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BACKGROUND Understanding how leukocytes impact atherogenesis contributes critically to our concept of athero-

sclerosis development and the identification of potential therapeutic targets.

OBJECTIVES The study evaluates an in vivo imaging approach to visualize peripheral blood mononuclear cell (PBMC)

accumulation in atherosclerotic lesions of cardiovascular (CV) patients using hybrid single-photon emission computed

tomography/computed tomography (SPECT/CT).

METHODS At baseline, CV patients and healthy controls underwent 18
fluorodeoxyglucose positron emission

tomography-computed tomography and magnetic resonance imaging to assess arterial wall inflammation and dimen-

sions, respectively. For in vivo trafficking, autologous PBMCs were isolated, labeled with technetium-99m, and visualized

3, 4.5, and 6 h post-infusion with SPECT/CT.

RESULTS Ten CV patients and 5 healthy controls were included. Patients had an increased arterial wall inflammation

(target-to-background ratio [TBR] right carotid 2.00 � 0.26 in patients vs. 1.51 � 0.12 in controls; p ¼ 0.022) and

atherosclerotic burden (normalized wall index 0.52 � 0.09 in patients vs. 0.33 � 0.02 in controls; p ¼ 0.026). Elevated

PBMC accumulation in the arterial wall was observed in patients; for the right carotid, the arterial-wall-to-blood ratio

(ABR) 4.5 h post-infusion was 2.13 � 0.35 in patients versus 1.49 � 0.40 in controls (p ¼ 0.038). In patients, the ABR

correlated with the TBR of the corresponding vessel (for the right carotid: r ¼ 0.88; p < 0.001).

CONCLUSIONS PBMC accumulation is markedly enhanced in patients with advanced atherosclerotic lesions and cor-

relates with disease severity. This study provides a noninvasive imaging tool to validate the development and imple-

mentation of interventions targeting leukocytes in atherosclerosis. (J Am Coll Cardiol 2014;64:1019–29) © 2014 by the

American College of Cardiology Foundation.
A therosclerosis remains subclinical over de-
cades prior to the acute onset of major car-
diovascular (CV) events (1). Leukocytes are
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recruited to these early atherosclerotic le-
sions (4), leading to the initiation or progres-
sion of atherogenesis (5). In support of a
causal role of increased monocyte influx
in atherogenesis, attenuation of monocyte
recruitment by pharmacological interven-
tions has been shown to attenuate athero-
sclerosis in experimental models (6–9).
Although fewer in number, T cells also
contribute to the inflammatory response
(10,11).
SEE PAGE 1030
In humans, a high white blood cell count
correlates with the risk of a CV event (12,13),
suggesting that elevated levels of circulating
leukocytes represent an expanded pool of in-
flammatory cells promoting disease progres-
sion. Similarly, risk factors for atherosclerosis
have been associated with an increased acti-
vation state of monocytes (14–16). Nonethe-
less, data on the in vivo dynamics of
leukocytes in human atherogenesis are scarce.

Several dual-modality integrated imaging
methods have emerged to quantify the
inflammatory activity within atheroscle-
rotic lesions, including 18
fluorodeoxyglucose posi-

tron emission tomography/computed tomography
(PET/CT) to assess arterial wall metabolic activity as an
index of macrophage content (17) and iron oxide–
enhanced magnetic resonance imaging (MRI) to
quantify plaque macrophages (18). These techniques,
however, lack the ability to address the in vivo
dynamics of leukocytes.

Understanding how leukocytes participate in
atherogenesis remains pivotal to our understanding
how atherosclerotic lesions develop, and could aid in
identifying potential therapeutic targets. In the pre-
sent study, we used single-photon emission computed
tomography (SPECT) and transmission computed to-
mography (CT) performed simultaneously via a hybrid
imaging device (SPECT/CT) as a noninvasive imaging
technique capable of visualizing the migratory
behavior of technetium-99m (99mTc)–labeled immune
cells in humans (19). In patients with atherosclerosis,
we evaluated hybrid SPECT/CT imaging to assess the
accumulation of circulating peripheral blood mono-
nuclear cells (PBMC) in atherosclerotic plaques in vivo.

