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Abstract

The quark–gluon mixed condensateg〈q̄σµνFµνq〉 is calculated in the Gaussian approximation of the field correlator me
In the largeNc limit and for zero mass quarks one obtains a simple result,m2

0 ≡ g〈q̄σµνFµνq〉/〈q̄q〉 = 16σ
π , whereσ is the

string tension. For a standard valueσ = 0.18 GeV2 one obtainsm2
0 = 1 GeV2 in good agreement with the QCD sum rul

estimatem2
0 = (0.8± 0.2) GeV2 and the latest lattice resultm2

0
∼= 1 GeV2.

 2004 Published by Elsevier B.V.Open access under CC BY license. 
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1. Introduction

The mixed quark–gluon condensate (QGC) is
important characteristics of the nonperturbative Q
vacuum, which together with the quark condens
〈q̄q〉 signals the chiral symmetry breaking. Moreov
the QGC measures the average interaction of the q
color-magnetic moment with the vacuum fields, wh
is an important ingredient of the quark dynamics in
vacuum (e.g., it is this term which gives attraction
in quark zero modes).

In the QCD sum rules the QGC plays an import
role [1] and the phenomenological analysis sugge
the value ofm2

0 in the rangem2
0 = (0.8 ± 0.2) GeV2

[1], see[2] for a review. One should stress at th
point that for a nonzero quark massm the (diverging)
perturbative part should be subtracted.
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As will be seen below the resulting nonperturbat
dependence ofm2

0 on m is very weak in agreemen
with lattice data. Lattice studies of QGC[3–5] have
not yet converged to a definite prediction. A proble
there is the extrapolation to zero quark mass and
quenched approximation. In Ref.[4] the simulations
are done in the quenched approximation, the cond
sate is measured by use of staggered quarks, an
result for m2

0 is definitely larger than the sum-rule
value. Ref.[5] uses an optimized version[6] of do-
main wall fermions, which are better in principle f
the chiral limit, again in the quenched approximati
Their result ism2

0 = 1 GeV2, which agrees with QCD
sum rules. It is therefore worthwhile to calculate QG
by a different nonperturbative method.

In the framework of the field correlator metho
(FCM) [7] the color-magnetic quark–gluon intera
tion term gσµνFµν enters essentially in the Fock
Feynman–Schwinger representation (FFSR) of
quark propagator in the vacuum background field[8].
icense. 
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In particular the quadratic average of this term
fines the hyperfineqq̄ interaction where the nonpe
turbative part is proportional to the field correlat
〈Fµν(x)Fρσ (0)〉 measured on the lattice[9]. Even
more important the termgσµνFµν is in the contribu-
tion to the bound quark self-energy[10], where it is of
paramagnetic character, i.e., negative and strongly
creases the masses of hadrons, putting them in a
dance with experimental data[11]. Explicit correction
to the bound quark mass squared is[10]

(1)�m2
q = −4σ

π
η,

where η = η(mTg) is a calculable function of th
quark current massm, renormalized at the sca
of 1 GeV. The functionη is given in [10] and in
Appendix A and for zero quark mass is normaliz
to one:η(0) = 1. We calculate in the next section th
QGC, or rather the parameterm2

0 in the same way, a
it was done in[10] for �m2

q , with the result

(2)m2
0 = −4�m2

q = 16σ

π
η.

For σ = 0.18 GeV2 one obtainsm2
0 = 1 GeV2 which

is in agreement with the lattice data[5], and with the
QCD sum rules estimate quoted above.

2. Calculation of m2
0

We proceed in the Euclidean space–time and writ

〈q̄gσµνFµνq〉q,A = tr
〈
gσµνFµν(x)Sq(x, x)

〉
A

(3)= tr
〈
Sq(x, x)gσµνFµν(x)

〉
,

whereSq(x, y) is the Euclidean quark propagator, f
which one can write using the FFSR

Sq(x, y) = (m + D̂)−1
x,y = (m − D̂)x

(
m2 − D̂2)−1

x,y

= (m − D̂)x

∞∫
0

ds Dzx,ye
−KΦz(x, y)PF

(4)× exp

s∫
0

λ
(
z(τ )

)
dτ.

