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Abstract

The quark—gluon mixed condensatg o, Fi,.vq) is calculated in the Gaussian approximation of the field correlator method.
In the largeN, limit and for zero mass quarks one obtains a simple rem@t;_ glgou Fuvg)/laq) = % whereo is the
string tension. For a standard valae= 0.18 Ge\? one obtainsm% =1 Ge\ in good agreement with the QCD sum rules

estimaten? = (0.8+ 0.2) GeV? and the latest lattice resuit3 = 1 Ge\2.
0 2004 Published by Elsevier B.®pen access under CC BY license.

1. Introduction As will be seen below the resulting nonperturbative
dependence o;hg onm is very weak in agreement

The mixed quark—gluon condensate (QGC) is an with lattice data. Lattice studies of QG[3-5] have

important characteristics of the nonperturbative QCD NOt Yét converged to a definite prediction. A problem
vacuum, which together with the quark condensate there is the extrapolat.lon to zero quark mass _and the
(qq) signals the chiral symmetry breaking. Moreover, quencheq approximation. In Re{ﬂ]_ the. simulations
the QGC measures the average interaction of the quark'€ done in the quenched approximation, the conden-
color-magnetic moment with the vacuum fields, which  S&t€ 1S meazsgred by use of staggered quarks, and the
is an importantingredient of the quark dynamics in the €Sult formg is definitely larger than the sum-rules
vacuum (e.g., it is this term which gives attraction of Value- Ref.[5] uses an optimized versig6] of do-
in quark zero modes). main wall fermions, which are better in principle for
In the QCD sum rules the QGC plays an important the ph|ral Im_nt, ?galn in the qugnched apprpX|mat|0n.
e 1] nd e prenomenolicl anaiss suggess [ 16U 97 =1 eV which agroesuih 00D
the value ofm3 in the_rangeng = (0.84+0.2) Ge\? by a different nomerturbative method
[1], see[2] for a review. One should stress at this y P '

point that for a nonzero quark maasthe (diverging) In the framework of the _field correlator method
perturbative part should be subtracted. (FCM) [7] the color-magnetic quark-gluon interac-
tion term go,, F,, enters essentially in the Fock—

Feynman—Schwinger representation (FFSR) of the
E-mail address; simonov@itep.ru (Yu.A. Simonov). quark propagator in the vacuum background f{&d
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In particular the quadratic average of this term de-

fines the hyperfingg interaction where the nonper-
turbative part is proportional to the field correlator
(Fuv(x)Fp(0)) measured on the latticf®]. Even
more important the terrgo,,, F,,, is in the contribu-
tion to the bound quark self-enerfy0], where it is of
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the pointx,
N 4 4
d*Az(n)\ d%k
(D2ey =M l_[< (@re)? ><2n>4

w Ko Azlm) ==y,

paramagnetic character, i.e., negative and strongly de-while @, (x, y) is the phase factor (parallel transporter)
creases the masses of hadrons, putting them in accorg|ong the path, (t) @,(x,y) = Pa exngf A, dz,,

dance with experimental daftil1]. Explicit correction
to the bound quark mass square{ilig]
2 40

q

Amy=——r,
T

1)

where n = n(mTy) is a calculable function of the
quark current massn, renormalized at the scale
of 1 GeV. The functionn is given in [10] and in
Appendix A and for zero quark mass is normalized
to one:n(0) = 1. We calculate in the next section the
QGC, or rather the parame’rm% in the same way, as
it was done if{10] for Am with the result

160

= aam2=1%, ©)
T

Foro = 0.18 Ge\? one obtainsn3 = 1 GeV? which
is in agreement with the lattice dg#a], and with the
QCD sum rules estimate quoted above.

2. Calculation of m3

We proceed in the Euclehn space—time and write

(q80uv Fuvqlg,a = tr<g(7/w F;w(x)sq (x, x)>A

=tr<Sq(x7 x)gU/wF;w(x))v €)
whereS, (x, y) is the Euclidean quark propagator, for
which one can write using the FFSR

-1

Sq(x, y) = (m + D)1y = (m — D) (m® — D?)