METHODS

STUDY PARTICIPANTS AND PROCEDURES. In this
single-center imaging study, patients with athero-
sclerotic CV disease, age $18 years of either sex, were
recruited at our outpatient clinic using the following
inclusion criteria: documented history of myocardial
infarction, transient ischemic attack or stroke, and
stable medication for at least 6 weeks prior to study
participation. Exclusion criteria included ongoing
inflammatory diseases, use of systemic anti-
inflammatory drugs and major hepatic (aspartate
aminotransferase/alanine aminotransferase >2 times
the upper limit of normal) dysfunction. Healthy con-
trols were matched to the patients for age, sex, and
body mass index, and were ineligible in case of a
medical history of CV disease. Each subject provided
written informed consent. The study was approved
by the local institutional review board and conducted
according to the principles of the International Con-
ference on Harmonisation–Good Clinical Practice
guidelines. In all subjects, we performed baseline
laboratory tests, including lipid and inflammatory
profile, and vascular imaging, consisting of FDG-
PET/CT, MRI, and SPECT/CT for visualizing PBMC
accumulation.

PBMC ISOLATION AND LABELING. In each subject,
venous blood (120 ml) was drawn via an 18G intrave-
nous (IV) line into 4 syringes (30 ml per syringe)
containing 5 ml acid citrate dextrose (disodiumcitrate
3%/glucose 2.5%) and 5 ml EloHAES 6% (Fresenius
Kabi, Zeist, the Netherlands). On average 20 � 106

PBMC were isolated using Ficoll-Paque Premium
(d ¼ 1.077 g/ml) density gradient centrifugation (GE
Healthcare, Chalfont St. Giles, Buckinghamshire,
United Kingdom). The radiolabel technetium 99m-
hexamethylpropylene amine oxime (99mTc-HMPAO)
was freshly prepared using a ready-for-labeling kit
(Ceretec, GEHealthcare, Eindhoven, the Netherlands).
Directly after preparation, PBMCs were incubated
with 99mTc-HMPAO (1,100 MBq/2 ml). Under these
conditions, uptake of 99mTc-HMPAO intracellular is
reached before the onset of its decomposition into
the constituents, which are unable to cross the cellular
membrane, resulting in the cellular trapping of the
radiotracer (20). Excess of extracellular 99mTc-HMPAO
was diluted and removed after centrifugation. Finally,
radiolabeled autologous PBMC (200 MBq) were
resuspended in 3 ml EloHAES 6 prior to reinfusion.

EFFECTS OF PBMC ISOLAT ION AND LABEL ING .

PBMC migration and accumulation is a multistep
process mediated by other adhesion molecules. To
assure plausible in vivo behavior of autologous
labeled PBMC, we assessed PBMC behavior in terms
of migratory and adhesive capacity via flow cytom-
etry and an in vitro transendothelial migration assay
(21) after isolation and labeling procedures. For flow
cytometry, PBMC were incubated with antibodies



TABLE 1 Baseline Characteristics of Subjects

Characteristic
CV Patients
(n ¼ 10)

Control Subjects
(n ¼ 5) p Value

Age, yrs 56 � 7 50 � 3 NS

Male 7 (70) 4 (80) NS

BMI, kg/m2 28 � 5 28 � 6 NS

SBP, mm Hg 132 � 12 133 � 10 NS

DBP, mm Hg 82 � 8 82 � 2 NS

Active smoking (yes), % 3 (30) 0 (0) NS

Statin use (yes), % 9 (90) 0 (0) 0.03

Tot chol, mmol/l 5.26 � 2.26 5.04 � 0.19 NS

LDLc, mmol/l 3.30 � 2.24 3.08 � 0.21 NS

HDLc, mmol/l 1.37 � 0.47 1.47 � 0.41 NS

WBC, 10E9/l 6.93 � 2.00 5.42 � 0.95 NS

Monocytes, 10E9/l 0.52 � 0.16 0.35 � 0.06 0.01

CRP, mg/l 0.65 (0.30–10.70) 1.90 (0.30–3.60) NS

Values are mean � SD, n (%) or total range.

