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1. Introduction

To study the influence of deviations from normality the class of elliptical
distributions, which introduces a single kurtosis parameter }, is often
considered in statistical theory [2] to provide a wider model than the
multivariate normal in multivariate analysis. In this paper an expression for
the moment generating function (m.g.f.) of the distribution of the sampling
covariance matrix for a subclass of elliptical distributions is first derived
and is then generalized to include distributions containing two kurtosis
parameters.

A subclass of elliptical distributions, Em(0, P; }), was introduced by the
present author [4] by considering the following convergent series as
cumulant generating function (c.g.f.),

K(t)= 1
2(t$Pt)+ 1

2 }[ 1
2 (t$Pt)]2+ :

r>2

Ar(t$Pt)r, (1a)

with probability density function (p.d.f.),

em(x; 0; P, })=nm(x; 0, P)[1+ 1
8 }Hm

2 (Q)�1!

+terms of higher order in the polynomial Q], (1b)

where the matrix P=Pm_m=(\ij) is the population correlation matrix, t is
an m V 1 generating vector, A3 , A4 , ..., are constants, } is a kurtosis
parameter, while nm(x; 0, P) is the standardized m-dimensional normal
with quadratic form Q=x$P&1x. The definition of the polynomials H m

r (Q)
are given in [4]. In particular, Hm

2 (Q)=Q2&2(m+2) Q+m(m+2). The
subclass of elliptical distributions as defined by (1) contains quite a number
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of well-known members of the elliptical class, such as the multivariate
normal, the contaminated multivariate normal and the multivariate
t-distribution. An extension of Em(0, P; }) to cases containing more than
one kurtosis parameter is given in [4]. The m.g.f. as defined in (1a) will be
used as starting point to derive the properties of the required sampling
distributions of the covariance matrix for the case of one and two kurtosis
parameters. An m.g.f. approach will be used in this paper. An alternative
method for dealing with the case of one kurtosis parameter is given in a
paper by Sutradhar and Ali [6].

2. The Distribution of the Covariance Matrix for

One Kurtosis Parameter

To derive the m.g.f. of the covariance matrix for a random sample from
the m-dimensional population with c.g.f. (1a), the procedure is as follows:

(i) The m.g.f. of the joint distribution of xixj , i�j, i=1, 2, ..., m;
j=1, 2, ..., m, is derived by first introducing a differential operator in terms
of generating variables tij associated with xixj respectively and which
operates on the relevant m.g.f. for the multinormal case.

(ii) The m.g.f. of the joint distribution of the second order moments
about the origin is obtained from (i) by using straightforward probability
theory and matrix differentiation.

(iii) The m.g.f. of the joint distribution of the elements of the
covariance matrix is obtained by applying an orthogonal transformation to
the distribution derived in (ii).

Starting with the case where X is multivariate normal with p.d.f.
nm(x; 0, P), the m.g.f. of the joint distribution of the squares and the
products xixj , i�j, i, j=1, 2, ..., m, is given by

M1(t)=|
�

&�
} } } |

�

&� {exp \ :
m

i�j=1

tijxi xj+= C exp[&1
2Q] `

m

i=1

dxi , (2)

where t=(t11 , t12 , ..., tmm)$, C=(2?)(1�2)m |P|&1�2 and Q=x$P&1x=|P|&1

_[�m
i=1 |Pii | xi

2+2 �i<j |Pij | xi xj]. Differentiating (2) with respect to tij

using

Dm : P for the operator |P|&1 { :
m

i=1

|Pii |
�

�tii
+2 :

i<j

|Pij |
�

�tij= , (3)
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it follows immediately that

[Dm : P]s M1(t)=|
�

&�
} } } |

�

&� {exp \ :
m

i�j=1

tij xi xj+= Qsnm(x; 0, P) `
m

i=1

dxi .

