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1. Introduction

Let K be a commutative Noetherian ring. Let A = Ag + A; + A, + - - - be an associative graded K-algebra generated in
degree 0 and 1 (that is, A; - Aj = Ay forall 0 < i,j < 00). Assume that Ay is a finitely generated semisimple K-algebra,
and A is a finitely generated K-module. Recall from [13] that A is a d-Koszul algebra if there exists a minimal A-projective
resolution of Ag

P:--- Pn P2 P] PO A() 0

such that for each n > 0, P, can be generated in exactly one degree x (), and the jump map x (n) is defined by

- gd, if nis even
n) =
X 1441, ifnis odd.

We note thatif d = 2, then A is a Koszul algebra, which may be understood to be a positively graded algebra that is “as close
to semisimplicity as possible”. For d > 3, A is not a Koszul algebra.

The local d-Koszul algebras (that is, Ap = K) have been extensively studied by many authors. R. Berger first generalized
the Koszulity for quadratic algebras to algebras whose relations are homogeneous of degree N > 2 (N-homogeneous
algebras) [6]. Artin-Schelter regular algebras of global dimension 3 which are generated in degree 1 are such algebras [3].
This generalization follows along the definition given by Beilinson, Ginzburg and Soergel for N = 2 [9]. In [6], generalized
Koszulity is connected to lattice distributivity and to confluence, and the bimodule version of the generalized Koszul
resolution is studied and applied to compute its Hochschild homology. On the other hand, following Manin’s monograph
for quadratic algebras in [17], R. Berger, M. Dubois-Violette and M. Wambst have given an alternative set-up of generalized
Koszulity based on N-complexes [7]. Moreover, R. Berger and N. Marconnet showed that if an N-homogeneous algebra is
generalized Koszul, AS-Gorenstein and of finite global dimension, then there is a Poincaré duality between its Hochschild
homology and cohomology [8]. Recently, E.L. Green, E.N. Marcos, R. Martinez-Villa and Pu Zhang generalized in [ 13] the local
d-Koszul algebras to nonlocal case, and presented a characterization in Ext-algebra being generated in degree in 0, 1 and 2.

Hochschild cohomology, as a branch of homological algebra, was introduced by Hochschild in 1945 [14] and developed
by Cartan and Eilenberg [11]. In recent years, the Hochschild cohomology and Hochschild cohomology ring have been
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extensively studied, and play an important role in many branches of mathematics and physics. However, for most finite
dimensional algebras, little is known about the Hochschild cohomology groups and even less is known about the Hochschild
cohomology rings.

Our purpose in this paper is to determine the multiplicative structure of Hochschild cohomology rings of d-Koszul
algebras. A first step was achieved in [5,1,10]. R. Buchweitz, E.L. Green, N. Snashall and (. Solberg described the multiplicative
structure of Hochschild cohomology rings of Koszul algebras based on a “comultiplicative” structure of a minimal projective
bimodule resolution [10]. For the case of monomial d-Koszul algebras, G. Ames, L. Cagliero and P. Tirao gave a clear
description of the Yoneda product and completely determined the structure of Hochschild cohomology rings of truncated
quiver algebras by the explicit constructions of comparison morphisms between the two different resolutions [1]. In [19],
Siegel and Witherspoon defined a cup product of two elements 5 in HH"(A) and 6 in HH™(A) using the composition

Q0
P —A—> P®sP l——> AQ4A —Y . A which coincides with the ordinary cup product, and is independent of the

projective resolution P of A and the chain map A. The difficulty is to describe the chain map A explicitly. For instance,
the “comultiplicative” structure of a minimal projective bimodule resolution in [10] describes in fact such a chain map in
the case of Koszul algebras.

In Section 2 we generalize the bimodule Koszul resolutions P of local d-Koszul algebras to nonlocal case. Section 3
is central for the paper and is devoted to giving an explicit construction of a chain map A : P —— P ®,4 P lifting
the identity. It took us a long time to look for the correct definition of the chain map. Applying it we obtain a clear
description of the cup product on the minimal projective bimodule resolution and determine the multiplicative structure
of Hochschild cohomology rings of d-Koszul algebras. Finally, we apply our results to monomial d-Koszul algebras and the
well-known cubic Artin-Schelter regular algebra of global dimension 3 of type A in Section 4. As a consequence, we reobtain
the description of the multiplicative structure of Hochschild cohomology rings of truncated quiver algebras in a different
way [1].