BMI ¼ body mass index; CRP ¼ C-reactive protein; CV ¼ cardiovascular; DBP ¼ diastolic blood
pressure; HDLc ¼ high-density lipoprotein cholesterol; LDLc ¼ low-density lipoprotein choles-
terol; NS ¼ not significant; SBP ¼ systolic blood pressure; Tot chol ¼ total cholesterol; WBC ¼
white blood cells.
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(PECy7-CD14, APC-Cy7-CD16, PerCpCy5.5-HLA-DR,
APC-CD11c, APC-CD18 1:50; all BD Biosciences, San
Jose, California) for 15 min and washed with saline.
Red blood cells were lysed with BD FACSTM-lysis
solution (BD Biosciences, California). Samples were
analyzed by flow cytometry using an FACSCalibur
(Becton Dickinson, Franklin Lakes, New Jersey). For
analysis, monocytes were identified by CD14, CD16,
and HLA-DR expression (22), and the integrins CD11c
and CD18 were used as markers of adhesive capacity
(23). For the transendothelial migration assay, pri-
mary human arterial endothelial cells (Lonza, Balti-
more, MD) were cultured on an fibronectin-coated
glass cover and stimulated overnight with tumor ne-
crosis factor-a (10 ng/ml). PBMC at a concentration of
1 � 106 cells/ml were added to the human arterial
endothelial cells monolayer for 30 min at 37�C and
then fixed with 3.7% formaldehyde (Sigma-Aldrich,
Zwijndrecht, the Netherlands). After fixation, multi-
ple images were recorded with a Zeiss Axiovert 200
microscope (Plan-apochromat 10�/0.45 M27 Zeiss-
objective; Carl Zeiss, Jena, Germany) and analyzed
using ImageJ software (NIH, ImageJ.net, US; version
1.48t/March 28, 2014).

VASCULAR IMAGING, FDG-PET/CT IMAGING. FDG-
PET/CT scans were performed on a Gemini time-
of-flight multidetector PET/CT scanner (Philips,
Best, the Netherlands) as previously described (24).
In brief, subjects fasted for at least 6 h prior to infu-
sion of 200 MBq of FDG (5.5 mCi). After 90 min,
subjects underwent PET/CT imaging initiated with a
low-dose CT for attenuation correction and anatomic
co-registration. PET/CT images stripped of metadata
were analyzed by 1 blinded experienced reader (F.M.)
using OsiriX (Geneva, Switzerland). FDG uptake was
assessed in the arterial wall of the ascending aorta
and left and right carotid arteries. In each artery,
5 regions of interest (ROIs) were drawn, delineating
the arterial wall. Maximum standardized uptake
values were averaged for each artery. The target-to-
background ratio (TBR) was calculated from the
ratio of maximal arterial standardized uptake values
and mean venous background activity within the
superior caval vein (correction for aorta) and the
jugular vein (correction for carotids) (24).

Magnetic resonance images were obtained with a
3.0-T whole-body scanner (Ingenia, Philips Medical
Systems, Best, the Netherlands), using an 8-channel
carotid artery coil (Shanghai Chenguang Medical
Technologies, Shanghai, China). One blinded reader
performed image analysis using semiautomated
measurement software (VesselMass, Leiden, the
Netherlands). Mean wall thickness (MWT), mean wall
area (MWA), and the normalized wall index (NWI ¼
mean wall area/outer wall area) were calculated (25).

PBMC TRAFFICKING BY SPECT/CT. All subjects un-
derwent SPECT imaging (Symbia T16, Siemens, Erlan-
gen, Germany) with low-dose, non–contrast-enhanced
CT for attenuation correction and anatomic coregis-
tration, at 3, 4.5, and 6 h post-infusion of 200 MBq
99mTc-HMPAO labeled autologous PBMCs. SPECT/
CT images were analyzed using OsiriX (Geneva,
Switzerland) and MeVisLab (Bremen, Germany). Two
readers, who were offered datasets stripped of met-
adata on subject history and time post-infusion,
analyzed the SPECT images twice. Accumulation of
labeled PBMCs in the arterial wall was quantified
in the ascending aorta and left and right carotid ar-
teries using anatomical landmarks to ensure analysis
of the same arterial segments over time: for the ca-
rotids, 1 slice caudal to the bifurcation; for the
ascending aorta 1 slice cranial to the joining of the
pulmonary arteries. In each artery, 5 ROIs were drawn,
delineating the arterial wall. The maximum counts in
the arterial wall ROIs were averaged over each artery
to derive an averaged maximum arterial count. To
correct for the 99mTc activity in the blood, 5 venous
ROIs were drawn within the superior caval (correction
for aorta) and the jugular vein (correction for carotids)
to obtain the averaged mean counts of the blood. The
values provided in the present paper represent the
ratio of the averaged maximum counts of the artery
divided by the averaged mean counts in the blood.
These values are reported as the arterial-wall-to-
blood ratio (ABR).



