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In this article we study chiral symmetry breaking for quark matter in a magnetic background, B , at 
finite temperature and quark chemical potential, μ, making use of the Ginzburg–Landau effective action 
formalism. As a microscopic model to compute the effective action we use the renormalized quark–
meson model in the chiral limit. Our main goal is to study the evolution of the critical endpoint, CP, as 
a function of the magnetic field strength, and investigate the realization of inverse magnetic catalysis at 
finite chemical potential. We find that the phase transition at zero chemical potential is always of the 
second order; for small and intermediate values of B , CP moves towards small μ, while for larger B it 
moves towards moderately larger values of μ. Our results are in agreement with the inverse magnetic 
catalysis scenario at finite chemical potential and not too large values of the magnetic field, while at 
larger B direct magnetic catalysis sets in.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Simulations of ultrarelativistic heavy ion collisions suggested 
the possibility that huge magnetic fields are created during non-
central collisions [1–3]. The current estimate for the largest mag-
netic field produced is in the range eB/m2

π ≈ 5–15, where mπ cor-
responds to the pion mass in the vacuum (to eB = m2

π corresponds 
B ≈ 1014 T). These results triggered the study of the modifica-
tions of a strong background field produces on spontaneous chiral 
symmetry breaking of Quantum Chromodynamics (QCD) and on 
deconfinement, both at zero and finite baryon density; for recent 
studies, as well as for some older results, see [4–26,28–31,27,34,
33,32,35–37]. The existence of strong fields in heavy ion collisions, 
combined to the excitation of QCD sphalerons at high tempera-
ture, suggested the possibility of the Chiral Magnetic Effect [1,38], 
see [4] for reviews. Besides heavy ion collisions, even stronger 
magnetic fields might have been produced in the early universe 
at the epoch of the electroweak phase transition, tew [39,40]: a 
widely accepted value for the magnetic field at the transition is 
B(tew) ≈ 1019 T, even if this value has rapidly decreased scaling as 
a−2, where a(t) denotes the scale factor of the expanding universe, 
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losing several order of magnitude at the QCD phase transition. Fi-
nally, relatively strong magnetic fields are relevant for magnetars, 
B ≈ 1010 T [41]. Therefore, there exist three physical contexts in 
which QCD in a strong magnetic background is worth to be stud-
ied.

In this Letter, we address the problem of the chiral phase tran-
sition for quark matter at finite quark chemical potential, μ, and 
nonzero magnetic field, B , focusing on the critical endpoint, CP , 
of the phase diagram where a second order and a first order tran-
sition lines meet each other, and on the chiral phase transition at 
finite μ. In order to make quantitative predictions we build up a 
Ginzburg–Landau (GL) effective potential for the chiral condensate 
as in [36] with the inclusion of a finite μ, beside T and B already 
considered in [36]. We work in the chiral limit since only in this 
case it is possible to define a phase transition, making the study 
within the GL expansion meaningful. Nevertheless the inclusion of 
a small explicit chiral symmetry breaking term should not modify 
the qualitative picture we obtain and explain in this Letter.

Even if we restrict ourselves to the case of a homogeneous con-
densate, the computation of the GL effective action has revealed a 
powerful tool to study the transitions to inhomogeneous phases 
when these are of the second order [42], beside more general 
treatments relying on heat kernel expansion techniques [43]. In 
[42] the coefficients of the GL potential are connected to those en-
tering in the gradient expansion terms as well, which eventually 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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trigger inhomogeneous condensation. Hence our calculations pave 
the way for an efficient computation of second order transitions 
to inhomogeneous condensates at finite B and μ. For the map-
ping of the phase diagram from the space of the GL coefficients to 
the T –μ–B space we need a microscopic model to compute the 
explicit dependence of the GL coefficients on these variables. In 
this Letter we make use of the renormalized quark–meson model 
[46–49]. The advantage of this model is its renormalizability, which 
allows to make quantitative predictions which are not affected by 
any ultraviolet scale. It should be mentioned however that many 
effective chiral models fail to reproduce even qualitatively the be-
haviour of the critical temperature as a function of the magnetic 
field strength, besides few exceptions which are mentioned in 
Section 3 of this Letter, and this seems to be a robust claim as 
discussed in [57] where general modifications to the effective po-
tential have been considered.

In [36] it was found that the critical point (CP) at μ = 0 is 
not in the phase diagram; hence it is of a certain interest to lo-
cate CP at finite μ and follow its evolution as the strength of 
B is increased. Moreover we wish to study the possible appear-
ance of the phenomenon of inverse magnetic catalysis (IMC) at 
finite μ [25,19], that is the inhibition of spontaneous chiral sym-
metry breaking by the magnetic field. Our conclusions are that 
increasing the strength of B from zero to small values results in
the evolution of CP towards smaller values of μ, but this ten-
dency is reversed at strong B . Hence within this model CP does 
not hit the μ = 0 axis in the T –μ–B space. Moreover we confirm 
the predicted IMC scenario for small values of B , at the same time 
offering a simple interpretation of this phenomenon. On the other 
hand, for larger values of eB we find direct magnetic catalysis at 
finite μ, that is, spontaneous chiral symmetry breaking is favoured 
by the magnetic field.