2. Bimodule Koszul resolutions

Llet A = A9 + A1 + A, + --- be a d-Koszul algebra. Recall that A is a quotient of the tensor algebra TAO (A1) =
®2
Ag + A1+ A, fo 4. ,Say A = TAO (Al)/l with I generated by homogeneous elements of degree d. LetR = I N A ° . Note

that R is an Ag—Ag-submodule ofA ° . Throughout we always assume that K is a field and that Ag is not only semisimple,
but, asaring, AgisK x K x - -+ x K
In [13], a generalized Koszul complex of A is defined as follows. Let Hy = Ag, H; = Ay, and forn > 2,

®i
ﬂ A1 o ®ng R R A1 o
i+j+d=n

® .
To simplify notation, we will denote A, " s simply A} and write ®,, as simply ®. Since R C A H, C Af, and thus we can
write elements of Hy as Y X QX ® - - - Q@Xn, where the x;’s are in A;. It was shown in [ 13] (see also [6]) that the d-Koszulity of
Aimplies that (R ®A§) N (A'A1 ®R) C A’l_1 ®R®A; for2 <i < d, and using this fact they obtained the following proposition:

Proposition 2.1 ([13, Corollary 8.2]). For n > 0, we have
Hasr = (R ®Agn—1)d+l) N (A @R ®A§n—l)d)
n (Aglj R ®A(]n72)d+l) A (A¢11+1 ®R ®A§n—2)d)
n-...
N (Agnfl)d QR ®A1) N (Agnfl)dJrl ® R)
and
Hypn = R A" DY
N (A(ljfl ® R ®A§n—2)d+1) N (Aql ® R ®A(1n_2)d)
NATQ@RQAT P N A¥ @ R AT )
n-...
NA" T oRA)NAT " OR).
Thus one can define Q, = A®a, Hy ) as a projective left A-module forn > 0 and oy, : Q —— Qu—q forn > 1. Whereifn = 2k,
for> a®x1 Q- Qxkg € Qn,

(Y a@x @ @®xd) =Y e K1 OB BN
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Ifn=2k+1,for) a®x;® - ® Xkg+1 € Qu,

(Y a®X @ ®Xs1) = Y 1 B @ @ Xia.

Furthermore, it was shown in [13] that A is a d-Koszul algebra if and only if

On On—1 (o5} 0o

Qo):--- Qn Q-1 Q Qo Ao 0

is a minimal graded projective A-resolution of Ao.

The aim of this section is to give a bimodule characterization for d-Koszulity. For the local d-Koszul algebras such a
characterization has been obtained by Berger and Marconnet in [6,8].

Similar to R. Berger work, we can also define a minimal projective bimodule resolution of A. For n > 0, define
K., = A®Hp, and the A-linear map é; : K, , —> Ki n—1 is defined by the natural inclusion H, < A® H,_1. Then B)'=0
and thus (K;, §;) is a d-complex. Define analogously the d-complex (K, dg). Thus K;_r = K} ® A = A ® Ky is a bimodule
d-complex for §; = 8, ® 14 (6 = 1a ® 8 respectively), and §; and §; commute. Now we define P, = A ®,, Hyn) ®a, A
and a new differential d, : P, ——> P,_1 as follows: if n is odd, then

dn = 8] — g,
if n is even, then
d, = 82d-1 + 8;‘1_28}’3 4. ~8£8,’f—2 T 8,’;’_1.
More precisely, if n = 2k + 1,for ) a ® x1 ® - - - ® Xka+1 ® b € Py, then

dy (Za®><1 ® -+ @ Xid+1 ®b> =) (@ ®X%®  ®Xap1 ®b—a®X1 ® -+ ® Xia ® Xiar1b);

and ifn =2k, for} a ® x1 ® --- ® Xg ® b € Py, then

d
dn (Za VX QX ® b) = Z (Z axy - X1 QX ® -+ ® Xit(k—1)d ® Xjt(k—1)d+1" - -Xkdb) .
=1

It is easy to check that d,_d, = 0, so (P, d) is a complex.
In order to transfer acyclicity from (Q, o) to (P, d), we need the following result which is the nonlocal version of
[8, Prop. 4.1].

Proposition 2.2. [et A = Ay + A; + - -+ be a graded algebra. Assume that the complex L L) M i) N is formed of

graded-free modules, with L bounded below. Then this complex is exact if the following is exact:

14, ®af 1po®ag
A0®AL———)A0®AM ————)A0®AN.

We can now state the bimodule characterization for d-Koszulity which is the nonlocal version of [8, Thm. 4.4] or [6, Thm. 5.6].

Theorem 2.3. Let A = Ty, (Aq)/I with I generated by homogeneous elements of degree d. Then the following statements are
equivalent:

(a) Ais d-Koszul;
(b) The complex

d dy_ d d
®,d):--- P, —"s P L L PP —25A 0

is a minimal projective A®-resolution of A.