TABLE 2 Baseline Vascular Imaging Parameters

Imaging Parameter
CV Patients
(n ¼ 10)

Control Subjects
(n ¼ 5) p Value

NWI 0.52 � 0.09 0.33 � 0.02 0.026

MWT, mm 1.54 � 0.54 0.64 � 0.03 0.046

MWA, mm2 40.38 � 18.15 14.32 � 1.62 0.029

TBR left carotid 1.77 � 0.27 1.34 � 0.16 0.050

TBR right carotid 2.00 � 0.26 1.51 � 0.12 0.022

TBR aorta 2.84 � 0.69 1.90 � 0.14 0.003

Values are mean � SD.

MWA ¼ mean wall area; MWT ¼ mean wall thickness; NWI ¼ normalized wall
index; TBR ¼ target-to-background ratio.
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STATISTICAL ANALYSIS. Baseline values and distri-
butional characteristics are shown as mean � SD,
number (frequency), or median (min-max). Indepen-
dent samples t test, Mann-Whitney U tests, and
chi-square tests were used to assess differences be-
tween patients and controls. To assess the differences
over time in PBMC accumulation, a paired t test or
Wilcoxon signed rank test was applied. The following
correlations were assessed using Pearson’s or Spear-
man’s correlation coefficient: 1) ABR at 4.5 and 6 h
with the TBR; 2) carotid ABR at 4.5 and 6 h with
C

D

PET/CT Images of the Carotid Artery at Baseline

-sectional magnetic resonance imaging (MRI) images of the right

ry of (A) a CV patient and (B) a healthy control are shown, zoomed in

orresponding cross-sectional fused positron emission tomography/

hy (PET/CT) images of the right common carotid (white arrow) are

scular (CV) patient (C) and healthy control (D).
carotid NWI, MWT, and MWA; and 3) ABR of the index
vessel (highest ABR of either the left/right carotid
or aorta) at 4.5 and 6 h to nonimaging parameters.
To assess interobserver variability, 2 readers ana-
lyzed the SPECT/CT images and calculated intra-
class correlation coefficients with 95% confidence
intervals. A 2-sided p value <0.05 was considered
statistically significant. All data were analyzed using
Prism version 5.0 (GraphPad software, La Jolla, Cali-
fornia) and SPSS version 19.0 (SPSS Inc., Chicago,
Illinois).

RESULTS

BASELINE CHARACTERISTICS. In total, 10 CV
patients and 5 healthy control subjects were included
(Table 1). The groups were balanced for age and
sex. Cardiovascular patients had a history of
myocardial infarction (n ¼ 5), transient ischemic
attack (n ¼ 2), or ischemic stroke (n ¼ 3). At baseline,
traditional CV risk factors did not significantly differ
between groups (Table 1). Almost all CV patients
(90%) were on stable statin therapy. Baseline labora-
tory analysis revealed no differences in lipid profiles
between CV patients and controls (Table 1). Neither
white blood cell count nor C-reactive protein differed
significantly, although CV patients did exhibit a
higher level of circulating monocytes compared to
control subjects (0.52 � 0.16 � 109/l in patients versus
0.35 � 0.06 � 109/l in controls; p ¼ 0.013).

Baseline vascular imaging confirmed that the CV
patients included in the study were characterized by
advanced atherosclerotic lesions (Table 2). First, MRIs
showed an increased atherosclerotic burden in the CV
patients compared to healthy controls: 1) MWT was
increased (1.54 � 0.54 mm vs. 0.64 � 0.03 mm;
p ¼ 0.046); 2) MWA was enlarged (40.38 � 18.15
mm2 vs. 14.32 � 1.62 mm2; p ¼ 0.029); and, in line,
3) NWI was higher (0.52 � 0.09 vs. 0.33 � 0.02;
p ¼ 0.026). Second, PET/CT imaging corroborated an
enhanced TBR of the right carotid artery in CV
patients (TBRmax 2.00 � 0.26) versus controls (TBRmax

1.51 � 0.12; p ¼ 0.022) (26). Comparable differences in
TBR in patients versus controls were observed in the
left carotid and aorta (Table 2). Figure 1 shows repre-
sentative cross-sectional MRI and PET/CT images of
the right carotid artery, illustrating a CV patient’s
atherosclerotic burden.