(4)

Applying the result in (4), the m.g.f. of the joint distribution of the squares
x2

i and the products xixj where i and j take the values as indicated above,
corresponding to the p.d.f. (1b) is given by

M2(t)=|
�

&�
} } } |

�

&� {exp \ :
m

i� j=1

tijxi xj+= nm(x; 0, P)[1+ 1
8}Hm

2 (S)�1!

+higher order terms in Q] `
m

i=1

dxi=[1+ 1
8}Hm

2 (Dm : P)

+terms of higher order in the operator Dm : P] M1(t). (5)

It is, however, well known (see [1, p. 160; 3, p. 89]) that

M1(t)=|P&1|1�2 |P&1&T*|&1�2,

where the matrix

T*=[(1+$ij)], tij=tji , $ij=1, i=j

=0, i{j. (6)

Thus, using (5) and (6), the m.g.f. of the joint distribution of xi xj , i�j,
can be obtained by applying the operator Dm : P on the m.g.f. M1(t).
Considering n independent vectors X=(X1s , X2s , ..., Xms)$, s=1, 2, ..., n
each with p.d.f. em(x; 0, P, }) as in (1b), the m.g.f. of the sums of squares
�n

s=1 x2
is , i=1, 2, ..., m, and the products �n

s=1 xisxjs , i�j, is given by
[M2(t)]n, so that the m.g.f. of the second-order moments about the mean,
+=0, is given by

M3(t)=__M2 \ t
n+&&

n

=__{1+
1
8

}Hm
2 (nDm : P)+ } } } = M1 \ t

n+&&
n

, (7)

where by (3)

Hm
2 (nDm : P)=m(m+2)&2(m+2)(nDm : P)+(nDm : P )2

and

M1 \ t
n+=|P&1|1�2 }P&1&

1
n

T* }
&1�2

.
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Writing now Z*=P&1&(1�n) T*, it follows on differentiation [1, p. 347]
that

�
�tii

|Z*| &1�2=
1
n

|Z*|&1�2 |Z*ii | |Z*|&1;
(8)

�
�tij

|Z*| &1�2=
1
n

|Z*|&1�2 |Z*ij | |Z*|&1,

where |Z*ij | is the cofactor of the element of the i th row and j-column in
|Z*|. Also

�2

�tij �tkl
|Z*| &1�2=

3
n2 |Z*| &1�2 |Z*ij | |Z*kl | |Z*|&2

&
1
n2 |Z*|&1�2 ( |Z*kl, ij |+|Z*kl, ji | ) |Z*|&1, (9)

where |Z*kl, ij | is the cofactor in |Z*kl | of the element in i th row and j th
column of |Z*|.

It is clear from Eqs. (8) and (9) that the operator ���tij �tkl leads to a
factor |Z*ij | |Z*kl | in the first term of the r.h.s. of (9) and to a factor
( |Z*kl, ij |+|Z*kl, ji | ) in the second term. To write down the final form for
M3(t) it is convenient at this stage to change the notation used in (2),
where i<j. This notation gave rise to the factor 2 appearing in the second
term of (3) and will have a further accumulating effect on the second-order
operators. Using the subscripts p, q, r, s, all of which can take on the values
1, 2, 3, ..., m, it now follows from (8) and (9), using (3), that

M3(t)=|P&1| (1�2) n |Z*|&(1�2) n _1+ 1
8 }m(m+2)

&1
4}(m+2)|P|&1 |Z*|&1 :

m

p, q=1

|Ppq | |Z*pq |

+1
8} |P&2| |Z*|&1 :

m

p, q=1

:
m

r, s=1

|Ppq | |Prs |

_[3 |Z*pq | |Z*rs | |Z*|&1&(|Z*pq, rs |+|Z*pq, sr | )]+ } } } &
n

, (10)

where |Ppq |=|Pqp | , |Prs |=|Psr |, |Z*pq |=|Z*qp |, |Z*rs |=|Z*sr | , Z*=
P&1&(1�n) T*.