Proof. Assume that A is d-Koszul. Applying the functor — ®4 Ag to (P, d), we get the Koszul resolution of Ag in A-grMod,
and we conclude that (b) holds by Proposition 2.2.

Conversely, assume (P, d) is exact. Viewing (P, d) as a projective resolution of A in grMod-A and comparing it with the
identity map of A, one sees that there are in grMod-A two morphisms of resolutionsf : (P, d) —— Aandg : A —— (P, d)
(where A is considered as a complex concentrated in degree 0), and a chain homotopy s : (P, d) —— (P, d) such that

1(]p’d) — gf =sd + ds.
Clearly, 1(p,q) = sd + ds in degree > 0. Applying — ®4 Ao, we draw
1go) = (S ®a 1a))0 + 0 (s ®a 14,)

in degree > 0, which implies that (Q, o) is exact in degree > 0 and then A is d-Koszul. This completes the proof. O
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3. Cup products

Denote by A the enveloping algebra of 4, i.e., the tensor product A ®; A°? of the algebra A and its opposite A. By the
Cartan-Eilenberg formula [11] the n-th Hochschild cohomology group of A is

HH"(A) = Ext}. (A, A)
and the Hochschild cohomology ring HH*(A) is defined to be
HH"(A) = €D HH"(A)
n>0

whose multiplication is given by the multiplication induced by the Yoneda product. It is also well known that the Yoneda
product of HH* (A) coincides with the cup product defined on the cohomology of Homge (B, A), where (B, b) is the standard
projective A¢-resolution of A given by B" = A®4% ™2 and p" : B" —— B! by

n
B"(ho ® -+ ® Any1) = Z(—Ul)\o Q- ®Airit1 ® -+ ® Any1.
i=0

When Ag = K, this is the usual bar resolution. Note that if Ap = K x --- x K, then Aq is not central in general, so that A is
not necessarily an algebra over Ag.
For the standard projective resolution (B, b) there is a chainmap A’ : B —— B ®, B given by

n
A/()‘O®"'®)"n+l)ZZ()LO@)"'@)W@U@A (IQXit1 ® - ® Apt1)-
i=0

i=l
If n and 6 in HH"(A) and HH™ (A), respectively, are represented by n : B —— A and 6 : B" —— A, then the cup product
n L@ in HH"™ ™ (A) is given by the following composition of maps

/ 6
B2 Ba, B 2% agaa—2 A,

where v : A ®4 A —— A s the multiplication map. We see that the cup product is

U)X ® Qlpimi1) = 1A ® @A @ D1 ® A1 ® -+ ® Apima1)-

In [19] it was shown that any projective A°-resolution X of A gives rise to a “cup product”, which coincides with the ordinary
‘cup product’. Let X be a projective A°-resolution of A. There exists a chainmap A : X —— X®, X lifting the identity, which
is unique up to homotopy. Siegel and Witherspoon defined a cup product of two elements 7 in HH"(A) and 6 in HH™(A) as
above using the composition

6
%2, x2,x 1% aga 2 A,

and note that it is independent of the projective resolution X of A and the chain map A. Now we give an explicit formula for
A for the minimal projective A°-resolution of A constructed in Section 2.
Recall that P ®, P is still a projective A°-resolution of A which is given by

PRaP)y = ]_[ P; Qa4 P
i+j=n
and D, : (P ®4 P), —— (P ®a P),_1 is given by

n—1

Dp=) () ®dyi+diy1®1).

i=0
Now we define A : (P, d) —— (P ®4 P, D) as follows:

Definition 3.1. The linearmap A, : P, ——> (P®P), is defined as follows: forn = 2k+1, > 1Qx1®%,®- - - QX1 1®1 €
Pag+1,
Adpy1 (Zl QX1 QX ® - QXd+1 ® 1)

2k+1
=Y ) 19x® @ @D ® (1® X1 ® @ Xar1 ® 1).
r=0
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andforn =2k, ) 1QXx QX ® -+ @ Xy @ 1 € Py,

k
AZk(Zl®X1®Xz®--~®xkd®1) :ZZ(1®X1®"'®er®1)®A (1IQXa+1 Q- QX ® 1)
r=0

k—1
—f—ZZ Z X1 X QX1 Q- QXjpra41 ® 1)
=0 j+mHl=d—2 T
J

®a Kjrrdaz -+ Xirdrm1 ® Xjrrdrmi2 @ -+ @ Xjvma (k—1)d+2 & Xjtm+(k—1)d+3 * * * Xkd)

m 1

where xo = 1.

