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Abstract

Let L be a finite-dimensional simple Lie algebra over an algebraically closed fieldF of
characteristicp > 3 andT a torus of maximal dimension in thep-envelope ofL in DerL. In this
paper we describe theT -semisimple quotients of the 2-sections ofL relative toT and prove that if
all 1-sections ofL relative toT are compositionally classical or solvable thenL is either classical o
a Block algebra or a filtered Lie algebra of typeS.
 2003 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

This is the fourth paper in a series devoted to classifying all finite-dimensional s
Lie algebras over an algebraically closed fieldF of characteristicp > 3. As the previous
one it will rely on the terminology and notation introduced in the first two papers o
series. Unless otherwise stated, all Lie algebras in this paper are assumed to be fin
dimensional overF . The classification of simple Lie algebras of absolute toral ran
obtained in [10] enables us now to deal with the general case implementing the program
successfully completed by the second author forp > 7.

Let gp be ap-envelope of a Lie algebrag and

MT(gp) := max{dimt | t is a torus ingp}.
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If g is centerless then theabsolute toral rankof g, denotedTR(g) is nothing butMT(G)

whereG is the p-envelope ofg in Derg (if C(g) �= (0) the definition is slightly more
complicated).

Given a subspaceW in g, we denote bycg(W) the centralizer ofW in g. Given a torus
t in gp and a restrictedgp-moduleV , we denote byΓ w(V, t) the set ofall weights of
V relative tot. The setΓ w(V, t) \ {0} is denoted byΓ (V, t). If V = g thenΓ = Γ (g, t)

is nothing but the set of all roots ofg relative tot. If t is a torus of maximal dimensio
in gp then the centralizercgp (t) is a Cartan subalgebra ofgp . The Cartan subalgebrash
of gp of the formh = cgp (t′), wheret′ is a torus of maximal dimension ingp, are called
regular. All regular Cartan subalgebras ingp have the same dimension [5], enjoy vario
nice properties (see our discussion below), and play an important role in the classifi
theory.

Now suppose that the torust ⊂ gp is such thath = cg(t) is nilpotent. Then so ishp , the
p-envelope ofh in gp . Let t̃ denote the unique maximal torus int+ hp Thencg(t̃) = h and

g = h ⊕
∑

γ∈Γ (g,t̃)

gγ

is the root space decomposition ofg relative to t̃. The subalgebrah is said to act
triangulably on a g-moduleV if all composition factors ofV viewed as anh-module
are 1-dimensional. Ifh acts triangulably ong, one often says thath is triangulable.

Let x ∈ h. If r ∈ N is large enough thenxpr ∈ t̃. Thus anyγ ∈ Γ (g, t̃) can be viewed a
anF -valued function onh. More precisely, we have that

γ (x) = pr
√

γ
(
xpr

)
(∀x ∈ h).

If h is triangulable then, of course, any root function is linear onh. We stress, however, th
the triangulability ofh is notpre-supposed in this paper, and some of the results we o
will be used in our next paper devoted to the case where roots functions are nonline

From now onL will always denote asimpleLie algebra overF , andLp will stand
for the p-envelope ofL in DerL. Recall thatLp is a semisimple Lie algebra and a
semisimplep-envelope ofL is isomorphic toLp as restricted Lie algebras (see [2
for example). Given a torusT of maximal dimension inLp , we setH := cL(T ) and
H̃ := cLp(T ). We have already mentioned that̃H is a Cartan subalgebra ofLp . However,
H need not be a Cartan subalgebra ofL; we will see later that it does happen in some v
interesting cases thatH = (0).

In [25], Wilson proved that forp > 7 all Cartan subalgebras ofL are triangulable. This
theorem is so important for the classification theory that it was later generalized (by bo
of us) in different directions.

In [15], the second author proved that forp > 7 the Cartan subalgebrãH of Lp is
triangulable. Using the terminology just introduced this result simply says that forp > 7
all regular Cartan subalgebras ofLp are triangulable. It should be stressed, however,
not all Cartan subalgebras ofLp are regular, in general, and there are many exam
of simpleLie algebras whose semisimplep-envelopes contain non-triangulable Car
subalgebras.
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In [7], the first author modified Wilson’s original proof to cover the casesp = 5 and
p = 7. Again it should be stressed that some simple Lie algebras in characteristic
possess non-triangulable Cartan subalgebras. So Wilson’s theorem does not ge
directly in this case. Roughly speaking, the result in [7] says that in characteristic
failure ofH to be triangulable can be detected at the level of 2-sections. In character
Wilson’s result is valid in its original form. In Section 3 of this paper, we prove
following generalization.

Theorem A. LetL be a finite-dimensional simple Lie algebra over an algebraically clo
field F of characteristicp > 3 and let T be a torus of maximal dimension inLp , the
p-envelope ofL in DerL. LetH = cL(T ) andH̃ = cLp(T ). Then the following hold:

(1) If p > 5 thenH̃ is triangulable.
(2) If p = 5 andH is triangulable thenH̃ is triangulable, too.

In Section 4 of this paper, we investigate the 2-sections ofL relative to T . Let
α,β ∈ Γ (L,T ) be two roots such that the 2-sectionL(α,β) := H ⊕ ∑

i,j∈Fp
Liα+jβ

is nonsolvable, and let radT L(α,β) denote the maximalT -invariant solvable ideal o
L(α,β). PutL[α,β] := L(α,β)/ radT L(α,β) and letS̃ = S̃[α,β] denote theT -socle of
L[α,β], the sum of all minimalT -invariant ideals ofL[α,β]. ThenS̃ = ⊕r

i=1 S̃i where
eachS̃i is a minimalT -invariant ideal ofL[α,β]. Let L(α,β)p denote thep-envelope of
L(α,β) in Lp . It is easily seen thatT + L(α,β)p ⊂ Lp acts onL[α,β] as derivations
and preserves̃S. We thus have a natural restricted homomorphismT + L(α,β)p → DerS̃
which we callΨα,β . We identifyL[α,β] with Ψα,β(L(α,β)) and denote the torusΨα,β(T )

by T .
By Block’s theorem,̃Si

∼= Si ⊗ A(mi;1) whereSi is a simple Lie algebra andmi ∈ N0.
It is shown in Section 4 thatr � 2 and the equalityr = 2 implies that eachSi is one of
sl(2), W(1;1), H(2;1)(2). Moreover, ifr = 1 thenS̃ = S ⊗ A(m;1) whereS is a simple
Lie algebra withTR(S) � 2. According to [10, Theorem 1.1],S is either classical or o
Cartan type or isomorphic to the restricted Melikian algebrag(1,1) (in which casep = 5).

Our next result generalizes and strengthens [2, Theorem 9.1.1], an important inte
ate result of the Block–Wilson classification.

Theorem B.

(i) If r = 2 then there areµ1,µ2 ∈ Γ (L,T ) such that

L[µ1](1) ⊕ L[µ2](1) ⊂ L[α,β] ⊂ L[µ1] ⊕ L[µ2].
(ii) If r = 1 and TR(S̃) = 2 thenS̃ is simple and the following hold:

(1) If S̃ is restricted thenL[α,β] = S̃.
(2) If S̃ is non-restricted theñS ⊂ L[α,β] ⊂ S̃ + T = S̃p unless̃S ∼= H(2; (2,1))(2)

in which caseH(2; (2,1))(2) ⊂ L[α,β] ⊂ H(2; (2,1))p.

(iii) If r = 1 and TR(S̃) = 1 then one of the following occurs:
(1) L[α,β] = L[µ] for someµ. Moreover,̃S = L[µ](1) anddimT = 1.
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(2) S̃ = H(2;1)(2) and L[α,β] = H(2;1)(2) ⊕ FD where eitherD = 0 or D =
DH (x

p−1
1 x

p−1
2 ) or p = 5 andD = x4

1∂2. Moreover,dimT = 2.
(3) S̃ = S ⊗ A(1;1) where S is one of sl(2), W(1;1), H(2;1)(2). Moreover,

L[α,β] ⊂ (DerS) ⊗ A(1;1) andT = (Fh0 ⊗ 1) ⊕ (F Id ⊗ (1+ x)∂) whereh0 is
a nonzero toral element inS.

(4) S̃ = S ⊗ A(m;1) whereS is one ofsl(2), W(1;1), H(2;1)(2) andm > 0. There
exists a classical rootµ such that

L[α,β] = S ⊗ A(m;1) + L[α,β](µ);
L[µ,ν] ∼= g(1,1) for someν ∈ Γ (L,T ).

(5) S̃ = S ⊗ A(1;1) whereS is one ofsl(2), W(1;1), H(2;1)(2), andL[α,β] is a
subalgebra in(DerS) ⊗ A(1;1) + Id ⊗ W(1;1) such that

L[α,β] = S ⊗ A(1;1) + (
L[α,β])(µ),

whereµ is a Witt root.
(6) S̃ = S ⊗ A(2;1) whereS is one ofsl(2), W(1;1), H(2;1)(2), andL[α,β] is a

subalgebra in(DerS) ⊗ A(2;1) + Id ⊗ W(2;1) such that

L[α,β] = S ⊗ A(2;1) + (
L[α,β])(µ),

whereµ is a Hamiltonian root.

Section 5 extends the results of [17] to the case wherep = 5. Section 6 deals with
the simple Lie algebrasL whose all 1-sections relative toT are solvable. This is a ver
difficult, isolated case and the results we established so far (in [8–10]) do not reall
here. Our arguments in Section 6 rely on several subsidiary results established in [2
valid forp > 3). However, our approach differs from that in [20] which allows us to sho
the proof even in the case wherep is large. Our main result is identical to the one obtain
in [20], the only difference being that it now holds forp > 3.

Theorem C. LetL be a finite-dimensional simple Lie algebra over an algebraically clo
field F of characteristicp > 3 and suppose that thep-envelope ofL in DerL contains
a torus T of maximal dimension such that for every rootα ∈ Γ (L,T ) the 1-section
L(α) is solvable. Then the setA := Γ (L,T ) ∪ {0} is an Fp-subspace inT ∗ and either
L ∼= S(m;n;Φ(τ))(1) for somem � 3 andn ∈ Nm or L is isomorphic to a Block algebr
L(A,0, f ) for someFp-bilinear mappingf :A × A → F . In all cases, eachL(α) is
abelian andcL(T ) = (0).

Note that each Block algebraL(A,0, f ) is known to be of typeH . The Cartan type Lie
algebrasS(m;n;Φ(τ))(1) with m � 3 andn ∈ Nm can be described as follows [20]: l
M be anm-dimensional vector space overF , and letA be an additive subgroup inM∗ of
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α∈A kerα = (0). Forα ∈ A, we setMα := {α}×kerα, an isomorphic
copy of kerα. Give

V (M,A) :=
⊕

α∈A\{0}
Mα

an algebra structure by setting[(α,u), (β, v)] = (α + β,α(v)u − β(u)v) for all nonzero
α,β ∈ A and allu ∈ kerα andv ∈ kerβ . It is known thatV (M,A) is a simple Lie algebra
isomorphic to one ofS(m;n;Φ(τ))(1) with N = ∑

ni . Conversely, eachS(m;n;Φ(τ))(1)

is isomorphic to one ofV (M,A)’s for a suitable choice ofA ⊂ M∗.
Recall that a rootδ ∈ Γ (L,T ) is calledsolvable(respectivelyclassical) if L(δ) is

solvable (respectivelyL(δ)/ radL(δ) ∼= sl(2)). Section 7 deals with the case where
roots in Γ (L,T ) are either classical or solvable, and at least one classical root o
Our argument here relies on Theorem B and several subsidiary results obtained
(and valid forp > 3). It is slightly shorter than the original argument in [16]. As expec
the result we obtain is identical to the one proved by the second author forp > 7.

Theorem D. LetL be a finite-dimensional simple Lie algebra over an algebraically clo
field F of characteristicp > 3 and assume that thep-envelope ofL in DerL contains
a torus T of maximal dimension such that all roots inΓ (L,T ) are either solvable or
classical. Assume further that at least one root inΓ (L,T ) is classical. ThenL is a classical
Lie algebra, that is there exists a simple algebraic groupG of adjoint type overF such
thatL ∼= (LieG)(1). In particular,L is restricted.

We mention for completeness that if the groupG is not of type Akp−1 then LieG is
simple (recall thatp > 3). In this case,L ∼= LieG (and one can also replace the adjo
groupG by its simply connected cover). IfG is of type Akp−1 thenG ∼= PGLkp(F ) and
L ∼= (pglkp(F ))(1) = pslkp(F ).

We would like to finish the introduction by announcing that our next paper
investigate the simple Lie algebrasL with the property thatH = cL(T ) is non-triangulable
for at least one torusT of maximal dimension inLp ⊂ DerL. It will be proved in our next
paper thatL is then isomorphic to one of the Melikian algebrasg(m,n) where(m,n) ∈ N2.

Given a Cartan type Lie algebraM, not necessarily simple, we denote byM(k) thekth
component of the standard filtration ofM.

2. 1-sections in Hamiltonian algebras

This section is of preliminary nature and aims at gathering some missing informat
root space decomposition in non-restricted Hamiltonian algebras of absolute toral rank
The results we obtain here will be used in Sections 3 and 4. They refine [2, Lemmas
11.1.3] and [18, Sections VI, VIII].

Given a subalgebraA of a Lie algebraM we denote by nilA the largest ideal ofA acting
nilpotently onM.
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Proposition 2.1. Let S̃ = H(2; (2,1)) andS = H(2; (2,1))(2). Let S̃p andSp be thep-
envelopes of̃S andS in DerS, respectively. Letg be a Lie subalgebra of̃Sp containingS,
t be a2-dimensional torus iñSp satisfying[t,g] ⊂ g, andh = cS(t). Then the following
are true:

(1) Sp = t + S.
(2) If α ∈ Γ (g, t) is such thatα(h) �= 0 thenS̃(α) ∼= H(2;1) andradg(α) = (0).

Proof. Recall thatS̃p = S̃ ⊕ FD
p
1 is isomorphic to a restricted subalgebra in thep-

envelope ofW(2; (2,1)) in DerA(2; (2,1)) and S(0) is a restricted subalgebra iñSp .
Moreover, DerH(2; (2,1))(2) = F(x1D1 + x2D2) ⊕ S̃p is isomorphic to a restricte
subalgebra in DerA(2; (2,1)) (see [2, Proposition 2.1.8(vii)], for example). Sin
DerA(2; (2,1)) ∼= W(3;1) possesses a 3-dimensional toral Cartan subalgebra, we
MT(S̃p) = MT(DerH(2; (2,1))(2))− 1� 2 (by [19, Lemma 1.6(2)] and the main result
[5]). On the other hand,MT(S̃p) � 2 (by [18, Section VI] for example). Therefore,t is a
torus of maximal dimension iñSp .

(a) Sincet ⊂ S̃p and S̃p/Sp is p-nilpotent we havet ⊂ Sp = S ⊕ FD
p

1 (by Jacobson’s
formula, the subalgebra on the right is restricted). As dimt = 2 this implies thatt∩S �= (0).
Supposet ⊂ S. SinceS/S(0) is a 2-dimensional module overS(0)/S(1)

∼= sl(2), each
nonzero element int∩S(0) acts invertibly onS/S(0). Sot∩S(0) �= (0) would implyt ⊂ S(0).
But thent would inject intoS(0)/S(1)

∼= sl(2) which is impossible. Thus under our prese
assumption ont we must have thatt ∩ S(0) = (0). This forcesS = t + S(0). But thent

must contain a toral element of the formaD1 + x with a ∈ F ∗ andx ∈ S(0). SinceS(0) is
restricted we then haveDp

1 ∈ t + S = S which is not true. Hencet �⊂ S and, consequently
Sp = t + S.

(b) According to [18, Theorem VI.2(2)], there is a torust′ in Sp such that|Γ (S, t′)| =
p2 − 1 and dimSγ = p for all γ ∈ Γ (S, t′). Combining this with [9, Corollary 2.11], w
obtain that the same is true fort, that is

∣∣Γ (S, t)
∣∣ = p2 − 1 and dimSγ = p ∀γ ∈ Γ (S, t).

Since t acts nilpotently oñSp/Sp , we also have that̃Sγ = Sγ for all γ ∈ Γ (S̃, t).
The standard filtration ofS (respectivelỹS) induces a filtration in its subalgebraS(α)

(respectivelyS̃(α)). The corresponding graded Lie algebras grS(α) and gr̃S(α)) are
naturally identified with graded Lie subalgebras inS andS̃, respectively.

There is a toral elementt ∈ t such thatS(α) = cS(t) (and likewise for̃S andg). We first
suppose thatt /∈ S. Thent = aD

p

1 + u wherea ∈ F ∗ andu ∈ S. It is easily seen (and firs
observed in [2, p. 232]) that grS(α) is contained incS(D

p

1 ) ∼= H(2;1)(2) while grS̃(α) lies
in cS̃ (D

p

1 ) ∼= H(2;1). Since

dimgrS(α) = dimS(α) = dimS − p
(
p2 − p

) = p3 − 2− (
p3 − p2) = p2 − 2,
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we deduce that grS(α) ∼= H(2,1)(2) as Lie algebras. Likewise dimgr̃S(α) = p2 + 1
yielding gr̃S(α) ∼= H(2;1). Since for any idealI ⊂ S(α) the subspace grI is an ideal
in grS(α) the Lie algebraS(α) must be simple. A similar reasoning applied toS̃(α) shows
that any nonzero ideal iñS(α) has dimension� p2 − 2 (this is due to the fact that an
nonzero ideal inH(2;1) containsH(2;1)(2)). SinceS(α) is a 1-section in a simple Li
algebra of absolute toral rank 2, we now obtain thatS(α) ∼= H(2;1)(2) (see [9, p. 193]).

The adjoint action of̃S(α) on its idealS(α) gives rise to a Lie algebra homomorphis
φ : S̃(α) → DerH(2;1)(2). As S(α) is simpleφ must be injective (otherwise our earli
discussion would implyS(α) ⊂ kerφ which is impossible). Thus̃S(α) is isomorphic to
a Lie subalgebra of dimensionp2 + 1 in DerH(2;1)(2). As mentioned at the beginnin
of the proof,t is a torus of maximal dimension iñSp . By [19, Theorem 1.9(2)], this
implies thatTR(S̃(α)) � 1. On the other hand, it is well known that DerH(2;1)(2) has
dimensionp2 + 2 and contains a 2-dimensional torus. SinceS̃(α)/S(α) is nilpotent it
is immediate from the description of DerH(2;1)(2) given in [2, Theorem 2.1.8(vii)] tha
the 3-dimensional image ofφ(S̃(α)) in the restricted quotient DerH(2;1)(2)/H(2;1)(2)

consists ofp-nilpotent elements. So it must coincide with the image ofH(2;1). This
enables us to conclude that̃S(α) ∼= H(2;1). But theng(α) ⊂ S̃(α) can be identified
with a subalgebra of DerH(2;1)(2) containingH(2;1)(2). Since any such subalgeb
is semisimple, we obtain the second statement of the proposition (under our presen
assumption ont).

(c) Next we suppose thatt ∈ S \ S(0). Then t = aD1 + bD2 + w wherea, b ∈ F and
w ∈ S(0). Since(aD1 + bD2)

p = apD
p

1 andwp ∈ S, the equalitytp = t combined with
Jacobson’s formula givesa = 0 and b �= 0. We now look at the graded Lie algeb
grS(α) = grcS(t) which is naturally identified with a graded subalgebra ofcS(D2) (cf.
[2, p. 232]). This observation enabled Block and Wilson to deduce thatcS(t) is solvable.
However, in this proof we need more information oncS(t). We claim thatcS(t) is
nilpotent and acts triangulably onS. To see this we first recall that, as in the former ca
dimcS(t) = p2 − 2. We define

ui := (
(adt)p−1 − Id

)(
DH

(
x

(i)
1 x

(p−1)

2

))
, 1� i � p2 − 2,

all of which lie in cS(t). Sinceb �= 0, the element grui ∈ H(2; (2,1))(2) is a nonzero
multiple of DH (x

(i)
1 ). It follows that the grui ’s are linearly independent. But then so a

theui ’s. Then they form a basis ofcS(t). Sincet ∈ S \ S(0) andui ∈ S(1) for i � 3, we get
cS(t) = F t ⊕ Fu2 ⊕ cS(t) ∩ S(1). ThencS(t) is nilpotent and[cS(t), cS(t)] ⊂ S(1), hence
the claim. As a consequence,h = cS(t) = F t ⊕ nil h. But thenα vanishes onh contrary to
our assumption onh.

(d) Finally, supposet ∈ S(0). Then 0�= grt ∈ S(0)/S(1)
∼= sl(2) acts invertibly onS/S(0).

It follows that cS(t) = F t ⊕ S(1)(t) forcing h = F t ⊕ nil h. Then againα vanishes onh
contrary to our assumption. Thus our assumption onh implies thatt /∈ S. Then we are in
case (b) and the proof of the proposition is now complete.�
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As in the earlier papers, we denote byA((m)) the divided power algebra inm variables,
a complete, linearly compact, local algebra overF (see, e.g., [2, (1.1)] where the notati
is a bit different). Fork � 0, thekth part of the standard (decreasing) filtration inA((m)) is
denoted byA((m))(k). Recall that the exponential mapping

exp :A((m))(1) −→ 1+ A((m))(1), f 
→ exp(f ) :=
∑
i�0

f (i),

is bijective. The inverse mapping 1+ A((m))(1) → A((m))(1) is given by

1+ g 
−→ ln(1+ g) :=
p∑

i=1

(−1)i−1(i − 1)!g(i).

Of course, exp(f + g) = exp(f )exp(g) and ln(1+ f )(1+ g) = ln(1+ f ) + ln(1+ g) for
all f,g ∈ A((m))(1).

We are now going to investigate the 1-sections in the Albert–Zassenhaus a
g = H(2;1;∆). Recall thatg consists of allD ∈ W(2;1) with Dω∆ = 0 where

ω∆ = exp
(
x

(p)
1

)
dx1 ∧ dx2.

The Lie algebrag is simple and has dimensionp2 (see [2, (2.1)], for example). Th
standard filtration ing is induced by that ofW(2;1).

Proposition 2.2. Let g = H(2;1;∆) and lett be a2-dimensional torus in the semisimp
p-envelopegp of g. Leth = cg(t), α ∈ Γ (g, t), and suppose thatα(h) �= 0. Then the union⋃

i∈F∗
p

(
radg(α)iα ∪ [

g(α)iα, radg(α)−iα

])
consists ofp-nilpotent elements ofgp .

Proof. It is well known (see, e.g., [18, Chapter VIII]) thatgp = Derg ∼= H(2;1;∆) ⊕
Fx1D1 ⊂ W(2;1). Moreover,gp contains the 2-dimensional torusFx1D1⊕Fx2D2 which
will be denoted byt1. This description implies thatgp acts on the lineFω∆. According
to [18, p. 459],|Γ (g, t1)| = p2 − 1 and dimgγ = 1 for any γ ∈ Γ (g, t1). Therefore,
t hasp2 − 1 roots onH(2;1;∆) and all root spaces fort are 1-dimensional (see [9
Corollary 2.10]).

(a) Let t0 = F(1 + x1)D1 ⊕ F(1 + x2)D2 and t2 = F(1 + x1)D1 ⊕ Fx2D2. By
Demushkin’s theorem, there isφ ∈ AutW(2;1) such thatφ(t) = ts for somes ∈ {0,1,2}.
Furthermore,φ is induced by a continuous automorphism of the divided power alg
A((2)) preservingA(2;1) ⊂ A((2)). Let

J (φ) = D1
(
φ(x1)

)
D2

(
φ(x2)

) − D2
(
φ(x1)

)
D1

(
φ(x2)

)
,
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an invertible element inA(2;1). Sinceφ(dx1 ∧ dx2) = J (φ)dx1 ∧ dx2 we have that
φ(ω∆) = aω∆ wherea = exp(φ(x1)

(p))J (φ). For i = 1,2 setai := a−1Di(a). There exist
u ∈ A((2))(1) andµ ∈ F ∗ such thata = µexp(u). Thenai = Di(u) wherei = 1,2. Since
Di respects the divided power maps, we also have that

ai = φ(x1)
(p−1)Di

(
φ(x1)

) + J (φ)−1Di

(
J (φ)

)
.

As a consequence,a1, a2 ∈ A(2;1). Sinceω∆ is a weight vector fort and dx1 ∧ dx2
is a weight vector for each of the torit0, t1, t2, the divided power seriesa is a weight
vector for ts . But then so are the truncated polynomialsa1 and a2. Furthermore,ai

has the same weight asDi . Sincea /∈ A(2;1) it follows from [2, Lemma 2.1.3] tha
φ(g) = {Da(f ) | f ∈ A(2;1)} where

Da(f ) := (D2 + a2)(f )D1 − (D1 + a1)(f )D2.

(b) There is a toral elementt ∈ t such thatg(α) = cg(t). Set

c′ := cφ(g)

(
φ(t)

) = φ
(
g(α)

)
.

If t /∈ W(2;1)(0), it can be assumed thatφ(t) = (1+ x1)D1 (see [9, Theorem 2.3]).
Supposes = 0. Since allt0-weight spaces inA(2;1) are 1-dimensional, there a

λ1, λ2 ∈ F such thatDi(u) = λi(1 + xi)
p−1 for i = 1,2. This system of differentia

equations has a unique solution inA((2))(1), namely,

u = λ1 ln(1+ x1) + λ2 ln(1+ x2).

If λ1, λ2 ∈ Fp thenu = ln(1+ x1)
λ1(1+ x2)

λ2 yielding

a = µexp(u) = µ(1+ x1)
λ1(1+ x2)

λ2 ∈ A(2;1),

a contradiction. Thus, eitherλ1 /∈ Fp or λ2 /∈ Fp . It follows from our remarks earlier in th
proof thatc′ has basis{Da((1+ x2)

i(1+ x1)) | i ∈ Fp} where

Da

(
(1+ x2)

i(1+ x1)
) = (i + λ2)(1+ x2)

i−1(1+ x1)D1 − (1+ λ1)(1+ x2)
iD2.

If λ1 �= −1, the natural projectionc′ → A(2;1)D2 induces an isomorphismg(α) ∼=
W(1;1). Then radg(α) = (0). If λ1 = −1 then λ2 /∈ Fp, hencec′ is spanned by the
elements(1+ x2)

i (1+ x1)D1 with i ∈ Fp . Therefore,cφ(g)(φ(t)) = F(1+ x1)D1 so that
h = F t andα vanishes onh.

(c) Supposes = 2 andt /∈ W(2;1)(0). Thena1 = λ1(1 + x1)
p−1 anda2 = λ2x

(p−1)
1 for

someλ1, λ2 ∈ F andc′ has basis{Da(x
(i)
2 (1+ x1)) | 0 � i � p − 1} where

Da

(
x

(i)
(1+ x1)

) = (
(1− δi,0)x

(i−1) + λ2δi,0x
(p+i−1))

(1+ x1)D1 − (1+ λ1)x
(i)

D2.
2 2 2 2
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If λ1 �= −1 then, as before,g(α) ∼= W(1;1) and radg(α) = (0). If λ1 = −1 thenλ2 �= 0
(otherwiseu = ln(1 + x1)

p−1 and a = µ(1 + x1)
p−1 ∈ A(2;1), a contradiction). Then

againcφ(g)(φ(t)) = F(1+ x1)D1 andα(h) = 0.

(d) Supposet ∈ W(2;1)(0) ands = 2. In this caseφ(t) = rx2D2 for somer ∈ F∗
p while

a1 anda2 are as in part (c). Thenc′ has basis{Da((1+ x1)
ix2) | i ∈ Fp} and

Da

(
(1+ x1)

ix2
) = (1+ x1)

iD1 − (i + λ1)(1+ x1)
i−1x2D2.

Sog(α) is isomorphic toW(1;1) and radg(α) = (0).