2. The model

In this work we use the renormalized quark–meson model as 
the microscopic model to compute the effective action at the chiral 
critical line. The model and its renormalization have been already 
presented in detail in a previous article [36], therefore here we re-
mind only of the relevant definitions and steps of renormalization 
which will be used here.

The lagrangian density of the model is given by

L = q̄
[
iDμγ μ − g(σ + iγ5τ · π)

]
q

+ 1

2
(∂μσ )2 + 1

2
(∂μπ)2 − U (σ ,π ). (1)

In the above equation, q corresponds to a quark field in the fun-
damental representation of colour group SU (Nc) and flavor group 
SU (2); the covariant derivative, Dμ = ∂μ − Q f e Aμ , describes the 
coupling to the background magnetic field, where Q f denotes the 
charge of the flavor f . Besides, σ , π correspond to the scalar sin-
glet and the pseudo-scalar iso-triplet fields, respectively. The po-
tential U describes tree-level interactions among the meson fields,

U (σ ,π ) = λ

4

(
σ 2 + π2 − v2)2

, (2)

which is invariant under chiral transformations.
We restrict ourselves to the one-loop approximation as in [36]. 

It has been shown in [20,35,19] that even including the quantum 
fluctuations by means of the functional renormalization group does 
not change the phase structure of the model. In the integration 
process, the meson fields are fixed to their classical expectation 
values, 〈π〉 = 0 and 〈σ 〉 �= 0. The physical value of 〈σ 〉 will be 
then determined by minimization of the thermodynamic poten-
tial. This implies the replacement gσ → g〈σ 〉 in the quark action. 
The field σ carries the quantum numbers of the quark chiral con-
densate, 〈q̄q〉; hence, in the phase with 〈σ 〉 �= 0, chiral symmetry 
is spontaneously broken.

The one-loop thermodynamic potential associated to the inter-
action of fermions with a magnetic background can be computed 
within the Leung–Ritus–Wang method [50]:

ΩB = −Nc

∑
f

|Q f eB|
2π

∞∑
n=0

βn

×
+∞∫

−∞

dpz

2π

[
E + T

∑
γ =±1

log
(
1 + e−βEγ

)]
, (3)

where n labels the Landau level, E corresponds to the single parti-
cle excitation spectrum,

E =
√

p2
z + 2|Q f eB|n + m2

q, (4)

and mq = g〈σ 〉 is the constituent quark mass. The factor βn = 2 −
δn0 counts the degeneracy of the nth-Landau level. Finally Eγ =
γμ + E .

The divergence in ΩB is contained in the vacuum contribution. 
Since the model is renormalizable, we can treat this divergence by 
means of renormalization. In order to prepare ΩB for renormaliza-
tion we add and subtract the contribution at B = 0, namely

Ω0 = −2Nc N f

∫
d3 p

(2π)3

[
ω + T

∑
γ =±1

log
(
1 + e−βωγ

)]
, (5)

where ω =
√

p2 + m2
q and ωγ = μγ + ω. This procedure is con-

venient since it allows to collect all the contributions due to the 
magnetic field into an addendum which is ultraviolet finite. Fol-
lowing the notation of [36] we split Ω0 into the vacuum and the 
valence quark contributions, Ω0 = Ω0

0 + Ω T
0 with

Ω0
0 = −2Nc N f

∫
d3 p

(2π)3
ω, (6)

Ω T
0 = −2Nc N f T

∫
d3 p

(2π)3

∑
γ =±1

log
(
1 + e−βωγ

)
. (7)

Hence we write

ΩB = Ω0 + (ΩB − Ω0) ≡ Ω0 + δΩ. (8)

In [10,36] it has been proved explicitly that δΩ is finite, modulo 
condensate independent terms, and it is not affected by renormal-
ization. The condensate independent terms have been discussed 
in [16], where it is pointed out that they affect the renormal-
ization procedure of electric charge and magnetic field, leaving 
however eB invariant; since eB is the only quantity which cou-
ples to fermions in our model, we can safely neglect this further 
renormalization. Removing the UV divergences requires the addi-
tion of two counterterms to the thermodynamic potential,

Ωc.t. = δλ

4

m4
q

g4
+ δv

2

m2
q

g2
, (9)

and the following renormalization conditions [8,10]

∂(Ω0
0 + Ωc.t.)

∂mq

∣∣∣∣
mq=g fπ

= ∂2(Ω0
0 + Ωc.t.)

∂m2
q

∣∣∣∣
mq=g fπ

= 0, (10)

which amount to the requirement that the one-loop contribution 
in the vacuum, namely Ω0

0 , does not affect the expectation value 
of the scalar field and the mass of the scalar meson. The total ther-
modynamic potential thus reads

Ω = ΩB + U + Ωc.t.. (11)
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3. Ginzburg–Landau expansion

In this section we present the novelty of our study. Our goal is 
to expand Ω in the Ginzburg–Landau (GL) form, in order to build 
up the effective potential at the critical line for the order parame-
ter:

Ω = α2

2
m2

q + α4

4! m4
q + α6

6! m6
q . (12)

