thusp:G — gl(M) is a representation iG, [p]) with p-charactery’ := y (f0) x # O.
SinceL(«, B), = G @ Fto, the restriction ofo to G remains irreducible.

Suppose dinks =1 for all § € I'(L, T). Then dimM < p2. Sincep|g is a non-
restricted representation, [17, Theorem 4.9] shawss induced from a 1-dimensional
module Fu over the standard maximal subalgelit@, of G = DerH (2; 1; (1)) (see
Section 5 for the definition of ). More precisely,

M Zu(G, ") ®uG.x) Fu-
Since Fu is 1-dimensionalG o,'® annihilatesu. By [17, Proposition 1.2(2d)IG o)

coincides withH (2; 1; @ (1)) ), and hence is restricted. Govanishes oG o,V. Then
Proposition 5.1 shows that (9) holds in the present case.
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In view of Lemma 6.8, it remains to consider the case whereldira 2 for all
8 € I'(L,T). By Proposition 6.10, thep-linear mapLs — T N kers, x — xP, is
injective. Since dinT = 3, we can assume that dih3 = 2 for all § € I'(L, T). Since
2> TR(L(a, B) > TR(L[a, B]) = TRH(2; 1; @ (7))P) = 2, the radical ofL(x, B) is
nilpotent; see [19, Theorem 1.7]. By our earlier remarks,lra@d 8) = radG. Choose
n > 1 such thatradG)" # (0) and (radG)"*! = (0). ThenN := (radG)" is a module
for the factor algebra&s’ := G/radG = DerH (2; 1; @ (1))V. Since(G/radG)); # (0)
for eaché € (F,a +F,p) \ {0} (and since all root spaces @f are 2-dimensional and
H = (0)), we have that difradG) < p2. If N is a trivial G-module, therf”’ annihilatesV.
But thenN c C(T) = (0), a contradiction. S& is a nontrivialG’-module of dimension
< p?. Thanks to [17, Theorems 4.6, 4.9], ti&-module N is isomorphic to the adjoint
G'-moduleH (2; 1; ®(7))Y. ThenN = radG, by dimension reasons. As a consequence,
radG is abelian and isomorphic td (2; 1; @ (1))Y as(G/radG)-modules.

We now look more closely at the irreducibfemodule M with p-charactery’. Let y
be a root vector fof’ contained in rad;. From our earlier remarks it is immediate that
yIPl = 0 anda(y) = B(y) = 0. As y # 0 we also have (y) # 0; see Proposition 6.10. It
follows thatx’(y) # 0. According to [22, Corollary 5.7.6],

M=u(G, x) ®u(Go.x") Mo

asG-modules, wher&5o = {x € G | x'([x, radG]) = 0} and M is an irreducibleG q)-
submodule ofM. Clearly, radz C Go. Also G # G, for otherwisey’ would vanish on
[G, radG] = radG, which is not the case. Since divh < 2p?, the restricted subalgebra
Go has codimensior 2in G.

Let 7:G — DerH(2; 1; ®(7))Y denote the canonical homamphism. Recall that
H(2; 1; (1)) g is the only proper subalgebra of maximal dimensioHi¢2; 1; @ (r))®
(see [19, Theorem 3.20] for example)AdtGo) N H(2; 1; @ (1))Y had codimensiorg 1
in H(2; 1; ®(x))D, thenz(Gg) would containH (2; 1; ®(¢))?. SinceGy is restricted,
this would yieldG = Go, however. Thusr(Go) normalizesH (2; 1; @ (1)) o and, as a
consequencer mapsGo onto the standard maximal subalgebra of Be&®; 1; @ (1)),
HenceGg has codimension 2 ir and dimMg < 2.

Since dimMp < 2, the image of5g in gl(Mp) is eithersl(Mp) or gl(Mp). This implies
that radGg acts onMy as scalar operators. Thé@g, radGo] acts trivially onMo, that is
My is a module ovelGo/[Go, radGo]. If radG C [Go, Go] then computing traces yields
that radG acts trivially onMg (one should keep in mind that ditfip < p and rad5 acts
on My as scalar operators). But we have already fourdradG with x’(y) # 0. Since
radG is a restricted ideal, this leads to a contradiction.

Thus rad5 ¢ [Go, Go]. Proposition 5.2 now shows thétis split, that is

G=K@&radG, K=DerH (21 o(1)".
Then[Go, Gol = [K(0), K(0)] +[K (o). radG]. Besides[K o), K] = H (2 L @(1)® g,

by [17, Proposition 1.2(2d)]. In particulafK o), K(0)] is [p]-closed. Asx!P! = 0 for
all x e radG, Jacobson’s formula shows thiako, Go] is [p]-closed as well. Using [17,
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Proposition 1.2], one observes without difficulty th#i ), radK )] = rad K (o), K(0)].
Since radiK o). K] = H(2: 1; ®(1))? 4, is [p]-closed, Jacobson’s formula shows that
S0 is

[Go, radGol = [K(g), radK 0] + [K(0), radG] =rad K (o), K(0)] + [K(0), radG].