X,y
o
= (m — b)xfds Dz ye K@ (x, y)Pr
0
x exp/k(z(t)) dt (4)
0

In (4) the following notations are used& = m?2s +
2 lo22dr, Dy =8, — igAu. (D2)yy is the path-
mtegral measure for paths startingyatind ending at

with P4, Pr—the ordering operators of the matrlces
A, (z) andA(z), wherei(z) is defined to b

YoVu)-
(5)

For what follows it will be advantageous to take()
AMz(1)) = g(v)ouw Fuv(z(7)), since the functional
derivative ;2= att — 0 or r — s inside the FFSR
(4) brings dgown additional factox(y) or A(x). When
one hasy = x, as in(3), then both contributions add,

1
Mz) = go;wF;w(Z)’ Oy = 4_i(y;t7/v -

which formally is obtained by putting(0) = g(s). In
this way one can rewrit€3) as follows
(7)1 (0)) =tr ((x) Sy (x, )
1)
=2tr 5 (0)(Sq(x x)). (6)

As the next step one can write the averagg(x, x))
in the form of cluster expansidi]

(Sq(x’ x))

=(m —ip) / dse X (Dz)xx
0

1
Xexp{—E/dv)\p/dvm (gF;\ngm,)}, @)

where only the contribution of the lowest cumulant
(FF) is retained in accomhce with estimatefl?],
and the non-Abelian Stokes theorem is used to ex-
pressA,, throughF,,,, with the notation

dv;\p = dS)Lp — iUAp d‘L’,

gFpdvip = gFop(u)ds;p(u) —ig(t)on, Fip (Z(f))
(8)

1 The definition ofoy,y in (5) (as well as i{7,8]) differs from the
standard definition in QCD sum rules, where entprimstead of2
in (5). Therefore one obtains additional factor 2 in the definition
of m3 in (17).
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and ds;, is the element of the area of the surface
enclosed by the contou, (1), z,(0) = z,(s) = xy.
Performing differentiation if§6) one gets

o
(é)nq) = ZgZO;LVO)»p f ds (Dz)xxe_K(m _ lﬁ)

0
s

x /dr(FM,(u(r))FW(x))

0

2
x exp{—%/dmp/dvm (FMF(,V)}.

)
Using the identitie$3]

(D2)xx = (D2)xu d*u (D2)ux,

S (o) (o)

/ds/drf(s,r):fdsfdrf(s+r,r), (10)

0 0 0 0
where f (s, t) is an arbitrary function, one has

(grq) = ZU/LVGA,O /<G(x, M)Sq(uv x))

(u —x) d4(u —X).
Here we have defined as|in]

2
D2 (2) = Baubpv — 8108u) D(2)

« DP

Ao, v (ll)

1
+ E(akzu(spv + 8pzv8xu - 8kzv8pu

— 3,2,831)D1(2) (12)

and

Gx,u)= /dr e X(D2)

0
1
X ex —Efdvkpfdvav (gF)»PgFUV) :

(13)
Note thatGo(x, ) andsS, (u, x) share common factors
depending on a piece of commpbetween,, andx,,
and in general do not factorize.
At this point we shall use the properties of the
correlatorsD(z), D1(z) found on the latticg9], in the
quenched case one has

D(z) = 3D1(z) = D(0) exp(—[z]5).

§=1/T, ~1GeV. (14)
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Analytic calculations based on the gluelump spec-
trum[13] suggest even larger valugzx 1.4-15 GeV.
The string tensiow can be expressed throudh(z)
(the correction due to higher correlators is limited by
the Casimir scaling arguments to a few perdé&af)

—}/D( )d2
0_2 z2)d°z.

Since the distancéu — x| is of the order ofTy,,
we can now use the argument of the sniglllimit
(large §) for the constant to factorize the product
(G(x,u)S,(u,x)) as follows

<G(x, u)Sy (u, x)) = Golx — u)(Sq(x, x)).

(15)

lim 16
T,—0 ( )
This approximation is equivalent to the expansion

in the parametet = o T2 « 1. As the result one
obtains the following representation for the ratio

g
mg -2 (Q_ q)

{qq)

2
— 4001y [ GoD2, (21

Go(z) is easily calculated usin@l3) to be the free
propagator of the scalar quark with mass

17)

mKi(m|z|)
472|z]

where K1 is the McDonald function, ana: is the

current (pole) quark mass normalized at 1 GeV.
Taking into account that

Go(z) = , (18)

w0y DY (@) = 6(D(2) + D1(2)) (19)
one obtains fom3
0
m2 = 12m / 2dzKim) (D@ + D) (20)
0

or, with the help 0{14),

mi = 16’"/zzdz K1(mz)D(z) = %fp(m/fs)» (21)
0

2 Note the misprint in Eq. (15) ofL0], where coefficients of
D, D4 differ from those in(19). Nevertheless the final result in
Eq. (29) of[10] is the same as in oUEq. (1) due to the relation
D1~ %D [9] valid for the quenched case, considered here, whereas
in the unquenched case one obtains instedd)ofAmg(m —0) =

~3/5%zdz(D+ D) =20
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where we have defined
o0

o(m/8) =més? / 22dz K1(mz) exp(—8z),
0

¢(0) =1

It is easy to see with the help ¢15) that in the
limit of small quark mass;m — 0, one obtains for
o =0.18 Ge\ (in the quenched case)

(22)

mé(m — 0) = 1;60 =0.92 Ge\~. (23)

Itis appropriate at this point to discuss the accuracy
of our result(23). The main uncertainty appears in
expressiong14)—(16)and we consider the accuracy
of the corresponding approximations point by point.