In (4) the following notations are used:K = m2s +
1
4

∫ s

0 ż2
µ dτ , Dµ ≡ ∂µ − igAµ, (Dz)x,y is the path-

integral measure for paths starting aty and ending a
-

the pointx,

(Dz)x,y = lim
N→∞

N∏
n=1

(
d4�z(n)

(4πε)2

)
d4k

(2π)4

× eik(
∑n

n=1 �z(n)−(x−y)),

whileΦz(x, y) is the phase factor (parallel transport
along the pathzµ(τ ) Φz(x, y) = PA expig

∫ x

y Aµ dzµ,
with PA,PF —the ordering operators of the matric
Aµ(z) andλ(z), whereλ(z) is defined to be1

(5)

λ(z) ≡ gσµνFµν(z), σµν = 1

4i
(γµγν − γνγµ).

For what follows it will be advantageous to take in(5)
λ(z(τ )) = g(τ)σµνFµν(z(τ )), since the functiona
derivative δ

δg(τ )
at τ → 0 or τ → s inside the FFSR

(4) brings down additional factorλ(y) or λ(x). When
one hasy = x, as in(3), then both contributions add
which formally is obtained by puttingg(0) = g(s). In
this way one can rewrite(3) as follows〈
q̄(x)λ(x)q(x)

〉 = tr
〈
λ(x)Sq(x, x)

〉
(6)= 2 tr

δ

δg(0)

〈
Sq(x, x)

〉
.

As the next step one can write the average〈Sq(x, x)〉
in the form of cluster expansion[7]〈
Sq(x, x)

〉

= (m − ip̂)

∞∫
0

ds e−K(Dz)xx

(7)× exp

{
−1

2

∫
dvλρ

∫
dvσν 〈gFλρgFσν 〉

}
,

where only the contribution of the lowest cumula
〈FF 〉 is retained in accordance with estimates[12],
and the non-Abelian Stokes theorem is used to
pressAµ throughFµν , with the notation

dvλρ = dsλρ − iσλρ dτ,

(8)

gFλρdvλρ = gFλρ(u) dsλρ(u) − ig(τ )σλρFλρ

(
z(τ )

)

1 The definition ofσµν in (5) (as well as in[7,8]) differs from the

standard definition in QCD sum rules, where enters1
2 instead of14

in (5). Therefore one obtains additional factor 2 in the definit
of m2

0 in (17).
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and dsλρ is the element of the area of the surfa
enclosed by the contourzµ(τ ), zµ(0) = zµ(s) = xµ.
Performing differentiation in(6) one gets

〈q̄λq〉 = 2g2σµνσλρ

∞∫
0

ds (Dz)xxe
−K(m − ip̂)

×
s∫

0

dτ
〈
Fλρ

(
u(τ)

)
Fµν(x)

〉

(9)

× exp

{
−g2

2

∫
dvλρ

∫
dvσν 〈FλρFσν〉

}
.

Using the identities[8]

(Dz)xx = (Dz)xu d4u (Dz)ux,

(10)

∞∫
0

ds

s∫
0

dτ f (s, τ ) =
∞∫

0

ds

∞∫
0

dτ f (s + τ, τ ),

wheref (s, τ ) is an arbitrary function, one has

〈q̄λq〉 = 2σµνσλρ

∫ 〈
G(x,u)Sq(u, x)

〉

(11)× D
(2)
λρ,µν(u − x) d4(u − x).

Here we have defined as in[7]

D
(2)
λρ,µν(z) ≡ (δλµδρν − δλνδρµ)D(z)

+ 1

2
(∂λzµδρν + ∂ρzνδλµ − ∂λzνδρµ

(12)− ∂ρzµδλν)D1(z)

and

G(x,u) =
∞∫

0

dτ e−K(Dz)xu

(13)

× exp

{
−1

2

∫
dvλρ

∫
dvσν 〈gFλρgFσν 〉

}
.