This will be useful to compute the chiral critical line at finite μ
and B . Given the thermodynamic potential in Eq. (11), the GL co-
efficients we need are obtained trivially as αn = ∂nΩ/∂mn

q with 
derivative computed at mq = 0. The B-dependence of the GL co-
efficients comes only from δΩ . In the case μ = 0 we have found 
the analytical expressions for the GL coefficients [36]; on the other 
hand, for μ �= 0 this has not been possible because the presence of 
the quark chemical potential complicates the relevant momentum 
integrals. Therefore in this work we rely on a numerical evaluation 
of the GL coefficients. The kind of investigation we perform here is 
however still interesting: in fact in [36] it was found that at μ = 0
the magnetic field does not induce a first order phase transition; 
on the other hand it is known that at B = 0 and μ �= 0 a criti-
cal endpoint, CP , appears for large enough values of μ, where the 
phase transition becomes of the first order. It is then of a certain 
interest to study how CP evolves at finite μ and B to understand 
its fate in the phase diagram as both B and μ are in the game. 
Moreover, the computation of α4 will be crucial to explain the evo-
lution of CP at finite μ, as we will discuss in the next section.

Before presenting the numerical results for the general case 
B �= 0 and μ �= 0 it is useful to remind of a few particular re-
sults. The critical temperature of a second order phase transition is 
obtained as a solution of the equation α2 = 0; at μ = 0 and B = 0
this condition implies [36]

T 2
c = 6λv2

g2Nc N f
+ 3g2 f 2

π

2π2
. (13)

For a numerical estimate we take the parameters of [18], namely 
λ = 20, v = fπ and g = 3.3; with this parameter set we find Tc ≈
173 MeV. In the above equation no UV cutoff appears, as it would 
appear instead in NJL or NJL-like models, see for example [51]. In 
our calculation the UV cutoff dependence has been removed by 
the renormalization and the only mass scale determining Tc is fπ . 
Numerical estimate of Tc in our case however is in agreement with 
the NJL calculations. In the case of a very strong magnetic field the 
critical temperature can be obtained by looking at α2 in [36]; we 
obtain

T 2
c = 2Q Q u

u |Q d||Q d||eB|, (14)

which shows that Tc ∝ √
eB . This result is in contradiction with 

recent lattice computations [5], where it is found that in QCD Tc

decreases with the increase of eB . This disagreement is most prob-
ably due to the lack of an appropriate description of the gluon 
sector in the present model. It is however possible to improve 
the model itself in order to describe the gluon backreaction to 
the magnetic field, thus reproducing at least qualitatively the be-
haviour of the critical temperature, see [45,32]. A critical tempera-
ture with the correct qualitative behaviour has been also obtained 
in [24] within the context of the large-Nc limit of QCD, as well as 
of the bag model (see also [13]), suggesting that the driving tran-
sition is the deconfinement one. We will not insist on these topics 
in this Letter, leaving them to future studies.

We close this section by mentioning that the use of the GL ex-
pansion we consider in this Letter is very important to understand, 
qualitatively and quantitatively, the response of the critical lines to 
Fig. 1. Critical lines in the T –μ plane for several values of eB . Dashed lines corre-
spond to second order transitions, solid lines to first order transitions. The critical 
endpoints for the different values of eB are denoted by dots. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web ver-
sion of this article.)

the magnetic field, with particular reference to the critical end-
point evolution, as it will be clear from the results in the next 
section.

4. Phase diagram and critical endpoint

In Fig. 1 we plot the phase diagram for spontaneous chiral 
symmetry breaking in the T –μ plane. Dashed lines correspond to 
second order critical lines, that are computed by solving the equa-
tion α2(Tc, μ, eB) = 0. As in previous model studies in which the 
vacuum contribution to the free energy is taken into account, the 
critical temperature at zero and small μ is found to increase for 
increasing magnetic field strength. As already said, this is not in 
agreement with recent lattice data which instead predict that Tc

becomes smaller for increasing value of eB; it is clear that this 
discrepancy is not due to the lack of quantum fluctuations in the 
present model calculations, see [20,35,19]. Among the several pos-
sibilities suggested for the interpretation of this problem [44,45,
32] the one closer to our work which does not require the in-
troduction of a Polyakov loop background is given in [45] where 
an axial chemical potential, μ5, is added and its magnitude is as-
sumed to be an increasing function of eB , this dependence being 
inspired by previous works which show that a large value of eB
increases the fluctuations of chiral charge [23] and the sphaleron 
rate [52]. In fact a finite μ5 is found to decrease the temperature 
of chiral symmetry restoration [17,53,54]. In the model at hand it 
is possible to add the axial chemical potential, following the line 
of previous works within NJL as well as quark–meson model [17,
53,54]. We will not consider this further complication here, leaving 
the inclusion of μ5 to a future project.

For completeness in Fig. 1 we have also drawn the first order 
phase transition lines. First order lines might be computed by the 
potential in Eq. (12); however the GL expansion is not expected 
to be quantitatively reliable at a first order line because the con-
densate might be still large at the phase transition; therefore in 
order to compute those lines we have used the full renormalized 
thermodynamic potential. Finally, the dots in the figure denote the 
critical endpoints.