Remark. If the algebra A is Koszul (i.e. d = 2), then the map A = (A4,) is just the “comultiplication” defined in [10].
In order to prove the map A = (4,) : P —— P ®,4 P is a chain map, the first step is to show the following diagram

dq
P] E—— Po

A]l Aol
(P @1 Py —— (P®4P)
is commutative. Letp = 1 ® x; ® 1 € P;, where x; € A;. Since
Apdi(p) = A1 ®T-1Qx) =1 @@ (11D - (131 ® (1®x)
and
DiA() =Dl D@ (1D +(1®x®1) R (1R 1)]
=1d)[A®DN(13x D]+ (1 @D(1x®1)®x (1R 1)]
=131 @ *x1®1-10x)+*®1-10x)R1(1&®1)
=10xQ®1-(101D)R (1R®xN)+x @D (1®1)-1Q®x Q1
= Apdy(p).
So we have D1 Ay = Agpd;.
Proposition 3.1. The map A : P —— P ®4 P defined above is a chain map.

Proof. It suffices to show that the following diagram

dn
Py _— Pp_4

N o

Dn
PRaP)y —— P®aP)nq

is commutative for alln > 1.
(Case A)Ifn =2k + 1,let Y 1 ® X ® -+ ® Xkar1 @ 1 € Pyy1. By the linearity of A and d, we consider the summand
P=10x ® - Qx+1 ® 1, where each x; € A;. Since

2k

(P R4 P)oi = ]_[ P: ®4 Pag—r,
r=0

we can prove Ajdor1(p) = Dory1424+1(p) € (P ® P)y, componentwise, i.e., we will prove that the r-th component of
Aoidas1(p) is equal to that of Dy 1 Agir1(p) foreach 0 < r < 2k.
(A1) We first consider the case that r = 2s is even. Since

1) =X1 QX% Q@ QX1 Q1 - 10X Q% ® -+ ® Xig1,
applying A, to the equality above, we get the r-th component of Ay,dy1(p) is

X1 ®x% @ OXg+1901) R4 (1 @ Xea12 Q-+ - D Xpap1 @ 1)
(1% ® - Qx4®1) ®4 (1 QXsq11® -+ @ Xkg @ Xiedy1)

which belongs to P, ® Pyy—r = Pas ® Pa—s).
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On the other hand, note that the preimage of P, ® Py, under the map Day1 15 Pas ® Pak—s)+1 | [ P2s+1 ® Pagk—s), SO the
terms in Ayy1(p) which belong to Pys ® Pyk—s)+1 and Pagyq ® Pyg—s) are

(13X Q- Qx40 1) Q4 (1 RXsi41 ® -+ ® Xpg1 ® 1) (1)

and
(I®X Q@  OX441 @1 B (1® X042 ® - @ X1 @ 1) (2)

respectively. By the definition of Dy 1 = Zfﬁo((—l)r ®dokt1—r +dry1 ® 1), we may apply (—1)" @ dokt1-r = 1@ dyk—s)+1
to(l)and d,1; ® 1 = dys1 ® 1to (2) respectively, and get the r-th component of Dy Aggs1(p) is
(1®x% @ QX4 ® 1) ®a (Xsgr1 O Xsg12 @+ @ Xpay1 @ 1 — 1@ Xsgp1 @+ - ® Xped1)
TEI X% OXa1 1T —1QX Q- ®Xsa11) Q4 (1 ®Xsg12 ® -+ - @ Xpgy1 ® 1)
=1QX Q@ Xy R Xsgp1 Q@+ @ Xpg41 ® 1
—(1®x® - X4 ® 1) Q4 (1 R X411 ® - -+ & Xpa @ Xkdr1)
X% Q@ X1 ®D @ (1 ® X012 @ - O Xpg1 @ 1)
—1T®X® - QX1 ®Xsay2 @ -+ Q@ Xpgr1 ® 1
= the rth component of Ay, dak+1(p).

(A2)Ifr = 2s + 1is odd, the r-th component in

Agiaiy1(P) = A1 @%@ - QXpar1 @1 —-1® % ® -+ - ® Xig41)

is
d—1 d—j
E X1 X QX1 ® - QX145 @ 1] 4 E Xjt2+4sd * * Xjm+sd
j=1 m=1

®Xjrmtsd+l ® **+ Q Xjtmyk—1)d+1 D Xjtm+k—1)d+2 * * 'Xkd+l>

d—i

d—1
- (ZM X1 QX Q- ® Xiysd @ 1) ®a (Z Xit14sd * * * Xitl—1+sd
i=1

=1
QXititsd @+ * Q Xitl+(k—1)d @ Xitl+(k—1)d+1 " " * Xkd+1>

where we view the product x;x; as 1if i = j 4 1. For simplicity we denote by I; ) the following term in the first sum
X1 X% QX1 ® - @Xjt14sd @ 1) ®a (Xjy24sd * * * Xjrmrsd
® Xjtmtsd+l @ -+ @ Xjtma-(k—1)d+1 ® Xjrm(k—1)d+2 * - * Xkd+1)
and similarly, by Il; ; the following term in the second sum
X1 X1 ®X ® - B Xiysd ® 1) ®a (Kig14sd - * * Xitl—1+sd
® Xiglsd ® +* ® Xigl(k—1)d ® Xl k—1)d+1 " " * Xkd+1)-