(e) Supposes = 1. Then there areλ1, λ2 ∈ F such thatai = λix
(p−1)
i for i = 1,2. First,

we consider the case whereφ(t) acts noninvertibly on the subspace spanned byD1 andD2.
Thenφ(t) = rxkDk wherer ∈ F∗

p for k = 1,2. We assume thatk = 1, the casek = 2 being

similar. Sincec′ is spanned by{Da(x
(i)
2 x1) | 0 � i � p − 1} and

Da

(
x

(i)
2 x1

) = (
(1− δi,0)x

(i−1)
2 + λ2δi,0x

(p+i−1)

2

)
x1D1 − x

(i)
2 D2,

we haveg(α) ∼= W(1;1). So radg(α) = (0) in this case.
Next, we suppose thatφ(t) is a nonzero multiple ofx1D1 + x2D2. Thenc′ is spanned

by all Da(x
(i)
1 x

(j)

2 ) with 0 � i, j � p − 1 andi + j − 2 ≡ 0 (modp). It is easily checked

that s := span{Da(x
2
1),Da(x1x2),Da(x

(2)
2 )} is a 3-dimensional simple Lie subalgebra

W(2;1)(0). From this it follows thatc′ = s ⊕ radc′ where radc′ = c′ ∩ W(2;1)(1). So
g(α) ∼= sl(2) ⊕ radg(α) and radg(α) consists ofp-nilpotent elements ofgp.

Finally, supposeφ(t) acts invertibly on the span ofD1, D2, x1D2, andx2D1. Thenc′ ⊂
t1 ⊕ W(2;1)(1) which implies thatgp(α) = (t ∩ gp(α)) ⊕ nil g(α). But thengiα ⊂ nil g(α)

for all i ∈ F∗
p .

We have considered all cases and the proof of the proposition is now complete.�

3. Triangularity

Let M andA be Lie algebras and suppose thatA acts onM as derivations. We say th
A acts triangulablyon M if A(1) acts onM as nilpotent linear transformations. IfA is
a subalgebra inM and adA acts triangulably onM we often say thatA is triangulable.
Given aT -invariant Lie subalgebraQ ⊂ Lp we say thatT is standardwith respect toQ if
the centralizercQ(T ) acts triangulably onQ.

The starting point for the second author’s classification has been the observatio
certain important subalgebras ofLp are triangulable. In this section we will generali
these results to our present casep > 3. We first generalize [14, Theorem 3.5].

Theorem 3.1. Let t0 ⊂ Lp be a torus inLp such thatcL(t0) is nilpotent and acts
triangulably onL. Let α1, . . . , αs ∈ Γ (L, t0) and assume thatL(α1, . . . , αs) is nilpotent.
ThenL(α1, . . . , αs) acts triangulably onL.
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Proof. Put t := t0 ∩ ⋂s
i=1 kerαi , h := cL(t) = L(α1, . . . , αs), and lethp denote thep-

envelope ofh in Lp ⊂ DerL. Let t̃ be the unique maximal torus in the restricted nilpot
subalgebrãh := t + hp . PutL̃ := h̃ + L and let

L̃ = h̃ ⊕
∑
γ∈Γ

L̃γ , Γ ⊂ t̃∗ \ {0},

be the root space decomposition ofL̃ with respect tõt.

(a) Supposeh acts nontriangulably onL. Then [7, Theorem 1] shows thatp = 5 and
there existα,β ∈ Γ linearly independent overF5 in t̃∗ and a maximal ideal̃R(α,β) of the
2-sectioñL(α,β) such that

L̃(α,β)/R̃(α,β) ∼= g(1,1)

is the 125-dimensional restricted Melikian algebra. Moreover, the proof of this the
shows that the image ofh̃ in g(1,1) is a nontriangulable Cartan subalgebra ing(1,1). The
p-envelopẽL(α,β)p of L̃(α,β) in Lp preserves̃R(α,β) hence acts oñL(α,β)/R̃(α,β)

as derivations. Sinceg(1,1) ∼= Derg(1,1) (see [19, Theorem 3.37] for example) this giv
rise to an epimorphism of restricted Lie algebras

φ1 : L̃(α,β)p −→ g(1,1).

Note thatφ1(t̃) is a 2-dimensional nonstandard torus ing(1,1).

(b) SupposẽR(α,β) ∩ h̃ contains an elementh acting nonnilpotently oñL(α,β) and
let hs ∈ t̃ denote the semisimple part ofh. There exists a nonzeroν ∈ F5α + F5β such
thatν(hs) �= 0. But thenL̃ν ⊂ R̃(α,β), so thatν is not aφ1(t̃)-root of g(1,1). However,
g(1,1) hasp2 − 1 roots relative to each of its 2-dimensional tori (by [7, Lemma 4.1] and
[9, Corollary 2.10]). This contradiction shows thatR̃(α,β)∩ h̃ acts nilpotently oñL(α,β).

Let I be any ideal of̃L(α,β) not contained inR̃(α,β). The maximality ofR̃(α,β)

implies thatL̃(α,β) = I + R̃(α,β). Both I and R̃(α,β) are ideals iñL(α,β)) hencet̃-
stable. Theñh = I ∩ h̃+ R̃(α,β)∩ h̃. Thus anyt ∈ t̃ can be written ast = h1+h2 with h1 ∈
I ∩ h̃ andh2 ∈ R̃(α,β) ∩ h̃. By our discussion above,h2 acts nilpotently oñL(α,β). Also
0 = [t, h2] = [h1, h2]. Hence, forr big enough,tp

r = h
pr

1 + h
pr

2 ∈ h
pr

1 + t̃ ∩ kerα ∩ kerβ.

But thenL̃γ ⊂ I for anyγ ∈ (F5α + F5β) \ {0}. In other words,

L̃(α,β) = I + h̃ ∩ R̃(α,β).

(c) Note thath, hp , and the centerC(hp) aret0-invariant. Therefore,

C(hp)p =
( ∑

δ∈t∗
C(hp)δ

)p

⊂
∑
δ∈t∗

C(hp)pδ
0 0
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is centralized byt0. Then[t0, t̃] = [t0, t̃p] ⊂ [t0,C(hp)p] = (0), so thatt0 respects the roo
space decomposition of̃L relative tot̃. In other words,[t0, h̃] ⊂ h̃ and[t0,Lγ ] ⊂ Lγ for
all γ ∈ Γ (L̃, t̃). In particular,̃L(α,β) is t0-invariant.

Let J be the sum of allt0-invariant ideals of̃L(α,β)p contained in kerφ1 and

φ2 : L̃(α,β)p −→ L̃(α,β)p/J

be the canonical homomorphism. SinceJ is t0-invariant, the torust0 acts on its image
φ2(L̃(α,β)p). Let (0) �= I ⊂ φ2(L̃(α,β)p) be a minimalt0-invariant ideal,I := φ−1

2 (I),
and I ′ := I ∩ L̃(α,β). By the minimality ofI, there are two possibilities: eitherI ⊂
φ2(L̃(α,β)) or I ∩ φ2(L̃(α,β)) = (0). Suppose the second possibility occurs. Then
[I, L̃(α,β)p] ⊂ I ′ ⊂ kerφ2 = J ⊂ kerφ1, henceφ1(I) ⊂ C(g(1,1)) = (0). But then
I ⊂ J , by the definition ofJ , and I = (0), a contradiction. SoI ⊂ φ2(L̃(α,β)).
Moreover,I ′ �⊂ kerφ1. By part (b), L̃(α,β) = I ′ + h̃ ∩ R̃(α,β). Also, φ2(I

′) = I, by
the minimality ofI. Sinceh̃ is nilpotent, this shows thatI = I(∞) = φ2(L̃(α,β))(∞) is
the unique minimalt0-invariant ideal ofφ2(L̃(α,β)). In particular,I is nonsolvable. By
Block’s theorem, there arem ∈ N0 and a simple Lie algebraS such thatI ∼= S ⊗ A(m;1)
as Lie algebras. SinceJ ⊂ kerφ1 there exists a Lie algebra epimorphism

φ3 : L̃(α,β)p/J � L̃(α,β)p/kerφ1 ∼= g(1,1)

such thatφ1 = φ3 ◦ φ2. Note thatφ2(h̃ ∩ R̃(α,β)) ⊂ kerφ3 and the imageφ3(I) ∼= g(1,1)

is simple. Clearly,S ⊗ A(m;1)(1) is the unique maximal ideal ofS ⊗ A(m;1). Since this
ideal is nilpotent so is

φ2
(
R̃(α,β)

) = φ2
(
L̃(α,β)

) ∩ kerφ3 = I ∩ kerφ3 + φ2
(
h̃ ∩ R̃(α,β)

)
,

while S ∼= g(1,1).

(d) Since the idealI is t0-invariant,φ2 gives rise to a natural homomorphism of restric
Lie algebras̃L(α,β)p + t0 → DerI. SinceI ∼= S ⊗ A(m;1) the latter induces a restricte
homomorphism

Φ : L̃(α,β)p + t0 −→ (DerS) ⊗ A(m;1) + Id ⊗ W(m;1)

such thatS ⊗ A(m;1) ⊂ Φ(L̃(α,β)p + t0) and π2(Φ(L̃(α,β)p + t0) is a transitive
subalgebra inW(m;1) (recall that we denote byπ2 the canonical projection

(DerS) ⊗ A(m;1) + Id ⊗ W(m;1) −→ W(m;1),

see [9] for more detail). SinceS ∼= DerS there exists a restricted transitive Lie subalge
D ⊂ W(m;1) such that

Φ
(
L̃(α,β)p + t0

) = S ⊗ A(m;1) + Id ⊗D.
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It follows from the maximality ofR̃(α,β) and our discussion in part (c) that

Φ
(
R̃(α,β)

) = S ⊗ A(m;1)(1) + Id ⊗D0,

whereD0 is a subalgebra ofD. As Φ(R̃(α,β)) is a Lie algebra it must be thatD0 ⊂
W(m;1)(0). Let D̃0 denote thep-envelope ofD0 in W(m;1)(0). As S ∼= g(1,1) is a

restricted Lie algebra and̃L(α,β) ⊂ I ′ + R̃(α,β), we have

Φ
(
L̃(α,β)p

) ⊂ S ⊗ A(m;1) + Id ⊗ D̃0.

As D is transitive this shows that so must beΦ(t0). Thanks to [9, Theorem 2.6] it ca
be assumed that there exist toral elementst1, . . . , tm ∈ t0 and a subtorust′0 ⊂ t0 such that
t0 = t′0 ⊕ ⊕m

i=1 F ti and

Φ(ti) = Id ⊗ (1+ xi)∂i ∀i � m,

Φ(x) = λ1(x) ⊗ 1+ Id ⊗ λ2(x) ∀x ∈ t′0,

where λ1 and λ2 are restricted homomorphisms fromt′0 into S and W(m;1)(0),

respectively. As[λ2(t
′
0), (1 + xi)∂i] ∈ (π2 ◦ Φ)(t

(1)
0 ) = (0) for all i � m andλ2(t

′
0) lies

in W(m;1)(0) it must be thatλ2 = 0. So

Φ(t0) =
( m∑

i=1

F Id ⊗ (1+ xi)∂i

)
⊕ (

λ1
(
t′0

) ⊗ F
)
.

As L̃(α,β)p is t0-invariant andD̃0 = (π2 ◦ Φ)(L̃(α,β)p) ⊂ W(m;1)(0) the transitivity of
Φ(t0) yieldsD̃0 = (0). But thenΦ(L̃(α,β)p) = g(1,1) ⊗ A(m;1), a perfect Lie algebra
Consequently,

Φ
(
L̃(α,β)p

) = Φ
((

L̃(α,β)p
)(∞)) = Φ

(
L(α,β)

)
.

(e) Recall thatt ⊂ t0 ∩ L̃(α,β). ThenΦ(t) ⊂ g(1,1) ⊗ A(m;1) forcing t ⊂ t′0, so that
λ1(t) ⊂ λ1(t

′
0). Both λ1(t) andλ1(t

′
0) are tori ing(1,1). SinceMT(g(1,1)) = 2 (see [7,

Lemma 4.4(ii)]), one has

0 � dimλ1(t) � dimλ1
(
t′0

)
� 2.

Sinceh = cL(t) is nilpotent so iscg(1,1)(λ1(t)). Therefore, dimλ1(t) �= 0. If dimλ1(t) = 1
then [7, Theorem 1] implies thatcg(1,1)(λ1(t)) acts triangulably ong(1,1).

Suppose dimλ1(t) = 2. Thenλ1(t) = λ1(t
′
0) and

Φ
(
cL(t0)

) = Φ
(
cL(α,β)(t0)

) = cg(1,1)

(
λ1

(
t′0

)) ⊗ F = cg(1,1)

(
λ1(t)

) ⊗ F.

SincecL(t0) is triangulable by assumption we obtain thatcg(1,1)(λ1(t)) acts triangulably
ong(1,1) in all cases.
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The evaluation mapf 
→ f (0) from A(m;1) ontoF induces a natural homomorphis
of restricted Lie algebrasε :g(1,1)⊗A(m;1) � g(1,1). Chasing through the maps sho
thatε sendsΦ(h̃) ⊂ g(1,1) ⊗ A(m;1) onto a restricted subalgebra ing(1,1) isomorphic
to cg(1,1)(φ1(t̃)). By part (a), the latter acts nontriangulably ong(1,1). HenceΦ(h̃)

acts nontriangulably ong(1,1) ⊗ A(m;1). Sinceh̃(1) = h(1) so doesΦ(h), too. On the
other hand, it is easy to see thatε sendsΦ(h) ⊂ Φ(h̃) onto cg(1,1)(λ1(t)), a triangulable
subalgebra ing(1,1). This entails thatΦ(h) acts triangulably ong(1,1) ⊗ A(m;1). Thus
the assumption we made in (a) leads to a contradiction. Therefore,h acts triangulably on
L as desired. �

Recall that for a subalgebraA of a Lie algebraM the toral rank of A in M, denoted
TR(A,M), is defined as

TR(A,M) := MT
(
A/

(
A ∩ C(M)

))
,

whereM is anyp-envelope ofM andA is the restricted subalgebra inM generated byA
(this is known to be independent of the choice ofM, see [19, Theorem 1.3]).

Theorem 3.2. Let g be a perfect Lie algebra andh be a Cartan subalgebra ing with
TR(h,g) = 1. Then the following hold:

(1) h acts triangulably ong;
(2) radg is the unique maximal ideal ing;
(3) g/ radg is one ofsl(2), W(1;n), H(2;n;Ψ)(2).

Proof. Let gp be ap-envelope ofg, hp the p-envelope ofh in gp , and t the unique
maximal torus inhp . Then dimt/t ∩ C(gp) = TR(h,g) = 1. There is a nonzero tora
elementt in t such thatt = F t ⊕ t ∩ C(gp). All eigenvalues of adt lie in Fp. Let
g = h ⊕ ∑

i∈F∗
p
gi be the eigenspace decomposition ofg relative to adt .

(a) LetI be any ideal ing. Clearly,I = I ∩ h⊕∑
i∈F∗

p
I ∩ gi is anFp-grading of the Lie

algebraI . If I ∩ h acts nilpotently onI thenI is solvable (see [19, Proposition 1.14]). B
thenI ⊂ radg. If I ∩ h acts nonnilpotently onI then there ish ∈ I ∩ h whose semisimple
parths (in gp) is not contained inC(gp). Sincehs ∈ t, we have thaths = at + z for some
a ∈ F∗ andz ∈ C(gp). As I is an ideal, this gives

∑
i∈F∗

p
gi ⊂ I , so thatg = h + I . As g is

perfect andh is nilpotent we getg = I . This proves (2).

(b) Let h̄ denote the image ofh in g/ radg, andt̄ be the image oft in Der(g/ radg). By
part (a),g/ radg is a simple Lie algebra andcg/ radg(t̄ ) = h̄. Besides, the maximal toru
of thep-envelope of̄h in Der(g/ radg) is nothing butF t̄ . So [7, Theorem 1] applies an
shows that̄h(1) acts nilpotently ong/ radg. This, in turn, shows that[(

h(1)
p

) ∩ t,g
] ⊂ radg.
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If (h(1)
p) ∩ t �⊂ C(gp) theng = h+ radg, a contradiction. Thus(h(1)

p) ∩ t ⊂ C(gp) which
means that all elements ofh(1) act nilpotently ong. This proves (1).

(c) We have already established thatg/ radg is a simple Lie algebra and̄h is a Cartan
subalgebra of toral rank 1 ing/ radg. Now [7, Theorem 2] yields (3). �

One often obtains important information ofL by studying 2-sections ofL relative to
a torust ⊂ Lp . This reduces the investigation to simple Lie algebras of smaller abs
toral rank.

Proposition 3.3 (cf. [2, Lemma 10.21]).Let t0 ⊂ Lp be a torus such thath = cL(t0) is
nilpotent,t be the unique maximal torus int0 +hp ⊂ Lp , and suppose one of the followin
two conditions holds for someα,β ∈ Γ (L, t):

(a) there areh1 ∈ [Lα,L−α] and h2 ∈ [Lβ,L−β ] such thatα(h1) = 0, β(h1) �= 0, and
α(h2) �= 0;

(b) t is a maximal torus ofLp and there areu ∈ Lα and h2 ∈ [Lβ,L−β ] such that
β(up) �= 0 andα(h2) �= 0.

Setg := ∑
γ∈(Fpα+Fpβ)\{0}(Lγ + [Lγ ,L−γ ]). Then the following hold:

(1) Every ideal ofg is t-invariant.
(2) If I is a maximal ideal ofg and π :g → g/I is the canonical homomorphism the

h1, h2 /∈ I (respectivelyu,h2 /∈ I ) andπ(g) is simple with TR(π(g)) � 2. Moreover, if
(a)holds forL thenπ(h ∩ g) is a Cartan subalgebra inπ(g) with

dimπ(h ∩ g)/
(
π(h ∩ g) ∩ nil π(h ∩ g)p

) = 2 and TR
(
π(h ∩ g),π(g)

) = 2,

where thepth powers are taken inπ(g)p ⊂ Derg.
(3) Suppose further thatt is a maximal torus inLp . Thenradg is nilpotent and, moreove

the unique maximal ideal ing. If h′ is a subalgebra incLp (t) such that all elements i
the union

⋃
h∈h′(adh)p−1(h ∩ g) act nilpotently ong/ radg thenradg is h′-invariant.

Proof. (a) Lett1, t2 ∈ t denote the semisimple parts ofh1, h2 ∈ h in case (a) and ofup,h2
in case (b). In case (a),α(h1) = 0 by our assumption, while in case (b) the maximality ot

implies thatα(up) = 0. Thus

α(t1) = 0, β(t1) �= 0, α(t2) �= 0.

Consequently,t = F t1 ⊕F t2 ⊕ (t∩ kerα ∩ kerβ). Sincet∩ kerα ∩ kerβ annihilatesg and
t1, t2 ∈ gp every ideal ofg is t-invariant.

(b) Given an idealI of g, we denote byIp be thep-envelope ofI in Lp . Suppose
Ip ∩ t �⊂ kerα ∩kerβ . Then there ist ∈ Ip ∩ t with α(t) �= 0 orβ(t) �= 0. Supposeα(t) �= 0
the caseβ(t) �= 0 being similar. SinceLiα = [t,Liα] ⊂ I for all i ∈ F∗

p, we have thath1 ∈ I
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in case (a) andu ∈ I in case (b). Thent1 ∈ Ip ∩ t in both cases showing thatLγ ⊂ I for all
γ ∈ (Fpα + Fpβ) \ {0}. This givesI = g. Thus ifI �= g thenIp ∩ t centralizesg.

(c) Let I be a maximal ideal ofg. Sincet1, t2 ∈ gp one hasg(1) = g. Sog/I is simple.
SinceIp ∩ t ⊂ kerα ∩ kerβ , by part (b), it is clear thath1, h2 /∈ I in case (a) andu,h2 /∈ I

in case (b). This implies thatLα �⊂ I andLβ �⊂ I . Soπ(h1) andπ(h2) (respectivelyπ(u)

andπ(h2)) generate a torus inπ(g)p which distinguishesπ(gα) �= (0) andπ(gβ) �= (0).
From this it is immediate thatTR(π(g)) � 2. If (a) holds thenπ(h∩g) is self-normalizing,
hence a Cartan subalgebra inπ(g). Moreover,π(h1) andπ(h2) are linearly independen
modulo nilπ(h ∩ g)p , so that

2 � TR
(
π(h ∩ g),π(g)

)
� TR

(
π(t),π(g)p

) = 2.

(d) Now suppose thatt is a maximal torus inLp . Let I ⊂ g be a proper ideal ofg and
x ∈ Iγ = gγ ∩I whereγ ∈ Fpα+Fpβ . As t is maximal,xpr ∈ t for r � 0. We have shown
in (b) thatIp ∩ t centralizesg. It follows that

⋃
γ∈Fpα+Fpβ adg Iγ is a weakly closed se

consisting of nilpotent endomorphisms. So the Engel–Jacobson theorem yields thaI acts
nilpotently ong. Therefore,I ⊂ radg. Moreover,g �= radg, for g(1) = g. Then radg is
nilpotent.

(e) Leth′ be a Lie subalgebra incLp(t). Clearly,[h′,Lγ ] ⊂ Lγ for all γ . Then[h′,g] ⊂ g

forcing [h′,h ∩ g] ⊂ h ∩ g. Let R be the maximalh′-invariant solvable ideal ing, and let

φ :h′ + g −→ (h′ + g)/R

denote the canonical homomorphism. LetJ be a nonzeroh′-invariant ideal ofφ(g), and
I = φ−1(J ). ThenI is anh′-invariant ideal ofg satisfyingI �⊂ radg. So part (d) of this
proof shows thatI = g and, as a consequence,J = φ(g). This means thatφ(g) is h′-
simple. By Block’s theorem, there is a simple algebraS andm ∈ N0 such that

φ(g) ∼= S ⊗ A(m;1) ⊂ φ(h′ + g) ⊂ (DerS) ⊗ A(m;1) + Id ⊗ W(m;1).

By part (d) of this proof,g/ radg = π(g) ∼= S. The associative algebraA(m;1) is
isomorphic to the centroid ofφ(g) ∼= π(g) ⊗ A(m;1), hence acts onφ(g) via

(x ⊗ f,a) 
−→ (x ⊗ f ) • a := x ⊗ f a, ∀x ∈ π(g), ∀f,a ∈ A(m;1).

Decomposingφ(h2) • a ∈ φ(g) into root spaces relative tot and applying adφ(h1) and
adφ(h2) in case (a) (respectively adφ(u) and adφ(h2) in case (b)), we observe that

φ(h2) • A(m;1) ⊂ φ(h ∩ g).

Suppose there ish ∈ h′ such that(π2 ◦ φ)(h) /∈ W(m;1)(0). Then (π2 ◦ φ)(h) = E +∑m
i=1 ai∂i whereE ∈ W(m;1)(0) andai0 �= 0 for somei0 � m. Hence(

adφ(h)
)p−1(

φ(h2) • x
p−1) ≡ (p − 1)!ap−1

π(h2) ⊗ 1
(
modS ⊗ A(m;1)(1)

)
.
i0 0
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Thus for eachy ∈ φ−1(φ(h2)•x
p−1
i0

)∩(h∩g) we haveα(φ((adh)p−1(y))) �= 0. However,

π(adh)p−1(y)) acts nilpotently onπ(g) by our assumption. SoS ⊗ A(m;1)(1) is aφ(h′)-
invariant ideal ofφ(g). Sinceφ(g) is φ(h′)-simple by our earlier remark,m = 0 necessarily
holds. Thenφ(g) = π(g) is simple and, consequently, kerφ = radg is h′-invariant. �
Proposition 3.4. Let t0 ⊂ Lp be a torus such thath := cL(t0) is nilpotent. Lett denote the
maximal torus int0 + hp ⊂ Lp andα ∈ Γ (L, t) be such thatα(h) �= 0. Then

α
([Lα,L−α]2) = 0 and [Lα,L−α]3 ⊂ nil hp.

Proof. (a) Supposeα([Lα,L−α]2) �= 0 and set

g :=
∑
i∈F∗

p

(
Liα + [Liα,L−iα]).

Our assumption implies that there ish ∈ [Lα,L−α]2 ⊂ (h∩ g)(1) such thatα(h) �= 0. Then
g(1) = g, TR(h∩g,g) � 1, andh∩g is self-normalizing ing. In particular,h∩g is a Cartan
subalgebra ofg. On the other hand,TR(h∩ g,g) � dimt/kerα = 1. But then Theorem 3.
applies showing that(h ∩ g)(1) acts nilpotently ong. So our present assumption leads t
contradiction which proves thatα([Lα,L−α]2) = 0.

(b) Suppose[Lα,L−α]3 �⊂ nil hp . Since[Lα,L−α]3 is an ideal ofhp and nilhp is the
sum of allp-nilpotent ideals inhp , there ish ∈ [Lα,L−α]3 whose semisimple parths is
nonzero. Then there isκ ∈ Γ (L, t) with κ(hs) �= 0. It follows that the set

Ω := {
κ ∈ Γ (L, t)

∣∣ κ
([Lα,L−α]3) �= 0

}
is not empty. SinceL is simple, we have, by Schue’s lemma, that

h =
∑
κ∈Ω

[Lκ,L−κ ].

If the union
⋃

κ∈Ω adLα [Lκ,L−κ ] consisted entirely of nilpotent endomorphisms th
the Engel–Jacobson theorem would imply thatα(h) = 0. Since this is not the case, b
assumption, there isκ ∈ Ω such that[Lκ,L−κ ] acts nonnilpotently onLα . This means
thatα([Lκ,L−κ ]) �= 0. We deduce that

α
([Lα,L−α]3) = 0, κ

([Lα,L−α]3) �= 0, α
([Lκ,L−κ ]) �= 0,

thereby verifying the conditions of Proposition 3.3 (case (a)).
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(c) Now define

g :=
∑

γ∈(Fpα+Fpκ)\{0}

(
Lγ + [Lγ ,L−γ ])

and letI �= g be a maximal ideal ofg. In accordance with Proposition 3.3, putπ(g) = g/I

and leth̄0 := (g ∩ h + I)/I ⊂ π(g). Proposition 3.3 yields thatπ(g) is simple, that̄h0 is
a Cartan subalgebra of toral rank 2 inπ(g) and, as a consequence, that[π(gα),π(g−α)]3
acts nonnilpotently onπ(g). Then [7, Theorem 1] shows thatπ(g) is isomorphic to the
125-dimensional Melikian algebrag(1,1) and h̄0 is a nontriangulable Cartan subalgeb
in π(g). As g(1,1) is restricted there is a nonzero toral elementtα ∈ h̄0 such that
α(tα) = 0. According to [7, Lemma 4.3], all nontriangulable Cartan subalgebras ing(1,1)

are conjugate under Autg(1,1). Combining this result with [13, Theorem 2.1], it is ea
to observe that there existsσ ∈ Autg(1,1) such thatσ(h̄0) = cg(1,1)(F (1 + x1)∂1 +
F(1 + x2)∂2) andσ(tα) = (1 + x1)∂1. The description in [7, p. 697] yields dim̄h0 = 5,
dimC(h̄0) = 2, and

h̄3
0 ⊂ C(h̄0) ⊂

∑
i∈F∗

p

[
π(giα),π(g−iα)

]
� h̄0.

It follows thatC(h̄0) has codimension� 2 in [π(gα),π(g−α)]. Then[π(gα),π(g−α)]2 ⊂
C(h̄0) forcing [π(gα),π(g−α)]3 = (0). However, this is impossible as the latter space
nonnilpotently onπ(g). This contradiction proves the proposition.�

We are now ready to determine 1-sections.

Theorem 3.5. Lett0 ⊂ Lp be a torus such thath := cL(t0) is nilpotent andt be the maxima
torus oft0 + hp ⊂ Lp . Letα ∈ Γ (L, t). The following are equivalent:

(i) L(α) is solvable;
(ii) α([Liα,L−iα]) = 0 for all i ∈ F∗

p.