Let y be any element ifiGg, radGo]. Since[Go, radGo] is [ p]-closed and acts trivially
on My, the central element? — yl?l ¢ Z(U(G)) annihilates the induced moduld.
Therefore x’ vanishes oiiGg, radGg]. Note that

[Go, Gol/[Go, radGol = [K(0), K(0)]/ rad K (g), K(0)] = sl(2),

and My is a restricteds((2) module (being irreducible of dimensioa p). Since x’
vanishes oGy, radGg] and[Go, Go] is [p]-closed, it must then be that vanishes on
[Go, Go] as well. Proposition 5.3 now completes the proafi

We now come to our first classification result for Lie algebras of an arbitrary rank:

Theorem 6.12. Let L be a finite dimensional simple Lie algebra over an algebraically
closed fieldF of characteristicp > 3 and suppose that thg-envelope ofL. in DerL
contains a torusT of maximal dimension such that for every raote I"(L,T) the
1-sectionL (@) is solvable. Then the sdt:= I"(L, T) U {0} is an[F ,-subspace irf * and
either L = S(m; n; ® (7)) for somem > 3 andn € N” or L is isomorphic to a Block
algebraL(A, 0, f) for someF ,-bilinear mappingf : A x A — F. In all cases, eaclh («)

is abelian and (T) = (0).

Proof. (a) Sincec; (T) consists ofp-nilpotent elements of. ,, by Lemma 6.1, the torus
T is standard. Then Theorem 2.1 shows that every nilpotent settien ..., ax) acts
triangulably onL.

(b) Suppose inddition thatTR(L) = 3. Then:

no root vector forT act nilpotently onZ (Proposition 6.10);

each solvable 2-section relativeTois abelian (Proposition 6.7, Theorem 6.6);
I'(L,T)U ({0} is anF ,-subspace if* (Lemma 6.8),

[x, y]? = —a(yP)x?P + B(xP)y? wheneven € L, andy € Lg (Proposition 6.11).

Combined together, these results show that [20, Theorem 5.6] holgsf@&.

(c) Lemmas 6.2-6.4 of [20] hold because theigmal proofs work when supplemented

by our Theorem 6.5. Inspection of [20, Secti@§] shows that only the results mentioned

in parts (a)—(c) of this proof are used to establish of [20, Theorems 7.5, 7.8]. Thus these
theorems continue to hold fgr > 3, hence the result.0
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7. Case (B): pushing the classical Lie algebras

In this section we will assume that(L, T) consists of solvable and classical roots and
contains at least one classical root. Our results will parallel those obtaingd-fatrin [16,
Sections 3, 4]. Note that, due to our assumption, all roofS(h, T') are proper. In other
words,T is an optimal torus in the sense of [2].

Proposition 7.1. Leta, 8 € I'(L, T). Then one of the following occurs

(1) Lla, B1=(0);

(2) thereis a classical root € I' (L, T) such thatL[«, 8] = L[u];
(3) Lla, B]=L[81] @ L[52] for some classical rootd;, 2 € I'(L, T);
(4) Lo, B1 =51 @ A(L; D),

(5) Lla, BI= H(2; 1; @ (1) Y;

(6) Lla, B]is classical simple of typA,, Cp, or Gy.

Moreover, in casegl)—(3), and(6), we have that’, g(T) C Lle, B]. In case(4), we have
Y g(T)=(Fh®1) @ (FId® (1+x)d), while in cas€5), L[a, 1N ¥y g(T) = (0).

Proof. Supposéd.(«, ) is nonsolvable. Then Theorems 4.1, 4.2, 4.4 apply. Since neither
Witt nor Hamiltonian roots occur if" (L, T), Theorem 4.1 yields the algebras listed in
case (3) of our theorem. Supposgy, 8] satisfies the conditions of Theorem 4.28lfs
classical then the equalifyR(S) = 2 implies thatL[«, 8] = S whereS is of type A, Co

or Gp.

S cannot be a restricted Lie algebra of Cartan type because othdtjiseould be of
Cartan type for somé e I'(L, T); see [2] or [18, Section IX] (these references apply in
our case a§ is optimal forL).

S cannot be isomorphic to the Melikian algely@d., 1) because otherwise[s] would
be of Cartan type for somee I"'(L, T), by [13, Theorem 5.2].

If S is a non-restricted Lie algebra of Cartan type, then we apply [18, Sections V,
VI, VIII] and argue as before to show that= H (2; 1; @ (r))V. This is case (5) of our
theorem.

Now assume thaf[«, 8] satisfies the conditions of Theorem 4.4.9f= L{pn]®
for someu € I'(L, T), then L[, B] = S = 5l(2). This is case (2) of our theorem. If
S = H(2;1)®@ then a Witt root occurs il (L, T); see [18, Theorem I1.5]. This case
is therefore impossible. If is as in case (3) of Theorem 4.4 th&re S ® A(L; 1) and
S ® F is contained in a 1-section dff«, B]. ThenS = sl(2). This brings case (4). Since
no 2-section of relative toT is Melikian, by [13, Theorem 5.2], case (4) of Theorem 4.4
is impossible.