The first factor in (10), that is, |P&1| (1�2) n |P&1&(1�n) T*|&(1�2) n=
|Im&(1�n) T*P| &(1�2) n, is the well-known m.g.f. for the Wishart

99ELLIPTICAL DISTRIBUTIONS



File: 683J 160905 . By:CV . Date:01:08:96 . Time:11:51 LOP8M. V8.0. Page 01:01
Codes: 2632 Signs: 1759 . Length: 45 pic 0 pts, 190 mm

Wm(n, (1�n) P) distribution. It is clear that (10) reduces to this distribution
when }=0.

To proceed from the m.g.f. of the second-order moments about the mean
to the m.g.f. of the elements of the covariance matrix it is observed that the
p.d.f. of Em(0, P; }) is a function only of the quadratic form Q=x$P&1x.
It follows, therefore, that the well-known procedure of orthogonal trans-
formations (see, e.g., [3, p. 70]) is also applicable to this case. Thus, the
m.g.f. M3( ) in (10) is the m.g.f. of the elements of the covariance matrix,
S=(sij), with the parameters n now defined as N&1, where N is the sample
size and where

sij=
1
n

:
N

r=1

(xir&x� i)(xjr&x� j).

The influence on (10), if terms of third and higher degrees in (t$Pt) were
specified in the expressions (1a) and (1b), will be that (7) will include
specific terms of higher order than the second in the differential operators.
This will give rise to terms containing cofactors of the form |Z*pq, rs, tu | and
lower order. However, the final form corresponding to (10) will contain the
m.g.f. of the same Wishart distribution as first factor. It will be shown
below that these terms have no influence on the standard errors of the
elements of the covariance matrix.

The marginal distribution of any square submatrix Sl of S located on the
diagonal of S follows from (10) but with m replaced by l the rank of Sl .
This is seen by substituting tij=0 for i, j>l. Taking, for example, l=2, the
m.g.f. associated with the elements s11 , s12 , and s22 follows from (10) as

M3(t11 , t12 , t22)=[A(t)]&(1�2) n {1+}&2}[A(t)]&1

__1&
1
n

(t11+\12 t12+t22)&
+

3
2

}[A(t)]&2 _1&
2
n

(t11+\12 t12+t22)

+
1
n2 (t2

11+\2
12 t2

12+t2
22+2t11t22+\12 t11t12+\12 t12 t22)&

&
1
2

}[A(t)]&1+ } } } =n, (11)

where A(t)=1&(2�n)(t11+\12 t12+t22)+(1�n2)(1&\2
12)(4t11 t22&t2

12).
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Hence, E ( s11 )=1 and var( s11 ) = ( 1�n )( 2+3} ), so that for an un-
standardized population with variance _11 (=_2

1) follows that var(s11)=
(1�n)(2+3}) _2

11 . Var(s22) follows from var(s11) by symmetry. The m.g.f.
for the marginal distribution of s12 follows from (11) for t11=t22=0.
Hence, E(s12)=\12 and var(s12)=[1+\2

12+}(1+2\2
12]�n, so that for the

unstandardized case, var(s12)=_11_22[1+\2
12+}(1+2\2

12)]�n. Similarly,
putting t22=0 in (11) to obtain the m.g.f. of the marginal distribution of
(t11 , t12) it follows from the coefficient of t11 t12 that cov(s11 , s12)=
(1�n)(2\12+3}\12) _3

1_2
2 for the unstandardized case. Further, for t12=0

in (11), it follows for the unstandardized case that, cov(s11 , s22)=
(1�n)(2\2

12+}(1+2\2
12)] _11_22 .

Rewriting the well-known expressions given in [3, pp. 41�42], for the
variances and covariances of the asymptotic distribution of the covariance
matrix under a multivariate elliptical model as

cov(sij , skl)=
1
n

(_ik_jl+_il_jk)+
}
n

(_ij_kl+_ik _jl+_il_jk), (12)

where, as usual, _ii=_2
i , _ij=\ij_i_j , i{j, it is clear that the exact

expressions for var(s11), var(s22), var(s12), and cov(s11 , s12) as derived from
(11) for the subclass defined in (1), is the same as asymptotic expression
(12). Clearly, it can be seen from the symmetrical property of (10) that (12)
also gives the exact expressions for all elements of the covariance matrix.