EFFECT OF ISOLATION AND LABELING. Prior to
evaluating the in vivo behavior of PBMCS, we first
assessed the effects of our isolation and labeling
procedures in terms of migratory and adhesive
capacity via flow cytometry and an in vitro trans-
endothelial migration assay. First, the differentiation
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FIGURE 2 PBMC Behavior After Isolation and Labeling

Flow cytometry analysis showed that labeling procedures did not significantly alter

monocyte subset division (A) and did not significantly change the expression of adhesion

markers CD11c and CD18 (B). Transendothelial migration assays corroborated that the

labeling procedure did not significantly change their migratory capability (C). Mon ¼
monocyte; PBMC ¼ peripheral blood mononuclear cell.
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of monocytes in their proinflammatory, intermediate,
and anti-inflammatory subsets (13) was not affected
by the isolation and labeling procedures (for mono-
cyte 1: 90.67% prior and 90.63% after labeling pro-
cedures; p ¼ NS) (Figure 2A). Second, the expression
of adhesion markers also did not change significantly.
Delta mean fluorescence intensity of CD11c was 316 �
2 prior to labeling versus 304 � 8 after labeling (p ¼
NS) and delta mean fluorescence intensity of CD18
was 618 � 18 prior to labeling versus 586 � 14 after
(p ¼ NS) (Figure 2B). Third, the TEM assay corrobo-
rated that the labeling procedure did not affect the
capacity of monocytes to cross the endothelial
monolayer (prior to labeling 36 � 12 vs. 25 � 3 cells/
mm2 after labeling, p ¼ NS) (Figure 2C).

IMAGING PBMC ACCUMULATION IN ATHEROSCLEROTIC

LESIONS WITH SPECT/CT. In all subjects, we per-
formed SPECT/CT imaging 3, 4.5, and 6 h post-
infusion of radiolabeled autologous PBMCS. Prior
to assessing differences between groups, interob-
server agreement for the SPECT/CT images reading
demonstrated proper intraclass correlation coeffi-
cient of 0.87 with a narrow 95% confidence interval
(0.75 to 0.96).

At the first time point (3 h post infusion), the ABR,
representing PBMC accumulation, was higher in CV
patients but not significantly so compared to controls
(ABR for aorta 3.68 � 1.23 vs. 2.93 � 1.37; p ¼ NS)
(Figure 3A). In contrast, at 4.5 h and 6 h ABR stood
significantly higher in patients compared to controls.
For the ascending aorta, the ABR at 4.5 h was 5.41 �
2.29 in patients versus 2.59 � 0.90 in controls (p ¼
0.013), increasing at 6 h to 8.19 � 4.49 in patients
versus 2.80 � 1.19 in controls (p ¼ 0.012) (Figure 3A).
Figure 4 depicts illustrative cross-sectional SPECT/CT
images of the ascending aorta at 3 anatomic levels at
4.5 h following infusion, showing an enhanced PBMC
accumulation in a CV patient versus a control subject.
Corresponding results were found when analyzing
the left and right carotid artery (Figures 3B and 3C).
Table 3 contains an overview of the PBMC accumu-
lation at the 3 time points for every artery in patients
versus controls.