Let¥ =Y, 3:T — DerL[a, ] andL[«, 8], be as in Section 4. TR(L[«, B]) =2
thenT C Llw, Bl, + C(T + Ll«, Bl,); see [19, Theorem 1.7(8)]. A8(T) + L[«, B1,
is centerless (being a subalgebra of Dgr, 81), we get¥(T) C Llw, B],. Since in
cases (1)—(3), (6) of our theorem|«, 8] is restricted, the preceding remark shows that
¥ (T) C L[a, Bl as claimed. IfL[«, 8] is as in case (4) of our theorem, then Theorem 4.4(3)
says thaw (T) = (Fh ® 1) ® (Fld ® (1 + x)d) for some nonzero toral elemehte S.
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Finally, if Lla, 81 = H(2;1; ®(1))V, then [18, Theorem VII.3] (together with our
preceding remark) shows th&t(7) N Ll«, B1=(0). O

Proposition 7.1 is an analogue of [16, Proposition 3.1]. It showsthaf’) satisfies
the conditions (B1)—(B4) of [16]. Inspection shows that the proofs of Theorem 3.2,
Corollary 3.3, Proposition 4.1, Lemma 4.2, and Proposition 4.3 in [16] go through for
p > 3. So all these results apply to our(denoted byG in [16]).

Givena € I'(L, T) we let E(a) be the set of all solvable rootse ' (L, T) such that
Lla, ] =sl(2) ® A(L; 1). Following [16, Section 3], we now set

B(L,T):={aeI'(L,T)|L(a)is nonsolvable and («) # ?}.

The roots inB(L,T) are calledbad According to [17, Lemma 4.2], for any bag
the setE(«) U {0} is an F,-subspace inT*. Givena € B(L,T), we set P(x) :=
H® ZMeE(a) L,, aT-invariant subalgebra af. Our next result is an analogue of [16,
Theorem 4.4].

Proposition 7.2. If B(L,T) # ¢ then Lo, ] = H(2;1; (1)) for somea, B €
(L, T).

Proof. By [17, Proposition 4.3], there ia € B(L,T) such thatP(«) is nonsolvable.
Since E(«) U {0} is anFF,-subspacepP («) is a T-section ofL. By [19, Theorem 1.16],
it contains a nonsolvable 2-sectioh(s, y) say. By the definition ofE(«), each 1-
sectionL(8) with § € (F,8 + F,y) \ {0} is solvable. Proposition 7.1 now yields that
LB, YIZH(2 1 @(r))(f) as desired. O

Our second classification result is as follows.

Theorem 7.3. Let L be a finite-dimensional simple Lie algebra over an algebraically
closed fieldF of characteristicy > 3 and assume that thg-envelope ofL in DerL
contains a torug” of maximal dimension such that all rootsit{L, T) are either solvable

or classical. Assume further that at least one root/iQL, T) is classical. TherL is a
classical Lie algebra, that is there exists a simple algebraic gréupf adjoint type over

F such thatL = (Lie G)®. In particular, L is restricted.

Proof. Assume the contrary. One observes, by inspection, that the proof of [16,
Lemma 4.6] goes through fgp > 3. This reduces the general case to the case where
TR(L) = 3. More precisely, we can assume tliathas the following properties:

(i) L is simple withTR(L) = 3 andT is a torus of maximal dimension ib,,;
(ii) there existsx € B(L, T) such thatL(§) = sl(2) foralls e I'(L, T) \ E();
(iii) there areg,y € I'(L, T) such thatE(«) = F,8 ®F,y) \ {0};

(iv) 8(H)=0foralls € E(x).

AsdimT =3 we havethal (L, T) CF,a +F,8+F,y. Letd =ia+ jB+ky bea
root, and pufw = jB8 + ky. Thenu € E(«), by (iii), while from the definition ofE («) it
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follows thatL[«, 1] = sl(2) ® A(1; 1). Supposeé ¢ {0, £1}. Itis clear from the description
of ¥, 4(T) in Proposition 7.1 (case (4)) thaw I' (L[, 1], ¥, (T)). As a consequence,
Ls Ccradr L(«, u) CradL(8). As§(H) =ia(H) # 0, [16, Theorem 3.2] shows thas is
contained in a proper ideal @f. As L is simple, we now obtain

'L, T)c{0,tao} +Fp,3 “FFpV'
SetLyg := Zi,je]Fp Ligtip+jy andLg:= L(B, y). Then the decomposition
L=L_1®Lo® L1

is a nontrivial shortZ-grading of L. So [4, Lemma 14] now yields that is classical,
forcing B(H) # 0. This contradiction proves the theorent
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