3. The Distribution of the Covariance Matrix

for Two Kurtosis Parameters

Dividing the random vector X$=(X1 , X2 , ..., Xm) into vectors X(1)=
(X1 , X2 , ..., Xh)$ and X(2)=(Xh+1 , ..., Xm)$ with a corresponding division of
the generating variable t and of the matrix P, and writing the m.g.f. of the
multivariate normal in the form given in [4], Eq. (23), the c.g.f. for the
case of two kurtosis parameters follows as

K(t)= 1
2 (t(1)+P&1

11 P12 t (2))$ P11(t(1)+P&1
11 P12 t(2))

+1
2}1[ 1

2(t (1)+P&1
11 P12 t (2))$ P11(t

(1)+P&1
11 P12 t (2))]2

+1
2 (t(2)$P22.1 t(2))+ 1

2}2[
1
2 (t(2)$P22.1 t(2))]2

+terms higher than fourth degree in t1 , t2 , ..., tm . (13)

where P22.1=P22&P21P&1
11 P12 . The associated quadratic forms are

Q1=X(1)$P&1
11 X(1), Q2=Y(2)$P&1

22.1 Y(2)

with Y(2)=X(2)&E(X(2) | X(1)=x(1)).
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It is easily seen that the form of the c.g.f. (13) is such that m.g.f.'s of the
distributions of submatrices or related conditional matrices of the sampling
covariance matrix can be written down by using (10). For this purpose it
is necessary to divide the sampling covariance matrix S into submatrices,

S=_S11 S12

S12 S22& and to define S22.1=S22&S21S&1
11 S12 .

The relevant m.g.f.'s, as well as some properties, are

(a) Since the marginal distribution of X(1) (obtained when t(2)=0 is
eh(x (1); 0 } P11 , }1), the m.g.f. of the marginal distribution of the sampling
covariance matrix S11 associated with the vector X(1) is given by (10),
where m is replaced by h, } by }1 , and P by P11 . This means that the exact
variances and covariances of the elements of S11 (the sampling covariance
matrix corresponding to P11) can be written down by using (12).

(b) The distribution of the conditional sampling covariance S22.1

corresponding to the matrix P22.1 and associated with the conditional
vector Y(2) is distributed independently of S11 . The m.g.f. of S22.1 follows
directly from (10) by substituting P22.1 for P, m&h for m and }2 for } and
changing the relevant cofactors appearing in (10) accordingly.

(c) For the case of two kurtosis parameters an expression similar to
m.g.f. (5) can be written down for the m.g.f. of the distribution of the
elements of the matrix [xi xj] of squares and products. This m.g.f. will be
denoted by M(t; }1 , }2) and is given by

M(t; }1 , }2)=|
�

&�
} } } |

�

&� {exp \ :
m

i�j=1

tijxixj+= nh(x(1); 0, P11)

_[1+ 1
8}1 Hs

2(Q1)�1!+terms of higher order]

nm&h(y(2); 0, P22.1)[1+ 1
8 }2Hm&h

2 (Q2)�1!

+terms of higher order] `
m

1

dxi . (14)

To introduce the method consider the three-dimensional case when
m=3 in (14) and where the random variables X1 , X2 , and X3 are divided
as (X1 , X2) and X3 , so that P=(\ij), i=1, 2, 3; j=1, 2, 3;

P11=(\rs), r=1, 2; s=1, 2; \pq=1 if p=q,

P22.1=1&_\12

\13&\12\23

1&\2
12

+\23

\23&\12\13

1&\2
12 & . (15)
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Further, substitute t33=0, so that (14) reduces to

|
�

&�
|

�

&� \[exp(t11x2
1+t12x1x2+t22x2

2)] e2(x1 , x2 ; 0, P11 , }1)