From 3 to 6 h, the rate of PBMC accumulation
increased significantly in patients, whereas there was
no change in ABR over time in control subjects (change
in ABR from 3 to 6 h 4.50 � 3.63 in patients vs. –0.13 �
0.25 in controls; p ¼ 0.009) (Figure 3D). Figures 5 and 6
include representative SPECT/CT images in which the
ascending aorta was segmented out and PBMC accu-
mulation was visualized over time, showing the in-
crease in ABR from time points 3 to 4.5 h in a typical
CV patient versus no change in a control subject.
CORRELATION BETWEEN PBMC ACCUMULATION

AND DISEASE SEVERITY. In patients, the ABR
(PBMC accumulation) as measured with SPECT/CT
correlated with the TBR (arterial wall inflammation)
of the corresponding vessel assessed via PET/CT. For
the right carotid, both the ABR at 4.5 and at 6 h
correlated with the right carotid artery TBR (r ¼ 0.76,
p ¼ 0.007; and r ¼ 0.88, p ¼ 0.014, respectively).
Figure 3E shows the correlation of ABR at 4.5 h
following infusion with the TBR of the right carotid.
Moreover, the change in ABR from 3 to 6 h in the
right carotid artery also correlated with TBR (r ¼ 0.79,
p ¼ 0.011). Similar correlations were seen in the
left carotid artery and ascending aorta; however,
MRI revealed no significant correlations between ABR
and arterial wall dimensions (Table 4). Besides, no
correlation between circulating immune cells and
PBMC accumulation was observed (for circulating
monocytes: r ¼ 0.15, p ¼ NS), whereas the level
of C-reactive protein did correlate with PBMC
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right carotid artery, the arterial-wall-to-blood ratio (ABR) at 4.5 h correlated with the target-to-background ratio (TBR) assessed via PET/CT

(E). SPECT/CT ¼ single-photon emission computed tomography/computed tomography; other abbreviation as in Figure 2.

CT Scan CT ScanSPECT/CT Scan SPECT/CT Scan

Right Carotid Left Carotid Right Carotid Left Carotid

A B

FIGURE 4 SPECT/CT of the Carotid Arteries in a CV Patient and Control

Representative cross-sectional single-photon emission computed tomography/computed tomography (SPECT/CT) images at 4.5 h of the neck

region, and zoomed in for the left and right carotid artery of a cardiovascular (CV) patient (A) and a healthy control (B).
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TABLE 3 ABR and DABR in Patients and Controls

Time
Post-Infusion, h

CV Patients
(n ¼ 10)

Control Subjects
(n ¼ 5) p Value

Left carotid 3 1.44 � 0.65 1.44 � 0.24 0.981

4.5 2.18 � 1.01 1.47 � 0.23 0.050

6 2.57 � 1.21 1.50 � 0.45 0.044

DABR 1.13 � 0.72 0.07 � 0.27 0.004

Right carotid 3 1.70 � 0.41 1.45 � 0.41 0.359

4.5 2.13 � 0.35 1.49 � 0.40 0.038

6 2.69 � 0.61 1.45 � 0.43 0.003

DABR 1.00 � 0.53 0.00 � 0.05 0.001

Aorta 3 3.68 � 1.23 2.93 � 1.37 0.390

4.5 5.41 � 2.29 2.59 � 0.90 0.013

6 8.19 � 4.49 2.80 � 1.19 0.012

DABR 4.50 � 3.63 –0.13 � 0.25 0.009

Values are mean � SD.

ABR ¼ arterial-wall-to-blood ratio; CV ¼ cardiovascular.
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accumulation in the arterial wall (r ¼ 0.76, p ¼ 0.030).
The classic CV risk factors, total cholesterol and low-
density lipoprotein cholesterol, also correlated to the
change in ABR over time (r ¼ 0.72, p ¼ 0.044; r ¼ 0.77,
p ¼ 0.027, respectively).

DISCUSSION

In the present study, we demonstrate that in vivo
hybrid SPECT/CT imaging can detect PBMC accumu-
lation in the arterial wall, showing a marked increase
in PBMC accumulation in patients with atheroscle-
rotic disease with no corresponding accumulation in
control subjects. The degree of PBMC accumulation in
the arterial wall correlated to the degree of arterial
wall inflammation as assessed with PET/CT. More-
over, PBMC accumulation correlated with the estab-
lished CV risk factors low-density lipoprotein
cholesterol and C-reactive protein. These preliminary
data lend further support to strategies aimed at
attenuating leukocyte recruitment as a therapeutic
target in CV patients.

LEUKOCYTE RECRUITMENT AND ACCUMULATION.