The critical lines depicted in Fig. 1 are in agreement with the 
scenario of inverse magnetic catalysis (IMC) at finite μ [25,19]. 
More precisely for small and moderate values of eB and large 
enough μ the critical temperature decreases with increasing eB . 
For large values of eB instead this IMC tendency seems to disap-
pear and magnetic catalysis takes place. Restricting the discussion 
to T = 0 the IMC is evident for small fields since the critical value 
for chiral symmetry restoration, μc , decreases for increasing eB . 
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For larger values of the magnetic field instead we find that μc in-
creases against eB . We can give handwaving arguments about why 
this phenomenon takes place within the model. In this discussion 
it is useful to remind that μc is expected to be of the order of mq .

In the model at hand, the restoration of chiral symmetry is due 
to the accommodation of valence quarks into single particle states, 
a process causing an increase of free energy that can be read from 
Eq. (3), namely

�Ωvq = Nc|eB|
2π2

∑
f

|Q f |
∞∑

n=0

βn

+∞∫
0

dpzθ(μ − E)(E − μ). (15)

The above contribution is finite and not affected by renormaliza-
tion. The θ -function in Eq. (15) makes the integral nonvanishing 
only when the condition μ2 > m2

q is satisfied. Moreover it implies 
that both the conditions μ2 −m2

q > 2|eB|n and μ2 −m2
q − 2|eB|n >

p2
z have to be satisfied. To measure energies from a common point 

we subtract from Eq. (15) the analogous contribution at mq = 0, 
since it corresponds to an irrelevant constant which does not mod-
ify the value of the condensate and the transition point. Therefore 
we define

δΩvq = �Ωvq − �Ωvq(mq = 0). (16)

Restricting to values of μ ≈ mq corresponding to the regime where 
we expect a phase transition, the free energy gain corresponding 
to the accommodation of quarks into the phase space is

δΩvq = Nc

4π2
|eB|m2

q, (17)

which can be derived from Eq. (15) noticing that the restrictions 
imposed by the θ -function imply, for μ ≈ mq , that only the lowest 
Landau level (LLL) gives a contribution to the sum if eB is not too 
small. Eq. (17) shows that the free energy gain for accommodat-
ing valence quarks in the phase space is ∼ |eB|m2

q . On the other 
hand, if eB is small enough then the renormalized condensation 
free energy loss due to condensation in the magnetic field is [10]

δΩc = − Nc

24π2
(eB)2 log

mq

λ
, (18)

where λ plays the role of an infrared scale which does not af-
fect the condensate. We mention that despite the appearance the 
mq → 0 limit in the above equation is not singular, since the equa-
tion is valid in the asymptotic regime m2

q/eB  1 hence the small 
mass limit cannot be taken. The effective potential is not singular 
in the mq → 0 limit as it can be proved following the calculations 
in [10]. The above equation corresponds to a negative contribution 
to the free energy meaning that it favours the breaking of chiral 
symmetry because it lowers the value of Ω . It is easy to check 
that in this weak field limit, because of mq = g fπ + δmq(eB) with 
δmq(eB) ∼ (eB)2/ f 3

π [10], the further contributions to the conden-
sation energy in the magnetic background arising from U and Ω0

0
are of the order (eB)4 hence negligible compared to Eq. (18). Com-
paring Eqs. (17) and (18) we realize that the stabilization in cre-
ating a condensate in the magnetic background is parametrically 
smaller than the destabilization induced by the accommodation of 
valence quarks, therefore the net effect of the magnetic field will 
be to increase the free energy of the condensed phase favouring 
the restoration of chiral symmetry.

On the other hand in the limit eB  μ2 the free energy loss 
due to condensation in the magnetic field is given by [10]

δΩc = − Nc

8π2
m2

q |eB| log
|eB|
m2

; (19)

q

the free energy gain δΩvq is still given by Eq. (17). In the strong 
field limit we realize a competition takes place between free en-
ergy loss Eq. (19) and gain Eq. (18), both being of order |eB|m2

q ; 
moreover δΩc gets a logarithm enhancement for very large val-
ues of eB , which results eventually in lowering the free energy 
of the condensate phase enhancing chiral symmetry breaking. In 
this limit we expect catalysis of chiral symmetry breaking with μ2

c
proportional to |eB|, which explains why we find that μc increases 
with eB for large enough values of eB . It is useful to notice that in 
the case we do not renormalize the model and keep a finite value 
of the cutoff, Λ, then the logarithm in Eq. (19) is replaced by a 
function of mq/Λ as it can be proved easily from Eq. (3) in LLL ap-
proximation; in this case δΩc is still of the order of |eB|m2

q but it 
is not easy to predict the fate of μc because the dependence of mq

on eB makes the comparison of δΩc and δΩvq less transparent.
In Fig. 1 the dots denote the critical endpoint, CP , in the T –μ

plane for several values of eB . CP is defined as the intersection of 
a second order and a first order transition lines: for each value 
of eB the CP coordinates are located by solving the equations 
α2(T , μ, eB) = α4(T , μ, eB) = 0. The evolution of CP depicted in 
Fig. 1 is quite peculiar since it shows that increasing the value of 
eB then CP does not hit the axis μ = 0; rather it evolves towards 
large temperature and chemical potential. The absence of CP at 
μ = 0 even for large magnetic fields can be understood at the light 
of the results of [36]: at μ = 0 and very large eB it has been found

α4 ∝ |eB|/T 2, (20)

showing that the quartic coefficient of the GL expansion is always 
positive, hence making the transition at μ = 0 a second order one 
for any value of eB . The result in Eq. (20) is obtained within the 
renormalized model; the use of an explicit cutoff makes α4 nega-
tive at large enough T , thus turning the transition to a first order 
and a critical point appears also at μ = 0. If we use a fixed cutoff 
we expect thus that CP evolves towards the μ = 0 axis for large 
enough eB . However we do not insist on this aspect because we 
are interested in the phase structure of the renormalized model in 
which no explicit ultraviolet cutoff is present. As a final comment 
we notice that the evolution of CP in Fig. 1 is in agreement with 
an independent calculation making use of a model which takes 
into account the Polyakov loop thermodynamics [33].