Thus the above sum can be written as

o

—1 d—j 1 d—i
lgm — Y > .

=1 m=1 i=1 I=1

-
Il

Clearly, Ijjm) — lj41,m = 0for1 <j<d—2and1<m <d— (j+ 1). So the above sum changes into

d-1 d-1
Z Lg.a—p — Z L, p. (3)
= =1

On the other hand, applying A1 to p, we get the terms in A1 (p) which belong to Pasy1 ® Pyk—s) and Pasyo @ Pak—s)—1



Y. Xu, H. Xiang / Journal of Pure and Applied Algebra 215 (2011) 1-12 7

are

IX Q@ QX410 1) R (1 RQXsgy2 @ - @ Xpay1 ® 1) (4)
and

(13%1 QX5+ ® 1) ®a (1 ® Xs1ya+1 ® -+ @ Xpgy1 @ 1) (5)
respectively. Applying (—1)" ® dat1—r = —1® dy—s) to (4) and d; 11 ® 1 = dy(s41) ® 1to (5), we obtain the terms which
lie in Pys1 ® Pyk—s)—1 are

d
(19X @ QX1 @ 1) B (Z Xsd+2 " " " Xsdtl @ Xsg+141 @+ + + @ Xk—1yd+1+1 & X(k—1)d+14+2 " * 'Xkd+1>

=1

d—1
+ (ZM X QX1 ® - @ Xjy1sd @ Xjosd 'X(s+1)d) ®4 (1 Q@ X(s41)d41 ® - @ Xpap1 @ 1).
=0

That is,

d d—1
=Y lan + Y - (6)
=1 =0

Note that —Il¢1,4) + I0,qy = 0, we have Formula (3) = Formula (6). Thus the r-th component of D1 Asi1(p) is equal to
the r-th component of Aydoit1(p).

So we have shown that the diagram is commutative in the case that n is odd.

(CaseB)Ifniseven,sayn =2k, for ) 1®x1 ® --- @ kg ® 1 € Py, consider the summand g =1Q % ® -+ - @ X @ 1,
where each x; € A;. Then

d—1
da(q) = le X @ X1 @ - @ Xip it k=1)d D Xjg24(k—1)d * *  Xkd-
=0

Similar to the case A, we will show that the r-th component of D, A5, (q) is equal to the r-th component of Ay,_1dy,(q) for
eachO0 <r <2k-—1.

(B1)Ifriseven,sayr = 2s, we apply A1 to dyk(q) and obtain the terms which belong to Py ® Pox—1—r = Pas @ Py(k—s)—1
is
d—1
Z(M X ®Xp1 QB Xjpsd ® 1) ®a (1 Q@ Xj145d @« + @ Xjt1+(k—1)d @ Xjta+(k—1)d * * * Xka)- (7)
j=0
On the other hand, applying A, to g, we get the term in Py; @ Py(k—s)

(10X Q QX4 Q1D R (1 RXyy1 @+ QX ® 1) (8)

and the terms in Py 1 ® Pyg_s)—1

d—1 d—j
(Z?ﬁ X1 QX Q Xjpsd @ 1) ®a (Z Xjt14sd * * * Xjiym—1+4sd
j=1 m=1
® Xitmasd ® -+ @ Xjyma-(k—1)d @ Xjtma14+(k=1)d " * Xkd) (9)

respectively. Then we apply (—1)" @ dak—r = 1 ®@ dy—s) to (8)and d; 11 ® 1 = dps1 ® 1t0 (9), we get the terms which lie
in Pys @ Py(k—s)—1 are
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d—1

(IX1 Q@ x4 ® 1) ®a (szd+l"’xsd+[

t=0

® Xsgre4+1 ® -+ @ Xk—1yd+t+1 & X(k—1)d+t+2 'Xkd)

d—1 d—j
+ ( E X1 X QXjp1 Q-+ - ® Xjysd ® 1) ®a ( E Xjt1+sd * * * Xj+m—1+sd
j=1 m=1