Dissecting how leukocytes participate in atherogen-
esis is challenging due to their dynamics and func-
tional heterogeneity (4). In the present study, we
observed marked and rapid PBMC accumulation
A CV Patient

SPECT/CT PET/CT

FIGURE 5 SPECT/CT and PET/CT Images of the Ascending Aorta

Representative cross-sectional SPECT/CT at 4.5 h and PET/CT images of t

(B) are shown, indicating the significant differences in both PBMC accum

patient and the control subject, and the correlation between ABR and T
in atherosclerotic lesions in humans. Support for
this finding comes from several experimental models
demonstrating active monocyte accumulation in
the course of atherogenesis (27,28), which was pro-
portional to the atherosclerotic burden (29). Notwith-
standing the presence of active leukocyte recruitment
in atherogenesis (30), the biological fate of extrava-
sated leukocytes remains less defined (31). In early le-
sions, leukocytes infiltrate the arterial wall, giving rise
B Healthy Control

SPECT/CTPET/CT

Caudal
Cranial

he ascending aorta at 2 levels of a CV patient (A) and a healthy control

ulation (ABR) as arterial wall inflammation (TBR) between the CV

BR. Abbreviations as in Figures 1, 2, and 4.
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FIGURE 6 PBMC Accumulation Over Time Via SPECT/CT

Single-photon emission computed tomography/computed tomography (SPECT/CT) im-

ages, in which the ascending aorta was segmented out (shown in red) to visualize the

significant increase in peripheral blood mononuclear cell (PBMC) accumulation from 3 to

4.5 and 6 h post-infusion in the cardiovascular (CV) patient (A) versus no increase in the

control subject (B).

TABLE 4 Correlation

P

PET/CT

TBR left carotid

TBR right carotid

TBR aorta

MRI

NWI

MWT

MWA

ABR ¼ arterial-wall-to-b
tomography/computed tom
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to the initial pool of tissue descendants including
macrophages and T cells (32). In advanced lesions,
research suggests the contribution of freshly infil-
trated monocytes to the macrophage content to be less
significant (33), following the observation that local
proliferationmay in fact be themajor source of lesional
macrophages in experimental atherosclerosis (34). The
latter, however, does not indemnify the importance of
leukocyte recruitment in advanced atherosclerosis
(35). Integrating the data suggests that in early lesions,
Between ABR and Read-Out Parameters of PET/CT and MRI

ABR 4.5-h
ost-Infusion p Value

ABR 6-h
Post-Infusion p Value

DABR 3–6-h
Post-Infusion p Value

0.67 0.049 0.69 0.042 0.78 0.012

0.76 0.007 0.881 <0.001 0.79 0.011

0.72 0.028 0.52 0.150 0.53 0.142

0.70 0.125 0.74 0.09 0.52 0.292

0.67 0.145 0.72 0.107 0.51 0.303

0.68 0.140 0.72 0.106 0.51 0.299

lood ratio; MRI ¼ magnetic resonance imaging; PET/CT ¼ positron emission
ography; other abbreviations as in Table 2.
freshly recruited cells contribute to the subintimal in-
flammatory cell burden, whereas in more advanced
lesions continuous leukocyte influx propagates
inflammation, eventually promoting plaque vulnera-
bility (5,36) and risk of a (recurrent) CV event (37). In
fact, circulating leukocytes of CV patients already
exhibit a distinct functional phenotype, which is pro-
portional to the CV event rate (12,13) and potentially
mediated via alterations of the epigenome (14,16).

CORRELATIONS WITH PBMC ACCUMULATION. We
observed several correlations between CV risk factors
and PBMC accumulation. First, PBMC accumulation
correlated with FDG uptake assessed with PET/CT. In
turn, arterial wall FDG uptake has been correlated to
plaque macrophage content (24,38) and risk of a
recurrent CV event (37). Second, PBMC accumulation
also correlated to the level of plasma C-reactive pro-
tein, a marker of systemic inflammation also indica-
tive of CV risk (39).

Another correlation was observed between PBMC
accumulation and low-density lipoprotein choles-
terol, which may have several explanations. Patients
with higher low-density lipoprotein cholesterol may
have a higher atherosclerotic disease burden and
hence higher PBMC influx. However, we did not
observe a correlation between PBMC accumulation
and arterial wall dimensions assessed with MRI.
Alternatively, higher levels of circulating low-density
lipoprotein cholesterol may lead to the activation of
leukocytes and increased arterial wall PBMC influx. In
support, monocytes in hyperlipidemic conditions
have an increased expression of adhesion makers (40)
and are more avidly recruited to the atherosclerotic
lesion (28,29). Overall, the data imply that increased
PBMC recruitment is involved in disease progression
in patients with advanced atherosclerotic lesions.