The evolution of CP in the T –μ plane as a function of eB
in the model can be easily understood. For concreteness we re-
fer to eB/m2

π = 10 and to eB/m2
π = 30, because in between these 

two values of eB the turning of CP evolution takes place. For 
the discussion the magnetic field dependent contribution to α4, 
which we call δα4, have to be considered, and α4 = α0

4 + δα4 with 
α0

4 = α4(B = 0). We have checked that for the aforementioned 
values of magnetic field the higher Landau levels do not give a 
significant contribution to δα4 in the critical region, therefore we 
do not include them in the following discussion. In this case only 
the LLL contribution to δα4 is necessary; a computation similar to 
that presented in [36] leads to the result

δα4 = 3Nca4

π2

|eB|
T 2

f (μ/T ), (21)

and a4 ≈ 0.11. The function f is shown in Fig. 2; in the μ → 0
limit Eq. (21) gives the result of [36]. For eB/m2

π = 10 the values 
of μ/T around CP are large enough to make f negative, while α0

4
is positive. This means that LLL lowers the value of α4 favouring a 
first order phase transition. This explains why CP moves towards 
smaller values of μ. On the other hand for eB/m2

π = 30 we find 
that α0

4 is suppressed compared to δα4 hence α4 ≈ δα4; more-
over the values of μ/T in the critical region are smaller because 
Tc is enhanced by the magnetic field, eventually bringing f to be 
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Fig. 2. Function f entering in Eq. (21).

positive. As a result, in this case the LLL favours a second order 
phase transition, thus pushing CP towards larger values of μ.

The evolution in Fig. 1 is quite interesting because it shows that 
increasing the strength of the magnetic field CP moves towards 
smaller values of μ for moderate values of eB , then changing this 
tendency for larger values of eB; this turning might suggest that 
the phase transition at μ = 0 becomes stiffer for moderate values 
of eB then becomes softer, the stiffening and softening follow-
ing the evolution of CP . However this is not the case and the 
phase transition at B = 0 becomes stiffer as eB becomes larger. 
In fact one way to measure stiffness of the phase transition is to 
compute S ≡ |dm2

q/dT | at T = Tc : from the potential (12) we get 
m2

q = −6α2/α4 (neglecting the α6 term, which can be done at a 
second order phase transition), which for T � Tc implies

S = − 6

α4(Tc)

dα2

dT

∣∣∣∣
T =Tc

(T − Tc); (22)

using the large field limit results of [10], namely α2 ∝ |eB|×
log(|eB|/T 2) and α4 ∝ |eB|/T 2, we get

S ∝ |eB|
Tc

, (23)

which shows that the stiffness increases as 
√|eB| since in the 

strong field limit Tc ∝ √|eB|. In the weak field limit one has to 
take into account also the B-independent contributions for α2, α4
but the correction to the stiffness due to the magnetic field is still 
given by Eq. (23) in which, at the lowest order, Tc = Tc(B = 0), 
showing that in the weak field limit S is enhanced as |eB|. Sum-
marizing, we find that S increases with eB both in the weak and in 
the strong field limit; however the dependence on eB is stronger 
in the weak field limit and weaker in the case of strong fields.

5. Conclusions

In this article we have studied the phase structure of hot quark 
matter in a magnetic background, B , at finite temperature, T , 
and quark chemical potential, μ, making use of the Ginzburg–
Landau (GL) effective action formalism to compute the regions in 
the T –μ–eB space where chiral symmetry is spontaneously bro-
ken. As a microscopic model to compute the GL coefficients we 
have used the renormalized quark–meson model. The absence of 
an explicit ultraviolet cutoff permits a consistent calculation even 
for large μ as well as for large |eB|. Apart from the work [36]
which anticipates the formalism and some of the results we ob-
tain here, the renormalized quark–meson model has been used for 
calculating the mean field phase diagram at finite magnetic field 
and chemical potential in [31] where a similar phase pattern is 
found. However in [31] an attempt to understand the dynamics 
which leads to the evolution of the critical endpoint, as well as of 
the inverse magnetic catalysis at small temperature, is missing, and 
similar explanations are missing in all the previous studies. Hence 
our Letter aims to fill this gap: while reproducing previous results, 
we also give clear interpretations of them. We also mention that 
for what concerns the inverse magnetic catalysis, our argument is 
not dependent on particular values of the parameters of the model, 
hence our explanation should be quite general.