Proof. Let L(α)′ = ∑
i∈F∗

p
(Liα + [Liα,L−iα]). Supposeα([Liα,L−iα]) = 0 for all

i ∈ F∗
p . Then the union

⋃
i∈F∗

p
ad[Liα,L−iα] consists of endomorphisms acting nilpoten

onL(α)′. By [19, (1.14)],L(α)′ is solvable. Hence so isL(α) = h + L(α)′. Conversely, if
there ish ∈ ⋃

i∈F∗
p
[Liα,L−iα] such thatα(h) �= 0 then adh acts invertibly on

∑
i∈F∗

p
Liα .

Thenh ∈ L(α)(∞) andL(α) is not solvable. �
Theorem 3.6. Lett0 ⊂ Lp be a torus such thath := cL(t0) is nilpotent andt be the maxima
torus oft0+hp ⊂ Lp . Letα ∈ Γ (L, t) be such thatL(α) is nonsolvable. Then the followin
hold:

(1) radL(α) is t-invariant.
(2) L[α] = L(α)/ radL(α) has a unique minimal idealS = L[α](∞).
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(3) S is t-invariant andcS(t) is a Cartan subalgebra of toral rank1 in S.
(4) S is simple and isomorphic to one ofsl(2), W(1;n), H(2;n;Ψ)(2).

Proof. (a) Let L(α)′ := ∑
i∈F∗

p
(Liα + [Liα,L−iα]). SinceL(α) is nonsolvable, Theo

rem 3.5 shows that there isi0 ∈ F∗
p such thatα([Li0α,L−i0α]) �= 0. Adjustingα, we may

assume thati0 = 1. Chooseh ∈ [Lα,L−α] with α(h) �= 0 and lett = hpr ∈ t be the semi-
simple part ofh. Thent /∈ kerα yielding t = F t ⊕ kerα. Consequently,[

t, radL(α)
] = [

F t, radL(α)
] ⊂ (adh)p

r (
radL(α)

) ⊂ radL(α).

This proves (1) and shows that radt L(α) = radL(α) is t + hp-invariant. Thust + hp acts
onL[α] = L(α)/ radL(α) giving a restricted homomorphism

t + hp � x 
→ x̄ ∈ DerL[α].

(b) Sincet ∩ kerα acts trivially onL(α), we have that̄t = F t̄ . We identifyα with the
corresponding root inΓ (L[α], t̄) so thatα(t̄) = α(t). ThenL[α] = h̄ ⊕ ∑

i∈F∗
p
L[α]iα is

the root space decomposition ofL[α] relative tot̄. Since

(
adL[α] h̄

)pr = (adL(α) h)p
r

for all r, the unique maximal torus of thep-envelope of̄h in DerL[α] coincides withF t̄ ,
the image of the maximal torus ofhp in DerL[α].

(c) Let I be a minimal ideal ofL[α]. By the preceding remark, the toral element̄
acts onI which turnsI into an Fp-graded Lie algebra. Ifα vanishes oncI (t̄) = cI (t̄ )

then cI (t̄) acts nilpotently onI . By [19, (1.14)], this would imply thatI is solvable.
However,L[α] is semisimple. Thus there isx ∈ cI (t̄) with α(x) �= 0. As t̄ is 1-dimensional
F t̄ = F(adL[α](x))p

r
for r � 0. Therefore,L[α] = I +cL[α](t̄) = I + h̄. As a consequence

I = L[α](∞) is theuniqueminimal ideal inL[α]. This description also shows thatI is t̄-
invariant and adL[α] acts faithfully onI .

(d) Let L[α]p andIp denote thep-envelopes ofL[α] andI in DerI . Block’s theorem
says that there exist a simple Lie algebraS andm ∈ N0 such thatI ∼= S ⊗ A(m;1). It also
yields a homomorphism of restricted Lie algebrasΦ :L[α]p → DerI such that

S ⊗ A(m;1) ⊂ Φ
(
L[α]p

) ⊂ (DerS) ⊗ A(m;1) + Id ⊗ W(m;1).

Recall from part (c) thatL[α] = I + h̄. This givesΦ(L[α]) = S ⊗ A(m;1) + Φ(h̄).
Supposem > 0. Sincēt is spanned by an iteratedpth power of adL[α] x with x ∈ I , we

then haveΦ(t̄) ⊂ Φ(Ip) ⊂ (DerS) ⊗ A(m;1). In this situationΦ can be chosen such th
Φ(t̄) = λ1(t̄) ⊗ F whereλ1 : t → Der S is an injective restricted homomorphism (see
Theorem 2.6]). It follows thatcS(λ1(t̄1)) ⊗ A(m;1) ⊂ Φ(h̄).
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Let κ ∈ Γ (L, t) be such thatκ(h) �= 0. By Proposition 3.4,[Lκ,L−κ ]3 ⊂ nil hp . Then
for anyy ∈ [Lκ,L−κ ] one has

(ady)3(h) ⊂ (nil hp) ∩ h.

Letπ2 be as before and suppose there isy ⊂ [Lκ,L−κ ] such that(π2◦Φ)(ȳ) /∈ W(m;1)(0).
Then

Φ(ȳ) = E + Id ⊗
m∑

i=1

fi∂i ,

whereE ∈ cDerS((λ1(t)))⊗ A(m;1), fi ∈ A(m;1), andfi0(0) �= 0 for somei0 � m. Then
(adΦ(ȳ))3(Φ(h̄)) contains(adΦ(ȳ))3(cS(λ1(t̄)) ⊗ x3

i0
), so that

cS
(
λ1(t̄)

) ⊗ A(m;1) ⊂ cS
(
λ1(t̄)

) ⊗ A(m;1)(1) + (
adΦ(y)

)3(
Φ(h̄)

) ⊂ Φ(h̄).

Since(adΦ(ȳ))3(Φ(h̄)) is contained in thep-nilpotent idealΦ((nil hp) ∩ h̄) of Φ(h̄) this
yields thatcS(λ1(t̄)) ⊗ A(m;1) acts nilpotently onΦ(L[α]). As a consequence,cI (t̄) acts
nilpotently onL[α]. However, we have seen in part (c) that this not true. Thus

(π2 ◦ Φ)(ȳ) ∈ W(m;1)(0)

(∀κ ∈ Γ (L, t) with κ(h) �= 0, ∀y ∈ [Lκ,L−κ ]).
SetΩ1 = {κ ∈ Γ (L, t) | κ(h) �= 0}. As α is not solvable it lies inΩ1 (Theorem 3.5). So
Ω1 �= ∅ whenceh = ∑

κ∈Ω1
[Lκ,L−κ ], by Schue’s lemma. Combining this with the abo

remark, we obtain the inclusion(π2 ◦ Φ)(h̄) ⊂ W(m;1)(0). But then

Φ
(
L[α]) ⊂ (DerS) ⊗ A(m;1) + Id ⊗ W(m;1)(0)

implying that S ⊗ A(m;1)(1) is a solvable ideal ofΦ(L[α]). As Φ is injective this
contradicts the semisimplicity ofL[α]. Thusm = 0 andI ∼= S is simple.

(e) Recall thatt̄ = F(adx)p
r

for some x ∈ cI (t̄). From this it is immediate tha
cI (t̄) is self-normalizing, hence a Cartan subalgebra ofI . Also, 1 � TR(cI (t̄), I ) �
TR(h̄,L[α]) = 1 (see [19, Theorem 1.7(1)]). SinceI ∼= S this proves (3). SinceS is
simple and possesses a Cartan subalgebra of toral rank 1, one now derives (4
Theorem 3.2. �
Corollary 3.7. Let T be a torus of maximal dimension inLp , and α ∈ Γ (L,T ). Then
radL(α) is T -invariant andL[α] is restricted. Moreover, either

L[α] ∈ {
(0), sl(2),W(1;1),H(2;1)(2),H (2;1)(1)

}
or p = 5, Lp possesses a nonstandard torus of maximal dimension, and

L[α] ∼= H(2;1)(2) ⊕ Fx4
1∂2.
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Proof. TheT -invariance of radL[α] follows immediately from Theorem 3.6. It shows th
L(α)p acts onL[α] as derivations.

Let L[α] be nonsolvable. AsT is a torus of maximal dimensionTR(L[α]) = 1 (by [19,
Theorems 1.9, 1.7]). LetS denote the socle ofL[α]. By Theorem 3.6,S is simple, while
[19, Theorems 1.9, 1.7]) show thatTR(S) = 1. ThenS is one ofsl(2), W(1;1), H(2;1)(2)

(see [7, Theorem 2]). Moreover,S ⊂ L[α] ⊂ DerS.

SupposeS � L[α]. ThenS = H(2;1)(2) andL[α] contains a nonzero element

D = ax
p−1
1 ∂2 + bx

p−1
2 ∂1 + c(x1∂1 + x2∂2) + E

with a, b, c ∈ F andE ∈ H(2;1)(1). SinceTR(L[α]) = 1 it must be thatc = 0, so that
L[α] ⊂ H(2;1). Jacobson’s formula now shows thatL[α] is restricted.

If L[α] ⊂ H(2;1)(1) then we are done because dimH(2;1)(1)/H(2;1)(2) = 1. So from
now on we may assume thatD �= E. Thena �= 0 or b �= 0. Applying the automorphism
σ1 of H(2;1) induced by the ruleσ1(x1) = x2, σ1(x2) = −x1, we may assume tha
a �= 0. Applying the automorphismσ2 of H(2;1) induced by the ruleσ2(x1) = x1 −
(b/a)1/px2, σ2(x2) = x2, we may assumeb = 0. Thus we may assume thatD = x

p−1
1 ∂2 +

dDH(x
p−1
1 x

p−1
2 ) + E′ whereE′ ∈ H(2;1)(2) andd ∈ F . Applying the automorphismσ3

of H(2;1) induced by the ruleσ3(x1) = x1 + dx
p−1
2 , σ3(x2) = x2, we may assume furthe

thatd = 0.
In other words, it can be assumed thatD = x

p−1
1 ∂2. Note that

x
p−1
1 ∂2 ≡ (1+ x1)

p−1∂2
(
modH(2;1)(2)

)
.

It follows that c := cL[α](DH((1 + x1)x2)) containsv−1 := (1 + x1)
p−1∂2. For 0� i �

p − 2, put vi := (i + 1)−1DH ((1 + x1)
i+1xi+1

2 ). It is easy to check thatv0, . . . , vp−2
pairwise commute and

[v−1, vi] = ivi−1, 0� i � p − 2.

Moreover,L[α] contains allvi ’s with 0 � i � p − 3. Sincev0 is a toral element this
implies thatc is a nontriangulable Cartan subalgebra inL[α]. SinceL(α)p is a restricted
Lie algebra it contains a toral element,t say, which acts onL[α] as v0. Then T ′ :=
F t ⊕ (T ∩ kerα) is a nonstandard torus of maximal dimension inLp . Applying [7,
Theorem 1] now yieldsp = 5.

Finally, supposeL[α] � H(2;1)(2) ⊕ Fx4
1∂2. Thenc contains an elementu = λx4

2∂1 +
µv3 with λ �= 0 orµ �= 0. Observe that

[u,v−1] ≡ −λv3
(
modH(2;1)(2)

)
.

From this it is immediate thatv3 ∈ c while from our earlier remarks it follows tha
(adv−1)

3(v3) ∈ c is not nilpotent. LetV denote the subspace inH(2;1) spanned byu
and allvi ’s with 0 � i � 3. It follows from the above discussion thatc ∩ V is an abelian
ideal of codimension 1 inc acting nilpotently onL[α].
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Let π :L(α) → L[α] denote the canonical homomorphism,H ′ := cL(T ′), and

Ω ′ := {
γ ′ ∈ Γ (L,T ′) | γ ′(H ′) �= 0

}
.

By Schue’s lemma,H ′ = ∑
γ ′∈Ω ′ [Lγ ′ ,L−γ ′ ], hence there existκ ′ ∈ Ω ′ and x ∈

[Lκ ′ ,L−κ ′ ] such thatπ(x) ≡ v−1 (modc ∩ V ). Then

(adv−1)
3(v3) ∈ π

([Lκ ′ ,L−κ ′ ]3) + c ∩ V.

However, due to Proposition 3.4 and the Engel–Jacobson theorem, the subalgebra on
right acts nilpotently onL[α]. This contradiction shows that the case we are consideri
impossible. This completes the proof of the corollary.�
Remark. Theorem 3.6 and Corollary 3.7 extend [14, Theorem 4.1, Corollary 4.2] to
present situation.

Corollary 3.7 enables us to generalize the notion of a root being solvable, cla
Witt or Hamiltonian to the case whereT is an arbitrary (not necessarily standard) to
of maximal dimension inLp . It also allows us to generalize the notion of a distinguis
maximal subalgebra to this situation.

Let α ∈ Γ (L,T ). If α is solvable or classical, we setQ(α) := L(α). If α is Witt, we
defineQ(α) to be the unique subalgebra of codimension 1 inL(α) containing radL(α).
If α is Hamiltonian, we defineQ(α) to be the inverse image ofL[α] ∩ H(2;1)(0) under
the canonical homomorphismπ :L(α) → L[α] (in this caseQ(α) has codimension 2 in
L(α)). We sometimes writeQ(α) = Q(L(α)) in order to distinguish betweenQ(L(α))

andQ(L(α)p). The latter is defined analogously for thep-envelope ofL(α) in Lp . By
Corollary 3.7,L[α] is restricted, so thatL(α)p = L(α) + rad(L(α)p) = L(α) + H̃ ∩
rad(L(α)p) whereH̃ = cLp (T ). Thus

Q
(
L(α)p

) = Q
(
L(α)

) + rad
(
L(α)p

)
and dimL(α)/Q(L(α)) = dimL(α)p/Q(L(α)p). We callα properif the subalgebraQ(α)

is T -invariant, andimproper otherwise. Note that ifα is proper thenQ(α) contains
H = cL(T ).

Proposition 3.8. Letα ∈ Γ (L,T ) be a proper root satisfyingα(H) �= 0. Then⋃
i∈F∗

p

((
radL(α)

)
iα

∪ [
Q(α)iα,

(
radL(α)

)
−iα

])
consists ofp-nilpotent elements ofLp unlessα is classical and there isβ ∈ Γ (L,T ) with
L[α,β] ∼= g(1,1). In the latter case⋃

i∈F∗
p

((
radL(α)

)
iα

∪ [(
radL(α)

)
iα

,
(
radL(α)

)
−iα

])
consists ofp-nilpotent elements ofLp .
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Proof. Suppose the claim is not true. DefineW(L(α)) := radL(α) if α is classical and
there isβ with L[α,β] ∼= g(1,1), andW(L(α)) := Q(α) otherwise. Adjustingα, we may
assume that there existsu ∈ (radL(α))α or h1 ∈ [W(L(α))α, (radL(α))−α] which is not
p-nilpotent. Define

Ω1 := {
γ ∈ Γ (L,T )

∣∣ γ
(
up

) �= 0
}

or Ω1 := {
γ ∈ Γ (L,T )

∣∣ γ (h1) �= 0
}
,

in the respective cases. ThenΩ1 �= ∅. By Schue’s lemma,H = ∑
γ∈Ω1

[Lγ ,L−γ ]. Since
α(H) �= 0 and each[Lγ ,L−γ ] is an ideal ofH , the Engel–Jacobson theorem shows
there isβ ∈ Ω1 such thatα([Lβ,L−β ]) �= 0. Chooseh2 ∈ [Lβ,L−β ] with α(h2) �= 0. Since
h1 ∈ H ∩ radL(α) ∩ [Lα,L−α] one hasα(h1) = 0 (this is obvious ifα is nonsolvable
and follows from Theorem 3.5 otherwise).Thus the assumptions of Proposition 3.3
satisfied. Set

g :=
∑

γ∈(Fpα+Fpβ)\{0}

(
Lγ + [Lγ ,L−γ ]).

Thenḡ := π(g) = g/ radg is simple andπ(u) �= 0 (respectivelyπ(h1) �= 0). Hence there
is an element in(radḡ(α))α or in [W(ḡ(α))α, (radḡ(α))−α] which does not act nilpotentl
on ḡ. The semisimple parts ofπ(u) andπ(h2) (respectivelyπ(h1) andπ(h2)) in Derḡ
span a 2-dimensional torus in̄gp which we denote byt. Note thatt ⊂ ḡp coincides with
the image ofT in Derḡ. SinceT has maximal dimension, we have

2 � TR(ḡ) � TR(g) � TR
(
L(α,β)

)
� 2

(see [19, Theorems 1.7, 1.9]). Thusḡ is isomorphic to one of the simple Lie algebras lis
in [10, Theorem 1.1]. Sinceα is proper inΓ (L,T ) it must be proper inΓ (ḡ, t) as well
(one should take into account thatQ(α) containsH ). Since at least one of the subspa
(radḡ(α))±α is nonzerōg cannot be classical.

Supposēg is a restricted Lie algebra of Cartan type. Thenḡ is one of

W(1;2), S(3;1)(1), H (4;1)(1), K(3;1).

By [2, Lemma 5.8.2],Q(ḡ(α)) ⊂ ḡ(0) + t∩kerα (note that [2, Lemma 5.8.2] only relies o
the classification of toral elements in restricted Lie algebras of Cartan type, hence holds
p > 3). Sinceḡ(1) acts nilpotently on̄g, we are reduced to examine thet-invariant quotient
ḡ0 = ḡ(0)/ḡ(1). Since this quotient is classical reductive, we have(radḡ0(α))±α = (0).
Then rad̄g(α) ⊂ ḡ(1) + t ∩ kerα which implies that the case we consider cannot occur

Supposeḡ ∼= W(1;2). Since Γ (ḡ, t) contains a proper root the torust is optimal
in ḡp, see [18, Section V.4]. By [18, Theorem V.4], all solvable roots inΓ (ḡ, t) vanish
on cḡ(t). So α ∈ Γ (ḡ, t) is nonsolvable (forα(π(h2)) �= 0). Then(radḡ(α))±α = (0),
again by [18, Theorem V.4]. So this case cannot occur either. Sincecḡ(t) �= (0), we also
have thatḡ � H(2;1;Φ(τ))(1), by [18, Theorem VII.3]. Proposition 2.1(2) shows th
ḡ � H(2; (2,1))(2) while Proposition 2.2 ensures thatḡ � H(2;1;∆).

Finally, supposēg is isomorphic to the restricted Melikian algebrag(1,1). We have
already mentioned that all derivations ofg(1,1) are inner. Sot can be identified with
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a 2-dimensional torus ing(1,1) and ḡ(α) with the centralizer of a toral element int.
The conjugacy classes of toral elements ing(1,1) are determined in [13, Theorem 3.1
The centralizers of toral elements are described in [13, Theorem 4.1]. It follows from this
description that no root inΓ (ḡ, t) is solvable and the union

⋃
i∈F∗

p
(radḡ(α))iα consists of

nilpotent elements of̄g. Moreover, ifα ∈ Γ (ḡ, t) is Hamiltonian then(radḡ(α))±α = (0).
If α ∈ Γ (ḡ, t) is Witt then it follows from [13, Theorem 4.1(3), (4)] that the uni⋃

i∈F∗
p
[Q(ḡ(α))iα,Q(ḡ(α))−iα] consists of nilpotent elements ofḡ (see also the proof o

[13, Proposition 6.2]). But then[W(ḡ(α))α, (radḡ(α))−α] consists of nilpotent elemen
of ḡ. Thus α ∈ Γ (ḡ, t) must be classical. But thenα is classical inΓ (L,T ) (this is
immediate from Corollary 3.7 and the equalityL(α)(∞) = g(α)(∞)).

In order to reach a contradiction it will now suffice to show thatL[α,β] ∼= g(1,1). By
[10, Corollary 2.10] and [7, Section 4], we have|Γ (ḡ, t)| = p2 − 1. So anyγ ∈ Fpα +
Fpβ \ {0} is a root ofḡ. SinceL(γ )(∞) = g(γ )(∞), it follows from [13, Corollary 4.3]
that all roots ofL(α,β) relative toT are nonsolvable. Combining Corollary 3.7 wi
Demushkin’s theorem, it is now easy to observe that any root ofL(α,β) relative toT

vanishes onH 4. But then all elements in the union
⋃

h∈H (adh)4(H ∩ g) act nilpotently
on ḡ. As a consequence, radg is H -invariant (Proposition 3.3(3)).

ThusL(α,β) acts onḡ as derivations. Sincēg = Derḡ, there is an idealI of L(α,β)

such thatL(α,β)/I ∼= g(1,1). By our earlier remarks,TR(L(α,β)) = TR(g(1,1)) = 2.
So [19, Theorem 1.7] shows thatI is nilpotent. ThenI = radL(α,β) and our proof is
complete. �
Corollary 3.9. The following are true:

(1) H 4 ⊂ nil H̃ ;
(2) all roots inΓ (L,T ) are linear onH .

Proof. (1) SupposeH 4 �⊂ nil H̃ . Then

Ω := {
γ ∈ Γ (L,T )

∣∣ γ
(
H 4) �= 0

}
is nonempty. Ifγ ∈ Γ (L,T ) is nonsolvable then Corollary 3.7 (combined with Demus
in’s theorem) shows thatγ (H 4) = 0. Thus all roots inΩ are solvable. Letκ ∈ Ω . Proposi-
tion 3.8 now says that the ideal[Lκ,L−κ ] of H̃ acts nilpotently onL. Combining Schue’s
lemma with the Engel–Jacobson theorem, we then obtain

H =
∑
κ∈Ω

[Lκ,L−κ ] ⊂ nil H̃ .

But thenH 4 ⊂ nil H̃ , a contradiction.
(2) We denote byhs the semisimple part ofh ∈ H . By part (1),H 4 ⊂ nil H̃ . Given

h1, h2 ∈ H , we then have

(h1 + h2)
pr ≡ h

pr + h
pr

(mod nilH̃ ), ∀r ∈ N0
1 2
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(by Jacobson’s formula). Therefore,(h1 +h2)s = h1,s +h2,s for all h1, h2 ∈ H . This is the
same as to say that all roots inΓ (L,T ) are linear. �

One of the key results of the classification theory forp > 7 is [15, Theorem 3.1] which
says that for any torusT of maximal dimension inLp the Cartan subalgebracLp (T ) of
Lp acts triangulably onL (andLp). We now come to extending this result to our pres
situation wherep > 3. As Skryabin pointed out to the second author, the proof of [15,
ollary 2.5] is incorrect (in the notation of [15], the implication(λ,µ) ∈ Ω ⇒ (µ,λ) ∈ Ω)
is false). In [15], Corollary 2.5 is used in the proof of Theorem 3.1 and only there.

This problem is resolved easily for Lie algebras of rank 2 and has no effect on [
(see [8, pp. 424–426]). Moreover, passing to rank-two sections allows one to salvag
Corollary 2.5] relying only on information available at the time when [15] was writ
Thus what follows aims at both, a correct proof of [15, Theorem 3.1] forp > 7 based only
on that information and a partly different proof forp > 3.

Recall thatT ⊂ Lp is a torus of maximal dimension,H = cL(T ), andH̃ = cLp (T ). By
[7, Theorem 1], ifp > 5 thenT is standard.

Lemma 3.10. If T is standard then[H,H̃ ] ⊂ nil H̃ .

Proof. (a) Let α ∈ Γ (L,T ) and x ∈ Lα . If p > 7 then [15, Lemma 3.2] says th
α([xp,H) = 0. The proof of this lemma is correct but relies on several results prove
p > 7 in [14]. Theorems 3.1, 3.5, and 3.6, and Corollary 3.7 provide suitable substitut
all these results. Thus the equalityα([xp,H ]) = 0 still holds under our present assumpti
onp.

(b) Next we are going to prove the stronger statement that

[xp,H ] ⊂ nil H̃ , ∀x ∈
⋃

α∈Γ (L,T )

Lα,

which constitutes the first part of [15, Lemma 3.3]. The proof will require some m
changes, even forp > 7.

First assumeα(H) = 0 and lety ∈ H ∪ ⋃
i∈F∗

p
Liα . Let ys be the semisimple part ofy

in Lp . Sinceys lies in the restricted subalgebra generated byyp ∈ H̃ andT is a maximal
torus in Lp , we haveys ∈ T . If y ∈ H then α(ys) = 0 by our assumption, whereas
y ∈ Liα for i ∈ F∗

p then iα(ys)y = [ys, y] = 0. The Engel–Jacobson theorem now yie
that L(α) is nilpotent. By [14, Theorem 3.5(1)] forp > 7 and by Theorem 3.1 in th
general case,L(α)(1) acts nilpotently onL. This shows[xp,H ] ⊂ [Lα,L−α] ⊂ nil H̃ .

Now assume thatα(H) �= 0 and putΩ := {γ ∈ Γ (L,T ) | γ ([xp,H ]) �= 0}. If Ω = ∅
then [xp,H ] acts nilpotently onL, hence is contained in nil̃H . So supposeΩ �= ∅.
SinceL is simple, we then haveH = ∑

γ∈Ω [Lγ ,L−γ ], by Schue’s lemma. AsH(1)

acts nilpotently onL, all roots inΓ (L,T ) are linear onH . So there isβ ∈ Ω such that
α([Lβ,L−β ]) �= 0. We thus have

α
([

xp,H
]) = 0, β

([
xp,H

]) �= 0, α
([Lβ,L−β ]) �= 0.
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As [xp,H ] ⊂ [Lα,L−α] the assumptions of Proposition 3.3 are satisfied. (Note tha
proof of Proposition 3.3 is elementary in nature!) Let

g :=
∑

γ∈(Fpα+Fpβ)\{0}

(
Lγ + [Lγ ,L−γ ]).

As H(1) acts nilpotently onL, Proposition 3.3(3) shows that radg is H -invariant.
Let π :g + H → (g + H)/ radg be the canonical homomorphism, andḡ := π(g). By
Proposition 3.3(2),̄g is a simple Lie algebra andπ(H ∩ g) is a Cartan subalgebra o
toral rank 2 in ḡ. SinceT has maximal dimension inLp , we haveTR(g) � 2. Then
2 = TR(π(H ∩g), ḡ) � TR(g) � 2 (see [19, Theorems 1.7, 1.9]). Therefore, thep-envelope
of π(H ∩ g) in ḡp ⊂ Derḡ contains a unique 2-dimensional torus,t say, which coincides
with the image ofT in Derḡ (the torusT acts onḡ by Proposition 3.3(1)).

Starting from this point the original proof in [15] goes through forp > 7. Let

Mα
β := {

y ∈ ḡβ

∣∣ α
([y, ḡ−β]) = 0

}
.

Sinceα([Lβ,L−β ]) �= 0 and radg acts nilpotently ong (by Proposition 3.3(3)), one has
ḡβ �= Mα

β . So the pair(g, t) satisfies all assumptions of [2, Proposition 5.5.2] except
restrictedness condition which can be dropped in view of [15, Lemma 2.4]. Then [2
Corollary 5.5.3] yields dim̄gβ/Mα

β � 7. SinceH(1) ⊂ nil H̃ and α([xp,H ]) = 0, the
subspaceMα

β is invariant underhx := adπ(H) + (adπ(x))p. Thenḡβ/Mα
β is a nonzero

hx -module of dimension< p (for p > 7). Sincehx is nilpotent (as a homomorphic imag
of a subalgebra of̃H ), all composition factors of thishx -module are 1-dimensional. Bu
then(hx)(1) acts nilpotently on̄gβ/Mα

β . This, in turn, implies that ad[xp,H ] consists of
endomorphisms acting noninvertibly onLβ . Thenβ([xp,H ]) = 0, a contradiction. Fo
p = 5 this argument is no longer valid but it still works forp = 7 because we know, from
[9, Lemma 1.4, Theorem 8.6], that dim̄gβ/Mα

β � 6.
The main result of [10] enables us now to arguethe general case differently and inclu

the remaining casep = 5 into considerations. Sincēg is simple and has absolute tor
rank 2, it is isomorphic to one of the Lie algebras listed in [10, Theorem 1.1]. Supposḡ is
restricted. Then there ish ∈ H ∩ g with π(x)p = π(h), so that

π
([

(adx)p,H
]) = [

π(x)p,π(H)
] = [

π(h),π(H)
] ⊂ π

(
H(1)

)
.