_{|
�

&�
exp {t13 _x1 \x3+

\13&\12\23

1&\2
12

x1+
\23&\12\13

1&\2
12

x2 +
&

\13&\12\23

1&\2
12

x2
1&

\23&\12\13

1&\2
12

x1x2 &=
_exp {t23_x2 \x3+

\23&\12\13

1&\2
12

x2+
\13&\12 \23

1&\2
12

x1+
&

\13&\12\23

1&\2
12

x1x2&
\23&\12\13

1&\2
12

x2
2 &=

_e1( y3 ; P22.1 , }2) dx3=+ dx1 dx2 , (16)

where

Y3=X3&E(X3 | X1=x1 , X2=x2)

=X3+
\23&\12\13

1&\2
12

x2+
\13&\12\23

1&\2
12

x1 .

Noting that (16) consists of a marginal factor and a conditional factor, it
becomes clear that the function inside the large curly brackets is the m.g.f.
of the joint conditional distribution of x1 x3 and x2x3 given x2

1 , x1 x2 , and
x2

2 . The following deductions are obvious:

(i) Putting t23=0, it is seen that the conditional distribution of x1x3 ,
given x2

1 , x1x2 , and x2
2 , is univariate elliptical with mean and variance

respectively equal to

\23&\12 \13

1&\2
12

x1 x2+
\13&\12\23

1&\2
12

x2
1 ,

P22.1 x2
1={1&_\13

\13&\12\23

1&\2
12

+\23

\23&\12\13

1&\2
12 &= x2

1 . (17)

Writing X3c for the conditional X3 , similar expressions for the mean and
the variance follow for the conditional distribution of x2x3c by interchanging
the subscripts ``1'' and ``2.'' It follows from (16) that the conditional
product moments of x2

1 , x1 x2 , x2
2 with x1x3c and with x2x3c are zero. The

103ELLIPTICAL DISTRIBUTIONS



File: 683J 160909 . By:CV . Date:01:08:96 . Time:11:51 LOP8M. V8.0. Page 01:01
Codes: 2905 Signs: 1938 . Length: 45 pic 0 pts, 190 mm

conditional product moment of x1y3 and x2y3 follows by integrating the
coefficient of t13 t23 in (16) and is given by

P22.1x1x2={1&_\12

\13&\12\23

1&\2
12

+\23

\23&\12\13

1&\2
12 &= x1x2 . (18)

It is clear from (16), (17), and (18) that if A=(xij), i=1, 2, 3; j=1, 2, 3;
where the rows and columns of A11 correspond to the rows and columns
of P11 , then the joint distribution of x1x3c and x2x3c , given A11 , is elliptical,
E(P21P&1

11 A11 , P22.1 �A11 , }2).

(ii) Considering now the case of n independent sets of three variables
each leading to a m.g.f. (14), it follows from the m.g.f. of the sums of
squares and sums of products (after division by n), that the c.g.f. of the
conditional distribution of

1
n

:
n

i=1

x1i x3i ,
1
n

:
n

i=1

x2i x3i ,

given

1
n

:
n

i=1

x2
1i

,
1
n

:
n

i=1

x1ix2i ,
1
n

:
n

i=1

x2
2i ,

is the sum of the c.g.f.'s of elliptical distributions with mean and variance
given by (17) and (18). Thus the factors x2

1 , x1 x2 , and x2
2 in (17) and (18)

are replaced by the relevant mean products. The definition of the matrix A
can thus be changed by replacing the elements xi xj with (1�n) �n

r=1 xir xjr .

(iii) In the above consideration the moments about the population
mean were used. However, the same reasoning as in the case of one
kurtosis parameter holds also in the present situation. This shows that for
moments about the sample means the parameter n should be equal to
N&1, where N is the number of independent observations. Using now the
notations S, S11 , and S22.1 , as previously introduced, it follows from

S22.1 #s33c=x33&
s22s2

13+s11 s2
23&2s12s13s23

(s11 s22&s2
12)

,

that setting t33=0 in (16) did not remove the influence of s33 on relevant
elements of the covariance matrix.