The lattice calculationfd] of D(z) and D1(z) de-
fine the amplitudesA, A1 and slopes, §1; the first
ones are reabsorbed in the valueogfwhile the lat-
ter are equal with accuracy of few (1-2) percent to
the value given ir(14). The approximation of15) re-
duces to the neglect of higher correlators, contributing
to the observed string tensien This accuracy was
tested in[12] using the Casimir scaling and is also
of the order of few percent. The largest possible er-
ror may come from the replacemgiis), where one
can use the fact that the integral owiécu — x) in (11)
is taken with the weighD® (1 — x). The latter is ex-
ponentially decreasing at the distanc& lwhile the
range ofG (x, u) is defined by the confining exponent
in (13), which produces the effective quark mass, com-
puted throughr and equal to 0.35 GeV for the low-
est state (segll] for references ah explicit calcu-
lations). Introducing this mass instead mfin (18),
(20), (21) one obtainsy ~ 0.75—-08, and using(21)
one comes to the conclusion thag is in the range
0.7 GeV? <m3 < 1 Ge\A. This range lies very close
to the limits predicted in the QCD sum rules.

The explicit analytic form ofp(x) was obtained
in [10] and is given here irAppendix A For § =
1 GeV, andm = 0.175, 1.7 and 5 GeV one obtains
respectivelyy = 0.88,0.234 and 0.052.

The resulting value ofzg (23)is in agreement with
the QCD sum rule estimatg2], and with the lattice
evaluation ofm3, namelym3 ~ 1 Ge\? in [5]. One
should note, that there is a large perturbative contri-
bution tOmg for nonzero quark mass proportional
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to mA2,, ~ m/a?, which should be subtracted to get
agreement with purely nonperturbative reg@g).

On the other hand the purely nonperturbative be-
havior of mS as a function of the quark mass,
or rather the ratic = m/§ is given in Appendix A

Eq. (A.6),

m(1) = %(1—1— 12(4— 3In§> + 0(:4)). (24)

The ValueSn%(t) obtained from(24) agree well with
the lattice measured values(i)] for ma > 0. Indeed
for three values ofna, ma = 0.05; 0, 1 and 0.15 one
obtains from(24) takingo = 0.18 Ge\?, anda 1
1.979 GeV/[5], m3 = 0.434,0.393 and 0342 Ge\?,
respectively. This should be compared with the values
m3(ma) measured irf5] and equal to 0.371, 0.311
and 0.290 GeVY. At the same time the limiting
extrapolated valuen3(ma = 0) ~ 1 Ge\? obtained

in [5], agrees with the theoretical one, given by
Eq. (24) m&(ma = 0, theory = 1 Ge\2. One should
have in mind, that chiral quark mass corrections
present in both the quark condensate and the QGC are
canceled in the ratimg to the leading order i 72,

so the remnanina dependence inn% comes from
quadratic terms ir{24) and linear perturbative terms
mentioned above.

Recently a study of thermal dependencemgtT)
has been reported [44], Wheremg was found almost
independent off up to T = T,. This is in general
agreement with our expressi(28), sinceo is roughly
constant in that region, but more detailed check of
behavior neaf’, is desirable.

Summarizing, we have obtained a simple nonper-
turbative estimate for the ratio of condensates, which
is in a reasonable agreement with the QCD sum rule
results, and lattice results [B] for nonzeroma and
zeroma limit.
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Appendix A

The functionp(z), t = m/3§, defined inEq. (22)can

be written as (note the difference in definition here and

in [10])
o0

o) =1 / 2dz Ky(tz)e™
0

whereK is the McDonald functionkK1(x)(x — 0) ~

)—%, so that forr = 0 one obtains

@ (0) =1. (A.2)

Fort > 0O the integration if{A.1) yields two different
forms; e.qg., for < 1,

I S
(1—12)5/2 t
1+ 22
-y
while for¢ > 1 one has instead,
2
() = —ﬁ arctar{v'12 — 1)
1+ 212
o2
For larger one has the following limiting behavior,

2 3JT+O 1
2 213 )

For smallz one obtains expanding the r.h.s(Af3)

2 7 15 2
@(t)=1+12(4—3ln;> +z4<_ —In _>

(A.1)

(1) =

(A.3)

(A.4)

)= (A.5)

4 2 t
+0(°). (A.6)
Some numerical values are useful in applications.
¢(0.175 = 0.88, ¢(1.7)=0.234

0(5) = 0.052
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