As before, this implies thatβ([xp,H ]) = 0 contrary to our choice ofβ . If ḡ is one
of W(1;2), H(2;1;∆), H(2;1;Φ(τ))(1) then all root spaces of̄g relative to t are 1-
dimensional (by [10, Corollary 2.10] and the results of [18]). Then againḡβ/Mα

β has
dimension 1< p and we are done.

So we are now left with the case whereḡ ∼= H(2; (2,1))(2). Recall that dimt = 2.
By Proposition 2.1(1),̄gp = ḡ + t. Thus there existt ∈ t and h ∈ H ∩ g such that
π(x)p = t + π(h). Then

π
(
(adx)p(H)

) = [
π(x)p,π(H)

] = [
t + π(h),π(H)

]
= [

π(h),π(H)
] ⊂ π(H)(1) = π

(
H(1)

)
.
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Again this implies that all elements in[xp,H ] = (adx)p(H) act noninvertibly onLβ . This
contradicts our choice ofβ .

(c) Now observe that̃H ′ := {h ∈ H̃ | [h,H ] ⊂ nil H̃ } is a restricted subalgebra of̃H

containingH and allxp with x ∈ ⋃
α∈Γ (L,T ) Lα . By Jacobson’s formula,̃H ′ = H̃ . This

completes the proof of the lemma.�
Lemma 3.11 (cf. [15, Lemma 3.4]).If T is standard thenα(H̃ (1)) = 0 for any nonsolvable
root α ∈ Γ (L,T ).

Proof. No changes in the proof of [15, Lemma 3.4] are needed to obtain the result.�
We now come to our first main result.

Theorem 3.12 (cf. [15, Theorem 3.1]).Let T be a torus of maximal dimension inLp and
suppose thatT is standard. TheñH = cLp (T ) acts triangulably onLp .

Proof. Suppose there isα ∈ Γ (L,T ) such that

α
(
H̃ (1)

) �= 0 and [Lα,L−α] �⊂ nil H̃ .

As H̃ (1) ⊂ H we haveα(H) �= 0. SetΩ1 := {κ ∈ Γ (L,T ) | κ([Lα,L−α]) �= 0}. As
Ω1 �= ∅, Schue’s lemma yieldsH = ∑

κ∈Ω1
[Lκ,L−κ ]. As α vanishes onH(1) but not

onH there isβ ∈ Γ (L,T ) such that

β
([Lα,L−α]) �= 0 and α

([Lβ,L−β ]) �= 0.

By Lemma 3.11,α is a solvable root. Thenα([Lα,L−α]) = 0, by Theorem 3.5
Consequently, case (a) of Proposition 3.3 applies to

g :=
∑

γ∈(Fpα+Fpβ)\{0}

(
Lγ + [Lγ ,L−γ ]).

Lemma 3.10 enables us to apply Proposition 3.3(3) withh′ = H̃ which yields that radg is
H̃ -invariant andH̃ acts onḡ = g/ radḡ as derivations. Since radg acts nilpotently ong, we
then havēgβ �= Mα

β , where the notation is suitably adopted from the proof of Lemma 3

Since[H̃ ,H ] ⊂ nil H̃ the subspaceMα
β is H̃ -stable. Moreover, as in part (b) of the pro

of Lemma 3.10 we have dim̄gβ/Mα
β � 6. SinceH̃ is nilpotent this forcesα(H̃ (1)) = 0 for

p > 5.
To settle the remaining casep = 5 we again invoke [10, Theorem 1.1]. It should be cl

by now that the elementxp from the proof of Lemma 3.10 can be replaced by any elem
in H̃ . So the argument from the proof of Lemma 3.10 relying on [10, Theorem 1.1] y
thatα(H̃ (1)) = 0 in all cases. Since this contradicts our choice ofα we must have

[Lα,L−α] ⊂ nil H̃ wheneverα
(
H̃ (1)

) �= 0.
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Now setΩ2 := {γ ∈ Γ (L,T ) | γ (H̃ (1)) �= 0}. If Ω2 �= ∅ then H = ∑
γ∈Ω2

[Lγ ,L−γ ],
by Schue’s lemma, forcingH ⊂ nil H̃ . But then H̃ (1) ⊂ H ⊂ nil H̃ and Ω2 = ∅, a
contradiction. Thusγ (H̃ (1)) = 0 for all γ ∈ Γ (L,T ) which is the same as to say th
H̃ (1) acts nilpotently onLp . �

4. Two-sections

Now we are ready to begin our investigation of the 2-sections ofL relative to T .
Let α,β ∈ Γ (L,T ) be such thatL(α,β) is nonsolvable and denote by radT L(α,β) the
maximalT -invariant solvable ideal ofL(α,β). Put

L[α,β] := L(α,β)/ radT L(α,β),

and letS̃ = S̃[α,β] be theT -socle ofL[α,β], the sum of all minimalT -invariant ideals
of L[α,β]. ThenS̃ = ⊕r

i=1S̃i where each̃Si is a minimalT -invariant ideal ofL[α,β].
It is easily seen thatT andL(α,β)p act onL[α,β] as derivations and preservẽS. Thus
there is a natural restricted homomorphismT + L(α,β)p → DerS̃ which will be denoted
by Ψα,β . In what follows we identifyL[α,β] with Ψα,β(L(α,β)) (as we may), denote th
torusΨα,β(T ) ⊂ DerS̃ by T , and putH := Ψα,β(H).

Note thatr � TR(S̃) � TR(L[α,β]) � TR(L(α,β)) � 2, by [14, Theorem 2.6] and [19
Theorem 1.7]. Applying [19, Theorem 1.7(8)] toL = T + L[α,β] andK = S̃ and taking
p-envelopes in Der̃S, we get

dim(T ∩ S̃p) = TR(S̃)

(one should also keep in mind thatT + L[α,β]p ⊂ DerS̃ is centerless). In particula
if TR(S̃) = 2 thenT ⊂ S̃p . If r > 1 thenr = 2 = TR(S̃) and TR(S̃i ) = 1 for i = 1,2.
Moreover, in this casẽSp = (S̃1)p + (S̃2)p ⊂ Der(S̃1 ⊕ S̃2).

Theorem 4.1. If r = 2 then there areµ1,µ2 ∈ Γ (L,T ) such that

L[µ1](1) ⊕ L[µ2](1) ⊂ L[α,β] ⊂ L[µ1] ⊕ L[µ2].

Proof. As each S̃i is perfect, Der(S̃1 ⊕ S̃2) = (DerS̃1) ⊕ (DerS̃2). Therefore,S̃p
∼=

(S̃1)p ⊕ (S̃2)p where (S̃i )p ⊂ DerS̃i . Applying [19, Theorem 1.7(8)] withL = S̃ and
K = S̃i , we get dimT /T ∩ (S̃i )p = 2− TR(S̃i ) = 1. Hence dimT ∩ (S̃i )p = 1 for i = 1,2,
and

T = (
T ∩ (S̃1)p

) ⊕ (
T ∩ (S̃2)p

)
.

Pick µi ∈ Γ (L,T ) with µi(T ∩ (S̃i )p) �= 0. ThenL[α,β] = (S̃1(µ1) ⊕ S̃2(µ2)) + H and
S̃i = S̃(µi) for i = 1,2. Letπi :L[α,β](µi) � L[µi] denote the canonical homomorphis
and observe that radT L(α,β)∩L(µi) ⊂ radL(µi). Thenπi(S̃i ) is a nonzero ideal ofL[µi]
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(1). According to Corollary 3.7,πi(S̃i ) = L[µi ](1). Observe tha

(kerπi) ∩ S̃i = (0), being aT -invariant solvable ideal ofL[α,β]. ThusS̃i
∼= L[µi](1) for

i = 1,2.
For i = 1,2, the adjoint action ofL[α,β] on its ideal̃Si gives rise to a homomorphis

ψi :L[α,β] → DerS̃i with kerψi ⊂ L[α,β](µ3−i). Our discussion above implies th
ψi(L[α,β]) ∼= L[µi ]. Let ψ = ψ1 ⊕ ψ2 :L[α,β] → L[µ1] ⊕ L[µ2]. If x ∈ kerψ then
[x, S̃i] ⊂ (kerψ) ∩ S̃i = (0). SinceL[α,β] is isomorphic to a subalgebra of Der(S̃1 ⊕ S̃2),
we thus havex = 0. Soψ is injective and our proof is complete.�
Theorem 4.2. If r = 1 and TR(S̃) = 2 thenS̃ simple and the following hold:

1) If S̃ is restricted thenL[α,β] = S̃.
2) If S̃ is nonrestricted theñS ⊂ L[α,β] ⊂ S̃ + T = S̃p unlessS̃ ∼= H(2; (2,1))(2) in

which caseH(2; (2,1))(2) ⊂ L[α,β] ⊂ H(2; (2,1))p.

Proof. Given a Lie subalgebraM in L[α,β], we denote byMp thep-envelope ofM in
DerS̃. Note that thep-envelopeL[α,β]p is semisimple.

(a) By Block’s theorem, there are a simple Lie algebras and m ∈ N0 such that̃S ∼=
s ⊗ A(m;1). Then

s ⊗ A(m;1) ⊂ T + L[α,β]p ⊂ (
(Ders) ⊗ A(m;1)

) ⊕ (
Id ⊗ W(m;1)

)
,

where π2(T + L[α,β]p) is a transitive subalgebra ofW(m;1). Let S denote the
(semisimple)p-envelope ofs in Ders. Our assumption onTR(S̃) (combined with an
earlier remark) shows thatT ⊂ S̃p . SinceS̃p ⊂ (Ders) ⊗ A(m;1) it follows from [10,

Theorem 2.6] that we can choosẽS
∼→ s ⊗ A(m;1) such thatT ⊂ (Ders) ⊗ F . Since

(s ⊗ A(m;1))p = s ⊗ A(m;1)(1) + S ⊗ F we haveT ⊂ S ⊗ F . ThenT = t ⊗ F where
t is a 2-dimensional torus inS, forcing 2� TR(s) � TR(S̃) = 2 and

∑
γ �=0 L[α,β]γ ⊂

s ⊗ A(m;1). As a consequence,

L[α,β] = H + S̃ and T + L[α,β]p = Hp + S̃p,

which implies that radT L(α,β) = radL(α,β). Besides, the subalgebraπ2(Hp) = π2(T +
L[α,β]p) is transitive inW(m;1) andcs(t) ⊗ A(m;1) ⊂ H .

(b) Supposem �= 0. Then there existsh ∈ H such thatπ2(h) = ∑m
i=1 ai∂i + E where

ai ∈ F , ai0 �= 0, andE ∈ W(m;1)(0). Since

cs(t) ⊗ F ⊂ (adh)p−1(
cs(t) ⊗ x

p−1
i0

) + s ⊗ A(m;1)(1)

andH 4 ⊂ nil H̃ , by Corollary 3.9, the subalgebracs(t) ⊗ F must act nilpotently oñS. By
the Engel–Jacobson theorem, each 1-sectionS̃(γ ) relative toT must be solvable. From
this it is immediate thatL(γ ) = radL(γ ) for anyγ ∈ (Fpα + Fpβ) \ {0}.
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Suppose there isγ ∈ (Fpα + Fpβ) \ {0} with γ (H) = 0 and lett0 := T ∩ kerγ. As T

is a maximal torus inLp , the 1-sectionL(γ ) is nilpotent and the maximal torus of thep-
envelope oft0 + L(γ ) is contained inT ∩ kerγ = t0. Note thatL(α,β) is a 1-section
relative to t0. By Theorem 3.6, the unique minimal ideal̃S of L(α,β)/ radL(α,β) =
L[α,β] is simple. But thenm = 0 contrary to our assumption. Therefore,γ (H) �= 0 for
all γ ∈ (Fpα + Fpβ) \ {0}). According to Proposition 3.8, all elements in the union⋃

γ∈(Fpα+Fpβ)\{0}

(
Lγ ∪ [Lγ ,L−γ ])

arep-nilpotent inLp . But thenL(α,β) is solvable (again by the Engel–Jacobson theore
This contradiction shows thatm = 0.

(c) It follows from parts (a) and (b) that̃S is simple withTR(S̃) = 2, andT + L[α,β] ⊂
DerS̃. ThenS̃ is listed in [10, Theorem 1.1].

If S̃ is classical or one ofW(2;1), K(3;1), g(1,1) then Der̃S ∼= S̃ (see [19,22]).
If S̃ is non-restricted Cartan-type and̃S � H(2; (2,1))(2), then Der̃S = S̃ + T = S̃p

(see [2,18]). Thus in order to finish the proof it remains to consider the case w
S̃ ∈ {S(3;1)(1),H (4;1)(1),H (2; (2,1))(2)}.

SupposẽS = S(3;1)(1) andH �⊂ S̃. We have

DerS̃ = Fx
p−1
1 x

p−1
2 ∂3 ⊕ Fx

p−1
1 x

p−1
3 ∂2 ⊕ Fx

p−1
2 x

p−1
3 ∂1 ⊕ F t0 ⊕ S̃,

wheret0 = x1∂1 + x2∂2 + x3∂3. If H containst0 + α1x
p−1
2 x

p−1
3 ∂1 + α2x

p−1
1 x

p−1
3 ∂2 +

α3x
p−1
1 x

p−1
2 ∂3 + E for someE ∈ S̃ thenTR(L[α,β]) � 3 which is not true. Thus

H ⊂ S̃ + Fx
p−1
2 x

p−1
3 ∂1 + Fx

p−1
1 x

p−1
3 ∂2 + Fx

p−1
1 x

p−1
2 ∂3.

We may assume (by symmetry) thatH �⊂ S̃ ⊕ Fx
p−1
2 x

p−1
3 ∂1 ⊕ Fx

p−1
1 x

p−1
3 ∂2 =: S̃′. Let

z1 := (1+x1), z2 := (1+x2), andt′ := F(z1∂1 −z2∂2)⊕F(z1∂1−x3∂3), a 2-dimensiona
torus inS̃. The restricted Lie algebraL(α,β)p contains a torus of maximal dimensionT ′
with Ψα,β(T ′) = t′. Let H ′ := cL(T ′) andH ′ = Ψα,β(H ′). SinceL[α,β]/S̃ is a trivial
S̃-module, we haveL[α,β] = S̃ + H ′ �⊂ S̃′. It follows thatH ′ �⊂ S̃′.

Sincet′ ⊂ H ′, we haveH ′ �⊂ nil H̃ . SoΩ ′ := {γ ′ ∈ Γ (L,T ′) | γ ′(H ′) �= 0} �= ∅ whence
H ′ = ∑

γ ′∈Ω ′ [Lγ ′,L−γ ′ ], by Schue’s lemma. Therefore, there isy ∈ [Lκ ′ ,L−κ ′ ] for some
κ ′ ∈ Ω ′ such that

ȳ := Ψα,β(y) = z
p−1
1 z

p−1
2 ∂3 + β1z

p−1
2 x

p−1
3 ∂1 + β2z

p−1
1 x

p−1
3 ∂2 + E,

whereE ∈ S̃ ∩ H ′. Recall that̃S = S(3;1)(1) has dimension 2(p3 − 1) and is spanne
by the elementsDi,j (f ) with f ∈ A(3;1) and 1� i < j � 3 (see [22, (4.3)] for
example). Since any root space ofS̃ relative to t′ has dimension 2p (this is explained
in [10, p. 284]), we have that dimH ′ ∩ S̃ = 2(p − 1). It follows that H ′ ∩ S̃ has basis
consisting of allD1,2(z

k+1zk+1xk) = (k+1)zkzkxk(z1∂1−z2∂2) andD1,3(z
k+1zkxk+1) =
1 2 3 1 2 3 1 2 3
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(k +1)zk
1z

k
2x

k
3(z1∂1−x3∂3) with 0 � k � p−2. As a consequence,H ′ ∩ S̃ is abelian. From

this it is immediate that[
ȳ, (z1z2x3)

i(z1∂1 − x3∂3)
] = i(z1z2x3)

i−1(z1∂1 − x3∂3)

for all i � p − 2 Therefore,

(adȳ)p−2(D1,3
(
z
p−1
1 z

p−2
2 x

p−1
3

)) = (p − 2)!(z1∂1 − x3∂3).

Since the element on the right is toral iñS, we have[Lκ ′ ,L−κ ′ ]3 �⊂ nil(H ′)p . Sincep � 5,
this contradicts Proposition 3.4.

SupposẽS = H(4;1)(2) andH �⊂ S̃. One has

DerS̃ = S̃ ⊕
4∑

i=1

FDH

(
x

(p)
i

) ⊕ F

(
4∑

i=1

xiDi

)
.

SinceTR(S̃) = 2 it must be thatH ⊂ S̃ ⊕ ∑4
i=1 FDH (x

(p)

i ). No generality will be lost by

assuming thatH �⊂ S̃ + ∑4
i=2 FDH (x

(p)

i ). This time we set

t′ := F
(
(1+ x1)∂1 − x3∂3

) ⊕ F(x2∂2 − x4∂4).

Clearly,t′ is a 2-dimensional torus iñS, hence there exists a torus of maximal dimension
T ′ ⊂ L(α,β)p such thatΨα,β(T ′) = t′. As before, we setH ′ := cL(T ′) and H ′ =
Ψα,β(H ′). It is straightforward to check that̄H ′ ∩S̃ is spanned by allDH ((1+x1)

ix
j

2xi
3x

j

4),
with 0 � i, j � p − 1 and 0< i + j < 2p − 2. This implies thatH ′ ∩ S̃ is abelian (see
[22, Lemma 4.3(2)]). Arguing as in the previous case, we find a rootκ ′ ∈ Γ (L,T ′) with
κ ′(H ′) �= 0 and an elementy ∈ [Lκ ′ ,L−κ ′ ] with

ȳ := Ψα,β(y) = (1+ x1)
p−1∂3 + β2x

p−1
2 ∂4 + β3x

p−1
3 ∂1 + β4x

p−1
4 ∂2 + E

for someE ∈ S̃ ∩ H ′. Applying (adȳ)p−2 to the element

DH

(
(1+ x1)

p−1x
p−1
3

) = −(1+ x1)
p−2x

p−1
3 ∂3 + (1+ x1)

p−1x
p−2
3 ∂1,

we obtain a nonzero multiple of(1 + x1)∂1 − x3∂3. Since p � 5, this contradicts
Proposition 3.4.

Finally, supposẽS = H(2; (2,1))(2). ThenH(2; (2,1))p = H(2; (2,1)) + FD
p
1 and

DerS̃ = H(2; (2,1))p ⊕ F(x1D1 + x2D2) (see, e.g., [2, Theorem 2.1.8]). Since 2=
TR(S̃) = TR(L[α,β]) andL[α,β] is semisimple, the restricted quotientL[α,β]p/S̃p must
bep-nilpotent. This yieldsL[α,β]p ⊂ H(2; (2,1))p completing the proof. �
Lemma 4.3. Let α ∈ Γ (L,T ) be a proper root withα(H) �= 0, and y ∈ Lα . Then
(ady)2p(H ∩ radL(α)) ⊂ nil H̃ .
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to

2

By

be

,

Proof. (a) Suppose that(ady)2p(H ∩ radL(α)) contains an element which is notp-
nilpotent inLp . Then the set

Ω := {
γ ∈ Γ (L,T )

∣∣ γ
(
(ady)2p

(
H ∩ radL(α)

)) �= 0
}

is not empty. By Schue’s lemma, we then haveH = ∑
γ∈Ω[Lγ ,L−γ ]. Sinceα(H) �= 0

andα is a linear function onH , by Corollary 3.9, there isβ ∈ Ω with α([Lβ,L−β ]) �= 0.
If α(H ∩ radL(α)) �= 0 then α is solvable, hence vanishes on

∑
i∈F∗

p
[Liα,L−iα] by

Theorem 3.5. Therefore,

α
(
(ady)2p

(
H ∩ radL(α)

)) ⊂ α

(
H ∩ radL(α) ∩

∑
i∈F∗

p

[Liα,L−iα]
)

= 0

in all cases. As a consequence, there areh1 ∈ [Lα,L−α] andh2 ∈ [Lβ,L−β ] such that
α(h1) = 0, β(h1) �= 0, andα(h2) �= 0. But then Proposition 3.3 applies to

g :=
∑

γ∈(Fpα+Fpβ)\{0})

(
Lγ + [Lγ ,L−γ ])

showing thatḡ := g/ radg is simple and radg is H -invariant (one should also take in
account Corollary 3.9). The semisimple partsh1,s, h2,s ∈ T of h1 and h2 are linearly
independent. ThenT = Fh1,s ⊕ Fh2,s ⊕ (T ∩ kerα ∩ kerβ) forcing radT L(α,β) =
radL(α,β). SinceL(α,β) = H + g and radg is H -stable, we also obtain that radg =
g ∩ radL(α,β). This entails that̄g is nothing butS̃ = S̃[α,β], the T -socle ofL[α,β].
Since 2� TR(ḡ) � TR(g) � TR(L(α,β)) � 2, we getTR(S̃) = 2. Therefore, Theorem 4.
is applicable toL[α,β]. Given x ∈ L(α,β)p , we setx̄ := Ψα,β(x). As TR(S̃) = 2, the
simple Lie algebrãS is listed in [10, Theorem 1.1].

SupposẽS is restricted. TheñS = L[α,β], by Theorem 4.2. Moreover,ȳp = z for some
z ∈ H . Therefore,

(ady)2p(H) = (adȳ)2p(H) = (adȳp)2(H) = [
z, [z,H ]] ⊂ H3.

As β does not vanish on(ady)2p(H), we deduce thatT is a nonstandard torus inL[α,β]p.
Then [7, Theorem 1] says thatL[α,β] is isomorphic to the restricted Melikian algebra.
[7, Section 4], all roots inΓ (L[α,β],T ) are then improper. However,α is still proper
when viewed as a root ofL[α,β] (by our assumption). Thus̃S is non-restricted. If̃S is
isomorphic to one ofW(1;2), H(2;1;∆), H(2;1;Φ(τ))(1) then dimcS̃ (T ) � 1 (by [10,
Corollary 2.10] and [18]). But̄h1, h̄2 ∈ cS̃ (T ) are linearly independent. Thus it must
that S̃ ∼= H(2; (2,1))(2). ThenS̃p = T + S̃, by Lemma 2.1(1). SinceL[α,β] = H + S̃, we
also havēy ∈ S̃. So there arez ∈ cS̃ (T ) andt ∈ T such thatȳp = z + t . Arguing as before
we now get

(ady)2p(H) = [
z + t, [z + t,H ]] ⊂ [

cS̃ (T ), cS̃ (T )
]
.
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m

b-
SincecS̃ (T ) is triangulable iñS, by [7, Theorem 1], this contradicts our choice ofβ thereby
completing the proof. �
Theorem 4.4. If r = 1 and TR(S̃) = 1 then one of the following occurs:

(1) L[α,β] = L[µ] for some µ ∈ (Fpα + Fpβ) \ {0}. Moreover, S̃ = L[µ](1) and
dimΨα,β(T ) = 1.

(2) S̃ = H(2;1)(2) and L[α,β] = H(2;1)(2) ⊕ FD where eitherD = 0 or D =
DH (x

p−1
1 x

p−1
2 ) or p = 5 andD = x4

1∂2. Moreover,dimΨα,β(T ) = 2.
(3) S̃ = S ⊗ A(1;1) whereS is one ofsl(2), W(1;1), H(2;1)(2). Moreover,L[α,β] ⊂

(DerS) ⊗ A(1;1) and Ψα,β(T ) = (Fh0 ⊗ 1) ⊕ (F Id ⊗ (1 + x1)∂1) whereh0 is a
nonzero toral element inS.

(4) S̃ = S ⊗A(m;1) whereS is one ofsl(2), W(1;1), H(2;1)(2) andm > 0. There exists
a classical rootµ ∈ Fpα + Fpβ such that

L[α,β] = S ⊗ A(m;1) + L[α,β](µ); π2
(
L[α,β](µ)

) ∼= sl(2);
L[µ,ν] ∼= g(1,1) for someν ∈ Γ (L,T ).

(5) S̃ = S ⊗ A(1;1) where S is one ofsl(2), W(1;1), H(2;1)(2), and L[α,β] is a
subalgebra in(DerS) ⊗ A(1;1) + Id ⊗ W(1;1) such that

π2
(
L[α,β]) = π2

(
L[µ]) = W(1;1)

for some Witt rootµ ∈ Fpα + Fpβ .
(6) S̃ = S ⊗ A(2;1) where S is one ofsl(2), W(1;1), H(2;1)(2), and L[α,β] is a

subalgebra in(DerS) ⊗ A(2;1) + Id ⊗ W(2;1) such that

H(2;1)(2) ⊂ π2
(
L[α,β]) = π2

(
L[µ]) ⊂ H(2;1)

for some Hamiltonian rootµ ∈ Fpα + Fpβ .

Proof. As before we denote byT the torusΨα,β(T ) ⊂ DerS̃. Sincer = 1, theT -socleS̃

is a minimal ideal ofT + L[α,β]. By Block’s theorem there exists a simple algebraS and
a nonnegative integerm such that̃S ∼= S ⊗ A(m;1) (under an isomorphismϕ). As in the
present case 0�= TR(S) � TR(S̃) = 1 the Lie algebraS is one ofsl(2), W(1;1), H(2;1)(2)

(see [19, Theorem 7] and [7]). The isomorphismϕ gives rise to a restricted homomorphis

Φ :Ψα,β

(
T + L(α,β)p

) −→ Der
(
S ⊗ A(m;1)

) = (DerS) ⊗ A(m;1) ⊕ (
Id ⊗ W(m;1)

)
.

By [9, Theorem 2.6], we may chooseϕ such that

Φ(T ) = (Fh0 ⊗ 1) ⊕ F(d ⊗ 1+ Id ⊗ t0),

wheret0 ∈ W(m;1) is a toral element,Fh0 is a maximal torus of the restricted Lie alge
ra S, and eitherd = 0 or S = H(2;1)(2) andFh0 ⊕ Fd is a maximal torus in DerS. In
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m

].

on

s

n

what follows we chooseϕ as above and identifyT with Φ(T ). Giveny ∈ L(α,β)p , we set
ȳ := Φ(Ψα,β(y)).

(a) Supposem = 0 and d = 0. Then T = Fh0 acts on S̃ = S as a 1-dimensiona
torus. Letµ ∈ T ∗ \ {0} be such that̃Sµ �= (0) (recall thath0 ∈ S andµ(h0) �= 0). Then
L[α,β] = S̃(µ) + H = L(µ)/ radT L(µ) and L[µ](1) = S̃ (see Corollary 3.7). This i
case (1) of the theorem.

(b) Supposem = 0 andd �= 0. ThenS = H(2;1)(2) andT = Fh0 ⊕ Fd is a 2-dimen-
sional torus in DerS. By [1, Theorem 1.18.4] (which does not require the assumption
p > 7), any 2-dimensional torus of DerH(2;1)(2) is conjugate under an automorphis
of H(2;1)(2) to one ofFx1∂1 ⊕ Fx2∂2, F (1 + x1)∂1 ⊕ Fx2∂2, Fx1∂1 ⊕ F(1 + x2)∂2,

F (1+ x1)∂1 ⊕ F(1+ x2)∂2. Thus we may assume that

h0 = z1∂1 − z2∂2, d = z1∂1 + z2∂2, zi ∈ {xi,1+ xi}.

The eigenspaces of DerH(2;1)(2) with respect toT are described in [18, Proposition III.1
As L[α,β] ⊂ DerH(2;1)(2), it follows from this description thatH ⊂ T . SupposeH = T

and consider the torust = F(1 + x1)∂1 ⊕ F(1 + x2)∂2. Note thatt ⊂ H(2;1)(2) + H ⊂
L[α,β]. Let T ′ ⊂ T + L(α,β)p be a torus of maximal dimension satisfyingΨα,β(T ′) = t,
and defineµ′ ∈ (T ′)∗ by setting

µ′(T ′ ∩ kerα ∩ kerβ) = 0, µ′((1+ x1)∂1
) = µ′((1+ x2)∂2

) = 1.