(iv) Return now to expression (14) for the general case, while noting
that the conditional distribution S22.1 was already dealt with under (b)
above, it follows that the values of all the generating variables tij associated
with the elements in the rows and columns corresponding to S22 can be
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taken as zero. The procedure similar to the transition from (16) to (17) and
(18)) becomes only a question of repeating the algebra in matrix notation
when separating the marginal factor corresponding to S11 from the
conditional factor corresponding to S21 . Thus using the result in (i) of this
section, it follows by replacing A11 by S11 that the general result can be
stated as:

The conditional distribution of S21 given S11 is E(P21P&1
11 S11 , P22.1 �S11 , }2).

In this form the present result may be compared with the known result in
multinormal theory given by Muirhead [3, p. 93].

4. An Application

As an application consider the following moments and correlation
matrix, together with the conditional sampling correlations obtained from
multitrait�multimethod data with respect to 50 persons measured for two
traits (T ) by two different methods (M) The four variables are
X1 : (T1M1), X2 : (T2M1), X3: (T1M2), X4(T2M2). The distribution of
the conditional sampling matrix S22.1 given in (b) of Section 3, as well as
the relations in (12), are taken as basis for discussion.

Cond.
Moments Mean Var. Skew. Kur: #2 Correlation: X1 X2 X3 X4 correlation:

X1 11.28 11.10 &0.04 &0.17 1.00 0.65 0.60 0.60 r12.34=0.315
X2 10.20 9.06 0.13 &0.38 0.65 1.00 0.72 0.73 r34.12=0.373
X3 15.62 64.36 &0.31 &1.60 0.60 0.72 1.00 0.72
X4 13.92 61.50 0.08 &1.53 0.60 0.73 0.72 1.00

The relevant questions concern the degree to which the interdependence
between traits (methods) can be attributed to method (trait). Although the
underlying model to be discussed contains two kurtosis parameters, the
conditional sampling matrix S22.1 depends on only one kurtosis parameter,
so that using results in Muirhead [3, Chap. 5], the correlation structure
can be treated in stead of the covariance structure.

Estimates of the two kurtosis parameters in (13) follow from equating
the calculated marginal kurtosis parameters #2 �3 to the expected kurtosis
parameters of the marginal distributions of X1 , X2 , X3 , X4 by using the
relations similar to those given in [4, p. 9, Eq. (20]. The four expected
kurtosis parameters (one-third of the relevant #2) follows directly from
the relevant four coefficients of t4

1 �8, t4
2 �8, t4

3 �8, and t4
4 �8 in (13) in terms of

the two parameters }1 and }2 and the population correlations. Substituting
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the calculated marginal kurtosis as well as the correlations as given in the
above table, four linear moment equations in two population parameters }1

and }2 can be written down. A solution to the estimation problem in a
similar case by combining the method of moments and of weighted least
squares, was discussed in detail by the present author in [5]. However, in
the present case, where the expected values of the coefficients of t4

1 �8 and
t4

2 �8 are both equal to }1 an estimate }̂1=&(0.17+0.38)�6= &0.092
seems feasible. Using this estimate of }1 in the two equations obtained from
the coefficients of t4

3 �8 and t4
4 �8, two slightly different estimates &0.628 and

&0.606 for }2 follow, giving an average estimate }̂2= &0.617. Amongst
others, the conditional correlation between X3 and X4 , that is, r=r34.12

can now be transformed [3, p. 159] to z= 1
2 log [(1+r)�(1&r)] and

considered as normal variate with variance 1�(n&2)+}2 �(n+2), where
n+1 is the sample size. Applying this result it follows that the value
r34.12=0.373 in the above table is significant. A similar result is obtained on
considering the correlation between X1 and X2 , conditional on X3 and X4.
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