® Xjtmtsd @ -+ & Xjtmt(k—1)d & Xjtm+1+k—1)d * * 'Xkd>

d—i

d—1
- ( E X1 X1 QX Q- Q Xi+sd> a ( E Xit14sd ** * Xitl—14sd
i=1

=1
& Xititsd ® +++ Q Xitit(k=1)d & Xitl+1(k=1)d * * 'Xkd> .

where we also view the product x;x; as 1if i = j 4+ 1. Similarly, we denote by Ill o ;) the following term in the first summand
(1Rx Q- Qx4 ® 1) Q4 (Xsar1°+* Xsdt ® Xsdrt1 ® -+ ® Xk—1)dte+1 @ Xk—1ydt42 * * * Xkd)»
by IV(j,m) the following term in the second summand
X1 X% QX110 BXisd @ 1) R4 Kjg14sd *** Xjtm—14sd ® Xjrmisd @+ @ Xjymi(k—1)d D Xjtm+1+—1)d * * * Xkd)
and by V; ;, the following term in the third summand
(X1 X1 QX ® -+ @ Xiysd) ®a Kit14sd " Xiti—1+sd ® Xigitsd @+ @ Xipip(k—1)d @ Xitit14+(k—1)d * * " Xkd)-

Thus the above sum can be written as

d—1 d—1 d—j d—1 d—i
2 Moo+ Wom =D V-
=0 j=1 m=1 i=1 I=1

It is clear that IV(j my — V(jy1,m—1) = 0for1 <j <d—2andm > 2,and lllo;) — V1,r) = Ofor 1 < ¢, so the above sum
changes into

d—1 d—1
Moo + Y Ny =Y Vg (10)
j=1 j=0

which is just formula (7). Thus the r-th component of D, A5, (q) is equal to the r-th component of Ay,_1d5,(q) forr = 2s.
(B2) The proof of the case r = 2s + 1 is similar to that of the case (B1), we omit it here.
Thus we prove the diagram is also commutative for the case that n is even. And hence we can see that A is a chain
map. O

We shall now use the chain map A to describe the cup product on the minimal resolution P of A.

Theorem 3.2. Let A be a d-Koszul algebra over a field K with a minimal projective A®-resolution (P, d). Suppose that n :
P, —— Aand 6 : P, —— Arepresent elements in HH* (A), then we have

(1) ifn=2kandm =2h+ 1, thenfor ) 1% ® - QX QY1 ® - @ Yna+1 ® 1 € Py,
o) (Y 18x 8 @x@y @ 8y ©1)
=Y n1®x ® @@ DI ®Y1 ® -~ ® Ypar1 ® 1)
(2) ifn=2k+ 1andm = 2h, thenfor > 1Qx; ® - @ X1 QY1 ® - @ Ypna ® 1 € Py,
(nu 9)(Z]®X1®"'®Xkd+l®,V1®"'®_Vhd®1)
:Zﬂ(1®x1 ® QX1 ODI1QYI R - QY ® 1);
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(3) ifn=2kand m = 2h, thenfor ) 1@x1 ® - QX QY1 Q-+ @ Yhg ® 1 € Pyym,
Guo)(Y1ene  emene ®muol)
=Y 11@x 8 ®x®@NI1®YI® @Y ® 1);
(4) ifn=2k+1andm =2h+ 1, thenfor} 121 ® -+ ® Zkth+1)a ® 1 € Pnim,

(mu 9)(5 1®21®"'®Z(k+h+l)d®1): E E Nz zi®zZit1 @+ @ Ziy14kd @ 1)
j+m+l=d-2 ™
j

0Zjt2+kd  * * Zitm+1+kd @ Zitmt2+kd @« * @ Zivmy2+(erhyd & Zitmt3+(k+hyd * * * Zke+h+1)d) -

m l

Proof. By definition n L6 = v(n ®4 6) A.
(1) Assume thatn = 2kandm = 2h 4+ 1l.lets = k+ hand Y 1®pQ®1 = > 1021 Q® - ®Zy1 ® 1 =
YI1®X® - X @Y1 ® -+ ® Ypat1 ® 1 € Py Then

2s5+1

201 (31008 1) =33 (18218 @2, ® D @A (1@ 201411 @+ B 21 ® 1.
r=0

Sincen : P, —— Aand 6 : P, —— A, we have

o) (Y 1@p®1) =vin @0 (Y 10pe1)

25+1
V(1 ®a40) (Z 2(1 ®21Q-®Zyn @D B (1® 2111 Q- ®Zsay1 ® 1))
r=0

=Y n(1®x ® @ ®NI1®Y1 @+ @ Yhas1 ® 1).