Note thatG0(x,u) andSq(u, x) share common factor
depending on a piece of commonz betweenuµ andxµ

and in general do not factorize.
At this point we shall use the properties of t

correlatorsD(z),D1(z) found on the lattice[9], in the
quenched case one has

D(z) ∼= 3D1(z) = D(0)exp
(−|z|δ),

(14)δ ≡ 1/Tg ≈ 1 GeV.
Analytic calculations based on the gluelump sp
trum[13] suggest even larger value,δ ≈ 1.4–1.5 GeV.
The string tensionσ can be expressed throughD(z)

(the correction due to higher correlators is limited
the Casimir scaling arguments to a few percent[12])

(15)σ = 1

2

∫
D(z) d2z.

Since the distance|u − x| is of the order ofTg ,
we can now use the argument of the smallTg limit
(large δ) for the constantσ to factorize the produc
〈G(x,u)Sq(u, x)〉 as follows

(16)lim
Tg→0

〈
G(x,u)Sq(u, x)

〉 ∼= G0(x − u)
〈
Sq(x, x)

〉
.

This approximation is equivalent to the expans
in the parameterξ ≡ σT 2

g � 1. As the result one
obtains the following representation for the ratio

m2
0 ≡ 2

〈q̄λq〉
〈q̄q〉

(17)= 4σµνσλρ

∫
G0(z)D

(2)
λρ,µν(z) d4z,

G0(z) is easily calculated using(13) to be the free
propagator of the scalar quark with massm,

(18)G0(z) = mK1(m|z|)
4π2|z| ,

where K1 is the McDonald function, andm is the
current (pole) quark mass normalized at 1 GeV.

Taking into account that2

(19)σµνσλρD
(2)
λρ,µν(z) = 6

(
D(z) + D1(z)

)
one obtains form2

0

(20)m2
0 = 12m

∞∫
0

z2 dzK1(mz)
(
D(z) + D1(z)

)

or, with the help of(14),

(21)m2
0
∼= 16m

∞∫
0

z2 dzK1(mz)D(z) = 16σ

π
ϕ(m/δ),

2 Note the misprint in Eq. (15) of[10], where coefficients o
D,D1 differ from those in(19). Nevertheless the final result i
Eq. (29) of [10] is the same as in ourEq. (1) due to the relation
D1 ≈ 1

3D [9] valid for the quenched case, considered here, whe

in the unquenched case one obtains instead of(1): �m2
q (m → 0) =

−3
∫ ∞
0 z dz (D + D1) ∼= − 3

π σ .
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where we have defined

ϕ(m/δ) ≡ mδ2

∞∫
0

z2 dzK1(mz)exp(−δz),

(22)ϕ(0) = 1.

It is easy to see with the help of(15) that in the
limit of small quark mass,m → 0, one obtains for
σ = 0.18 GeV2 (in the quenched case)

(23)m2
0(m → 0) = 16

π
σ = 0.92 GeV2.

It is appropriate at this point to discuss the accur
of our result(23). The main uncertainty appears
expressions(14)–(16)and we consider the accura
of the corresponding approximations point by poin

The lattice calculations[9] of D(z) andD1(z) de-
fine the amplitudesA,A1 and slopesδ, δ1; the first
ones are reabsorbed in the value ofσ , while the lat-
ter are equal with accuracy of few (1–2) percent
the value given in(14). The approximation of(15) re-
duces to the neglect of higher correlators, contribu
to the observed string tensionσ . This accuracy was
tested in[12] using the Casimir scaling and is al
of the order of few percent. The largest possible
ror may come from the replacement(16), where one
can use the fact that the integral overd4(u−x) in (11)
is taken with the weightD(2)(u − x). The latter is ex-
ponentially decreasing at the distance 1/δ, while the
range ofG(x,u) is defined by the confining expone
in (13), which produces the effective quark mass, co
puted throughσ and equal to 0.35 GeV for the low
est state (see[11] for references and explicit calcu-
lations). Introducing this mass instead ofm in (18),
(20), (21) one obtainsϕ ≈ 0.75–0.8, and using(21)
one comes to the conclusion thatm2

0 is in the range
0.7 GeV2 � m2

0 � 1 GeV2. This range lies very clos
to the limits predicted in the QCD sum rules.