The results obtained here for the critical temperature are in 
agreement with previous studies based on different approaches. In 
particular we confirm the scenario of inverse magnetic catalysis 
(IMC) at finite μ up to moderate values of eB , in our calculations 
up to eB ≈ 10m2

π ; instead at large eB magnetic catalysis appears. 
The IMC at small eB is understood within this model because 
the decrease of free energy due to condensation in magnetic field 
is parametrically smaller than the increase of free energy neces-
sary to accommodate valence quarks in the phase space: in fact 
at small eB for the former we have δΩc ∼ −(eB)2 while for the 
latter δΩvq ∼ m2

q |eB| with mq ≈ μ at the phase transition. On the 
other hand at large eB the renormalized decrease of free energy 
due to condensation is δΩc ∼ −m2

q |eB| log(|eB|/m2
q) and competes 

with δΩvq , eventually triggering magnetic catalysis thanks to the 
logarithm enhancement.

We have also computed the evolution of the critical endpoint 
CP in the T –μ–eB space. We have found that for small and inter-
mediate values of eB , CP moves towards smaller values of μ; on 
the other hand for large values of eB the critical endpoint moves 
towards larger values of μ. We have explained this evolution in 
terms of the lowest Landau level contribution to the coefficient α4
of the GL effective potential at finite μ and T , whose sign deter-
mines the order of the phase transition. This result agrees with the 
computation at μ = 0 of [36] where it was found that the α4 is al-
ways positive in the renormalized model at μ = 0, thus favouring 
the scenario that at μ = 0 the phase transition is of the second 
order also at large eB .

There are several directions which are worth to be considered 
for continuing the present work. Including an axial chemical po-
tential following [53,54] is interesting in view of the possible role 
this quantity has to induce inverse magnetic catalysis at μ = 0
[45], and study the interplay between μ and μ5 which was inves-
tigated for the first time in [53]. Moreover, the extension of the GL 
effective action formalism to study inhomogeneous phases [42,55]
(see [56] for a review) is with no doubt fascinating. Even more, 
the inclusion of the Polyakov loop thermodynamical contribution 
to the effective potential is of a certain interest because it might 
affect the GL effective action in a nontrivial way. We plan to study 
these topics in our future projects.

Acknowledgements

We acknowledge H. Abuki, M. D’Elia and M. Tachibana for their 
careful reading of the manuscript and useful comments on the first 
version of this Letter. V.G. acknowledges the ERC-STG funding un-
der the QGPDyn grant.

References

[1] D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803 (2008) 227.
[2] V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24 (2009) 5925.
[3] V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. 

Voloshin, Phys. Rev. C 83 (2011), 054911.
[4] D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee (Eds.), Strongly Interacting 

Matter in Magnetic Fields, Lecture Notes in Phys., Springer, 2013.
[5] G.S. Bali, et al., J. High Energy Phys. 1202 (2012), 044.
[6] S.P. Klevansky, R.H. Lemmer, Phys. Rev. D 39 (1989) 3478;

I.A. Shushpanov, A.V. Smilga, Phys. Lett. B 402 (1997) 351;
D.N. Kabat, K.M. Lee, E.J. Weinberg, Phys. Rev. D 66 (2002), 014004;
T. Inagaki, D. Kimura, T. Murata, Prog. Theor. Phys. 111 (2004) 371;
T.D. Cohen, D.A. McGady, E.S. Werbos, Phys. Rev. C 76 (2007), 055201.

http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6861727A6565763A323030376A70s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib536B6F6B6F763A323030397170s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib566F726F6E79756B3A323031316A64s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib566F726F6E79756B3A323031316A64s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6861727A6565763A323031327068s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6861727A6565763A323031327068s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib42616C693A32303131716As1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C6576616E736B793A313938397669s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C6576616E736B793A313938397669s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C6576616E736B793A313938397669s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C6576616E736B793A313938397669s4
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C6576616E736B793A313938397669s5


260 M. Ruggieri et al. / Physics Letters B 734 (2014) 255–260
[7] M. D’Elia, F. Negro, Phys. Rev. D 83 (2011), 114028;
G.S. Bali, et al., Phys. Rev. D 86 (2012), 071502.

[8] H. Suganuma, T. Tatsumi, Ann. Phys. 208 (1991) 470.
[9] V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462 (1996) 249;

V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 563 (1999) 361;
G.W. Semenoff, I.A. Shovkovy, L.C.R. Wijewardhana, Phys. Rev. D 60 (1999), 
105024;
V.A. Miransky, I.A. Shovkovy, Phys. Rev. D 66 (2002), 045006.

[10] M. Frasca, M. Ruggieri, Phys. Rev. D 83 (2011), 094024.
[11] K.G. Klimenko, Theor. Math. Phys. 89 (1992) 1161;

K.G. Klimenko, Teor. Mat. Fiz. 89 (1991) 211;
K.G. Klimenko, Z. Phys. C 54 (1992) 323;
K.G. Klimenko, Theor. Math. Phys. 90 (1992) 1;
K.G. Klimenko, Teor. Mat. Fiz. 90 (1992) 3.