LIMITATIONS OF SPECT/CT. The present approach of
PBMC imaging with SPECT/CT merits some consid-
erations. A confounding variable in our findings is the
potential for in vitro PBMC activation by the labeling
procedures. However, flow cytometry and trans-
endothelial migration assays did not show PBMC
activation related to adhesive capacity of the labeling
procedures. Moreover, the infusion of labeled PBMC
was also not associated with an increased ABR in
healthy controls. Additionally, the current technique
could be refined by applying more sophisticated
isolation procedures allowing future investigations to
specifically study subpopulations of leukocytes.
Extensive ex vivo procedures, however, could change
the in vivo behavior of the leukocytes prior to
re-infusion. Our current approach lacks the ability
to quantify leukokinetics in terms of continuous



CENTRAL ILLUSTRATION Imaging of Leukocyte Accumulation in Atherosclerosis

Reinfusion of autologous, labeled leukocytes was applied to assess leukocyte accumulation in the arterial wall using serial single-photon

emission computed tomography/computed tomography imaging in humans. Accumulation was found to be markedly enhanced in patients with

advanced atherosclerotic lesions. PBMC ¼ peripheral blood mononuclear cell.
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recruitment, influx, differentiation and efflux, or
apoptosis. If recruited cells rapidly undergo apoptosis,
this may lead to radiotracer loss and underestimation
of the SPECT signal. Finally, we performed 3 SPECT
scans and a low-dose CT for attenuation correction and
co-registration. Increasing the CT dose or infusing a
contrast agent could provide greater anatomic and
radiotracer signal detail, but with a higher radiation
burden. Moreover, we used 99mTc as a radiotracer,
which has a half-life of 6 h, thereby allowing rapid data
collection and limiting radiation exposure. Applying a
radiotracer with a longer half-life, such as 111Indium
(half-life 2.8 days) for SPECT or a positron emitter
like 89Zirconium (half-life 3.3 days) for PET, would
enable investigators to study leukocyte trafficking
for longer periods of time. However, this would
expose the patient to greater radiation doses.

CLINICAL IMPLICATIONS. In an attempt to silence
plaque’s inflammatory activity, therapeutic inter-
ventions targeting leukocytes could act at multiple
levels; for instance, modulation of circulating leuko-
cytes, reduction of adhesion, and changes in differ-
entiation or emigration of leukocytes. Regarding
recruitment and adhesion, alterations in the expres-
sion of the adhesion molecules (41), chemotactic fac-
tors (6–9) or combined inhibition strategies (42) all
favorably affect plaque size and progression in exper-
imental models. To date, however, interventions in
these pathways in patients have not shown a clinical
benefit (43,44). Our current observation of rapid PBMC
accumulation in patients with advanced atheroscle-
rosis (Central Illustration) lends further support to the
targeting of leukocytes as a promising strategy against
atherogenesis (45). Our presented approach of in vivo
leukocyte trafficking with SPECT/CT imaging could be
applied to study mechanistic hypotheses in humans,
as well as provide early insights in the efficacy of
interventions targeting leukocytes in CV patients.

CONCLUSIONS

We present an imaging approach to visualize leuko-
cyte migration to atherosclerosis in humans and
demonstrate an increased PBMC accumulation in
patients with advanced atherosclerosis. Current data
support efforts to develop intervention strategies
targeting leukocytes to modulate the inflammatory
processes in atherosclerosis.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Athero-

sclerosis is an inflammatory disease in which leukocytes

are key cellular effectors. In addition to their involvement

in early lesions, circulating leukocytes accumulate abun-

dantly in advanced human atherosclerotic lesions.

TRANSLATIONAL OUTLOOK: As interventions that

target leukocyte accumulation in atherosclerotic lesions

undergo further investigation as a potential means of

preventing ischemic events, SPECT/CT imaging may be a

useful surrogate for efficacy.
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