As (H(2;1)(2))(µ′) is abelian,L[α,β](µ′) is solvable. Therefore, so is the 1-secti
L(µ′). As µ′(t) �= 0 andt ⊂ L[α,β], Proposition 3.8 shows that everyx ∈ L2µ′ is p-
nilpotent inLp . However,

DH

(
(1+ x1)

2(1+ x2)
2) = 2(1+ x1)(1+ x2)

2∂1 − 2(1+ x1)
2(1+ x2)∂2

is a vector oft-weight 2µ′ which is notp-nilpotent inH(2;1)(2). This contradiction show
that H �= T . ThusH = Fh0 ⊂ H(2;1)(2). Therefore, theT -moduleL[α,β]/H(2;1)(2)

has no zero weight. Consequently,

L[α,β] ⊂ H(2;1)(2) ⊕ Fz
p−1
1 ∂2 ⊕ Fz

p−1
2 ∂2 ⊕ FDH

(
z
p−1
1 z

p−1
2

)
.

Now defineµ ∈ T ∗ by setting

µ(T ∩ kerα ∩ kerβ) = 0, µ(h0) = 0, µ(d) = 1,

and let t0 := T ∩ kerµ and h := L(µ). Sinceµ(H) = 0 the 1-sectionL(µ) � H is
nilpotent, hencet0 coincides with the unique maximal torus in thep-envelope oft0 + h

in Lp . Moreover, there existsΛ ∈ t∗0 such thatL(α,β) coincides with the 1-sectio
L(Λ) relative tot0. By Theorem 3.6, the unique minimal ideal of the quotientL[Λ] =
L(Λ)/ radL(Λ) is simple and coincides withL[Λ](∞). Note thatL[Λ] is a homomorphic
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n

e

t
f

,

in
image ofL[α,β] and the unique minimal ideal ofL[α,β] is simple on its own right. The
L[α,β] ∼= L[Λ] so thatL[Λ](∞) ∼= H(2;1)(2). Since there is a torusT0 in T + L(α,β)p

with T ∩ kerα ∩ kerβ ⊂ T0 andT 0 = t0, we can replaceT by T0 in the final part of the
proof of Corollary 3.7 to conclude thatL[α,β] ∼= H(2;1)(2) ⊕ FD whereD is either 0 or
DH (x

p−1
1 x

p−1
2 ) or p = 5 andD = x4

1∂2. This is case (2) of the theorem.

(c) Suppose thatm > 0 and there isν ∈ (Fpα + Fpβ) \ {0} with ν(H) = 0. Sett′0 := T ∩
kerν andh′ := L(ν). Then againh′ is nilpotent andt′0 is the unique maximal torus in th
p-envelope oft′0 + h′ in Lp. Moreover, there existsΛ′ ∈ (t′0)∗ such thatL(α,β) coincides
with the 1-sectionL(Λ′) relative tot′0. By Theorem 3.6,L[Λ′] = L(Λ′)/ radL(Λ′) has a
unique minimal ideal which is simple and coincides withL[Λ′](∞). Let

ψ :L[α,β] −→ L[Λ′] = L[α,β]/ radL[α,β]

denote the canonical homomorphism. SinceS ⊗ A(m;1) is perfect the imageψ(S ⊗
A(m;1)) coincides with the minimal ideal ofL[Λ′], hence is simple. ThereforeS ⊗
A(m;1)(1) = S ⊗ A(m;1) ∩ kerψ is an ideal ofL[α,β]. Then it is an ideal ofL[α,β]p as
well. This yieldsπ2(L[α,β]p) ⊂ W(m;1)(0). On the other hand,π2(L[α,β]p) is an ideal
of π2(L[α,β]p + T ) and the latter subalgebra is transitive inW(m;1). So it must be tha
π2(L[α,β]p) = (0). Thenπ2(T ) = π2(F (d ⊗ 1 + Id ⊗ t0)) is a transitive subalgebra o
W(m;1). This means that there is a toral elementt ∈ T such thatπ2(t) /∈ W(m;1)(0) and
π2(F t) is transitive inW(m;1). Sinceπ2(t) is conjugate under AutA(m;1) to (1+ x1)∂1,
by Demushkin’s theorem, we conclude thatm = 1. This is case (3) of the theorem.

(d) From now on suppose thatm > 0 andγ (H) �= 0 for all γ ∈ (Fpα + Fpβ) \ {0} (this
implies thatT ⊂ Hp). Fix µ ∈ (Fpα + Fpβ) \ {0} with µ(h0) = 0. Then

L[α,β] = L[α,β](µ) + S̃,

L[α,β](µ) ⊂ cDerS(h0) ⊗ A(m;1) + Id ⊗ π2
(
L[α,β](µ)

)
,

Fh0 ⊗ A(m;1) ⊂ radT
(
L[αβ](µ)

)
.

SinceT ⊂ Hp , we also have thatπ2(L[α,β]p + T ) = π2(L(µ)p). As a consequence
π2(L(µ)p) is a transitive subalgebra ofW(m;1).

Suppose all roots inF∗
pµ ∩ Γ (L,T ) (if any) are proper. Lety ∈ ⋃

i∈F∗
p
(radL(µ))iµ.

Proposition 3.8 shows that the subspace[y, (Φ ◦ Ψα,β)−1(Fh0 ⊗ A(m;1))] consists ofp-
nilpotent elements ofLp . Then all elements in[ȳ, Fh0 ⊗ A(m;1)] act nilpotently oñS
forcingπ2(ȳ) ∈ W(m;1)(0). Now lety ∈ H . Thenȳ ∈ cDerS(h0) ⊗ A(m;1) + Id ⊗ π2(ȳ),
hence[ȳ, h0 ⊗ f ] = h0 ⊗ π2(ȳ)f for all f ∈ A(m;1). Since Fh0 ⊗ A(m;1) is T -
stable, we can combine Proposition 3.8 and Corollary 3.9 to deduce that all elements
(adȳ)3(Fh0 ⊗ A(m;1)) act nilpotently oñS. But then againπ2(ȳ) ∈ W(m;1)(0).

Thus we have proved thatπ2(radL(µ)) ⊂ W(m;1)(0). Sinceπ2(radL(µ)) is an ideal
in π2(L(µ)p), a transitive subalgebra ofW(m;1) we conclude thatπ2(radL(µ)) = (0). If
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hat

to

s;
.9)]

s

π2(L(µ)) = (0) thenπ2(L(µ)p) = (0), becauseπ2 ◦ Φ ◦ Ψα,β is a restricted homomor
phism. However,m > 0 andπ2(L(µ)p) is transitive inW(m;1). SoL(µ) is nonsolvable
in particular,F∗

pµ ∩ Γ (L,T ) �= ∅. Since(kerπ2)(µ) ⊂ cDerS(h0) ⊗ A(m;1) is solvable,
we also obtain

π2
(
L[α,β]) = π2

(
L(µ)

) ∼= L(µ)/ radL(µ) = L[µ].
(e) We continue assuming that all roots inF∗

pµ are proper. SinceF∗
pµ ∩ Γ (L,T ) �= ∅,

by part (d), we may assume without loss thatµ is a root. If µ is classical and fits into
a Melikian 2-section then we are in case (4) of the theorem. So supposeµ is not of
this type. Proposition 3.8 then says that the union

⋃
i∈F∗

p
[Q(µ)iµ, (radL(µ))−iµ] consists

of p-nilpotent elements ofLp . Arguing as in part (d), we are now able to deduce t
π2(ȳ) ∈ W(m;1)(0) for all y ∈ H ∪ (

⋃
i∈F∗

p
Qiµ). Now lety ∈ ⋃

i∈F∗
p
Liµ. Then

yp ∈ cDerS(h0) ⊗ A(m;1) + Id ⊗ π2(yp).

Since Fh0 ⊗ A(m;1) is T -stable, we now combine Lemma 4.3 and Corollary 3.9
deduce that all elements in(adyp)2(Fh0 ⊗ A(m;1)) act nilpotently onS̃. Then again
π2(yp) ∈ W(m;1)(0). Thus

π2

(
Q(µ) +

∑
i∈F∗

p

∑
r>0

L
pr

iµ

)
⊂ W(m;1)(0),

which implies thatπ2(Q(L(µ)p)) ⊂ W(m;1)(0). This enables us to conclude that

m = dimW(m;1)/W(m;1)(0) = dimπ2
(
L(µ)p

)
/W(m;1)(0) ∩ π2

(
L(µ)p

)
� dimπ2

(
L(µ)p

)
/π2

(
Q

(
L(µ)p

))
= dimL(µ)p/Q

(
L(µ)p

)
= dimL[µ]/Q(

L[µ])
(one should keep in mind that the solvable ideal(kerπ2 ◦ Φ ◦ Ψα,β)(µ) of L(µ)p is
contained inQ(L(µ)p)). As a first consequence,m � 2. More precisely,µ is Witt if and
only if m = 1, andµ is Hamiltonian if and only ifm = 2 (sincem > 0, µ is not classical).

(f) Finally, supposeµ ∈ Γ (L,T ) is improper. This case will involve toral switching
we refer to [9, pp. 218–222] for related material and notation. It follows from [2, (1
that there areξ ∈ {� ∈ HomFp (F,F ) | �p −� = IdF } andu ∈ ⋃

i∈F∗
p
Liµ such that the toru

Tu = {t − µ(t)
∑m(u)

i=1 upi | t ∈ T } has the property that any rootiµu,ξ ∈ Γ (L,Tu) with
i ∈ F∗

p is proper. Sinceu ∈ L(µ), we have thatL(µ) = L(µu,ξ ). Sinceµ ∈ Fpα + Fpβ ,
we have thatL(α,β) = L(αu,ξ , βu,ξ ). Since the generalized Winter exponentialsE±u,ξ

preserve all ideals ofL(α,β), we also have that radT L(α,β) = radTu L(αu,ξ , βu,ξ ). Then

L[α,β] = L(α,β)/ radT L(α,β) = L(αu,ξ , βu,ξ )/ radTu L(αu,ξ , βu,ξ ) = L[αu,ξ , βu,ξ ].
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As a consequence,Ψα,β = Ψαu,ξ ,βu,ξ . Moreover,L[αu,ξ , βu,ξ ] has a unique minimal idea
isomorphic toS ⊗ A(m;1) with S and m unchanged. Thus we can choose the sa
embeddingΦ for both L[α,β] andL[αu,ξ , βu,ξ ]. Note thath0 ∈ Φ(Ψα,β(T )) ∩ kerµ =
Φ(Ψαu,ξ ,βu,ξ (Tu)) ∩ kerµu,ξ and

(π2 ◦ Φ ◦ Ψα,β)
(
L(µ)

) = (π2 ◦ Φ ◦ Ψαu,ξ ,βu,ξ )
(
L(µu,ξ )

)
.

Since all roots inF∗
pµu,ξ are proper we can apply parts (d) and (e) of this proof to conc

that we are in case (5) (respectively (6)) of the theorem whenµu,ξ is Witt (respectively
Hamiltonian). To finish the proof it now remains to mention thatµu,ξ is Witt (Hamiltonian)
if and only if µ is. �

5. Some remarks on Block algebras of dimension p2 − 1

In this section, we are going to revise [17] in order to extend the results
to our present situation. It is assumed in [17, §1–3] thatp > 3 but at the beginning
of §4 it is imposed thatp > 5. We will go through the proofs and check for th
validity in characteristic 5. All our references to [17] will be boldfaced. Recall th
H = H(2;1;Φ(τ))(1) is a Block algebra of dimensionp2 − 1, Λ = 1 − xp−1yp−1 ∈ H ,
Θ = −yp−1∂x ∈ DerH , and M is an irreducibleH -module of dimension� p2. By
Proposition2.2, the semisimplep-envelopeHp of H (which is isomorphic to DerH ) acts
naturally onM. Thep-character of theHp-moduleM is denoted byµ. From now on we
use the notation of [17] without further comment.

Lemmas4.1–4.3 hold forp = 5. Lemma4.4(1) needs a new proof given below.
Let M0 denote an irreducibleH(0)-submodule ofM. According to (4.2),M0 is an

irreducible module forFx2 + Fxy + Fy2. Pick a nonzerou ∈ M0 with ρ(xy) · u ∈ Fu.

The set{
ρ(x)iρ(y)ju

∣∣ 0 � i � 4, 0 � j � 2
} ∪ {

ρ(x)iρ(y)jρ(x2)u
∣∣ 0 � i � 4, 0 � j � 2

}
consists of 30 elements. As dimM � 52 we have a nontrivial relation(

4∑
i=0

2∑
j=0

(
αij ρ(x)iρ(y)j + βij ρ(x)iρ(y)jρ

(
x2))) · u = 0.

Put k := max{i + j | αij �= 0 or βij �= 0}, s := max{j | αk−j,j �= 0 or βk−j,j �= 0}, and
r := k − s. Obviously,k � 6 ands � 2. If k < 6 then argue as in the original proof. Ifk = 6
thens = 2, r = 4, and

0 = (
ρ(Λ) − µ(Λ)Id

)(∑
i,j

(
αi,j ρ(x)iρ(y)j + βij ρ(x)iρ(y)jρ

(
x2))u)

=
∑

αij

[
ρ(Λ),ρ(x)iρ(y)j

]
u +

∑
βij

[
ρ(Λ),ρ(x)iρ(y)j

]
ρ
(
x2)u
i,j i,j
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= α4,2
[
ρ(Λ),ρ(x)4ρ(y)2]u + β4,2

[
ρ(Λ),ρ(x)4ρ(y)2]ρ(

x2)u
= 1

2
α4,2ρ

(
x2)u + 1

2
β4,2ρ

(
x2)2

u.

As ρ(x2)u and ρ(x2)2u belong to distinct eigenspaces ofρ(xy) it must be that
α4,2ρ(x2)u = β4,2ρ(x2)2u = 0. As k = 6 one of these coefficients has to be nonz
implying ρ(x2)2u = 0. The rest of Lemma4.4 now follows from this result.

To extend Lemma4.5 we consider the set{
ρ(Θ)iρ(y)ju

∣∣ 0 � i, j � 3
} ∪ {

ρ(Θ)iρ(y)jρ(x)u | 0� i, j � 3
}

and then proceed as in the original proof. The proofs of Theorems4.6–6.3 only require
Lemmas4.4 and4.5, and(p > 3)-arguments. So these theorems hold forp > 3. However,
we will need a better estimate in Proposition6.4(1).

Proposition 6.4(1) (improved).Let G be a central extension ofH(2;1;Φ(τ))(1) and
M be a finite-dimensionalG-module. IfG(1) ∩ C(G) acts non-nilpotently onM then
dimM > p(p−1)/2.

Proof. Suppose dimM � p(p−1)/2. The proof in [17] shows thatM is an irreducible
G-module of dimensionp(p−1)/2 and the monomialsρ(y)k1ρ(y2)k2 · · ·ρ(yp−1)kp−1 with
0 � ki � p − 1 form a basis of EndM. Then

ρ(Λ) =
∑

k=(k1,k2,...,kp−1)

αkρ(y)k1ρ
(
y2)k2 · · ·ρ(

yp−1)kp−1

for someαk ∈ F . The central extensions ofH(2;1;Φ(τ))(1) are described in Theorem6.3.
It is immediate from this description thatρ(Λ) commutes withρ(yk) for k = 2, . . . , p −1.

Applying the operators adρ(yp−1),adρ(yp−2), . . . ,adρ(y2) to the above expression, on
derives thatαk = 0 unlessk = (0, . . . , kp−1). It follows thatρ(Λ) is a linear combination
of ρ(yp−1)j with 0 � j � p − 1. Sinceρ(Λ) commutes withρ(xy), this yields that
ρ(Λ) ⊂ F IdM . SinceH(2;1;Φ(τ))(1) is simple this contradicts our general assumpt
onM. �

The improved Proposition6.4(1) enables us to extend Theorem6.5(1) after which all
arguments used in [17, Sections 6, 7] go through forp > 3. We conclude that all results o
[17] hold forp > 3.

In the sequel, we will need two additional results onH(2;1;Φ(τ))(1).

Proposition 5.1. Let χ be a linear function on the Lie algebraDerH(2;1;Φ(τ))(1)

vanishing onH(2;1;Φ(τ))(1)
(0) andT be a2-dimensional torus inDerH(2;1;Φ(τ))(1).

Let u,v ∈ H(2;1;Φ(τ))(1) be root vectors forT corresponding to rootsα and β ,
respectively. Then

χ
([u,v])p = −α

(
vp

)
χ(u)p + β

(
up

)
χ(v)p.
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Proof. Recall from [17, Section 1] thatH(2;1;Φ(τ))(1) is the derived subalgebra o
a Poisson Lie algebra. More precisely,H(2;1;Φ(τ))(1) ∼= (A(2;1), {· , ·})(1) where the
Poisson bracket{· , ·} on the commutative algebraA(2;1) is given by {x, y} = Λ.
According to [18, Theorem VII.3], there is a generating set{y1, y2} ⊂ A(2;1)(1) of the
commutative algebraA(2;1) such that

{y1, y2} = (1+ y1)(1+ y2) and T = (1+ y1)∂/∂y1 ⊕ F(1+ y2)∂/∂y2.

For i = 1,2, setzi := (1 + yi). Since allT -root spaces of the Poisson algebraA(2;1)
are 1-dimensional, we may assume, after rescaling, thatu = za

1zb
2 andv = zc

1z
d
2 for some

a, b, c, d ∈ Fp with (0,0) /∈ {(a, b), (c, d)}. As {za
1zb

2, z
c
1z

d
2} = (ad − bc)za+c

1 zb+d
2 we

derive that

β
(
up

)
v = (adu)p

(
zc

1z
d
2

) = (ad − bc)pv,

α
(
vp

)
u = (adv)p

(
za

1zb
2

) = (bc − ad)pu.

Sincezi
1z

j

2 ≡ iy1 + jy2 (modA(2;1)(2) + FΛ), it follows from [17, Proposition 1.2(1)
that

zi
1z

j

2 ≡ iz1 + jz2
(
modH

(
2;1;Φ(τ)

)(1)
(0)

)
(∀i, j ∈ Fp).

As χ vanishes onH(2;1;Φ(τ))(1)
(0), we then have

χ
([u,v])p + α

(
vp

)
χ(u)p − β

(
up

)
χ(v)p

= χ
(
(ad − bc)za+c

1 zb+d
2

)p + (bc − ad)pχ
(
za

1zb
2

)p − (ad − bc)pχ
(
zc

1z
d
2

)p
= (ad − bc)p

((
(a + c)χ(z1) + (b + d)χ(z2)

)p − (
(aχ(z1) + bχ(z2)

)p

− (
cχ(z1) + dχ(z2)

p
)) = 0,

completing the proof. �
By [2, Proposition 2.1.8(b)], the derivation algebra DerH(2;1;Φ(τ))(1) is naturally

identified with a restricted subalgebra ofW(2;1). The standard maximal subalgeb
of DerH(2;1;Φ(τ))(1) is defined as DerH(2;1;Φ(τ))(1) ∩ W(2;1)(0). It is obviously
restricted and has codimension 2 in DerH(2;1;Φ(τ))(1).

Proposition 5.2. LetL be a restricted Lie algebra with MT(L) = 2 such that

(a) radL is abelian andL/ radL∼= DerH(2;1;Φ(τ))(1),
(b) radL ∼= H(2;1;Φ(τ))(1) as(L/ radL)-modules.
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LetT be a2-dimensional torus inL, letL(0) denote the preimage of the standard maxim
subalgebra ofDerH(2;1;Φ(τ))(1) in L, and suppose that

radL �⊂ [L(0),L(0)].

Then there exists a restricted subalgebraM in L with T ⊂ M andL = M ⊕ radL. In
particular,L is a split extension.

Proof. (1) Since both the standard maximal subalgebra of DerH(2;1;Φ(τ))(1) and radL
are restricted so isL(0). It is immediate from assumption (b) that the Lie algebraL is
centerless, while from the description in [17, Proposition 1.2(1)] it follows that

radL(0) = {
x ∈L(0)

∣∣ x + radL ∈ DerH
(
2;1;Φ(τ)

)(1) ∩ W(2;1)(1)

}
andL(0)/ radL(0)

∼= sl(2). Given x ∈ radL(0) one hasx[p]r ∈ radL for r � 0 forcing

x[p]r+1 ∈ C(L) = (0). Thus radL(0) is p-nilpotent.

(2) By our assumption, radL �⊂ [L(0),L(0)]. So there exist a subspaceV in L(0) and
a nonzeroc ∈ radL such that[L(0),L(0)] ⊂ V and L(0) = V ⊕ Fc. Clearly, V is an
ideal ofL(0). Let λ denote the linear function onL(0) with kerλ = V andλ(c) = 1. Let
Fλ = F1λ be a 1-dimensional vector space overF . The mapρλ :L(0) → gl(Fλ) given by
ρλ(x) · 1λ = λ(x)1λ, is a representation ofL(0). It is well known (and easily seen) th
there exists a linear functionµ onL such that

µ(x)p = λ(x)p − λ
(
x[p]) ∀x ∈ L(0).

Let u(L,µ) denote the reduced enveloping algebra ofL corresponding toµ ∈L∗, and

M := u(L,µ) ⊗u(L(0),µ) Fλ,

a p2-dimensional inducedL-module withp-characterµ. Let M ′ be a composition facto
of M. It is immediate from assumption (b) that[L, radL] = radL. Due to the choice o
λ the radical ofL does not act nilpotently onM ′ (indeed, asc[p] ∈ C(L) = (0), the only
eigenvalue ofc onM ′ equalsµ(c) = λ(c) = 1). Theorem6.5 now shows that dimM ′ = p2.
As radL is a minimal ideal ofL, we deduce thatM is irreducible and faithful. Therefore
so is the dualL-module M∗. It is well known that theL-module M∗ is coinduced.
More precisely, the antipode of the universal enveloping algebraU(L) induces a natura
isomorphism

M∗ ∼= Homu(L(0),−µ)

(
u(L,−µ),F ∗

λ

)
.
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(3) We now observe that the discussion in [8, Section 2] applies to theL-moduleM∗.
Recall that the restrictedL-moduleF(L,L(0)) = Homu(L(0))(u(L),F ) carries a natura
commutative algebra structure andL acts onF(L,L(0)) as derivations. The algeb
F(L,L(0)) acts onM∗ via the comultiplication inU(L) and this action is compatibl
with the action ofL onF(L,L(0)) andM∗. Furthermore,M∗ is a free module of rank 1
overF(L,L(0)).

SinceL(0) has codimension 2 inL, we have thatF(L,L(0)) ∼= A(2;1) as algebras
The (tautological) semidirect productW(2;1) := W(2;1) ⊕ A(2;1) acts faithfully
and restrictedly onA(2;1). It follows from the preceding remark that after a prop
identification of the freeF(L,L(0))-modulesM∗ and A(2;1) the initial representatio
L→ gl(M∗) will factor as

L σ−→ W(2;1) −→ gl
(
A(2;1)

)
for some injective homomorphismσ (see [8, p. 428] for more detail). Letπ denote
the canonical projection fromW(2;1) onto W(2;1). Since M∗ is L-irreducible, the
subalgebraπ(L) is transitive inW(2;1). SinceL(0) preserves the unique maximal ide
of F(L,L(0)), it follows from our construction that(π ◦ σ)(L(0)) ⊂ W(2;1)(0). Since
(π ◦ σ)(radL) ⊂ W(2;1)(0) is an ideal of(π ◦ σ)(L), the transitivity of(π ◦ σ)(L) yields
(π ◦ σ)(radL) = (0). As a consequence,

(π ◦ σ)(L) ∼= L/ radL ∼= DerH
(
2;1;Φ(τ)

)(1)
.

(4) We now look atσ(T ) ⊂ W(2;1). Clearly,T = F t1 ⊕ F t2 for some toral element
t1, t2 ∈ L. SinceM∗ hasp-character−µ, we have thatσ(ti)

p = σ(t
[p]
i ) − µ(ti)

p1 where
1 is the unity inA(2;1) ⊂ W(2;1). Therefore, ifµ(ti) �= 0 for somei thenσ(T ) is not
closed under takingpth powers inW(2;1). Chooseλi ∈ F with λ

p

i −λi = −µ(ti)
p where

i = 1,2, and set

t := F
(
σ(t1) + λ11

) ⊕ F
(
σ(t2) + λ21

)
.

Then t is a torus inW(2;1) and π(t) = (π ◦ σ)(T ) is a torus in(π ◦ σ)(L). By [8,
Theorem 3.3], there isf ∈ A(2;1)(1) such that(expadf )(t) ⊂ W(2;1) ⊕ F1. Thus we
may assume without loss of generality thatσ(T ) ⊂ W(2;1) ⊕ F1. SinceC(L) = (0) and
(π ◦σ)(radL) = (0), we haveσ(radL)∩(W(2;1)⊕F1) = (0). Since radL has dimension
p2 − 1, we now get

W(2;1) = σ(radL) ⊕ (
W(2;1) ⊕ F1

)
.

SetM := σ−1(σ (L) ∩ (W(2;1) ⊕F1)). By construction,L =M⊕ radL andT ⊂M. If
x ∈M thenσ(x)p ∈ W(2;1)⊕F1 asW(2;1)⊕F1 is a restricted subalgebra inW(2;1).
But thenσ(x[p]) = σ(x)p + µ(x)p1 ∈ W(2;1) ⊕ F1. ThusM is a restricted subalgeb
of L and our proof is complete.�

As a consequence of Propositions 5.1 and5.2 we obtain the following proposition.
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Proposition 5.3. LetL, L(0), andT be as in Proposition5.2, and letχ be a linear function
onL with χ([L(0),L(0)]) = 0. Letu andv be root vectors inL corresponding to(nonzero)
T -rootsα andβ . Then

χ
([u,v])p = −α

(
v[p])χ(u)p + β

(
u[p])χ(v)p.

Proof. (1) By Proposition 5.2,L = M ⊕ radL and T ⊂ M. SinceM(1) ∼= H(2;1;
Φ(τ))(1) and [L, radL] = radL it must be thatL(1) = M(1) ⊕ radL. SoLγ = Mγ ⊕
(radL)γ ⊂ L(1) for anyγ ∈ Γ (L, T ). Besides,T has no zero weight onL(1). In view of
Jacobson’s formula, the latter implies that the functionx 
→ γ (x[p]) is p-linear onLδ for
anyδ ∈ Γ (L, T ). But then the function

(x, y) 
−→ χ
([x, y])p + α

(
x[p])χ(y)p − β

(
y[p])χ(x)p

is p-bilinear onLα ×Lβ .

(2) Let M(0) := L(0) ∩ M. Clearly, M(0) is isomorphic to the standard maxim
subalgebra of DerH(2;1;Φ(τ))(1). According to [17, Proposition 1.2(2d)],M(0)

(1) =
M(1)

(0)
∼= H(2;1;Φ(τ))(1)

(0). By our assumption,χ vanishes onM(0)
(1). Thus if

u,v ∈M then the desired result follows from Proposition 5.1.
Recall that radL is p-nilpotent (see the proof of Proposition 5.2). So ifu,v ∈ radL then

[u,v] = 0 andα(u[p]) = β(u[p]) = 0. Thus in this case we are done as well. Due to
discussion in part (1), we can now assume thatu ∈ M, v ∈ radL. To finish the proof we
will need to show that

χ
([u,v])p = β

(
u[p])χ(v)p.

(3) We identifyM(1) ∼= H(2;1;Φ(τ))(1) with the derived subalgebra of the Poiss
algebra(A(2;1), {·, ·}). As in the proof ofProposition 5.1, we choose generatorsy1, y2 ∈
A(2;1)(1) such that

{y1, y2} = (1+ y1)(1+ y2) and T = (1+ y1)∂/∂y1 ⊕ F(1+ y2)∂/∂y2

(this is possible becauseT ⊂ M = DerM(1)). We now fix anM-module isomorphism
η :H(2;1;Φ(τ))(1) ∼−→ radL and setzi = 1 + yi for i = 1,2. Since allT -root spaces
of the Poisson algebraA(2;1) are 1-dimensional it can be assumed, after rescaling,
u = za

1zb
2 andv = η(zc

1z
d
2) for some(a, b), (c, d) ∈ F2

p \ (0,0). Sincez2
1 − 2z1 + 1, z2

2 −
2z2 + 1 ∈ A(2;1)(2) ⊂M(0), the subspace[M(0), radL] contains all elements{

z2
1 − 2z1 + 1, η

(
zi

1z
j

2

)} = 2j
(
η
(
zi+2

1 z
j

2

) − η
(
zi+1

1 z
j

2

))
,{

z2
2 − 2z2 + 1, η

(
zi

1z
j

2

)} = −2i
(
η
(
zi

1z
j+2
2

) − η
(
zi

1z
j+1
2

))
.