[12] E.S. Fraga, A.J. Mizher, Phys. Rev. D 78 (2008), 025016.
[13] N.O. Agasian, S.M. Fedorov, Phys. Lett. B 663 (2008) 445.
[14] F. Bruckmann, G. Endrodi, T.G. Kovacs, J. High Energy Phys. 1304 (2013), 112.
[15] M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82 (2010), 051501.
[16] G. Endrodi, arXiv:1301.1307 [hep-ph].
[17] K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81 (2010), 114031;

R. Gatto, M. Ruggieri, Phys. Rev. D 83 (2011), 034016;
R. Gatto, M. Ruggieri, Phys. Rev. D 82 (2010), 054027.

[18] A.J. Mizher, M.N. Chernodub, E.S. Fraga, Phys. Rev. D 82 (2010), 105016.
[19] J.O. Andersen, A. Tranberg, J. High Energy Phys. 1208 (2012), 002.
[20] V. Skokov, Phys. Rev. D 85 (2012), 034026.
[21] K. Fukushima, J.M. Pawlowski, Phys. Rev. D 86 (2012), 076013.
[22] M.N. Chernodub, Phys. Rev. D 82 (2010), 085011;

M.N. Chernodub, Phys. Rev. Lett. 106 (2011), 142003;
M.N. Chernodub, Phys. Rev. D 86 (2012), 107703;
V.V. Braguta, et al., Phys. Lett. B 718 (2012) 667.

[23] P.V. Buividovich, et al., Phys. Lett. B 682 (2010) 484;
P.V. Buividovich, et al., Nucl. Phys. B 826 (2010) 313;
P.V. Buividovich, et al., Phys. Rev. D 80 (2009), 054503.

[24] E.S. Fraga, L.F. Palhares, Phys. Rev. D 86 (2012), 016008;
E.S. Fraga, J. Noronha, L.F. Palhares, arXiv:1207.7094 [hep-ph];
J.-P. Blaizot, E.S. Fraga, L.F. Palhares, arXiv:1211.6412 [hep-ph].

[25] F. Preis, A. Rebhan, A. Schmitt, J. High Energy Phys. 1103 (2011), 033;
F. Preis, A. Rebhan, A. Schmitt, J. Phys. G 39 (2012) 054006.

[26] N. Callebaut, D. Dudal, arXiv:1303.5674 [hep-th];
N. Callebaut, D. Dudal, H. Verschelde, J. High Energy Phys. 1303 (2013), 033.

[27] A. Gynther, K. Landsteiner, F. Pena-Benitez, A. Rebhan, J. High Energy Phys. 
1102 (2011), 110.

[28] J.O. Andersen, R. Khan, Phys. Rev. D 85 (2012), 065026;
J.O. Andersen, Phys. Rev. D 86 (2012), 025020;
J.O. Andersen, J. High Energy Phys. 1210 (2012), 005.
[29] P. Burikham, J. High Energy Phys. 1105 (2011), 121.
[30] V.G. Filev, R.C. Raskov, Adv. High Energy Phys. 2010 (2010) 473206;

G. Lifschytz, M. Lippert, Phys. Rev. D 80 (2009), 066007.
[31] G.N. Ferrari, A.F. Garcia, M.B. Pinto, Phys. Rev. D 86 (2012), 096005.
[32] M. Ferreira, P. Costa, D.P. Menezes, C. Providencia, N. Scoccola, Phys. Rev. D 89 

(2014), 016002, arXiv:1305.4751 [hep-ph].
[33] P. Costa, M. Ferreira, H. Hansen, D.P. Menezes, C. Providencia, Phys. Rev. D 89 

(2014), 056013, arXiv:1307.7894 [hep-ph].
[34] M. Ferreira, P. Costa, C. Providencia, Phys. Rev. D 89 (2014), 036006, arXiv:

1312.6733 [hep-ph].
[35] K. Kamikado, T. Kanazawa, arXiv:1312.3124 [hep-ph].
[36] M. Ruggieri, M. Tachibana, V. Greco, J. High Energy Phys. 2013 (2013), 165.
[37] G. Colucci, E.S. Fraga, A. Sedrakian, Phys. Lett. B 728 (2014) 19.
[38] K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78 (2008), 074033;

K. Fukushima, D.E. Kharzeev, H.J. Warringa, Nucl. Phys. A 836 (2010) 311;
K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. Lett. 104 (2010), 212001.

[39] T. Vachaspati, Phys. Lett. B 265 (1991) 258.
[40] L. Campanelli, Phys. Rev. Lett. 111 (2013), 061301.
[41] R.C. Duncan, C. Thompson, Astrophys. J. 392 (1992) L9.
[42] H. Abuki, D. Ishibashi, K. Suzuki, Phys. Rev. D 85 (2012), 074002;

H. Abuki, Phys. Rev. D 87 (2013), 094006;
H. Abuki, arXiv:1307.8173 [hep-ph].

[43] A. Flachi, T. Tanaka, J. High Energy Phys. 1102 (2011), 026;
A. Flachi, J. High Energy Phys. 1201 (2012), 023.

[44] T. Kojo, N. Su, Phys. Lett. B 720 (2013) 192;
K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 110 (2013), 031601.