The proofs of (2) and (3) are analogous. We prove the case (4). Assume thatn = 2k+ 1landm =2h+ 1.Lets =k + h+ 1.
Then by the definition of A, we have

nue) (Y1028 020 1) =vn @404 (Y 1028 - ®24®1)

= Z Z Nz z®z1 ® + ®Zjy11kd @ DO(Zjy24kd * * * Zjrma14kd
jHmt=d—2 T~

j m

® Zigzmi24kd @+ * @ Zipma 2+ kW dZjbma3+G+h)d * * * Z(k+h+1)d)

!
as desired. O

4. Examples

We end this paper by applying Theorem 3.2 to some examples of some d-Koszul algebras for d > 2. We first consider
monomial d-Koszul algebras which include all the truncated quiver algebras. The second example is the well-known cubic
Artin-Schelter regular algebra of global dimension 3 of type A with generic coefficients.

4.1. Monomial d-Koszul algebras

In the subsection we restrict our attention to quotients of path algebras. Let A = KQ /(p) be a monomial K-algebra with
p a finite set of paths of length d in Q. Recall from [13] that A is a d-Koszul algebra if and only if p is d-covering, i.e. whenever
pq, qr € p with q of length at least 1, then every subpath of pqr of length d is in p. In this case A has a minimal projective
At-resolution (P, d), where P, = A ®xq, Hyn) ®kq, A and H, () is the free KQp-bimodule generated by the set AP(n) of
associated paths constructed by Bardzell in [4]. The following theorem follows directly from Theorem 3.2:

Theorem 4.1.1. Let A be a monomial d-Koszul algebra over a field K with a minimal projective A®-resolution (P, d). Suppose that
n:P, —— Aand0 : P, —> Arepresent elements in HH* (A), then we have

(1) ifn = 2kand m = 2h + 1, then for x1Xy - - - Xkgy1Y2 * * - Yha+1 € AP(n + m),
U (1 ®@x1%2 -+ XkaV1¥2 - Yna+1 @ 1) = (1 @ X1x2 -+ - Xka ® DO(1 @ y1¥2 - - - Yna+1 @ 1);
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(2) ifn =2k + 1 and m = 2h, then for x1X; - - - Xgg+1Y1Y2 - - * Yha € AP(n + m),

(U A @x1Xz -+ - Xpgp1Y1Y2 -+ - Yna®1) = (1 @ X1Xz - @ Xpa41 @ DO(1 @ y1y2 - - Yra®1);
(3) ifn = 2k and m = 2h, then for x,X, - - - Xgay1Y2 - - - Yra € AP(n + m),

(MU 0)(1 @X1X2 - -+ Xka¥1Y2 -+ Ya®1) = (1 @ X1Xz - Xa @ DNO(1 @ Y1¥2 - - - Yna®1);
(4) ifn = 2k 4+ 1and m = 2h 4 1, then for X1x - - - X(k+n+1yd € AP(n +m),

MU YA ®X1Xz+* Xprhy)d @ 1) = Z Ny X QX1+ Xt 11kd ® DO Kjy24kd * * * Xjtma14kd
——

J+m+l=d-2 ‘
j m

®Xjtmi24kd * * * Xjtma2+(k+hd & Xjtmt3+(k+hyd * * - X(k-+h+1)d)) -

I

In the particular case when p consists of all paths of length d in Q, namely, A = kQ /] with ] the arrow ideal, A s called a truncated
quiver algebra, which is a monomial d-Koszul algebra [13]. Hochschild homology and cohomology of truncated quiver algebras
have been extensively studied by many authors [1,2,5,12,16,15,20,22].

Let A = KQ/J% be a truncated quiver algebra with a K-basis 8 = f;O] Q.. Here Q; denotes the set of paths of length I
in Q. Then A has a minimal projective A®-resolution of the form
d dy— d d
®,d): - Py —s Py —5 . Py —1s Py —25 A 0,
where

b AQqg KU ®q, A ifn =2k
" ARq, KQuar1 ®g, A ifn =2k + 1.

Note that Homge (P,, A) = Homygq, (KQ,m), A) = K(B//Qym), where 8//Qymy = {(a, T) € 8 X Qymlo(a) =
o(1), t(a) = o(t)} is the set of parallel paths in Q, o(«) and t(«) stand for the original and terminal of the path c.

As an immediate corollary of Theorem 4.1.1, we reobtain the description of the cup product of Hochschild cohomology
ring of a truncated quiver algebra, which was first obtained by G. Ames, L. Cagliero and P. Tirao by an explicit constructions
of comparison morphisms between the minimal projective resolution and the reduced bar resolution of a truncated quiver
algebra (cf. [1, Thm. 7.6]).