From this it is easy to deduce thatη(zi
1z

j

2) − η(z1z2) ∈ [M(0), radL] for all (i, j) ∈
F2

p \(0,0). As a consequence,η(zazb) ≡ η(za+czb+d ) (mod[M(0), radL]) unless(a, b) =
1 2 1 2
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(−c,−d). As χ vanishes onL(0)
(1) and [M(0), radL] ⊂ L(0)

(1), the preceding remar
shows thatχ(η(za

1zb
2)) = χ(η(za+c

1 zb+d
2 )). In the course of the proof of Proposition 5.1 w

have established thatβ(u[p]) = (ad − bc)p. So if (a, b) = (−c,−d) then[u,v] = 0 and
β(u[p]) = 0. Hence

χ
([u,v])p − β

(
u[p])χ(v)p = (ad − bc)pχ

(
η
(
za+c

1 zb+d
2

))p − (ad − bc)pχ
(
η
(
zc

1z
d
2

))p

= 0,

as required. �

6. Case (A): Lie algebras without nonsolvable 1-sections

In this section, we assume that

all 1-sections ofL relative toT are solvable.

Recall that the general case of the classification problem in characteristicp > 7 was
split by the second author into four special cases known as Cases (A)–(D). The sim
algebrasL satisfying the assumption above fall into Case (A) which was solved forp > 7
in [16, Section 2] and [20]. Our goal in this section is to solve this case forp > 3.

Proposition 6.1. Then the following are true:

(1) H ⊂ nil H̃ .
(2) Each1-section ofL relative toT is nilpotent and acts triangulably onL.

Proof. SupposeH �⊂ nil H̃ . Then there isα ∈ Γ (L,T ) such thatα(H) �= 0. Set

Ω := {
κ ∈ Γ (L,T )

∣∣ κ(H) �= 0
}
.

As Ω �= ∅, by our assumption, Schue’s lemma yieldsH = ∑
κ∈Ω [Lκ,L−κ ]. Since all

roots inΓ (L,T ) are solvable, Proposition 3.8 shows that[Lκ,L−κ ] ⊂ nil H̃ for all κ ∈ Ω .
But thenH ⊂ nil H̃ , a contradiction. SinceT is a maximal torus inLp , this argumen
(in conjunction with the Engel–Jacobson theorem) also yields thatT is standard and eac
L(α) is nilpotent. Then Theorem 3.1 applies (witht0 = T ) showing that eachL(α) acts
triangulably onL. �

Recall that in prime characteristics thereis a natural way to extend domain of ro
functions. Letα ∈ Γ (L,T ). Givenx ∈ Lγ with γ ∈ Γ (L,T ) one hasxp ∈ H̃ . We define

α(x) := p
√

α(xp) ∀x ∈ Lγ .

Thus α is defined on the unioñH ∪ ⋃
γ∈Γ (L,T ) Lγ . Since in our case[Lα,L−α] ⊂

H ⊂ nil H̃ , by Proposition 6.1, it follows from Jacobson’s formula that(x + y)p ≡
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xp + yp (mod nilH̃ ) for all x, y ∈ Lγ and allx, y ∈ H̃ . Therefore,α is a linear function
not only onH but also onH̃ and any root spaceLγ .

Lemma 6.2. LetG be a simple Lie algebra with TR(G) � 2 andt ⊂ DerG be a torus such
that the centralizercG(t) acts nilpotently onG and each1-section ofG relative to t is
nilpotent. ThenG ∼= H(2;1;Φ(τ))(1), dimt = 2, andt ⊂ Gp = DerG.

Proof. (a) Let t′ ⊃ t be a maximal torus of DerG. If every 2-section ofG relative to
t′ is solvable then so isG [19, Theorem 1.16]. Since this is not the case, there
κ ′, λ′ ∈ Γ (G, t′) such that the 2-sectionM := g(κ ′, λ′) is nonsolvable. Fori ∈ Fp , set

M(i) :=
∑
j∈Fp

Miκ ′+jλ′ .

Clearly, the decompositionM = ⊕
i∈Fp

M(i) is anFp-grading ofM. AsM is nonsolvable
M(0) does not act nilpotently onM (see [19, Proposition 1.14]). SincecG(t′) ⊂ cG(t)

does act nilpotently onG (by our assumption), the Engel–Jacobson theorem shows
there isx ∈ Mrλ′ for somer ∈ F∗

p such that adM x is not nilpotent. Since the torust′
is maximal, we have thatλ′(x) = 0 andκ ′(x) �= 0. Interchanging the roles ofκ ′ andλ′
in this argument, we findy ∈ Lsκ ′ for somes ∈ F∗

p such thatκ ′(y) = 0 andλ′(y) �= 0.
Sincet′ is a maximal torus, the semisimple partsxs andys of x, y in Mp ⊂ DerG lie in
the torust′0 := t′ ∩ Mp ⊂ Gp. By construction,xs andys are linearly independent. Sinc
dimt′0 � MT(Gp) = TR(G), our assumption onG implies thatt′0 = Fxs + Fys .

(b) Suppose that for someΛ ∈ Γ (G, t′0) the 1-sectionG(Λ) is nonsolvable. Clearly
G(Λ) = G(α′

1, . . . , α
′
l ) for some α′

i ∈ Γ (G, t′). So G(Λ) is a section ofG relative
to t′. Since G(Λ) is assumed to be nonsolvable it contains a nonsolvable 2-se
relative tot′, sayM ′ (again by [19, Theorem 1.16]). We now repeat the argument f
part (a) withM replaced byM ′ (and with t′ unchanged) to observe that thep-envelope
G(Λ)p ⊂ Gp contains a 2-dimensional torus, sayt′1 which acts faithfully onG(Λ).
But thent′1 ⊕ (t′0 ∩ kerΛ) is a 3-dimensional torus inGp violating our assumption tha
TR(G) = 2. Thus all 1-sections ofG relative to the 2-dimensional torust′0 in Gp are
solvable.

(c) As TR(G) = 2, the Lie algebraG is listed in [10, Theorem 1.1]. Thanks to part (
of this proof, Proposition 6.1 applies toG implying that cG(t′0) contains no nonzer
p-semisimple elements ofGp . It follows that G is non-restricted (for otherwisecG(t′0)
would containt′0 which is impossible). IfG is isomorphic to one ofW(1;2), H(2;1;∆),
H(2; (2,1))(2) thenG has codimension 1 inGp . Sincet′0 is 2-dimensional,(0) �= t′0∩G ⊂
cG(t′0), a contradiction. We conclude thatG ∼= H(2;1;Φ(τ))(1). So DerS = Sp , by
[2, Theorem 2.1.8(b)], implying that dimt � TR(S) = 2. Thent = t′ ⊃ t′0 �= (0) is 2-
dimensional. �
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Proposition 6.3. If L(α,β) is nonsolvable for someα,β ∈ Γ (L,T ) then

L[α,β] ∼= H
(
2;1;Φ(τ)

)(1)
.

Proof. Suppose thatL[α,β] is nonsolvable and let(0) �= S̃ = ⊕r
i=1 S̃i be the sum of al

minimalT -invariant ideals of theT -semisimple Lie algebraL[α,β]. The structure of̃S is
described in Theorems 4.1, 4.2, 4.4. The algebras described in Theorems 4.1 and 4.
occur in our case since, as is easily seen, they all possess nonsolvable 1-sections
to T . ThusL[α,β] is described in Theorem 4.2, so thatS̃ is simple andTR(S̃) = 2. As all
1-sections ofL relative toT are solvable so are all 1-sections ofS̃ relative toT . Lemma 6.2
now says̃S ∼= H(2;1;Φ(τ))(1). ThenS̃ ⊂ L[α,β] ⊂ DerS̃ = S̃ ⊕ T , by Theorem 4.2(2)
SinceL[α,β] ∩ T = (0), by Lemma 6.1, we must have thatL[α,β] ∼= S̃. �
Corollary 6.4. LetT ′ be an arbitrary torus of maximal dimension inLp . Then all roots in
Γ (L,T ′) are solvable.

Proof. According to [6, Theorem 1], the torusT ′ is obtained fromT by a finite sequence o
successive elementary switchings. Easy induction on the number of elementary swi
involved shows that it suffices to prove the corollary under the assumption thatT ′ = Tz

wherez ∈ Lα andα is an arbitrary root inΓ (L,T ) (for the terminology related to tora
switchings, see the end of Section 4). Fixξ ∈ HomFp (F,F ) with ξp − ξ = IdF . Any 1-
section ofL relative toTz has the formL(βz,ξ ) = Ez,ξ (L(β)) for someβ ∈ Γ (L,T ); see
[9, p. 221] for example. Clearly,Ez,ξ (L(β)) ⊂ L(α,β). So if L(α,β) is solvable we are
done.

SupposeL(α,β) is nonsolvable. ThenL[α,β] ∼= H(2;1;Φ(τ))(1), by Proposition 6.3
while Lemma 6.2 shows that

Ψα,β

(
T + L(α,β)p

) = Ψα,β(T ) ⊕ L[α,β].

SinceEz,ξ is invertible and preserves bothL(α,β) and rad(L(α,β)p), we get

Ψα,β

(
T + L(α,β)p

) = Ψα,β(Tz) ⊕ L[α,β].

Thus the image ofTz in DerH(2;1;Φ(τ))(1) is 2-dimensional. So it follows from [15
Theorem VII.3] that all 1-sections ofH(2;1;Φ(τ))(1) relative to the image ofTz are
abelian. But then all 1-sections ofL(α,β) relative toTz are solvable. In particular, thi
applies toL(βz,ξ ) completing the proof. �

Next we are going to determine 3-sections.

Theorem 6.5. Letα,β, γ ∈ Γ (L,T ). Then one of the following holds:

(1) L[α,β, γ ] = (0).
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(2) There existδ1, δ2 ∈ Γ (L,T ) such that

L[δ1, δ2] = L[α,β, γ ] ∼= H
(
2;1;Φ(τ)

)(1)
.

(3) H(2;1;Φ(τ))(1) ⊗ A(m;1) ⊂ L[α,β, γ ] ⊂ Der(H(2;1;Φ(τ))(1) ⊗ A(m;1)) for
somem ∈ N0. There existsµ ∈ Γ (L,T ) ∪ {0} such that

L[α,β, γ ] = H
(
2;1;Φ(τ)

)(1) ⊗ A(m;1) + L[α,β, γ ](µ).

Moreover, the image of the torusT in DerL[α,β, γ ] is 3-dimensional.
(4) There exists a simple Lie algebraS with TR(S) = 3 such that

S ⊂ L[α,β, γ ] ⊂ DerS.

Proof. (1) If G̃ := L(α,β, γ ) is solvable then we are in case (1) of the theorem.
assume from now thatL(α,β, γ ) is not solvable. ThenG := L[α,β, γ ] = L(α,β, γ )/

radT L(α,β, γ ) is a nonzeroT -semisimple Lie algebra. LetI be a minimalT -invariant
ideal of G. By Block’s theorem, there exist a simple algebraS and m ∈ N0 such that
I ∼= S ⊗ A(m;1), under a Lie algebra isomorphismϕ. SinceT + L(α,β, γ )p preservesI ,
the isomorphismϕ induces a restricted Lie algebra homomorphism

Φ :T + L(α,β, γ )p −→ (DerS) ⊗ A(m;1) + (
Id ⊗ W(m;1)

)
.

Let t := Φ(T ) and identifyI with S ⊗ A(m;1). By [9, Theorem 2.6], we can chooseΦ

such that

t =
(

s∑
i=1

F IdS ⊗ (1+ xi)∂i

)
⊕t0,

where t0 is the normalizer ofS ⊗ A(m;1)(1) in t and s = dimt/t0. Moreover,t0 =
{λ1(t) ⊗ 1 + IdS ⊗ λ2(t) | t ∈ t0} whereλ1 : t0 → DerS andλ2 : t0 → ∑m

i=s+1 Fxi∂i are
restricted homomorphisms. Putt1 := λ1(t0) ⊂ DerS, a torus in DerS. For γ ∈ t∗1, define
γ̃ ∈ t∗ by setting

γ̃
(
(1+ xi)∂i

) = 0 (1 � i � s), γ̃
(
λ1(t) ⊗ 1+ Id ⊗ λ2(t)

) = γ
(
λ1(t)

)
(t ∈ t0).

Let γ be any root inΓ (S, t1). ThenSγ ⊗F ⊂ Φ(G̃)γ̃ yielding γ̃ ∈ Γ (Φ(G̃), t). In view of
Proposition 6.1,cS(t1) ⊗ F ⊂ cΦ(G̃)(t) acts nilpotently onS andS(γ ) ⊗ F ⊂ (Φ(G̃))(γ̃ )

is nilpotent. SinceG is a homomorphic image of the 3-sectioñG, we have, by [19, Theo
rem 1.9], that 0< TR(S) � TR(G) � 3.

SupposeTR(S) � 2. Since all 1-sections ofS relative to t1 ⊂ DerS are nilpotent,
Lemma 6.2 yields thatS ∼= H(2;1;Φ(τ))(1) andt1 ⊂ Sp is 2-dimensional. In particula
TR(S) = 2 in this case.
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Now let S̃ = ⊕r
i=1 S̃i be the sum of all minimalT -invariant ideals ofG. From the pre-

ceding remark it follows that 2r �
∑r

i=1 TR(S̃i ) = TR(S̃) � 3 (see [19, Theorem 1.7(6)]
Thusr = 1 andI is the uniqueT -invariant minimal ideal inG.

(2) SupposeTR(S) = 2. Then S̃ = S ∼= H(2;1;Φ(τ))(1). If m = 0 then Φ maps
T + L(α,β, γ )p onto DerS = (H(2;1;Φ(τ))(1))p which gives dimT � TR(S) = 2.
Also, t = t1 is 2-dimensional (Lemma 6.2). So there existFp-independentT -roots
δ1, δ2 ∈ Fpα + Fpβ + Fpγ such thatΦ(G̃) = Φ(L(δ1, δ2)). SinceG is T -semisimple,
Proposition 6.3 givesG = L[δ1, δ2] ∼= H(2;1;Φ(τ))(1). This is case (2) of the theorem.

(3) Now suppose thatTR(S) = 2 andm > 0. Let Ip denote thep-envelope ofI in
DerI . SinceS ∼= H(2;1;Φ(τ))(1) we have that DerS = Sp . Therefore,Ip = (DerS) ⊗
F + S ⊗ A(m;1). By [19, Theorem 1.7(8)], dimT ∩ Ip = 2 (one should keep in min
that T + Ip ⊂ DerI is centerless). Sincet ∩ Ip = t0 ∩ Ip = kerλ2, we deduce tha
t = (t2 ⊗F)⊕F t wheret2 is a 2-dimensional torus inSp andt is a toral element (possibl
zero). Then

Φ(G̃) = S ⊗ A(m;1) + (
Φ(G̃)

)
(µ)

for some µ ∈ Γ (Φ(G),T ) ∪ {0} with µ(t2 ⊗ F) = 0. If t = t2 ⊗ F then G is a
homomorphic image of a 2-section inL. Since G is T -semisimple andm > 0, this
contradicts Proposition 6.3. Thus we are in case (3) of the theorem.

(4) Finally, supposeTR(S) = 3. ThenTR(I) = 3 and hence dimt ∩ Ip = 3; see [19,
Theorem 1.7(8)]. Therefore,t ⊂ Ip . By [7, Lemma 2.5], we can chooseΦ such that
t = t2 ⊗ F for some 3-dimensional torust2 ⊂ Sp . As a consequence,

Φ
(
T + L(α,β, γ )p

) = Ip + Φ(Hp).

SinceI is a minimal ideal inΦ(T + L(α,β, γ )p), the subalgebraπ2(Φ(Hp)) is transitive
in W(m;1). Supposem > 0. Then there existsh ∈ Φ(Hp) with π2(h̄) /∈ W(m;1)(0). Note
thatSγ ⊗ A(m;1) ⊂ Φ(G̃)γ̃ for anyγ ∈ Γ (S, t2). Therefore,

Sγ ⊗ A(m;1) = Sγ ⊗ A(m;1)(1) + [
h,Sγ ⊗ A(m;1)

]
⊂ S(γ ) ⊗ A(m;1)(1) + (

Φ(G̃)
)
(γ̃ )(1).

It is immediate from Proposition 6.1(2) and the definition of̃G that (Φ(G̃))(µ̃)(1) acts
nilpotently on I . But thenSγ ⊗ A(m;1) acts nilpotently onI , too (one should tak
into account that the last summand in the displayed formula is stable under the
of S(γ ) ⊗ A(m;1)(1)). Since the above applies to anyγ ∈ Γ (S, t2), we now combine
Proposition 6.1(1) with the Engel–Jacobson theorem to deduce thatI acts nilpotently on
itself. This contradicts the simplicity ofS proving thatm = 0. Thus we are in case (4) o
the theorem. �
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In the (p > 7)-theory, the role of the result we just proved is played by [16, Th
rem 2.7]. It should be mentioned here that our result is slightly weaker than the result
where it is stated, in case (3), that the minimal idealI is isomorphic toH(2;1,Φ(τ))(1) ⊗
A(1,1). Theorem 2.7 of [16] is only used in [20] to deduce [20, Lemma 6.3]. Now
lemma follows easily from our weaker version of [16, Theorem 2.7].

It seems that relying on the information available at the time when [St 91/1] was wr
one can only prove our weaker version of [16, Theorem 2.7]. This oversight has no
on the classification forp > 7. Indeed, one of the consequences of [20] is that all solv
1-sections in case (A) are triangulable; using this result, one can recover the o
version of case (3) in [16] from our slightly weaker version.

We are now going to take a closer look at the Lie algebras which appear in case
Theorem 6.5. To streamline our exposition we often impose in the rest of this section th
TR(L) = 3.

Theorem 6.6. Let TR(L) = 3 and suppose that eitherL ∼= H(2;n;Ψ)(2) or L ∼=
S(3;n;Ψ )(1). Let T be a 3-dimensional torus in thep-envelopeLp ⊂ DerL with the
property thatL(α) is solvable for anyα ∈ Γ (L,T ). ThenL is isomorphic to one o
H(2; (2,1);Φ(τ))(1) or S(3;1;Φ(τ))(1). Furthermore, the following hold:

(1) H = (0) and no root vector forT act nilpotently onL.
(2) Every solvable2-section ofL relative toT is abelian.
(3) Γ (L,T ) ∪ {0} is an elementary abelianp-group of orderp3.
(4) If x ∈ Lα andy ∈ Lβ then[x, y]p = −α(yp)xp + β(xp)yp.

Proof. For p > 7, this is proved in [20, Propositions 5.4, 5.5]. The proof follows fr
some explicit computations involving the Lie algebrasH(2;n;Ψ )(2) and S(3;n;Ψ)(1)

with property (A;3) (see [20, Definition 2]). That property holds for ourL due to
Corollary 6.4, while the computations themselves go through forp > 3. The result
follows. �
Proposition 6.7. If TR(L) = 3 and L contains a solvable2-sectionL(α,β) with Fp-
independentα,β ∈ Γ (L,T ), thenL ∼= H(2; (2,1);Φ(τ))(1).

Proof. Let M be a maximalT -invariant subalgebra ofL containingL(α,β).

(a) SupposeM is not solvable. ThenM contains a nonsolvable 2-section relative toT ;
see [19, Theorem 1.16]. SinceM(α,β) = L(α,β) is solvable there existFp-independen
γ, δ ∈ Γ (L,T ) with γ /∈ Fpα + Fpβ such thatM(γ, δ) is nonsolvable. Fori ∈ Fp, set

M(γ, δ)i :=
∑
j∈Fp

Miδ+jγ .

ThenM(γ, δ) = ⊕
i∈Fp

M(γ, δ)i is Fp-graded. By [19, Proposition 1.14], the subalgebr
M(γ, δ)0 does not act nilpotently onM(γ, δ). By Proposition 6.1,H ⊂ M(γ, δ)0 acts
nilpotently onL. The Engel–Jacobson theorem now yields that there existsx ∈ Mjγ , for
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p, with δ(x) �= 0. Let L1(x) denote the Fitting 1-component for adx. Since

adx is not nilpotent,L1(x) = (adx)p
r
(L) �= (0) (herer is a big enough positive integer

By [19, Proposition 1.12], we then haveL = L1(x) + [L1(x),L1(x)]. HenceL1(x) �⊂ M.
Note thatL1(x) = (adx)p

r
(L) is T -invariant. So the complementL1(x) \ M contains a

root vector, sayu ∈ Lµ. Since adx acts invertibly onL1(x) it also acts invertibly of the
factor space(L1(x) + M)/M. From this it follows thatµ + Fpγ ⊂ Γ w(L/M,T ). Now
µ = mα+nβ+rγ for somem,n, r ∈ Fp. By our preceding remark,mα+nβ is aT -weight
of L/M. HoweverL(α,β) ⊂ M, a contradiction.

(b) As a consequence,M is solvable. Now [21, Corollary 6.34] (which generaliz
earlier work of Kuznetsov [3], Weisfeiler [24], and Skryabin [11]) says thatL is one
of sl(2), W(1;n), H(2;n;Φ)(2) for some n and Φ. As TR(L) = 3 we haveL �

sl(2). The semisimplep-envelopeW(1;n)p is nothing butW(1;n) + ∑n−1
i=1 FDpi ⊂

W(n;1). It is well known thatTR((W(1;n)) = n (see [18, Section V] for example). S
W(1;n) intersects with any torus of maximal dimension inW(1;n)p. As H ⊂ nil H̃ , by
Proposition 6.1(1),L is not of Witt type. Now Theorem 6.6 givesL ∼= H(2; (2,1),Φ(τ))(1)

completing the proof. �
Lemma 6.8. Suppose thatL = L(α,β, γ ) has absolute toral rank3. ThenΓ (L,T ) =
(Fpα ⊕ Fpβ ⊕ Fpγ ) \ {0} and there isk ∈ N such thatdimLδ = k for all δ ∈ Γ (L,T ).

Proof. (1) Assume first that for any pair(δ1, δ2) of Fp-independent roots inΓ (L,T ) the
2-sectionL(δ1, δ2) is nonsolvable. Proposition 6.3 then says thatL[δ1, δ2] is isomorphic to
H(2;1;Φ(τ))(1). By [18, Theorem VII.3], any root vector inL[δ1, δ2] acts non-nilpotently
on L[δ1, δ2]. So there existx ∈ Lδ1 andy ∈ Lδ2 with δ2(x) �= 0, δ1(x) = 0 andδ1(y) �= 0,
δ2(y) = 0. Thus dimLiδ2 = dimLiδ1+jδ2 = dimLjδ2 for all Fp-independentδ1, δ2 ∈
Γ (L,T ) and all i, j ∈ F∗

p. This implies that all elements in(Fpα ⊕ Fpβ ⊕ Fpγ ) \ {0}
are roots and all root spaces are of the same dimension.

(2) Now assume thatL contains a solvable 2-section relative toT . Then L is
isomorphic toH(2; (2,1);Φ(τ))(1), by Proposition 6.7. Root space decomposition
L = H(2; (2,1);Φ(τ))(1) relative to a 3-dimensional torus inLp has been investigate
in [20, Proposition 5.4]. Inspection shows that the computations in [20] involvin
H(2; (2,1);Φ(τ))(1) go through forp > 3. They imply, again, that all elements
(Fpα ⊕ Fpβ ⊕ Fpγ ) \ {0} are roots and all root spaces are of the same dimension.�
Lemma 6.9. Letg = g(−r) ⊃ · · · ⊃ g(0) ⊃ · · · ⊃ g(s) be a filtered Lie algebra and letb be a
triangulable subalgebra ofg. Thengrb is a triangulable subalgebra ofgrg.

Proof. LetG = grg, B = grb, and assume thatB(1) does not act nilpotently onG. Clearly,
B(1) = ∑

i,j∈Z
[Bi,Bj ] where

Bi := gri b = (b ∩ g(i) + g(i+1))/g(i+1) ⊂ g(i)/g(i+1) = gri g.
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For i �= 0, the subspace adG Bi consists of nilpotent endomorphisms. So the Eng
Jacobson theorem implies that the subalgebra

∑
i∈Z

[Bi,B−i ] does not act nilpotentl
onG. Since the set

⋃
i∈Z

[Bi,B−i ] is weakly closed, there isk ∈ Z such that the subalgeb
[Bk,B−k] does not act nilpotently onG. Then there existu1, . . . , ul ∈ b ∩ g(−k) and
v1, . . . , vl ∈ b ∩ g(k) such that the coset

∑[ui, vi ] + g(1) contains an element which do
not act nilpotently ong. But this is impossible as

∑[ui, vi ] ∈ b(1) ∩ g(0) acts nilpotently
ong. �

Our next result will be crucial for the rest of this section. Its proof illustrates well s
of the classification methods.

Proposition 6.10. If TR(L) = 3 then H = (0) and (Lδ)
p ⊂ T for all δ ∈ Γ (L,T ).

Moreover, no root vector forT is p-nilpotent inLp .

Proof. (1) Suppose the theorem is not true and letL be a counterexample of minim
dimension to it. LetN (Lp) denote the set of allp-nilpotent elements inLp . By
Proposition 6.1(2), all 1-sectionsL(δ) relative toT are nilpotent and have the prope
thatL(δ)(1) ⊂N (Lp). Letn(δ) denote the nilpotency class ofL(δ) and letα ∈ Γ (L,T ) be
such thatn(α) = max{n(δ) | δ ∈ Γ (L,T )}. If n = n(α) � 3 then(0) �= L(α)n−1 ⊂N (Lp).
SinceL(α)n−1 is T -invariant, eitherH ∩L(α)n−1 �= (0) or Liα ∩L(α)n−1 �= (0) for some
i ∈ F∗

p . If n(α) � 3, we letw be any nonzero element in the union(H ∩ L(α)n−1) ∪
(
⋃

i∈F∗
p
L(α)n−1 ∩ Liα).

Now suppose that all 1-sections ofL relative toT are abelian. ThenH = (0) (asL is
centerless). SinceL is a counterexample, there is a nonzerox ∈ Lα , for someα ∈ Γ (L,T ),

such that eitherxp = 0 orxp is notp-semisimple inH̃ . If xp = 0 for some nonzerox ∈ Lα ,
we setw := x. If H = (0) andxp is notp-semisimple inH̃ for somex ∈ Lα , we letw
be thep-nilpotent part ofxp in H̃ . Clearly,w = f (xp) for somep-polynomialf ∈ F [t]
without constant term.

Thus in all cases we can findw ∈ H̃ ∪ (
⋃

i∈F∗
p
Liα), for someα ∈ Γ (L,T ), such that

w ∈ N (Lp) \ {0} and
[
w,L(α)

] = (0).

Furthermore, ifw ∈ H̃ then eitherw ∈ H or all 1-sections ofL relative toT are abelian
andw is thep-nilpotent part ofxp for somex ∈ Lα . From now we fix such aw and denote
by M a maximalT -invariant subalgebra ofL containing the centralizer ofw in L.