[45] J. Chao, P. Chu, M. Huang, Phys. Rev. D 88 (2013), 054009.
[46] D.U. Jungnickel, C. Wetterich, Phys. Rev. D 53 (1996) 5142.
[47] T.K. Herbst, J.M. Pawlowski, B.-J. Schaefer, Phys. Lett. B 696 (2011) 58.
[48] B.-J. Schaefer, J. Wambach, Nucl. Phys. A 757 (2005) 479.
[49] V. Skokov, B. Stokic, B. Friman, K. Redlich, Phys. Rev. C 82 (2010), 015206.
[50] V.I. Ritus, Ann. Phys. 69 (1972) 555;

C.N. Leung, S.Y. Wang, Nucl. Phys. B 747 (2006) 266.
[51] M. Frasca, Phys. Rev. C 84 (2011), 055208.
[52] G. Basar, D.E. Kharzeev, Phys. Rev. D 85 (2012), 086012.
[53] M. Ruggieri, Phys. Rev. D 84 (2011), 014011;

R. Gatto, M. Ruggieri, Phys. Rev. D 85 (2012), 054013.
[54] M.N. Chernodub, A.S. Nedelin, Phys. Rev. D 83 (2011), 105008.
[55] I.E. Frolov, V.C. Zhukovsky, K.G. Klimenko, Phys. Rev. D 82 (2010), 076002.
[56] R. Anglani, R. Casalbuoni, M. Ciminale, R. Gatto, N. Ippolito, M. Mannarelli, M. 

Ruggieri, arXiv:1302.4264 [hep-ph].
[57] E.S. Fraga, B.W. Mintz, J. Schaffner-Bielich, Phys. Lett. B 731 (2014) 154.

http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4427456C69613A323031317A75s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4427456C69613A323031317A75s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib537567616E756D613A313939306E6Es1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib477573796E696E3A313939356E62s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib477573796E696E3A313939356E62s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib477573796E696E3A313939356E62s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib477573796E696E3A313939356E62s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib477573796E696E3A313939356E62s4
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4672617363613A323031317A6Es1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C696D656E6B6F3A313939307268s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C696D656E6B6F3A313939307268s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C696D656E6B6F3A313939307268s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C696D656E6B6F3A313939307268s4
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6C696D656E6B6F3A313939307268s5
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46726167613A32303038716Es1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4167617369616E3A323030387462s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib427275636B6D616E6E3A323031336F6261s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4427456C69613A323031306E71s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib456E64726F64693A323031336373s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46756B757368696D613A323031306665s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46756B757368696D613A323031306665s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46756B757368696D613A323031306665s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4D697A6865723A323031307A62s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib416E64657273656E3A323031326271s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib536B6F6B6F763A323031316962s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46756B757368696D613A323031327877s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib436865726E6F6475623A323031307178s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib436865726E6F6475623A323031307178s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib436865726E6F6475623A323031307178s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib436865726E6F6475623A323031307178s4
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4275697669646F766963683A323030387766s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4275697669646F766963683A323030387766s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4275697669646F766963683A323030387766s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46726167613A323031326673s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46726167613A323031326673s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46726167613A323031326673s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib50726569733A323031306371s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib50726569733A323031306371s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib43616C6C65626175743A32303133726961s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib43616C6C65626175743A32303133726961s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib47796E746865723A323031306564s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib47796E746865723A323031306564s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib416E64657273656E3A323031316970s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib416E64657273656E3A323031316970s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib416E64657273656E3A323031316970s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib427572696B68616D3A323031316E67s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46696C65763A32303130706Ds1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46696C65763A32303130706Ds2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib466572726172693A323031327977s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46657272656972613A32303133746261s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46657272656972613A32303133746261s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib436F7374613A323031337A6361s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib436F7374613A323031337A6361s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46657272656972613A323031336F6461s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46657272656972613A323031336F6461s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B616D696B61646F3A32303133707961s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib52756767696572693A32303133637961s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib436F6C756363693A323031337A6F61s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46756B757368696D613A323030387865s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46756B757368696D613A323030387865s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46756B757368696D613A323030387865s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib566163686173706174693A313939316E6Ds1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib43616D70616E656C6C693A323031336D6561s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib44756E63616E3A313939326869s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4162756B693A323031317066s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4162756B693A323031317066s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4162756B693A323031317066s3
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib466C616368693A32303130797As1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib466C616368693A32303130797As2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6F6A6F3A323031326A73s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4B6F6A6F3A323031326A73s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4368616F3A32303133717061s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4A756E676E69636B656C3A313939356670s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4865726273743A323031307266s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib53636861656665723A32303034656Es1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib536B6F6B6F763A323031307762s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib52697475733A313937326B79s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib52697475733A313937326B79s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib4672617363613A323031316264s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib42617361723A323031326768s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib52756767696572693A323031317863s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib52756767696572693A323031317863s2
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib436865726E6F6475623A323031316672s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46726F6C6F763A32303130776Es1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib416E676C616E693A32303133676675s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib416E676C616E693A32303133676675s1
http://refhub.elsevier.com/S0370-2693(14)00383-9/bib46726167613A323031336F7661s1

	Critical endpoint and inverse magnetic catalysis for ﬁnite temperature and density quark matter in a magnetic background
	1 Introduction
	2 The model
	3 Ginzburg-Landau expansion
	4 Phase diagram and critical endpoint
	5 Conclusions
	Acknowledgements
	References