The explicit analytic form ofϕ(x) was obtained
in [10] and is given here inAppendix A. For δ =
1 GeV, andm = 0.175, 1.7 and 5 GeV one obtain
respectivelyϕ = 0.88,0.234 and 0.052.

The resulting value ofm2
0 (23) is in agreement with

the QCD sum rule estimates[2], and with the lattice
evaluation ofm2

0, namelym2
0 ≈ 1 GeV2 in [5]. One

should note, that there is a large perturbative con
bution tom2

0 for nonzero quark massm proportional
to m�2
UV ∼ m/a2, which should be subtracted to g

agreement with purely nonperturbative result(23).
On the other hand the purely nonperturbative

havior of m2
0 as a function of the quark massm,

or rather the ratiot = m/δ is given in Appendix A,
Eq. (A.6),

(24)m2
0(t) = 16σ

π

(
1+ t2

(
4− 3 ln

2

t

)
+ O

(
t4)).

The valuesm2
0(t) obtained from(24) agree well with

the lattice measured values in[5] for ma > 0. Indeed
for three values ofma, ma = 0.05;0,1 and 0.15 one
obtains from(24) takingσ = 0.18 GeV2, anda−1 =
1.979 GeV[5], m2

0 = 0.434,0.393 and 0.342 GeV2,
respectively. This should be compared with the val
m2

0(ma) measured in[5] and equal to 0.371, 0.31
and 0.290 GeV2. At the same time the limiting
extrapolated valuem2

0(ma = 0) ≈ 1 GeV2 obtained
in [5], agrees with the theoretical one, given
Eq. (24), m2

0(ma = 0, theory) = 1 GeV2. One should
have in mind, that chiral quark mass correctio
present in both the quark condensate and the QGC
canceled in the ratiom2

0 to the leading order inσT 2
g ,

so the remnantma dependence inm2
0 comes from

quadratic terms in(24) and linear perturbative term
mentioned above.

Recently a study of thermal dependence ofm2
0(T )

has been reported in[14], wherem2
0 was found almos

independent ofT up to T = Tc . This is in genera
agreement with our expression(23), sinceσ is roughly
constant in that region, but more detailed check
behavior nearTc is desirable.

Summarizing, we have obtained a simple nonp
turbative estimate for the ratio of condensates, wh
is in a reasonable agreement with the QCD sum
results, and lattice results in[5] for nonzeroma and
zeroma limit.
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Appendix A

The functionϕ(t), t ≡ m/δ, defined inEq. (22)can
be written as (note the difference in definition here a
in [10])

(A.1)ϕ(t) = t

∞∫
0

z2 dzK1(tz)e
−z

whereK1 is the McDonald function,K1(x)(x → 0) ≈
1
x

, so that fort = 0 one obtains

(A.2)ϕ(0) = 1.

For t > 0 the integration in(A.1) yields two different
forms; e.g., fort < 1,

ϕ(t) = − 3t2

(1− t2)5/2 ln
1+ √

1− t2

t

(A.3)+ 1+ 2t2

(1− t2)2

while for t > 1 one has instead,

ϕ(t) = − 3t2

(t2 − 1)5/2 arctan
(√

t2 − 1
)

(A.4)+ 1+ 2t2

(1− t2)2 .

For larget one has the following limiting behavior,

(A.5)ϕ(t) = 2

t2
− 3π

2t3
+ O

(
1

t4

)
.

For smallt one obtains expanding the r.h.s. of(A.3)

ϕ(t) = 1+ t2
(

4− 3 ln
2

t

)
+ t4

(
7

4
− 15

2
ln

2

t

)

(A.6)+ O
(
t6).

Some numerical values are useful in applications.

ϕ(0.175) ∼= 0.88, ϕ(1.7) ∼= 0.234,

ϕ(5) ∼= 0.052.
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