Let δ ∈ Γ (L,T ). Since
∑

i∈Fp
Lδ+iα is invariant under the nilpotent endomorphis

adw, there existsj = j (δ) with Lδ+jα ∩ cL(w) �= (0). Since this holds for all rootsδ we
can findFp-independentα,β, γ ∈ Γ (L,T ) with

L(α) ⊂ M, Mβ �= (0), Mγ �= (0). (1)

(2) We identifyL with adL ⊂ DerL and considerT + Lp , a Lie subalgebra of DerL. If
J is an ideal ofT + L then[J,L] is an ideal ofL. So either[J,L] = (0) or [J,L] = L.
In the first caseJ = (0), for J ⊂ DerL, while in the second caseJ ⊃ L. ThusT + M
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contains no nontrivial ideals ofT + L. TheT -maximality ofM in L implies thatT + M

is a maximal subalgebra ofT + L.
Choose a subspace(T +L)(−1) in T +L which containsT +M and has the property tha

(T +L)(−1)/(T +M) is (T +M)-irreducible. Let{(T +L)(i) | i ∈ Z} denote the standar
filtration associated with the pair((T + L)(−1), (T + L)(0)) where(T + L)(0) = T + M.
By the above, this filtration is exhaustive and separating, that is

T + L = (T + L)(−r) ⊃ · · · ⊃ (T + L)(s+1) = (0),

wherer > 0 ands � 0 are finite. LetG denote the associated graded Lie algebra gr(T +L)

and letM̃(G) be the maximal ideal ofG contained in
∑

i�−1 Gi . It is well known (and

easy to see) that̃M(G) is a graded ideal ofG. So the quotientG := G/M̃(G) inherits from
G a graded Lie algebra structure. IfG1 �= (0) then the graded Lie algebraG = ⊕

i∈Z
Gi

satisfies the standard conditions (g1)–(g4) (see [10, p. 246] for example). IfG1 = (0) then,
of course,M̃(G) = ∑

i<0 Gi andG ∼= G0.
LetT denote the image ofT in G. By construction,T acts onG as a torus of derivations

SinceM carries threeFp-independentT -roots, by (1), and sincẽM(G) ∩ ∑
i�0 Gi = (0),

the image ofT in DerG is 3-dimensional. In other words,G carries threeFp-independen
T -roots. As a consequence,TR(T ,G) = 3. Combining Skryabin’s result [12, Theorem 5.
with [19, Theorem 1.7], we now get 3= TR(T ,G) � TR(G) � TR(G) � TR(L) = 3,

forcingTR(G) = 3.

(3) SupposeG1 = (0). ThenM̃(G) = ∑
i<0 Gi which entails that

G = G0 = (T + L)(0)/(T + L)(1)
∼= T + M

as Lie algebras. Thanks to (1), we haveα,β, γ ∈ Γ (M,T ). Let A be an abelian ideal o
T +M. By what we just said, any elementx ∈ Aδ, for δ ∈ Γ (M,T )∪{0}, has the property
thatα(x) = β(x) = γ (x) = 0. Then any element inAδ acts nilpotently onLp , and hence
on G−1 = (T + L)(−1)/(T + L)(0). The Engel–Jacobson theorem now shows thatA acts
nilpotently onG−1. The irreducibility ofG−1 yields thatA annihilatesG−1 implying
A ⊂ (T + L)(1) = (0). ThusG is semisimple. Since the grading ofG is trivial in this case,
all minimal ideals ofG are obviously graded.

If G1 �= (0), then Weisfeiler’s theorem [23] says thatG is semisimple and contains
unique minimal ideal which is graded. ThusG is semisimple in all cases, and any minim
ideal ofG is graded.

SinceTR(G) = dimT = 3, we can identifyT with a torus of maximal dimension in th
(semisimple)p-envelopeGp ⊂ DerG. Let I be a minimal ideal ofG. By Block’s theorem,
there exist a simple algebraS andm ∈ N0 such that

I
∼−→ S ⊗ A(m;1),
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under an isomorphismϕ. We suppressϕ by identifyingI with S ⊗ A(m;1), and denote
by Ip thep-envelope ofI in DerI . The adjoint action ofGp on I gives rise to a restricte
homomorphism

Φ : Gp −→ DerI = (DerS) ⊗ A(m;1) ⊕ (
Id ⊗ W(m;1)

)
.

Since Gp is restricted, Block’s theorem yields that the subalgebra(π2 ◦ Φ)(Gp) is
transitive inW(m;1). Since bothΦ(Gp) and Ip containI (or rather adI ), they must
be centerless. Then [19, Theorem 1.7(8)] shows that dimΦ(T ) ∩ Ip = TR(I) and, as a
consequence,Φ(T ) ∩ Ip is a torus of maximal dimension inIp .

Putt := Φ(T ) and lett0 denote the normalizer ofS ⊗ A(m;1)(1) in t. According to [9,
Theorem 2.6], we can chooseϕ such that

t =
(

s∑
i=1

F ⊗ (1+ xi)∂i

)
⊕ t0 and t0 = {

λ1(t) ⊗ 1+ Id ⊗ λ2(t)
∣∣ t ∈ t0

}
,

for some restricted homomorphismsλ1 : t0 → DerS and λ2 : t0 → ∑m
i=s+1 Fxi∂i . Let

t1 := t ∩ Ip , a subtorus int0. SinceIp = I + Sp ⊗ F, whereSp is thep-envelope ofS
in DerS, it is straightforward to see thatλ2 vanishes ont1 andλ1(t1) ⊂ Sp ⊗F . Combined
with our discussion above, this shows thatt1 = t′1 ⊗ F wheret′1 is a torus of maxima
dimension inSp .

Let t′0 := λ1(t0), a torus in DerS. Givenδ ∈ (t′0)∗ we let δ̃ denote the linear function o
t given by

δ̃
(
(1+ xi)∂i

) = 0 (1 � i � s), δ̃
(
λ1(t) ⊗ 1+ Id ⊗ λ2(t)

) = δ
(
λ1(t)

)
(t ∈ t0).

Since the image ofT in G = grL lies inG0, each 1-sectionG(δ) in G has the form grL(δ),
hence is nilpotent. Therefore, so is each 1-section ofG(δ) relative toT . This, in turn, yields
that all 1-sections ofΦ(G) relative tot are nilpotent. NowS(δ) ⊗ F ⊂ (Φ(G))(δ̃) for all
δ ∈ Γ (S, t′0). This means that all 1-section ofS relative tot′0 are nilpotent as well. Applying
Lemma 6.2, we now deduce thatTR(S) � 2.

If G has two minimal ideals, sayI1 ∼= S1 ⊗A(m1,1) andI2 ∼= A(m2,1), then the above
discussion yields 3= TR(G) � TR(I1 ⊕ I2) = TR(S1) + TR(S2) � 4, a contradiction. This
enables us to conclude thatI = SocG is the only minimal ideal inG. As a consequence,Φ

is injective (otherwise[kerΦ,G] would contain a minimal ideal ofG commuting withI ).
In particular, dimt = 3.

(4) SupposeTR(S) = 2.

(a) By Lemma 6.2,S ∼= H(2;1;Φ(τ))(1), dimt′0 = 2, andt′0 ⊂ Sp. Note thatS ⊗ F is
t-stable; moreover,t acts onS ⊗ F as t′0 ⊗ F . The kernel of this action is contained
Id ⊗ W(m;1) and has dimension 1 (because dimt = 3). Sincet1 = t ∩ Ip is a torus of
maximal dimension inIp , by part (3), we also have thatt′ = t′ . It follows that
0 1
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t = (
t′0 ⊗ F

) ⊕ (F Id ⊗ d) (2)

for some nonzero toral derivationd ∈ W(m;1). As a consequence,m > 0. Sincet′0 is 2-
dimensional it follows from (2) thatΦ(G) = (S⊗A(m;1))⊕(Φ(G))(µ) for some nonzero
µ ∈ t∗ vanishing ont′0 ⊗ F and taking values inFp on all toral elements oft (such aµ is
unique up to a nonzero scalar multiple inFp).

Given η ∈ t∗ we will denote byη∗ the pull-back ofη in T . Note thatη∗ is uniquely
determined byη and has the property thatη∗(t) = η(Φ(grt)) for all t ∈ T . Our goal in this
part is to show that the pull-backµ∗ of µ is a multiple ofα from the first part of this proof

Since DerS = t′0 ⊕ S, by [2, Theorem VII.3], we have the inclusion(
Φ(G)

)
(µ) ⊂ (

t′0 ⊗ A(m;1)
) ⊕ (

Id ⊗ W(m;1)
)
.

It follows easily from Demushkin’s theorem that the spectrum of the toral derivationd
on A(m;1) equalsFp and all its eigenspaces have dimensionpm−1. According to [18,
Theorem VII.3], there existFp-independentκ, ν ∈ Γ (S, t′0) such that

S =
∑

δ∈(Fpκ+Fpν)\{0}
Sδ.

Moreover,Γ w(S ⊗ F, t) = (Fpκ + Fpν) \ {0} and each root spaceSδ is 1-dimensional
Each subspaceSδ ⊗ A(m;1) is t-invariant andΓ w(Sδ ⊗ A(m;1), t) = δ̃ + Fpµ. As a
consequence, (

S ⊗ A(m;1)
) ∩ (

Φ(G)
)
(µ) = (0).

It follows from the definition ofµ that the t-roots µ, κ̃, ν̃ are linearly independen
Combining this with our earlier remarks givesΓ (Φ(G), t) ⊃ (Fpκ̃ + Fpν̃ + Fpµ) \ Fpµ,

and

dimΦ(G)η = pm−1 (∀η ∈ Γ
(
Φ(G), t

) \ Fpµ
)
. (3)

(b) Suppose thatG1 �= (0) and we are in the nondegenerate case of Weisfeiler’s the
[23]. ThenG−1 ⊂ I andI ∩Gi = Si ⊗ A(m;1) for some gradingS = ⊕

i∈Z
Si of S. Note

that [9, Theorem 2.6] is applicable in this graded setting, that is it can be assumed thaϕ is a
graded isomorphism and (2) holds fort = Φ(T ). SinceT ⊂ G0, the torust′0 preservesS−1.
But then all root vectors fort′0 contained inS−1 arep-nilpotent inSp . Since this contradict
[18, Theorem VII.3(3)], we conclude that this case cannot occur.

(c) Now supposeG1 = (0). Recall thatG−1 is an irreducible and faithfulG0-module.
Identify the 3-dimensional toriT and grT ⊂ G0. Suppose there isη ∈ Γ (Φ(G), t) \ Fpµ

such thatη∗ /∈ ⋃
i>0 Γ (G−i , T ). In view of (3), we then have dimLη∗ = dimΦ(G)η =

pm−1. Since all root spaces ofL relative toT have the same dimension, by Lemma 6
this implies that dimLη∗ = pm−1 for all η ∈ Γ (Φ(G), t). So (3) now yields tha⋃

i>0 Γ (G−i , T ) ⊂ Fpµ∗. But thenT does not act faithfully onG−1, a contradiction.
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Thus (Fpκ̃∗ + Fpν̃∗ + Fpµ∗) \ Fpµ∗ ⊂ ⋃
i>0 Γ (G−i , T ), by our final remark in

part (4a). SinceFpα ∩ (
⋃

i>0 Γ (G−i , T )) = ∅, by (1), we deduce that in the present ca
Fpα = Fµ∗, as desired.

(d) Finally, suppose thatG1 �= (0) and we are in the degenerate case of Weisfeil
theorem [23]. ThenG2 = (0) andI ∩ G1 = (0).

Let x1, . . . , xm be a generating set inA(m;1)(1). Given a subset{i1, . . . , ik} of
{1,2, . . . ,m} we denote byA(xi1, . . . , xik ) the unital subalgebra ofA(m;1) generated
xi1, . . . , xik , a truncated polynomial algebra ink variables. By [23, Theorem 3.1], the
exists a nonnegativee < m such that

ϕ(I−j ) = {
S ⊗ A(x1, . . . , xe) · f ∣∣ f ∈ A(xe+1, . . . , xm), degf = j

}
,

for all j > 0, and

Φ(G0) ⊂ Der
(
S ⊗ A(x1, . . . , xe)

) + Id ⊗
( ∑

e+1�i,j�m

A(x1, . . . , xe) · xi∂j

)
.

To show that (2) is still valid in our present (more restrictive) setting we will apply
Theorem 2.6] to the graded subalgebraI ′ := S ⊗ A(xe+1, . . . , xm) of I . We first observe
thatI ∼= I ′ ⊗ A(x1, . . . , xe) as graded Lie algebras. Since

Der0 I ′ = (DerS) ⊗ F + Id ⊗
( ∑

e+1�i,j�m

Fxi∂j

)
,

we have that

Φ(T ) ⊂ Φ(G) ⊂ (Der0I ′) ⊗ A(x1, . . . , xe) + (
Id ⊗ DerA(x1, . . . , xe)

)
.

Combining [9, Theorem 2.6] with the fact that all maximal tori in
∑

e+1�i,j�m Fxi∂j
∼=

gl(m − e) are conjugate under the adjoint action of GL(m − e), we deduce that the grade
mapϕ can be chosen such that the torust = Φ(T ) has the form described in part (3). Th
our remarks at the beginning of part (4a) show that (2) is still valid fort in the present case

As S ⊗ F ⊂ I0 and[I0,Φ(G1)] ⊂ I ∩ Φ(G1) = (0), thep-envelopeSp ⊗ F of S ⊗ F

in DerΦ(G) annihilatesΦ(G1). Sincet′0 ⊂ Sp , we now getΦ(G1) = (Φ(G1))(µ).
Since [Id ⊗ d, I0] ⊂ I0, the derivationd must preserveA(x1, . . . , xe). If d acts

nontrivially of A(x1, . . . , xe) then, as in part (4a), the spectrum ofd on A(x1, . . . , xe)

equalsFp. As a consequence,Γ (Sδ ⊗A(x1, . . . , xe)xm, t) = δ̃ +Fpµ for anyδ ∈ Γ (S, t′0).
SinceS⊗A(x1, . . . , xe)xm ⊂ G−1, we deduce, as at the end of part (4a), that(Fpκ̃ +Fpν̃+
Fpµ) \ Fpµ ⊂ Γ (G−1, t). ThenFpµ∗ = Fpα as desired.

Now supposed acts trivially onA(x1, . . . , xe). If e + 1 � i � m thend(xi) = aixi for
someai ∈ Fp. As d �= 0, at least oneai is nonzero. So we may assume, after renumber
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thatam �= 0. Clearly,Γ (Sδ ⊗ A(x1, . . . , xe)x
k
m, t) = δ̃ + kµ for all k � p − 1. From this it

is immediate that⋃
i>0

Γ (G−i , T ) ⊃ Γ ′ := (Fpκ̃∗ + Fpν̃∗ + Fpµ∗) \ (
(Fpκ̃∗ + Fpν̃∗) ∪ Fpµ∗).

Moreover, dimLδ∗ � pe for any δ∗ ∈ Γ ′. SupposeFpα �= Fpµ∗. Thenα = η∗ for some
η ∈ (Fpκ̃∗ +Fpν̃)∗ \ {0}. Hence dimLα = dimG0,α = dimΦ(G0)η = pe . But then all root
spaces ofL relative toT have this dimension; see Lemma 6.8. It also follows thatai = 0
for e + 1 � i < m (indeed, ifal �= 0 for somel < m thenη ∈ Γ (S ⊗ A(x1, . . . , xe)x

c
l xm, t)

for somec � p − 1, a contradiction). Thus it can be assumed thatd = xm∂m.
Let H denote the image of grH in G. Combining [23, Theorem 3.1] with our earli

remarks it is easy to observe that(π2◦Φ)(G) is contained in the freeA(x1, . . . , xe)-module
generated by all∂i andxj ∂k with 1 � i � m ande + 1 � j, k � m. Therefore,(π2 ◦Φ)(G)

decomposes into eigenspaces ford as follows:

(π2 ◦ Φ)(G) = (π2 ◦ Φ)(G)0 ⊕ (π2 ◦ Φ)(G)−1 ⊕ (π2 ◦ Φ)(G)1,

where(π2 ◦ Φ)(G)0 = (π2 ◦ Φ)(H) and

(π2 ◦ Φ)(G)−1 ⊂ A(x1, . . . , xm−1)∂m,

(π2 ◦ Φ)(G)1 ⊂
∑

i�m−1

A(x1, . . . , xm−1)xm∂i .

As a consequence,[(π2 ◦ Φ)(G)±1]p = (0). Jacobson’s formula now gives

(π2 ◦ Φ)(Gp) = (π2 ◦ Φ)(Hp) ⊕ (π2 ◦ Φ)(G)−1 ⊕ (π2 ◦ Φ)(G)1.

Supposem > 1. Since(π2 ◦ Φ)(Gp) is a transitive subalgebra ofW(m;1), the subalgebra
(π2 ◦ Φ)(Hp) acts transitively onA(x1, . . . , xm−1). Then there ish ∈ H with (π2 ◦
Φ)(h))(xk) /∈ A(m;1)(1) for somek � e. From the description of(Φ(G))(µ) given in
part (4a) we deduce that[Φ(h),Sδ ⊗xk)] �⊂ Sδ ⊗A(m;1)(1) for anyδ ∈ Γ (S, t′0). However,
this means that some of the 1-sections ofL relative toT are not triangulable, contradictin
Proposition 6.1(2).

Thusm = 1 forcinge = 0. As a consequence, dimLδ = 1 for all δ ∈ Γ (L,T ). This, in
turn, givesH̃ = T . Theorem 3.1 of [23] shows thatG0(µ

∗) ∼= G0(µ
∗) = T andG1(µ

∗) ∼=
Φ(G1)(µ) = F∂1 ∼= G1,−kµ∗ for somek ∈ F∗

p. Therefore,Mkµ∗ is a 1-dimensional idea
of M. By [18, Theorem VII.3], all 1-sections ofS relative tot′0 are abelian and no roo
vector ofS relative tot′0 act nilpotently onS. In conjunction with Proposition 6.1(2), th
implies thatΦ induces an embedding

M/Mkµ∗ ↪→ (S ⊗ F) ⊕ (F Id ⊗ d).

From this it is immediate that all 1-sections ofM relative toT are abelian. But the
so is L(α). Due to the choice ofα, all 1-sections ofL relative toT are abelian (se
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part (1) of this proof). Since nil̃H = (0), our choice ofw in part 1 now shows tha
N (Lp) ∩ (

⋃
i∈F∗

p
Liα) �= ∅. Since this contradicts [18, Theorem VII.3], we conclude

last, thatFpα = Fpµ∗ in all cases.

(5) (a) We will need some subtle estimates for the dimensions of root spaces. Fro
discussion in part (4) we know that eitherG1 = (0) or we are in the degenerate case
Weisfeiler’s theorem [23]. We also know that in either caseϕ is a graded map and (2
holds fort = Φ(T ). Set

K :=
∑
i∈F∗

p

(
(π2 ◦ Φ)(Giα) + [

(π2 ◦ Φ)(Giα), (π2 ◦ Φ)(G−iα)
])

,

and letKp denote thep-envelope ofK in W(m;1).

Let v⊗f ∈ Sδ ⊗A(m;1) be a root vector fort. Since all components of our filtration a
T -invariant, any 1-sectionG(η) of G relative to grT has the form grL(η). In conjunction
with Proposition 6.1(2) and Lemma 6.9 this yields that any 1-sectionG(η) is triangulable.
But then so is any 1-sectionG(η). Sincev ∈ Sδ is nonp-nilpotent inSp the preceding
remark shows that[Φ(H), v ⊗ f ] ∈ Sδ ⊗ A(m;1)(1). As this holds for all root vector
in Sδ ⊗ A(m;1) it must be that[Φ(H),Sδ ⊗ A(m;1)] ⊂ Sδ ⊗ A(m;1)(1). This forces
(π2 ◦ Φ)(H) ⊂ W(m;1)(0). Since

(π2 ◦ Φ)(Gp) = [
(π2 ◦ Φ)(G)

]
p

= [
(π2 ◦ Φ)

(
G(α)

)]
p

is transitive inW(m;1), we now deduce that the subalgebraFd + Kp ⊂ W(m;1) is
transitive as well. Recall from part (4a) that

(kerπ2) ∩ Φ
(
G(α)

) ⊂ t
′
0 ⊗ A(m;1).

So anyy ∈ (kerπ2) ∩ Φ(Giα) can be written asy = t1 ⊗ f + t2 ⊗ g wheret1, t2 ∈ t′0 are
linearly independent andf,g ∈ A(m;1).

Supposed ∈ W(m;1)(0). Then Kp is still transitive in W(m;1). Since L(α) acts
triangulably onL, all elements in[Kp,y] act nilpotently onΦ(G), by Lemma 6.9. Since
t′0 is a torus, it must be thatf,g ∈ F . Theny ∈ (t0 ⊗ A(m;1)) ∩ Φ(Giα) = (0). As a
consequence,

d ∈ W(m;1)(0) �⇒ (kerπ2) ∩ Φ(Giα) = (0) (∀i ∈ F∗
p). (4)

Supposed /∈ W(m;1)(0). Then it can be assumed further thatd = (1 + x1)∂1, by [9,
Theorem 2.6]. Theny = t1⊗(1+x1)

kf1+ t2⊗(1+x1)
kg1 for some truncated polynomia

f1, g1 ∈ A(m;1) in x2, . . . , xm. SinceFd + Kp is transitive inW(m;1), we have tha
∂2, . . . , ∂m ∈ Kp + W(m;1)(0). Arguing as before, we now obtain thatf1, g1 ∈ F . Thus

d /∈ W(m;1)(0) �⇒ dim
(
(kerπ2) ∩ Φ(Giα)

)
� 2 (∀i ∈ F∗

p). (5)
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(b) We claim thatKp consists of nilpotent elements ofW(m;1). So assume for
contradiction that it does not and consider the weight space decompositionK = ∑

i∈Fp
Ki

of K relative tod . By Jacobson’s formula,Kp = K + ∑
i∈Fp

∑
j>0 K

pj

i . SinceL(α) is
nilpotent, so isK. Suppose one of theKi ’s contains a non-nilpotent element ofW(m;1).
ThenC(Kp) contains a nonzero toral elementt commuting withd . By the definition ofK,
we haveK �= K0. Henced does not centralizeK. Sod /∈ F t , that isKp + Fd contains a
2-dimensional torus. But thenG contains a 4-dimensional torus, a contradiction. Thus
Ki ’s consist of nilpotent elements and our claim follows in view of the Engel–Jaco
theorem.

Thus (Fd + Kp)(1) = K ⊂ Kp acts nilpotently onA(m;1). So we can apply [8
Theorem 3.2] toFd + K. That theorem yields a restricted embedding

σ :Fd + Kp ↪→
m∑

i=1

Fxi∂i +
m∑

i=1

A(x1, . . . , xi−1)∂i .

Sinceσ(K) is p-nilpotent, it must lie in
∑m

i=1 A(x1, . . . , xi−1)∂i . Consequently,

∑
i∈F∗

p

dim
(
(π2 ◦ Φ)(Giα)

)
�

m∑
i=1

pi−1 = pm − 1

p − 1
. (6)

Recall that all root spaces ofL relative toT occur and have the same dimension,
Lemma 6.8. Also,Giα ∩ M̃(G) = (0), by our choice ofM in part (1). So (3) yields that

dimGiα � pm−1 (∀i ∈ F∗
p). (7)

Combining (7), (6), (5), and (4), we now get

(p − 1)pm−1 �
∑
i∈F∗

p

dimGiα � pm − 1

p − 1
+ 2(p − 1)

which givesm = 1.

(c) Supposed ∈ W(1;1)(0). Then(kerπ2) ∩ Φ(Giα) = (0) for all i ∈ F∗
p ; see (4). But

then (7) leads to a contradiction:

(p − 1) �
∑
i∈F∗

p

dimGiα =
∑
i∈F∗

p

dim
(
(π2 ◦ Φ)(Giα)

)
� 1.

Thusd /∈ W(1;1)(0), and hence it can be assumed thatd = (1+ x)∂.

Suppose there existsu ∈ Giα , for somei ∈ F∗
p, such that(π2 ◦ Φ)(u) �= (0). By our

concluding remark in part (5a),

Φ(u) = λ1t ⊗ (1+ x)k + λ2Id ⊗ (1+ x)k+1∂
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for someλ1 ∈ F , λ2 ∈ F ∗, and t ∈ t′0. By (7), there exists a nonzerov ∈ G2iα . Our
assumption in conjunction with (6) shows that

∑
i∈F∗

p
dim((π2◦Φ)(Giα)) = 1. Sinceu and

v have different weights ford , it must be that(π2 ◦Φ)(v) = 0. ThenΦ(v) = t ′ ⊗ (1+x)2k

with t ′ ∈ t′0 \ {0}. Therefore,[
Φ(u),Φ(v)

] = 2kλ2t
′ ⊗ (1+ x)3k.

We have already mentioned that all 1-sections ofG relative toT are triangulable. Thu
k = 0 necessarily holds. But thenv ∈ H ∩ G2iα = (0), a contradiction. We conclud
that

∑
i∈F∗

p
Φ(Giα) ⊂ t′0 ⊗ A(1;1). Our discussion at the end of part (4d) (together w

[23, Theorem 3.1(v)]) now shows that we arenot in the degenerate case of Weisfeile
theorem. As a result,G1 = (0) and henceL(α) injects into t′0 ⊗ A(1;1) + (F Id ⊗ d).
As H ⊂ nil H̃ , it must be thatL(α) ↪→ ∑

i∈F∗
p
Φ(Giα). But thenL(α) is abelian and

N (Lp) ∩ (
⋃

i∈F∗
p
Liα) = {0}. Moreover, either dimLα = 1 or dimLα = 2.

(d) Suppose dimLα = 1. Then dimLδ = 1 for all δ ∈ Γ (L,T ), which implies that
H̃ = T . It is easy to see that this contradicts our choice of thep-nilpotent elementw ∈
Lp(α) in part (1). Thus dimLα = 2 whence dimLδ = 2 for all δ ∈ Γ (L,T ). SinceG1 =
(0), it also follows thatT + M ∼= G0 ∼= G. Recall thatS ∼= H(2;1;Φ(τ))(1). Therefore,
the minimalp-envelope ofT + S ⊗ A(1;1) is nothing butT + S ⊗ A(1;1) + Sp ⊗ F =
T + S ⊗A(1;1). This shows that the Lie algebraG is restrictable. Let[p] :G → G denote
the pth power map ofG. SinceL(α) is abelian,H = (0), and no root vector inL(α)

act nilpotently onL, our discussion in part (1) shows that there isx ∈ Lα such thatw is
equal to thep-nilpotent part ofxp ∈ H̃ . Identify T + M with G and observe thatT is
self-centralizing inG. Therefore,x[p] ∈ T is [p]-semisimple. SinceM carries threeFp-
independentT -roots andxp − x[p] centralizesT + M, it must be thatxp − x[p] ∈ H̃ is p-
nilpotent. But then(xp)s = x[p] andw = (xp)n = xp −x[p]. As a result,[w,T +M] = (0).
Since bothT +L andT +M carryp3−1 roots andL(α) ⊂ T +M, our present assumptio
on dimLα implies that dim(T + L)/(T + M) = p(p2 − 1). On the other hand,G−1 is an
irreducible and faithfulG-module. By the toral rank considerations, this module is a
restricted (for otherwise the centralizer ofG0 in the p-envelope ofG in DerG would
contain a nonzero semisimple element and this would eventually result in the ineq
TR(G) � 4, a contradiction). Applying [9, Theorem 1.7] withI = S ⊗ A(1;1) now yields
that there is a nontrivialS-moduleU such thatG−1 ∼= U ⊗A(1;1) as vector spaces. By th
preceding remark, dimU � p2−1. Recall that we have already reinstated all results of
under our present assumption onp; see Section 5. It is immediate from [17, Theorems 4
4.9] thatU is S-irreducible of dimensionp2 − 1. This leaves no room forG−2 forcing
T + L = (T + L)(−1). As adw commutes withT + M and acts nilpotently onT + L,
it acts trivially on the factor space(T + L)/(T + M), by Schur’s lemma. This give
(adw)2(L + T ) = (0). Let y be an arbitrary element inT + L and putW := adT +L w,

Y := adT +L y. Since[W, [W,Y ]] = adT +L[w, [w,y]] = 0 andW2 = 0, we have

0 = [
W, [W,Y ]] = W2Y − 2WYW + YW2 = −2WYW.
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Therefore,WYW(z) = 0 for all z ∈ T +L implying that[w,T +L] ⊂ T +M is an abelian
ideal in T + M. As T + M is semisimple we now getw = 0, a contradiction. The cas
TR(S) � 2 is thus impossible.

(6) SupposeTR(S) = 3.