Corollary 4.1.2. Let A be a truncated quiver algebra. If (o, 7) and (B, t) represent elements in HH" (A) and HH™ (A) respectively
under the above isomorphisms, then we have

(1) if n or m is even, then

(o, m)u (B, 7) = (af, w7)
(2) ifn and m are odd, then

(@, MU BT =D (Vs 1)
n

where the sum runs over all paths p of length x (n + m) containing v and t as a subpath, and I',, is the result of substituting w
and t by « and B respectively in w. In particular, (o, ) U (B, ) = 0ifl(a) +1(8) > 1.

From the description of the cup product of Hochschild cohomology ring of a truncated quiver algebra, it is easy to see
that the cup product of two odd-degree cohomology classes is zero, and if f;, ..., f; are cohomology classes of positive
degree, then the product f; U - - - LU f; = 0. In particular, HH* (A) /.~ = K (where  is the ideal generated by homogeneous
nilpotent elements) and hence the Snashall-Solberg conjecture holds true for truncated quiver algebras [1]. Furthermore,
G. Ames, L. Cagliero and P. Tirao completely determined the multiplicative structure of Hochschild cohomology rings of two
large classes of truncated quiver algebras, see [1] for details.

4.2. Artin-Schelter regular algebras

Regular algebras introduced by Artin and Schelter have been classified in the case of global dimension 3 in [3]. The
Hochschild (co)homology, de Rham cohomology, cyclic and periodic cyclic homologies were computed by Michel van den
Bergh for the AS-regular algebras of type A with quadratic relations in [21] and by N. Marconnet for these algebras with
cubic relations in [18].



Y. Xu, H. Xiang / Journal of Pure and Applied Algebra 215 (2011) 1-12 11

Let K be afield of characteristic zero. Recall that an AS-regular algebra of global dimension 3 of type A, with cubic relations

is a graded algebra A of the form

A=Kx y)/(h,f)
with

fi = axy? + byxy + ay’x + X3, f, = ayx® + bxyx + ax’y + ¢?
where (a: b:c) e PPK\SwithS ={(a:b:c) e P’K|a> =b* =c?}U{(0:0:1), (0:1 : 0)},andx, y have degree 1.
Moreover, A has a central element of degree 4

C = b(c® — ®)yxyx + a(@® — b)yx*y — a(c? — a®)x*y* — c(@® — bH)x*.

Let Ay = K, A; = V be the vector space generated by x and y, R be the linear subspace of V®3 generated by f; and f, (here
we omit the symbol ® in the summands). Then A = Ty, (A;)/(R), which is a 3-Koszul algebra and has a minimal projective
A¢-resolution (P, d)

d d
L, A®A —25A 0 (11)

where J, is the subspaces generatedby w = x® fi + y @ f» = f1 ® x + f> ® y. dp is the multiplication map, and

di1®x®1) =x1-1Q%x; 1y =y®1-1Qy;
HOARARTD) =10mxRY’+10byQxy+1Qay@yx+1® cxQ x°
+aXQYyQYy+by®xQy+ayQy QX+ XxQXx® X
+axy@yR1+byxQy1+ay’ x@1+cx* @x® 1;
HARALRTD =10ayRX* +10hxQyx+1Qax@xy+1Q cy ® y*
F+ayRQXQX+bXRYRX+AXRXRXY+CYRYRY
+aypxRx@1+bxy@x@1+a’ @y 1+’ Qy R 1;
GIew ®1) =x0iQ1+y®LHR1-10f/i®x—10L®Y.

Applying the functor Homge (—, A) to the resolution (11), and noting that Homg (A ® X ® A, A) = Homg (X, A) for any
linear space X, we obtain the cochain complex

d d
0—> AQs®A —>AQR®A —>AQV®A

1 2 3
0—— A-L Hom(v. A) — Homy (R, ) - Homg (Ja, A) —> 0.

It was shown in [18] that HH°(A) = K[C] (here C is the central element of A), HH!(A) is the free k[C]-module of rank
1 generated by the Euler derivation D, which is defined on each homogeneous component A, of A by D|s, = nida,; and

HH?(A) and HH3(A) are free k[C]-modules of rank 9.
It is clear that the cup product of HH™(A) and HH" (A) is trivial for m, n > 2.1f € Homgze (A ® R® A, A) = Homg (R, A)
represents an element in HH? (A), then, by Theorem 3.2, we have

(DU mw) =DX)nfi) + DWn(f),
(nu D)(w) = n(f)D(X) + n(f2)D(Y).

Thus the multiplicative structure of Hochschild cohomology ring of a cubic AS-regular algebra of type A is determined.
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