(a) Recall from part (3) thatt′1 is a torus of maximal dimension inSp . Therefore,
dimt′1 = 3 giving t = t1. Our discussion in part (3) now shows thatt = t′0 ⊗ F ⊂ Sp ⊗ F .
ThenΦ(G) = I + cΦ(G)(t) = I + Φ(H) + t (as before,H stands for the image of grH

in G).

(b) As explained in part (3), all 1-sections ofS relative tot′0 are nilpotent. SupposeS is
not a counterexample to our theorem. Then no root vector ofS relative tot′0 act nilpotently
onS. Combining our discussion in part (6a) with Jacobson’s formula, we observe th

Φ(Gp) = Φ(G)p = S ⊗ A(m;1) + Sp ⊗ F + Φ(H)p + t

⊂ (DerS) ⊗ A(m;1) + Φ(H)p.

Consequently,(π2 ◦ Φ)(H)p = (π2 ◦ Φ)(Gp) is a transitive subalgebra ofW(m;1).
Supposem > 0 and letδ be any root inΓ (S, t′0). Then[Φ(H),Sδ ⊗A(m;1)] contains non-
nilpotent elements ofΦ(Gp). In view of Lemma 6.9, this contradicts the triangulability
L(δ̃∗), however. Thusm = 0. But then[Φ(H),Sδ] = (0), by a similar reasoning. Sinc
this holds for all rootsδ we derive thatΦ(H) is a nilpotent ideal inΦ(G). SinceΦ(G)

is semisimple, by part (3), we now getΦ(H) = (0). ThenH = (0), G = I + T , and
G(1) = (I + T )(1) = I ∼= S is simple.

Recall thatI is a graded ideal ofG. Since all graded components ofI areT -invariant
and no root vector inI relative toT ⊂ Ip is p-nilpotent inIp , it must be thatI = I ∩ G0.
But thenG = T + I = G0. This shows thatG1 = (0) andS + t′0 ∼= M +T as Lie algebras
By Lemma 6.8,|Γ (S, t′0)| = p3 − 1 = |Γ (L,T )| and all root spaces ofS relative tot′0
(and ofL relative toT ) are of the same dimension. SinceH = (0) andLα ⊂ M this gives
dimM = (p3 − 1)dimLα = dimL. But thenL = M. This contradiction shows thatS is a
counterexample to our theorem.

(c) It follows from part (6b) and our choice ofL that dimS = dimL. As grL is an
ideal ofG containingI ∼= S ⊗ A(m;1) we getm = 0 and(grL) ∩ M̃(G) = (0). It is now
straightforward to see that̃M(G) = (0). ThenG ∼= G = T + S andT is a 3-dimensiona
torus inSp . Besides,S = G(1) is graded andT ⊂ Der0 S. For i ∈ Z, we letSi denote the
ith graded component ofS.

If S contains a solvable 2-sectionS(η, δ), for someFp-independentη, δ ∈ Γ (S,T ),
thenS ∼= H(2; (2,1);Φ(τ))(1), by Proposition 6.7. By Theorem 6.6,cS(T ) = (0) and no
root vector forT act nilpotently onS in this case. Also,cS(T ) = (0). SinceT preserves al
graded components ofS, this entailsG = G0. But then, again,L = M, a contradiction.

Thus no 2-sectionS(η, δ) with Fp-independentη andδ is solvable. By Proposition 6.3
we then haveS[η, δ] ∼= H(2;1;Φ(τ))(1) wheneverη and δ are Fp-independent. Reca
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that no root vector inH(2;1;Φ(τ))(1) act nilpotently onH(2;1;Φ(τ))(1). From this it is
immediate thatSi ∩ S(η, δ) ⊂ radS(η, δ) for all i �= 0. This shows that

S0[ν, γ ] := S0(η, δ)/ radS0(η, δ) ∼= S[η, δ] ∼= H
(
2;1;Φ(τ)

)(1)

for all Fp-independentη, δ ∈ Γ (S,T ).

Recall from part (1) that the rootsα,β, γ areFp-independent andS−1,iα = (0) for all
i ∈ Fp . SinceG �= G0, we haveS−1 �= (0). Let ν ∈ Γ (S,T ) be such thatS1,ν �= (0). We
may assume without loss of generality thatν is Fp-independent ofγ . ThenS0[ν, γ ] ∼=
H(2;1;Φ(τ))(1), hence there isx ∈ S0,γ with ν(x) �= 0. Then

S−1,ν+jγ = (adx)j (S−1,ν) �= (0) (∀j ∈ Fp).

Consequently,Γ (S−1,T ) containsrα + sβ for somer ∈ Fp and s ∈ F∗
p . Sinceα and

rα + sβ are Fp-independent,S0[α, rα + sβ] ∼= H(2;1;Φ(τ))(1). We now proceed a
before to obtainΓ (S−1, T ) ∩ Fpα �= ∅. This contradiction finally completes the proof
the proposition. �
Proposition 6.11. Suppose TR(L) = 3. Then

[u,v]p = −α
(
vp

)
up + β

(
up

)
vp (∀u ∈ Lα, ∀v ∈ Lβ).

Proof. (1) Proposition 6.10 in conjunction withJacobson’s formula implies thatLp =
L ⊕ T . Given a subalgebraM of L, we denote byMp thep-envelope ofM in Lp . Let TM

denote the set of allt ∈ T such thatm + t ∈ Mp for somem ∈ M. ThenTM = T ∩ Mp is a
subtorus ofT .

Suppose dimTL(α,β) < 3. Lemma 6.8 identifies the setΓ (L,T ) ∪ {0} with the Fp-
space dual toT tor := {t ∈ T | tp = t}, a 3-dimensionalFp-subspace ofT . Since
TL(α,β) is spanned by its toral elements, there isγ ∈ Γ (L,T ) with γ (TL(α,β)) = 0.
The 2-sectionL(α,γ ) carries a naturalFp-grading with graded componentsL(α,γ )i =∑

j∈Fp
L(α, γ )iγ+jα for i ∈ Fp. By the choice ofγ , both α and γ vanish onTL(α) ⊂

TL(α,β). This implies thatL(α) = L(α,γ )0 acts nilpotently onL(α,γ ). But thenL(α,γ )

is solvable, by [19, Proposition 1.14]. According to Proposition 6.7 and Theorem 6.6(
our result holds in this case.

(2) Thus we may assume from now thatL(α,β) is nonsolvable and

L(α,β)p = L(α,β) ⊕ T .

Then

C
(
L(α,β)

) = C
(
L(α,β)p

) ∩ L(α,β) ⊂ CL(α,β)(T ) = (0),

by Proposition 6.10. SoL(α,β) embeds into DerL(α,β) via the adjoint representatio
Let G denote thep-envelope ofL(α,β) in DerL(α,β). SinceG contains adL(α,β), we
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haveC(G) = (0). But thenG is a minimalp-envelope ofL(α,β) in the sense of [22
(2.5)]. According to [22, Theorem 2.5],L(α,β)p contains an isomorphic copy ofG as an
ideal. More precisely, we have a commutative diagram

L(α,β) G

L(α,β)p
∼

G ⊕ C

such thatC is central, all maps are injective Lie algebra homomorphisms, and the bo
row isomorphism is restricted. We stress, however, thatG is not a restricted ideal ofG⊕C.
After identifying the restricted Lie algebrasG ⊕ C andL(α,β)p = L(α,β) ⊕ T , we will
haveC = T ∩ kerα ∩ kerβ = C(L(α,β)p) andG ⊂ L(α,β)p .

Let [p] :G → G denote the (unique)pth power map onG. We extend[p] to a pth
power map onL(α,β)p by setting

(x + c)[p] := x[p] + cp (∀x ∈ G, ∀c ∈ C).

By Proposition 6.10,w[p] ∈ wp + C ⊂ T for all root vectorsw contained inL(α,β).
Therefore,κ(w[p]) = κ(wp) for all κ ∈ Fpα + Fpβ . Let T ′ := T ∩ G; then G =
L(α,β) ⊕ T ′. It is immediate from our earlier remarks thatC = F t0 for some nonzero
toral elementt0 ∈ T ∩ kerα ∩ kerβ . As a consequence, for anyx ∈ L(α,β)p we have that
xp − x[p] = χ(x)pt0 with χ(x) ∈ F . It is well known that the function

χ :L(α,β) −→ F, x 
→ χ(x),

is linear; see [22, Proposition 2.1(2)], for example. Foru ∈ Lα, v ∈ Lβ , we now have

[u,v]p + α
(
vp

)
up − β

(
up

)
vp = [u,v][p] + χ

([u,v])pt0 + α
(
v[p])u[p]

+ α
(
v[p])χ(u)pt0 − β

(
u[p])v[p] − β

(
u[p])χ(v)pt0.

Thus it suffices to establish the following two equalities:

[u,v][p] = −α
(
v[p])u[p] + β

(
u[p])v[p], (8)

χ
([u,v])p = −α

(
v[p])χ(u)p + β

(
u[p])χ(v)p. (9)

(3) In this part, we will show that (8) holds. Put

∆ := [eα, eβ ][p] + α
(
e
[p]
β

)
e[p]
α − β

(
e[p]
α

)
e
[p]
β .

We first suppose that dimLδ = 1 for all δ ∈ Γ (L,T ). SinceH = (0), by Proposition 6.10
andL(α,β) is nonsolvable, we then haveL(α,β) ∼= H(2;1;Φ(τ))(1); see Proposition 6.3
ThenG ∼= DerH(2;1;Φ(τ))(1) as restricted Lie algebras, by [2, Proposition 2.1.8]. D
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to [18, Theorem VII.3], the Lie algebraL(α,β) ∼= H(2;1;Φ(τ))(1) has a basis{eδ | δ ∈
(Fpα + Fpβ) \ {0}} consisting of root vectors forT and such that

[eλ, eµ] = f (λ,µ)eλ+µ

(∀λ,µ ∈ (Fpα + Fpβ) \ {0}),
wheref is a skew-symmetricFp-bilinear form onFpα + Fpβ . For u = eα, v = eβ, this
gives

(
ad[eα, eβ ])p(eµ) = f (α,β)p(adeα+β)p(eµ) = f (α,β)pf (α + β,µ)peµ

= f (α,β)pf (α,µ)peµ + f (α,β)pf (β,µ)peµ.

Sinceβ(e
[p]
α )ep = (adeα)p(eβ) = f (α,β)peβ and, similarly,α(e

[p]
β )eα = f (β,α)peα =

−f (α,β)peα, we obtain that adL(α,β) ∆ = 0. SinceG acts faithfully onL(α,β) and
∆ ∈ G, we deduce (8) in the present case.

Now suppose that dimLδ � 2 for all δ ∈ Γ (L,T ) (recall that all root spaces forT have
the same dimension). We still haveL[α,β] ∼= H(2;1;Φ(τ))(1), by Proposition 6.3. So
radL(α,β) is T -stable. From this it follows that(L(α,β)⊕T ′)/ radL(α,β) is semisimple.
As a consequence, radG = radL(α,β). Then G/ radG is a minimal p-envelope of
L[α,β]. The argument used in the former case now gives∆ ∈ radG while our earlier
remarks yield∆ ∈ T . But then∆ ∈ T ∩ radG = T ′ ∩ radG = (0). Thus (8) holds in all
cases.

(4) In this part, we will show that (9) holds. We may assume thatχ �= 0.

Choose a rootγ independent ofα andβ , and letM be a composition factor of th
L(α,β)p-module

∑
i,j∈Fp

Lγ+iα+jβ . Let ρ denote the corresponding representation
L(α,β)p . By the definition ofL(α,β)p , this representation is restricted.

Since t0 ∈ C is a nonzero toral element, we have thatρ(t0) = γ (t0)IdM �= 0 and
γ (t0) ∈ F∗

p . So, givenw ∈ G we have

ρ(w)p − ρ
(
w[p]) = ρ

(
wp

) − ρ
(
w[p]) = χ(w)pρ(t0) = (

γ (t0)χ(w)p
)
IdM.

Thusρ :G → gl(M) is a representation of(G, [p]) with p-characterχ ′ := γ (t0)χ �= 0.
SinceL(α,β)p = G ⊕ F t0, the restriction ofρ to G remains irreducible.

Suppose dimLδ = 1 for all δ ∈ Γ (L,T ). Then dimM � p2. Sinceρ|G is a non-
restricted representation, [17, Theorem 4.9] showsM is induced from a 1-dimension
moduleFu over the standard maximal subalgebraG(0) of G = DerH(2;1;Φ(τ))(1) (see
Section 5 for the definition ofG(0)). More precisely,

M ∼= u(G,χ ′) ⊗u(G(0),χ
′) Fu.

SinceFu is 1-dimensional,G(0)
(1) annihilatesu. By [17, Proposition 1.2(2d)],G(0)

(1)

coincides withH(2;1;Φ(τ))(1)
(0), and hence is restricted. Soχ ′ vanishes onG(0)

(1). Then
Proposition 5.1 shows that (9) holds in the present case.
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In view of Lemma 6.8, it remains to consider the case where dimLδ � 2 for all
δ ∈ Γ (L,T ). By Proposition 6.10, thep-linear mapLδ → T ∩ kerδ, x 
→ xp, is
injective. Since dimT = 3, we can assume that dimLδ = 2 for all δ ∈ Γ (L,T ). Since
2 � TR(L(α,β) � TR(L[α,β]) = TR(H(2;1;Φ(τ))(1)) = 2, the radical ofL(α,β) is
nilpotent; see [19, Theorem 1.7]. By our earlier remarks, radL(α,β) = radG. Choose
n � 1 such that(radG)n �= (0) and (radG)n+1 = (0). ThenN := (radG)n is a module
for the factor algebraG′ := G/ radG ∼= DerH(2;1;Φ(τ))(1). Since(G/ radG))δ �= (0)

for eachδ ∈ (Fpα + Fpβ) \ {0} (and since all root spaces ofL are 2-dimensional an
H = (0)), we have that dim(radG) < p2. If N is a trivialG-module, thenT ′ annihilatesN .
But thenN ⊂ CL(T ) = (0), a contradiction. SoN is a nontrivialG′-module of dimension
< p2. Thanks to [17, Theorems 4.6, 4.9], theG′-moduleN is isomorphic to the adjoin
G′-moduleH(2;1;Φ(τ))(1). ThenN = radG, by dimension reasons. As a consequen
radG is abelian and isomorphic toH(2;1;Φ(τ))(1) as(G/ radG)-modules.

We now look more closely at the irreducibleG-moduleM with p-characterχ ′. Let y

be a root vector forT contained in radG. From our earlier remarks it is immediate th
y[p] = 0 andα(y) = β(y) = 0. As y �= 0 we also haveγ (y) �= 0; see Proposition 6.10.
follows thatχ ′(y) �= 0. According to [22, Corollary 5.7.6],

M ∼= u(G,χ ′) ⊗u(G0,χ
′) M0

asG-modules, whereG0 = {x ∈ G | χ ′([x, radG]) = 0} andM0 is an irreducibleG(0)-
submodule ofM. Clearly, radG ⊂ G0. Also G0 �= G, for otherwiseχ ′ would vanish on
[G, radG] = radG, which is not the case. Since dimM � 2p2, the restricted subalgeb
G0 has codimension� 2 in G.

Let π :G � DerH(2;1;Φ(τ))(1) denote the canonical homomorphism. Recall tha
H(2;1;Φ(τ))(1)

(0) is the only proper subalgebra of maximal dimension inH(2;1;Φ(τ))(1)

(see [19, Theorem 3.20] for example). Ifπ(G0) ∩ H(2;1;Φ(τ))(1) had codimension� 1
in H(2;1;Φ(τ))(1), thenπ(G0) would containH(2;1;Φ(τ))(1). SinceG0 is restricted,
this would yieldG = G0, however. Thusπ(G0) normalizesH(2;1;Φ(τ))(1)

(0) and, as a
consequence,π mapsG0 onto the standard maximal subalgebra of DerH(2;1;Φ(τ))(1).
HenceG0 has codimension 2 inG and dimM0 � 2.

Since dimM0 � 2, the image ofG0 in gl(M0) is eithersl(M0) or gl(M0). This implies
that radG0 acts onM0 as scalar operators. Then[G0, radG0] acts trivially onM0, that is
M0 is a module overG0/[G0, radG0]. If radG ⊂ [G0,G0] then computing traces yield
that radG acts trivially onM0 (one should keep in mind that dimM0 < p and radG acts
on M0 as scalar operators). But we have already foundy ∈ radG with χ ′(y) �= 0. Since
radG is a restricted ideal, this leads to a contradiction.

Thus radG �⊂ [G0,G0]. Proposition 5.2 now shows thatG is split, that is

G = K ⊕ radG, K ∼= DerH
(
2;1;Φ(τ)

)(1)
.

Then[G0,G0] = [K(0),K(0)]+ [K(0), radG]. Besides,[K(0),K(0)] ∼= H(2;1;Φ(τ))(1)
(0),

by [17, Proposition 1.2(2d)]. In particular,[K(0),K(0)] is [p]-closed. Asx[p] = 0 for
all x ∈ radG, Jacobson’s formula shows that[G0,G0] is [p]-closed as well. Using [17
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Proposition 1.2], one observes without difficulty that[K(0), radK(0)] = rad[K(0),K(0)].
Since rad[K(0),K(0)] ∼= H(2;1;Φ(τ))(1)

(1) is [p]-closed, Jacobson’s formula shows th
so is

[G0, radG0] = [K(0), radK(0)] + [K(0), radG] = rad[K(0),K(0)] + [K(0), radG].

Let y be any element in[G0, radG0]. Since[G0, radG0] is [p]-closed and acts trivially
on M0, the central elementyp − y[p] ∈ Z(U(G)) annihilates the induced moduleM.
Therefore,χ ′ vanishes on[G0, radG0]. Note that

[G0,G0]/[G0, radG0] ∼= [K(0),K(0)]/ rad[K(0),K(0)] ∼= sl(2),

and M0 is a restrictedsl(2) module (being irreducible of dimension< p). Sinceχ ′
vanishes on[G0, radG0] and[G0,G0] is [p]-closed, it must then be thatχ ′ vanishes on
[G0,G0] as well. Proposition 5.3 now completes the proof.�

We now come to our first classification result for Lie algebras of an arbitrary rank:

Theorem 6.12. Let L be a finite dimensional simple Lie algebra over an algebraic
closed fieldF of characteristicp > 3 and suppose that thep-envelope ofL in DerL
contains a torusT of maximal dimension such that for every rootα ∈ Γ (L,T ) the
1-sectionL(α) is solvable. Then the setA := Γ (L,T ) ∪ {0} is anFp-subspace inT ∗ and
either L ∼= S(m;n;Φ(τ))(1) for somem � 3 andn ∈ Nm or L is isomorphic to a Block
algebraL(A,0, f ) for someFp-bilinear mappingf :A×A → F . In all cases, eachL(α)

is abelian andcL(T ) = (0).

Proof. (a) SincecL(T ) consists ofp-nilpotent elements ofLp , by Lemma 6.1, the toru
T is standard. Then Theorem 2.1 shows that every nilpotent sectionL(α1, . . . , αk) acts
triangulably onL.

(b) Suppose in addition thatTR(L) = 3. Then:

• no root vector forT act nilpotently onL (Proposition 6.10);
• each solvable 2-section relative toT is abelian (Proposition 6.7, Theorem 6.6);
• Γ (L,T ) ∪ {0} is anFp-subspace inT ∗ (Lemma 6.8),
• [x, y]p = −α(yp)xp + β(xp)yp wheneverx ∈ Lα andy ∈ Lβ (Proposition 6.11).

Combined together, these results show that [20, Theorem 5.6] holds forp > 3.

(c) Lemmas 6.2–6.4 of [20] hold because their original proofs work when supplemente
by our Theorem 6.5. Inspection of [20, Sections6, 7] shows that only the results mention
in parts (a)–(c) of this proof are used to establish of [20, Theorems 7.5, 7.8]. Thus
theorems continue to hold forp > 3, hence the result.�
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7. Case (B): pushing the classical Lie algebras

In this section we will assume thatΓ (L,T ) consists of solvable and classical roots a
contains at least one classical root. Our results will parallel those obtained forp > 7 in [16,
Sections 3, 4]. Note that, due to our assumption, all roots inΓ (L,T ) are proper. In othe
words,T is an optimal torus in the sense of [2].

Proposition 7.1. Letα,β ∈ Γ (L,T ). Then one of the following occurs:

(1) L[α,β] = (0);
(2) there is a classical rootµ ∈ Γ (L,T ) such thatL[α,β] = L[µ];
(3) L[α,β] = L[δ1] ⊕ L[δ2] for some classical rootsδ1, δ2 ∈ Γ (L,T );
(4) L[α,β] ∼= sl(2) ⊗ A(1;1);
(5) L[α,β] ∼= H(2;1;Φ(τ))(1);
(6) L[α,β] is classical simple of typeA2, C2, or G2.

Moreover, in cases(1)–(3), and(6), we have thatΨα,β(T ) ⊂ L[α,β]. In case(4), we have
Ψα,β(T ) = (Fh ⊗ 1) ⊕ (F Id ⊗ (1+ x)∂), while in case(5), L[α,β] ∩ Ψα,β(T ) = (0).

Proof. SupposeL(α,β) is nonsolvable. Then Theorems 4.1, 4.2, 4.4 apply. Since ne
Witt nor Hamiltonian roots occur inΓ (L,T ), Theorem 4.1 yields the algebras listed
case (3) of our theorem. SupposeL[α,β] satisfies the conditions of Theorem 4.2. IfS̃ is
classical then the equalityTR(S̃) = 2 implies thatL[α,β] ∼= S̃ whereS̃ is of type A2, C2
or G2.

S̃ cannot be a restricted Lie algebra of Cartan type because otherwiseL[δ] would be of
Cartan type for someδ ∈ Γ (L,T ); see [2] or [18, Section IX] (these references apply
our case asT is optimal forL).

S̃ cannot be isomorphic to the Melikian algebrag(1,1) because otherwiseL[δ] would
be of Cartan type for someδ ∈ Γ (L,T ), by [13, Theorem 5.2].

If S̃ is a non-restricted Lie algebra of Cartan type, then we apply [18, Sectio
VI, VIII] and argue as before to show that̃S ∼= H(2;1;Φ(τ))(1). This is case (5) of ou
theorem.

Now assume thatL[α,β] satisfies the conditions of Theorem 4.4. If̃S = L[µ](1)

for someµ ∈ Γ (L,T ), then L[α,β] ∼= S̃ ∼= sl(2). This is case (2) of our theorem.
S̃ ∼= H(2;1)(2) then a Witt root occurs inΓ (L,T ); see [18, Theorem III.5]. This cas
is therefore impossible. If̃S is as in case (3) of Theorem 4.4 theñS ∼= S ⊗ A(1;1) and
S̃ ⊗ F is contained in a 1-section ofL[α,β]. ThenS ∼= sl(2). This brings case (4). Sinc
no 2-section ofL relative toT is Melikian, by [13, Theorem 5.2], case (4) of Theorem
is impossible.

Let Ψ = Ψα,β :T → DerL[α,β] andL[α,β]p be as in Section 4. IfTR(L[α,β]) = 2
thenT ⊂ L[α,β]p + C(T + L[α,β]p); see [19, Theorem 1.7(8)]. AsΨ (T ) + L[α,β]p
is centerless (being a subalgebra of DerL[α,β]), we getΨ (T ) ⊂ L[α,β]p . Since in
cases (1)–(3), (6) of our theorem,L[α,β] is restricted, the preceding remark shows t
Ψ (T ) ⊂ L[α,β] as claimed. IfL[α,β] is as in case (4) of our theorem, then Theorem 4.4
says thatΨ (T ) = (Fh ⊗ 1) ⊕ (F Id ⊗ (1 + x)∂) for some nonzero toral elementh ∈ S.
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Finally, if L[α,β] ∼= H(2;1;Φ(τ))(1), then [18, Theorem VII.3] (together with ou
preceding remark) shows thatΨ (T ) ∩ L[α,β] = (0). �

Proposition 7.1 is an analogue of [16, Proposition 3.1]. It shows that(L,T ) satisfies
the conditions (B1)–(B4) of [16]. Inspection shows that the proofs of Theorem
Corollary 3.3, Proposition 4.1, Lemma 4.2, and Proposition 4.3 in [16] go throug
p > 3. So all these results apply to ourL (denoted byG in [16]).

Givenα ∈ Γ (L,T ) we letE(α) be the set of all solvable rootsµ ∈ Γ (L,T ) such that
L[α,µ] ∼= sl(2) ⊗ A(1;1). Following [16, Section 3], we now set

B(L,T ) := {
α ∈ Γ (L,T )

∣∣ L(α) is nonsolvable andE(α) �= ∅}
.

The roots inB(L,T ) are calledbad. According to [17, Lemma 4.2], for any badα
the setE(α) ∪ {0} is an Fp-subspace inT ∗. Given α ∈ B(L,T ), we set P(α) :=
H ⊕ ∑

µ∈E(α) Lµ, a T -invariant subalgebra ofL. Our next result is an analogue of [1
Theorem 4.4].

Proposition 7.2. If B(L,T ) �= ∅ then L[α,β] ∼= H(2;1;Φ(τ))(1) for some α,β ∈
Γ (L,T ).

Proof. By [17, Proposition 4.3], there isα ∈ B(L,T ) such thatP(α) is nonsolvable
SinceE(α) ∪ {0} is anFp-subspace,P(α) is a T -section ofL. By [19, Theorem 1.16]
it contains a nonsolvable 2-section,L(β,γ ) say. By the definition ofE(α), each 1-
sectionL(δ) with δ ∈ (Fpβ + Fpγ ) \ {0} is solvable. Proposition 7.1 now yields th
L[β,γ ] ∼= H(2;1;Φ(τ))(1) as desired. �

Our second classification result is as follows.

Theorem 7.3. Let L be a finite-dimensional simple Lie algebra over an algebraic
closed fieldF of characteristicp > 3 and assume that thep-envelope ofL in DerL
contains a torusT of maximal dimension such that all roots inΓ (L,T ) are either solvable
or classical. Assume further that at least one root inΓ (L,T ) is classical. ThenL is a
classical Lie algebra, that is there exists a simple algebraic groupG of adjoint type over
F such thatL ∼= (LieG)(1). In particular,L is restricted.

Proof. Assume the contrary. One observes, by inspection, that the proof of
Lemma 4.6] goes through forp > 3. This reduces the general case to the case w
TR(L) = 3. More precisely, we can assume thatL has the following properties:

(i) L is simple withTR(L) = 3 andT is a torus of maximal dimension inLp ;
(ii) there existsα ∈ B(L,T ) such thatL(δ) ∼= sl(2) for all δ ∈ Γ (L,T ) \ E(α);
(iii) there areβ,γ ∈ Γ (L,T ) such thatE(α) = (Fpβ ⊕ Fpγ ) \ {0};
(iv) δ(H) = 0 for all δ ∈ E(α).

As dimT = 3 we have thatΓ (L,T ) ⊂ Fpα + Fpβ + Fpγ . Let δ = iα + jβ + kγ be a
root, and putµ = jβ + kγ . Thenµ ∈ E(α), by (iii), while from the definition ofE(α) it
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follows thatL[α,µ] ∼= sl(2)⊗A(1;1). Supposei /∈ {0,±1}. It is clear from the descriptio
of Ψα,β(T ) in Proposition 7.1 (case (4)) thatδ /∈ Γ (L[α,µ],Ψα,β(T )). As a consequence
Lδ ⊂ radT L(α,µ) ⊂ radL(δ). As δ(H) = iα(H) �= 0, [16, Theorem 3.2] shows thatLδ is
contained in a proper ideal ofL. As L is simple, we now obtain

Γ (L,T ) ⊂ {0,±α} + Fpβ + Fpγ.

SetL±1 := ∑
i,j∈Fp

L±α+iβ+jγ andL0 := L(β,γ ). Then the decomposition

L = L−1 ⊕ L0 ⊕ L1

is a nontrivial shortZ-grading ofL. So [4, Lemma 14] now yields thatL is classical,
forcingβ(H) �= 0. This contradiction proves the theorem.�
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